
META-SIFT : How to Sift Out a Clean Subset in the Presence of Data Poisoning?

Yi Zeng∗*1,2, Minzhou Pan*1, Himanshu Jahagirdar1, Ming Jin1, Lingjuan Lyu2 and Ruoxi Jia1

1Virginia Tech, Blacksburg, VA 24061, USA
2Sony AI, Tokyo, 108-0075, Japan

Abstract
External data sources are increasingly being used to train
machine learning (ML) models as the data demand increases.
However, the integration of external data into training poses
data poisoning risks, where malicious providers manipulate
their data to compromise the utility or integrity of the model.
Most data poisoning defenses assume access to a set of clean
data (referred to as the base set), which could be obtained
through trusted sources. But it also becomes common that
entire data sources for an ML task are untrusted (e.g., Internet
data). In this case, one needs to identify a subset within a
contaminated dataset as the base set to support these defenses.

This paper starts by examining the performance of defenses
when poisoned samples are mistakenly mixed into the base
set. We analyze five representative defenses that use base sets
and find that their performance deteriorates dramatically with
less than 1% poisoned points in the base set. These findings
suggest that sifting out a base set with high precision is key to
these defenses’ performance. Motivated by these observations,
we study how precise existing automated tools and human
inspection are at identifying clean data in the presence of data
poisoning. Unfortunately, neither effort achieves the precision
needed that enables effective defenses. Worse yet, many of the
outcomes of these methods are worse than random selection.

In addition to uncovering the challenge, we take a step fur-
ther and propose a practical countermeasure, META-SIFT .
Our method is based on the insight that existing poisoning at-
tacks shift data distributions, resulting in high prediction loss
when training on the clean portion of a poisoned dataset and
testing on the corrupted portion. Leveraging the insight, we
formulate a bilevel optimization to identify clean data and fur-
ther introduce a suite of techniques to improve the efficiency
and precision of the identification. Our evaluation shows that
META-SIFT can sift a clean base set with 100% precision
under a wide range of poisoning threats. The selected base
set is large enough to give rise to successful defense when
plugged into the existing defense techniques.

∗M. Pan and Y. Zeng contributed equally. Corresponding Y. Zeng, L. Lyu
or R. Jia. Work partially done during Y. Zeng’s internship at Sony AI.

1 Introduction
Constructing high-performance machine learning (ML) sys-

tems requires large and diverse data. The data-hungry nature
will inevitably force individuals and organizations to lever-
age data from external sources, the beginning of which is
already evident. For instance, CLIP [1], the state-of-the-art
image representation, is learned from 400 million image-text
pairs collected from the Internet. Various data marketplaces
and crowd-sourcing platforms also emerge to enable data ex-
change at scale. While incorporating external data sources
into training has clear benefits, it exposes ML systems to se-
curity threats on account of data poisoning attacks, in which
attackers modify training data to degrade model performance
or control model prediction. In fact, data poisoning has been
remarked as the top security concern regarding ML systems
in the industry [2].

In this paper, the term “data poisoning” will be used in
a broad sense, referring to attacks that involve training data
manipulation. In particular, it includes both the attacks that
interfere only with training data and backdoor attacks that
embed a backdoor trigger during the training time and fur-
ther inject the trigger into test-time inputs to control their
corresponding predictions. Within the scope of this paper, we
divide existing data poisoning attacks into three categories
based on the attribute being manipulated:
• Label-only attacks that only alter labels, such as tar-

geted [3] and Random Label-Flipping attacks [4] aimed at
degrading model utility;

• Feature-only attacks that only manipulate features without
changing the labels, such as feature collision attacks [5]
and clean-label backdoor attacks [6, 7];

• Label-Feature attacks that change both feature and label,
such as standard backdoor attacks [8–10].
Intensive efforts have been invested in mitigating data poi-

soning. The types of defenses in the prior work range from
identifying poisoned samples in a training set [11] (Poison
Detection) to detecting whether a model has been trained on
a poisoned dataset [12] (Trojan-Net Detection) to remov-
ing backdoors from a poisoned model [13, 14] (Backdoor

mailto:yizeng@vt.edu
mailto:lingjuan.Lv@sony.com
mailto:ruoxijia@vt.edu

Removal) to redesigning training algorithms to prevent poi-
soning from taking effect [4] (Robust Training)

Most existing defenses assume that the defender can ac-
cess a set of clean data (referred to as the base set here-
after). Despite the prevalence of the assumption in exist-
ing literature, focused discussion about its validity is lack-
ing. If the defender were capable of collecting a set of clean
samples from trusted sources of data, then this assumption
could be met easily. However, it has become increasingly
common to learn solely from untrusted data sources, such
as training with the data scraped from the Internet or pur-
chased from specific vendors. In that case, the defender needs
to identify a clean subset within the poisoned dataset to
form the base set. Many important questions remain unclear:
How does the defense performance change if the identifica-
tion is imperfect and some poisoned data are mixed into the
base set? Are there any existing automated methods that can
reliably identify a clean base set in the presence of various
types of poisoning attacks? Can human inspection fulfill
the need? If not, how can we reliably identify enough clean
samples to support those defenses?

Takeaway #1: Defense performance is sensitive to the pu-
rity of the base set. We start by examining the sensitivity
of defense performance to the ratio of poisoned points in the
base set. We study five representative defense techniques that
rely on access to a base set. The techniques considered either
achieve state-of-the-art performance or are popular baselines.
We find that their performance degrades significantly (e.g.,
attack success rate exceeding 80%) with less than 1% of
poisoned points in the base set. Surprisingly, even a single
poisoned point is sufficient to nullify the effect of a state-of-
the-art poisoned data detector. These findings suggest that the
ability to sift out a base set with high precision is critical to
successfully applying these defenses.
Takeaway #2: Both existing automated methods and hu-
man inspection fail to identify a clean subset with high
enough precision. We investigate how precise existing auto-
mated methods and human inspection can be in identifying
clean data in the presence of data poisoning and the result
is illustrated in Figure 1. The precision of both humans and
existing automated methods varies a lot across different attack
categories. Humans are proficient at identifying poisoned sam-
ples that involve label changes, including Label-only attacks
and Label-Feature attacks, and outperform existing automated
methods by a large margin. However, humans still miss many
poisons and cannot realize a 100% success rate in sifting out a
clean base set. Notably, for these two attack categories, several
automated methods even underperform the random baseline.

On the other hand, for Feature-only attacks, human inspec-
tion results in a precision close to the random baseline. As
these attacks inject small perturbations only to the features
while not changing the overall semantics, human experts per-
form worse than most automated methods. This finding is in
direct contrast to the traditional wisdom that treats human

Figure 1: A comparison of the normalized precision of ex-
isting automated methods (Machine), Human, and META-
SIFT in sifting out a clean subset from a poisoned CIFAR-10.
Both human, machine-based, and META-SIFT results are nor-
malized with the poison ratio to ensure comparability. A larger
value indicates a stronger filtering capability. The red region
depicts the filtering capability worse than random selection.

supervision as the final backstop of data poisoning. Besides
being time-consuming and cost-intensive, human inspection
becomes less trustworthy in identifying poisoned data given
the fast-growing research on stealthy attacks. Overall, both ex-
isting automated methods and human inspection cannot reach
the level of precision required to enable successful defense.
Takeaway #3: META-SIFT — a scalable and effective au-
tomated method to sift out a clean base set. We propose
META-SIFT to sift a clean subset from the poisoned set. Our
approach is based on a novel insight that data manipulation
techniques exploited by existing poisoning attacks inevitably
result in a distributional shift from the clean data. Hence,
training on the clean portion of the contaminated dataset and
testing the trained model on the other corrupted portion will
lead to a high prediction loss. We formulate a bilevel opti-
mization problem to split the contaminated dataset in a way
that training on one split and testing on the other leads to
the highest prediction loss. However, this splitting problem is
hard to solve exactly as it has a combinatorial search space
and at the same time, contains two nested optimization prob-
lems. To address the computational challenge, we first relax
it into a continuous splitting problem, where we associate
each sample with a continuous weight indicating their like-
lihood of belonging to one of the splits and then optimize
the weights via gradient-based methods. Secondly, we adapt
the online algorithm that was originally designed for training
sample reweighting [15] to efficiently solve the continuous
relaxation of the bilevel problem. Furthermore, we adopt the
idea of “ensembling” to improve the precision of selection.
In particular, we propose to apply random perturbations to
each point, run the online algorithm on each perturbed version
to obtain a weight, and aggregate the weights for final clean
data selection. Our evaluation shows that META-SIFT can
robustly sift out a clean base set with 100% precision under
a wide range of poisoning attacks. The selected base set is
large enough to give rise to successful defense when plugged
into the existing defense techniques. It is worth noting that
META-SIFT significantly outperforms the existing automated
methods (illustrated in Figure 1) while being orders of magni-
tude faster (Table 5, 6, 15, 16).

Our contributions can be summarized as follows:
• We identify an overlooked problem of the accessibility

of a clean base set in the presence of data poisoning.
• We systematically evaluate the performance of existing

automated methods and human inspection in distin-
guishing between poisoned and clean samples;

• We propose a novel splitting-based idea to sift out a
clean subset from a poisoned dataset and formalize it into
a bilevel optimization problem.

• We propose META-SIFT, comprising an efficient algo-
rithm to solve the bilevel problem as well as a series of
techniques to enhance sifting precision.

• We extensively evaluate META-SIFT and compare with
existing automated methods on four benchmark datasets
under twelve different data poisoning attack settings. Our
method significantly outperforms existing methods in
both sifting precision and efficiency. At the same time,
plugging our sifted samples into existing defenses achieves
comparable or even better performance than plugging
in randomly selected clean samples.

• We open-source the project to promote research on this
topic and facilitate the successful application of existing
defenses in settings without a clean base set 1.

2 Sifting Out a Clean Enough Base Set is Hard
The ability to acquire a clean base set was taken for granted

in many existing data poisoning defenses [13, 14, 16–19].
For instance, a popular Trojan-Net Detection strategy is to
first synthesize potential trigger patterns from a target model
and then inspect whether there exists any suspicious pattern
[13, 16]. Trigger synthesis is done by searching for a pattern
that maximally activates a certain class output when it is
patched onto the clean data. Hence, access to a clean set of
data is indispensable to this defense strategy. Another example
is defenses against Label-Flipping attacks (often referred to
as mislabeled data detection in ML literature). State-of-the-
art methods detect mislabeled data by finding a subset of
instances such that when they are excluded from training, the
prediction accuracy on a clean validation set is maximized. A
clean set of instances are needed to enable these methods.

2.1 Defense Requires a Highly Pure Base Set
TABLE 1 summarizes some representative techniques that

rely on access to a clean base set in each of the aforementioned
defense categories, namely, Poison Detection, Trojan-Net De-
tection, Backdoor Removal, and Robust Training against label
noise. These techniques either achieve the state-of-the-art per-
formance (e.g., Frequency Detector [11], I-BAU [14], MW-
Net [19]) or are widely-adopted baselines (e.g., MNTD [12]
and Neural Cleanse (NC) [13]). In particular, MNTD is im-
plemented as a base strategy in an ongoing competition for
Trojan-Net Detection2.

1https://github.com/ruoxi-jia-group/Meta-Sift
2https://trojandetection.ai/

While conventionally, these defense techniques only report
their performance based on a completely clean base set, given
the fast-advancing research on stealthy attacks, it is possi-
ble that some poisoned samples may go unnoticed and get
selected into the base set by mistake. Hence, it is critical to
evaluate how the performance of these defenses depends on
the ratio of the poisoned samples in the base set.

We adopt widely used metrics to measure defense perfor-
mance for each defense category. Specifically, for Poison De-
tection, we use Poison Filtering Rate (PFR), which measures
the ratio of poisoned samples that are correctly detected. For
Trojan-Net Detection, we follow the original work of MNTD
and use the Area Under the ROC Curve (AUC) as a metric,
which measures the entire two-dimensional area underneath
the ROC curve3. The most naive baseline for poison detec-
tion and Trojan-Net detection is random deletion, which ends
up with a PFR of 50% and an AUC of 50%. The closer the
performance of the defense in the Poison Detection and the
Trojan-Net Detection category gets to 50%, the weaker the
defense is. For backdoor removal, we use the Attack Suc-
cess Rate (ASR), which calculates the frequency with which
non-target-class samples patched with the backdoor trigger
are misclassified into the attacker-desired target class. For
Robust Training, we use the Test Accuracy (ACC), which
measures the accuracy of the trained model on a clean test set.
The baselines for Backdoor Removal and Robust Training are
simply the deployment of no defenses at all. We report ASR or
ACC that is obtained directly from training on the poisoned
dataset. The closer the performance of defense in these two
categories gets to these baselines, the weaker the defense is.

We compare the resulting defense performance against
standard attacks (e.g., BadNets [8], Random Label-Flipping)
between clean and corrupted base sets (Table 1). For Poisoned
Detection with Frequency Detector, even one poisoned ex-
ample sneaking into the base set is sufficient to nullify the
defensive effect, leading to a performance worse than the ran-
dom baseline. For MNTD, with 1% of poisoned examples
mixed into the base set, the AUC drops by almost 40%. Com-
paring the two techniques for Backdoor Removal, we can find
that I-BAU is more sensitive to corruption of the base set than
NC. Both techniques patch a trigger to partial samples in the
base set to fine-tune the poisoned model, aimed at forcing the
model to “forget” the wrong association between the trigger
and the target label. Compared to NC, the design of I-BAU se-
lects fewer samples in the base set to be patched with a trigger.
Hence, the positive “forgetting” effect introduced by these
samples is more likely to be overwhelmed by the negative
effect caused by poisoned examples sneaking into the base set.
This explains the larger sensitivity of I-BAU to corruption of
the base set. For both techniques, less than 3% of corruption
in the base set is adequate to bring the ASR back above 60%.
For Robust Training with MW-Net, 20 mislabeled samples in

3An ROC curve plots the true positive rate vs. the false positive rate at
different classification thresholds

https://github.com/ruoxi-jia-group/Meta-Sift
https://trojandetection.ai/

Poison
Detetcion

Trojan-Net
Detetcion

Backdoor
Removal

Robust
Training

Frequency
Detector [11]

MNTD
[12]

NC
[13]

I-BAU
[14]

MW-Net
[19]

Task/
Settings

Detecting
BadNets;

BadNets 5%;
Target: 2;

BadNets 5%;
Target: 38;

20% Random
Label-Flipping;

Base Set 100-CIFAR-10 1000-MNIST 1000-GTSRB 100-CIFAR-10
Metric PFR (↑ %) AUC (↑ %) ASR (↓ %) ACC (↑ %)
Baseline Random: 50 Random: 50 No Def: 97.43 No Def: 69.99
poison 0/100 0/1000 0/1000 0/1000 0/100
Original 99.95 99.92 18.83 12.58 91.18
poison 1/100 10/1000 30/1000 8/1000 20/100
After 3.11 62.78 62.67 81.82 81.84

Table 1: Defenses in the case of using a corrupted base set. For
each category of defense, we use different metrics according
to these original works. Baseline results are the settings with
random guessing as defense or without defenses; Original
results is the settings assuming an access to clean base set;
After shows the results of using a contaminated base set.

the base set can reduce the accuracy by about 10%. Overall,
we can see that base sets with high purity are crucial to enable
the successful application of these popular defenses requiring
access to base sets.

2.2 The Data Sifting Problem
The sensitivity of defense performance to the purity of

the underlying base set motivates us to study the Data Sift-
ing Problem: How to sift out a clean subset from a given
poisoned dataset? We highlight some unique challenges and
opportunities towards answering this question.
• (Challenge) High precision: The empirical study in Sec-

tion 2.1 demonstrates that the defensive performance could
drop significantly with a small portion of corruption in the
base set. Hence, sifting out clean samples with high preci-
sion is crucial to ensure defense effectiveness.

• (Challenge) Attack-Agnostic: In practice, the defender
usually does not know the underlying attack mechanisms
that the attacker used to generate the poisoned samples.
Hence, it is important to ensure high precision across dif-
ferent types of poisoning attacks.

• (Opportunity) Mild requirement on the size of the sifted
subset. In contrast to the high requirement on the purity,
the requirement of the size of the sifted subset is gener-
ally mild. The size of the base set required to enable an
effective defense is usually much smaller compared to the
size of the poisoned set. For instance, a clean base set of
size less than 1% of the whole poisoned dataset suffice to
enable effective defenses [14, 20] .

Note that some attempts have been made in the prior work
to lift the requirement on base sets in data poisoning de-
fenses [15, 21–23]. However, these works are focused on
specific defense categories against specific attack settings.
By contrast, when solving the data sifting problem one can
obtain a highly pure base set that can be plugged into any
defense technique that requires the base-set-access. Hence,
we argue that solving the data sifting problem provides
a more flexible pathway to address the base-set-reliance
issue in current data-poisoning defense literature.

2.3 How Effective are Existing Methods
We first consider automated methods that can potentially

solve the data sifting problem. Note that the data sifting prob-
lem is similar to the traditional outlier detection problem,
wherein the goal is to sift out the abnormal instances in a
contaminated dataset. Ideally, if one could filter out all the
abnormal instances perfectly, then the complement set can be
taken to solve the data sifting problem. There are two key
differences between data sifting and outlier detection. Firstly,
the data sifting problem is contextualized in data poisoning
defense applications, where it is not necessary to sift out all
the clean instances, but instead, a small subset of clean in-
stances in the training set often suffices to support an effective
defense. Secondly, in outlier detection, it is often more impor-
tant to achieve high recall at a given selection budget (i.e., a
high proportion of true outliers is marked as outliers by the
detection algorithm), whereas in the data sifting problem, high
precision is the key to realize a successful defense (i.e., a high
proportion of the “marked-as-clean” points is truly clean).

At a technical level, the outlier detection algorithms are still
applicable to approach the data sifting problem. In particular,
existing outlier detection algorithms assign an “outlier score”
to each data point, indicating their likelihood to be an outlier.
To re-purpose these algorithms for data sifting, we select the
points with the lowest “outlier scores” of each class to form
the balanced base sets. We evaluate some representative out-
lier detection methods that do not rely on additional clean data
to function and examine their potential to solve the identified
problem. Specifically, we evaluate:
• Distance to the Class-Means (DCM): We compute the

mean of each class at the input-space (pixel-level) as the
class center and assign the outlier score to a point based
on the distance to its center.

• Distance to Model-Inversion-based CM (MI-DCM): MI-
DCM differs from DCM in the choice of the class cen-
ter. Here, each class center is obtained by conducting the
model inversion attack [24] on the model trained on the
entire dataset. Model inversion is a type of privacy attack
aimed at reconstructing the representative points for each
class from the trained model.

• Spectral Filtering’s Least Scores (SF-Least) [25]: Spec-
tral Filtering is an advanced outlier detection method in
robust statistics. Its key idea is that the outliers will result
in larger eigenvalues than expected eigenvalues of sample
covariance. This idea has been applied to the detection
of backdoored samples. To start with, we extract features
for each sample using the model trained over the contami-
nated dataset and the outlier score of a sample is calculated
based on the dot product between its feature and the top
eigenvector of the sample covariance matrix.

• Loss-based Poison Scanning (Loss-Scan) [26]: Recent
work has identified the difference between the losses of
benign and backdoored samples [26]. For most backdoor
attacks, the losses of the poisoned sample would be lower

Poison attack
Method

Random DCM MI-DCM∗ SF-Least∗ Loss-Scan∗ Self-IF∗

Targeted Label-Flipping [3] 83.3 92 93.3±0.5 82.7±0.5 69.0±1.7 72.0±0.8
Narcissus Backdoor [7] 90 90 0.0±0.0 94.00±0.0 82.0±0.3 88.3±0.9

Poison Frogs [5] 90 90 72.7±2.9 87.0±0.0 92.4±0.7 91.7±0.5
BadNets Backdoor [8] 66.7 63 62.0±0.0 76.0±0.8 67.0±0.5 70.3±0.5
Overhead (seconds) NA 10 5411+300 5411+15 210 5411+19832

Table 2: Automated methods’ precision for sifting out a size-
1000 CIFAR-10 subset (each class 100 samples). Precision
is calculated using # correct clean samples in the selected
subset divided by the total # samples for the respective target
class (100). The red highlights the methods that perform
even worse than random selection. The yellow highlights the
methods that are not time-efficient. The methods with ∗ denote
that the setting includes randomness (e.g., resulting from deep
learning model training); thus, we report the corresponding
means and the standard deviations.

than those of the benign sample during the early learning
period (5 epochs). We adopt this notion and record the neg-
ative value of early training losses as the outlier score, i.e.,
the smaller the original loss, the greater the likelihood that
the sample contains potentially hazardous information.

• Self-Influence-Function (Self-IF) [27]: Influence functions
are designed to measure the impact of each training point
on the loss of the trained model and have been widely used
to enhance training [28] and repair mislabeled training
data [29]. In particular, Self-Influence-Function is a variant
that measures the influence of a point on the training loss.
The outlier score of a point here is taken to be the negative
of the result returned by Self-Influence-Function.

TABLE 2 shows the sifting results of existing methods on
CIFAR-10. We include four popular attack strategies from
the three categories of data poisoning in our evaluation, i.e.,
Targeted Label-Flipping, Narcissus backdoor, Poison Frogs,
and BadNets backdoor. Settings are detailed in Appendix 6.1.

As shown in TABLE 2, none of the existing automated
methods can sift out a clean subset from a poisoned dataset
with high enough precision to support effective defense (recall
the results in Table 1 even the purity of 97% can already
significantly weaken the defenses under the BadNets attack).
These methods employ simple criteria to calculate the outlier
scores, which can be evaded by advanced attack techniques.
Also, we observe that the sifting precision of each method
varies largely over different attacks. Worse yet, many of these
approaches produce results even inferior to random selection.
These negative results motivate us to analyze the commonality
of existing poisoning strategies in order to devise a sifting
strategy effective under different attacks. Lastly, note that
MI-DCM, SF-Least, and Self-IF require a well-trained model
using the contaminated dataset and incur high computational
costs. For instance, in our experiments, such training requires
5411 GPU seconds (on one RTX 2080 Ti).

2.4 How Effective is Human Inspection
Given that the automated methods fall short of sifting out

a clean base set, we ask the question: can humans accurately

Figure 2: The user interface designed for evaluating humans’
ability to identify clean data.

differentiate between clean and poisoned instances?
Traditionally, human inspection is considered a final back-

stop of data poisoning. For instance, in the highly-cited survey
of data poisoning [30], it is argued that it is the lack of human
supervision on the dataset that opens the door for poisoning
attacks and the subtext is that data poisoning attacks can be
prevented with human inspection in place. However, as more
and more stealthy poisoning attacks are developed, can human
still serve a final backstop for data poisoning?

For completeness, we evaluate all three types of data poi-
soning: Label-only, Feature-only, and Label-Feature attacks.
We consider the most representative and advanced attacks
for each type. We extensively study 16 data poisoning at-
tacks (1 Label-only attack, 5 Feature-only assaults, and 10
Label-Feature attacks). The details of the attacks and their
settings are deferred to Appendix 6.2 due to the space limit.
We create 16 poisoned datasets in total using CIFAR-10, each
corresponding to a different attack. The size of all poisoned
datasets are fixed to 1000 and the poison ratio is set to be
10%. To ensure comparability, we use the same random seed
to select the poisoned samples (i.e., the poisoned samples in
each dataset share the same indices). Finally, each poisoned
dataset is sent to 3 human experts for inspection and each
human expert only inspects one dataset to avoid possible bias
introduced by repeated inspection. In total, we recruit 48 hu-
man experts from 3 different data labeling companies. Figure
2 illustrates a screenshot of the web portal that we develop
for human experts to identify poisoned data. In particular, we
provide the image itself and the label of that image to the
human experts. They are asked to discern whether a given
image is clean and consistent with the label.

We use false positive rate (FPR) or false negative rate (FNR)
to measure the human’s capability of distinguishing between
clean and poisoned samples. FPR is defined as follows:

FPR =
of clean samples flagged as poisoned

Total size of the clean samples
. (1)

FPR indicates the ratio of clean samples that are mistakenly
flagged as poisoned. Meanwhile, FNR is the metric we are
more interested in, which measures the ratio of poisoned sam-
ples that bypass human inspection and sneak into the sifted
dataset. FNR is defined as:

FNR =
of poisoned samples marked as clean

Total size of the poisoned samples
. (2)

We report the average and standard deviation of both met-
rics based on the results from multiple human experts. The
results are summarized in Figure 3. Surprisingly, 9.13% of
the clean samples are mistakenly recognized as the poisoned.

Clean Samples Label-only Attacks Feature-only Attacks

Clean

Plane

Ship

FPR: 9.13
± 13.26%

Label-Feature Attacks

Cat

Dog

FNR: 8.33
± 4.11%

BadNets

Cat

Dog

FNR: 14.0
± 9.93%

Cat

Dog

IAB

FNR: 6.00
± 2.16%

Masked-
Noise

Cat

Dog

FNR: 17.3
± 9.10%

Cat

Dog

Blended-
Noise

FNR: 13.7
± 2.62%

Watermark

Cat

Dog

FNR: 10.0
± 6.38%

Cat

Dog

Smooth

FNR: 8.00
± 2.45%

Cat

Dog

 -inv

FNR: 7.33
± 2.05%

 -inv

Cat

Dog

FNR: 11.3
± 2.49%

WaNet

Cat

Dog

FNR: 10.0
± 3.56%

Refool

Cat

Dog

FNR: 10.3
± 3.30%

Label-
Consistent

Plane

Ship

Hidden

Plane

Ship

Narcissus

Plane

Ship

Narcissus-
Watermark

Plane

Ship

Narcissus-
Smooth

Plane

Ship

FNR: 77.3
± 27.2%

FNR: 90.0
± 9.93%

FNR: 91.0
± 8.83%

FNR: 85.3
± 17.2%

FNR: 90.7
± 6.12%

Label-
Flipping

Figure 3: Human inspection results regarding data poisoning attacks. The labels and images marked in red depict potential
manipulations under that attack category, and the green represents that the attribute remains intact. The evaluation uses 16
poisoned datasets, with 10% of data being manipulated following the existing attack designs. Among the three different categories
of attacks, we report the error rate of misclassifying clean samples into poisoned ones (FPR) or poisoned ones into clean samples
(FNR). Each poisoned dataset is inspected by at least three human experts from three different professional data labeling
companies. We report the average results with standard deviations. The highlighted FNRs remark on the dangerous settings
where human inspection failed in identifying 85% or more poisoned data points.

Humans are more capable of capturing manipulations on la-
bels than on features. For Label-only attacks, human experts
can filter out 91.67% of the poisoned samples. Such a result
implies that despite the costs incurred, manual inspection can
help avoid most label-flipped samples in the base set.

On average, the results on the evaluated 10 Label-Feature at-
tacks are similar to those on the Label-only attacks, achieving
an averaged FNR of 10.8%. However, Label-Feature attacks
are much more powerful than Label-Flipping attacks. A small
amount of the poisoned samples (e.g., a poison ratio of 0.01%
suffices in existing literature [31, 32]) may successfully mis-
lead the downstream model. At the same time, a small amount
of such poisoned samples in the base set (less than 3% based
on Table 1) may already significantly hinder defense perfor-
mance. Hence, while humans achieve a relatively low FNR
on Label-Feature attacks, the missed poisoned samples may
still harm the downstream model or compromise the defense.

Even worse, when it comes to attacks that only manipulate
data features, human expert’s performance degrades sharply.
The averaged FNR is above 86% as shown in Figure 3. Such
a result is almost close to random guessing, which achieves
a FNR of around 90% as the poison ratio is 10%. To con-
clude, humans have limited capability of identifying samples
corrupted by feature manipulation. Finally, it is worth noting
that clean-label backdoor attacks—an instance of Feature-
only Attacks—are particularly dangerous. They can not only
largely evade human inspection, but also backdoor a system
with an extremely small poison ratio with state-of-the-art tech-
niques (e.g., 0.05% for attacking Tiny ImageNet [7]).

It’s noteworthy that our human study is conducted using
only one dataset (CIFAR-10). Further exploration into the
impact of image resolution and concept on humans’ capability
of poison detection is an interesting future work.

3 META-SIFT
3.1 Reducing to a Splitting Problem

This paper presents a new but intuitive idea to solve the
data sifting problem. Given a contaminated dataset, one can
expect that an ML model trained on the clean portion of the
dataset will perform poorly on the other corrupted portion
and vice versa. Take standard backdoor attacks as an example.
The poisoned instances are constructed by first applying a
backdoor trigger to some clean inputs and then changing their
labels to some target classes. A model trained on the clean
data would return large prediction loss when it observes such
poisoned instances because they are mislabeled, and their fea-
tures only contain a trigger that does not appear in the clean
data. This insight applies to general data poisoning attacks
because they all involve feature and/or label manipulation,
thereby resulting in a distributional shift from the clean in-
stances. Thus, we solve the data sifting problem by finding
a split of the given contaminated dataset such that the model
trained on one split produces a large loss on the other.

We formulate the splitting problem as a bilevel optimiza-
tion. Formally, given the contaminated dataset D = D1 ∪ . . .∪
DK , where Dk is the subset of D but only containing sam-
ples with class label k ∈ {1, · · · ,K}, our goal is to divide each
class-wise subset, Dk, into two splits Bk and Dk \Bk, such that

B∗ = argmax
B

K

∑
k=1

∑
zi∈Dk\Bk

L(θ∗(B),zi) , (3)

s.t. θ
∗(B) = argmin

θ

K

∑
k=1

∑
z j∈Bk

L(θ,z j) , (4)

|B1|= . . .= |BK |, (5)
|B1|+ . . .+ |BK | ≥ (1− ε)|D|. (6)

where B = B1∪ . . .∪BK is the union of the class-wise training
splits, θ represents the parameters of an ML model, and θ∗(B)
denotes the parameters obtained from training on B . L is the
loss function, e.g., cross-entropy loss for classification tasks.
The inner function (4) acquires a model that is trained over
one split. The outer optimization (3) evaluates the model
performance on the other split – D\B . The formulation seeks
for the subset B that leads to the highest loss when evaluated
on D\B . Additionally, (5) constrains the size of the split of
each class-wise subset so that the union B is a perfectly label-
balanced subset of D. (6) enforces the acquired B to have at
least (1− ε)|D| samples, where ε is an upper bound of the
poison ratio. If we assume the number of poisoned samples
in a given dataset to be smaller than that of clean samples (a
standard assumption in robust statistics [33]), i.e., ε will be
0.5. Thus, (6) is also encourages B to be the clean split.

3.2 Relaxation of the Splitting Problem
Exactly solving Eqn. (3-6) requires training on every pos-

sible B and testing on their complement. This is clearly in-
tractable. The computational challenge in part arises from the
combinatorial nature of the outer optimization problem. To
address this challenge, we propose to relax Eqn. (3-6) to a
continuous splitting problem. We start by rewriting (3-6) as

V ∗ = argmax
V

K

∑
k=1

∑
zi∈Dk

(1− v(k,i))L(θ
∗(V),zi), (7)

s.t. θ
∗(V) = argmin

θ

K

∑
k=1

∑
zi∈Dk

v(k,i) ·L(θ,zi), (8)

∥V1∥1 = . . .= ∥VK∥1, (9)
∥V1∥1 + . . .+∥VK∥1 ≥ (1− ε)|D|, (10)

where instead of directly optimizing the split, we optimize
the tuple of binary variables indicating each sample’s pres-
ence, V = [V1, . . . ,VK] ,where k ∈ {1, . . .K}. Each Vk =
[v(k,1), . . . ,v(k,|Dk|)] encodes the splitting result of Dk, where
v(k,i) = 1 if zi ∈ B (a class-k sample zi assigned to the split
for training) and v(k,i) = 0 if zi ∈ D \B (zi assigned to the
split for testing). ∥Vk∥1 computes the l1 norm of Vk, i.e.,
∥Vk∥1 = ∑

|Dk|
i=1 v(k,i) = |Bk|. To solve Eqn. (7-10), we relax the

binary variables v(k,i) as continuous ones, i.e., v(k,i) ∈ [0,1].
Hereinafter, v(k,i) represents the likelihood of zi being assigned
to the split for training. This continuous relaxation enables
us to leverage gradient-based methods to search for an ap-
proximate solution, i.e., each class-wise clean split Bk can be
obtained by collecting the samples with larger v(k,i).

However, when the size of the dataset is large, the outer
optimization needs to optimize over a continuous space of
the same large dimension, which could be slow. Inspired by
advances in meta learning [15,19], we propose to further learn
a weight-assigning network to assign weight to each point
instead of directly optimizing the weights. We found that the
number of parameters of such a network required to produce
useful weights is much smaller compared to the data size. For
instance, in our experiments, we found a network with 100
nodes is sufficient for high-quality weight assignment, but
on the other hand, the size of the datasets considered in this
paper is orders of magnitude larger. Hence, through adapting
a weight-assigning network, we effectively reduce the number
of variables that are optimized in the outer optimization.

Specifically, let S(·) denote the weight-assigning network
and let ψ denote its parameters. Furthermore, ∀k and zi ∈ Dk,
we let v(k,i) = S(L(θ,zi);ψ) , i.e., the weight-assigning net-
work determines the weight for zi based on its associated
learning loss from θ. For simplicity, we use Li(θ) as a short-
hand for L(θ,zi). Then, the continuous splitting problem that
we will solve can be expressed as:

ψ
∗ = argmax

ψ

|D|

∑
i=1

(1−S(Li(θ
∗(ψ));ψ)))Li(θ

∗(ψ)), (11)

s.t. θ
∗(ψ) = argmin

θ

|D|

∑
i=1

S(Li(θ);ψ)Li(θ). (12)

Since samples from each class are weighted by a shared
weight-assigning network, in (11, 12), we no longer specify
which class zi is from. Moreover, note that the optimization
problem above does not have explicit constraints to ensure
that the training split is class-balanced and contains the ma-
jority of the samples. Instead, we will adopt two heuristics to
enforce these constraints. 1) We apply S(·) to each sample
to obtain their weight and then select the same amount of
highest-weight samples within each class; 2) We initialize the
weights, v(k,i), to be all ones, i.e., assigning all the samples to
the training split and terminate the optimization with limited
rounds. The limited round of the optimization will leave most
of the samples with large v(k,i) values, thus resulting in an im-
plicit satisfaction of the constraint of selecting more samples
for the training split. Each hidden node in S(·) is equipped
with ReLU activation function [34], making it possible to
approximate non-linear functions. The output node produces
a one-dimensional value indicating the weight assigned to
the input to the weight-assigning network. The output node
utilizes a Sigmoid activation function to ensure that the output
is within the range [0,1].

3.3 Overall Algorithm
Overview. We now describe the full algorithm to sift out a
clean subset, which we call META-SIFT . Given a poisoned
dataset and a selection budget, META-SIFT aims to select
a subset that is most likely to be clean. The subset output
by META-SIFT can then be used as a base set in different

1

0.95
0.87
0.15

0.45

m

0.86
0.76
0.36

0.79

Poison

DatasetDataset

Poison

Training Stage × m Identification Stage
Figure 4: The whole process of META-SIFT consists of two stages: the Training Stage and the Identification Stage. Multiple
(m) Sifters will be included during the Identification Stage to reduce the randomness resulting from SGD and randomized
sample-dilution. As such, the Training Stage will be repeated m times with different random seeds to obtain m Sifters. In each
Sifter, there are two different structures working as a pair: model θ and the weight-assigning network ψ. In one iteration of the
Training Stage, there are four steps: Virtual-update of θ; Gradient Sampling using the meta-gradient-sampler Γ; Meta-update of
ψ; then the Actual-update of θ. After only one iteration, Training Stage will terminate. The trained Sifters will be adopted in the
Identification Stage to assign weights to the diluted data from the dataset. Finally, META-SIFT aggregates the results from
multiple Sifters, and the clean samples will be sifted by inspecting the high-value end.

downstream defense algorithms to fulfill their corresponding
defense goals. At a high level, META-SIFT consists of two
stages: Training and Identification. In the Training stage,
we adopt an online algorithm to solve (11, 12), and the algo-
rithm will produce optimized parameters ψ∗ for S(·) as well
as model parameters θ∗ trained on the weighted samples. The
definition of θ∗ will be more clear after we explicate the algo-
rithm. We will refer to the combination of S(·) parameterized
by ψ∗ and the classification model parameterized by θ∗ as a
Sifter. To mitigate the randomness of batch selection in the
online algorithm, we run the online algorithm independently
for m times, which results in m Sifters. In the Identification
stage, we feed the dataset into each Sifter and aggregate the
weights produced by all Sifters to obtain the final weight for
each sample in the dataset. The full process of META-SIFT is
depicted in Figure 4.
Training Stage. We present how to train a single Sifter in
META-SIFT . The training process starts by “warming up”
θ—training θ on the entire dataset for one epoch. Essentially,
we update θ while setting all weights to be one. This “warm-
up” step helps promote S(·) to assign large weight (close
to 1) to samples, which in turn, allows most of the samples
to be placed into the split for training, as mentioned above.
Then, the Sifter (with θ and ψ) are updated via an online
algorithm (illustrated in Figure 4). At each round of the on-
line algorithm, we perform the following four steps: Virtual-
update of a warmed-up model θ, Gradient Sampling using the
meta-gradient-sampler Γ, Meta-update of ψ, and finally the
Actual-update of θ.

1 Virtual-update of θ. This step takes a virtual update of θ,
the same as the traditional stochastic gradient descent (SGD).
Formally, a mini-batch of data {zi}n

i=1 is sampled, where n is
the batch size, and the following update is performed:

θ
′ = θ−αgθ, (13)

where gθ = 1
n ∑

n
i=1 S (Li (θ) ;ψ) ∂Li(θ)

∂θ
, representing the

weighted gradient of the training loss with respect to θ and α

is the learning rate. Suppose θ is a neural network consisting
of L layers. Let the parameters in layer l be denoted by wl .
Then, we can rewrite gθ as

gθ =

(
1
n

n

∑
i=1

S (Li (θ) ;ψ)

)
× [g1, . . . ,gL], (14)

where gl =
∂Li(θ)

∂wl
, representing a scaled gradient with respect

to the parameters in layer l.
2 Gradient Sampling. Inspired by [15], we parallelly train

a list of u gradient-samplers to select partial gradients from
the last u layers, {gL−u, . . . ,gL} for subsequent update on ψ.
The goal of gradient sampling is to accelerate and achieve
more stable results on the subsequent update on ψ [15].

In particular, we associate a different gradient-sampler γl(·)
for each layer l ∈ {L−u, . . . ,L}. γl takes as input the gradient
gl and returns a value indicating whether gl is selected. The
reason why each layer has a different gradient-sampler is that
their corresponding gradients are of different dimensions and
γl(·)’s input dimension needs to be tailored to the size of gl .
Following [15], we implement each gradient-sampler as a two-
layer fully-connected neural network. The activation units
in the first and second layer are PReLU [35] and “Gumbel-
softmax” [36], respectively.

The l-th gradient sampler, γl , can be updated using the gra-
dient of the outer optimization objective w.r.t. the gradient
sampler’s parameters. The dependency of the outer optimiza-
tion objective on the sampler’s parameters is via ψ. The gradi-
ent can be calculated automatically via auto-differentitaion in
standard deep learning frameworks [37]. We then update each
sampler according to the respected gradients before selecting
layers. The gradient of a layer is selected if the output of the
respect sampler exceeds 0.5. We denote the collection of the
weights for layers that are selected by a gradient sampler as

wC = {wl : γl(
∂Li (θ)

∂wl
)> 0.5}. (15)

3 Meta-update of ψ. In this step, we update the parameter
ψ of the weight-assigning network by calculating the gradient
of the outer optimization objective function with respect to ψ

and performing the gradient descent: ψ̂ = ψ−βgψ, where gψ

gψ =
∂

∂ψ

(
1
n

n

∑
i=1

(1−S(Li(θ
′);ψ))Li(θ

′)

)
=

1
n

n

∑
i=1

(
− ∂S(Li(θ

′);ψ)

∂ψ
Li(θ

′)+(1−S(Li(θ
′);ψ))

∂Li(θ
′)

∂ψ

)
.

(16)
∂Li(θ

′)
∂ψ

is often referred to as indirect gradient, and expands as

∂Li(θ
′)

∂ψ
=

∂Li(θ
′)

∂θ

(
− α

n

n

∑
j=1

∂S (L j (θ) ;ψ)

∂ψ

∂L j(θ)

∂θ

)
. (17)

The process of calculating the indirect gradient of ψ has been
shown to be computationally intensive [38, 39]. However, in
our case, by using the gradient samplers, we only consider the
selected layers to calculate the indirect gradient, i.e.,

∂Li(θ
′)

∂ψ
=

∂Li(θ
′)

∂wC

(
− α

n

n

∑
j=1

∂S (L j (θ) ;ψ)

∂ψ

∂L j(θ)

∂wC

)
. (18)

Note that gψ does not need to be calculated manually; instead,
it can also be computed via automated differentiation.

4 Actual-update of θ. Finally, we update θ in place based
on the weights assigned by the updated S(·; ψ̂):

θ̂ = θ−α
1
n

n

∑
i=1

S (Li (θ) ; ψ̂)
∂Li(θ)

∂θ
. (19)

In each round of our online algorithm, the four steps are per-
formed on one batch of data. The algorithm terminates when
it has gone through all the samples in D. The pseudocode of
the Training Stage is in Algorithm 1, Appendix 6.3. We define
the updated θ and ψ in the final round as θ∗ and ψ∗, respec-
tively. The pair of θ∗ and ψ∗ defines one Sifter’s parameters.
We will run the online Training algorithm multiple times to
obtain the Sifters we will use in the Identification Stage.
Identification Stage. Now we aggregate the results from all
the Sifters to identify the clean samples in three steps: Ran-
domized Sample-Dilution, Weight Assignment, and Weight
Aggregation & identification.

1 Randomized Sample-Dilution: Instead of directly feed-
ing a sample to the Sifter, we propose to first randomly perturb
the sample. Existing works [40, 41] show that the prediction
associated with a clean sample is robust to random perturba-
tion. Hence, a sample that consistently receives high weights
under different perturbations is more likely to be clean than
those samples experiencing large variance under perturbations.
The perturbation strategies considered in this paper include
random cropping, random rotation, random horizontal flip-
ping, and Gaussian blurring. For each sample, we apply all
the perturbation strategies simultaneously, and each strategy
is configured randomly (e.g., we randomly sample a rotation
angle and rotate the sample correspondingly). Ablation study
on these random perturbations is presented in Appendix 6.7.

2 Weight Assignment: The random sample-dilution step
produces m perturbed datasets and each dataset contains sam-
ples perturbed by a different random configuration of the

perturbations strategies. Then, each Sifter (m in total) takes
as input a perturbed dataset and produces the weights for all
samples. In particular, the classification model (parameterized
by θ∗) in the Sifter will be used to extract features from each
sample and S(·) (parameterized by ψ∗) will assign weight to
a sample based on the extracted features.

3 Aggregation & identification: We average the weights
for each sample from multiple Sifters and use the top-
weighted samples of each class k to form the sifted class-
wise clean subset Bk. Finally, the clean split B is obtained by
combining the class-wise results.

4 Evaluation
4.1 Experimental Setup
Metrics. One crucial factor in evaluating automated data sift-
ing methods is the precision of the selection. We use the Cor-
ruption Ratio (CR) to measure the precision of each method’s
selection performance. Formally, let Dsub denote the selected
subset from D using an automated method, and Npoi denote
the total number of the poisoned samples in Dsub. Then, the
CR of Dsub is defined as CR=

Npoi
|Dsub|

×100%. While CR seems
a natural performance metric, it is not well suited for compar-
ing the precision of selection across different attack settings
because they normally employ different poison ratios. For
example, consider two attacks with poison ratios 5% and 20%
and set the selection strategy to be a random one. Then, the
CRs on the two attacks are different (roughly 5% and 20%,
respectively) despite the same selection strategy. To facilitate
the comparison of the sifting performance across different
attacks, we propose the Normalized Corruption Ratio (NCR),
defined as follows

NCR =
CR

CRrand
×100%, (20)

where CRrand is the corruption ratio of the random selection.
General Settings. We use two servers equipped with a total
of 16 GTX 2080 Ti GPUs as the hardware platform. PyTorch
[37] is adopted as the implementation framework.

We consider four popular benchmark datasets, namely,
CIFAR-10 [42], GTSRB [43], PubFig [44], and the Ima-
geNet [45]. The details of the datasets, the architecture of
the model trained on each dataset, training algorithms, and
performance of the models (trained on clean datasets as base-
lines) are provided in Table 3. For ImageNet, directly applying
META-SIFT leads to high computational costs because a large-
capacity classification model θ is needed to ensure the quality
of extracted features. For large-scale datasets such as Ima-
geNet, we adopt a practical and reliable alternative where we
split the ImageNet dataset into multiple subsets and then apply
META-SIFT on each one separately. In our evaluation, we will
showcase the sifting performance on three non-overlapping
random 10-class subsets of ImageNet.

In addition to the five attacks in Section 2, we add seven
more representative attacks from different categories of data
poisoning, the detailed attack settings are provided in TABLE

Dataset CIFAR-10 [42] GTSRB [43] PubFig [44] ImageNet [45]
of Classes 10 43 83 1000
of Samples 50,000 39,209 12,454 1,281,167
Input Shape (3,32,32) (3,32,32) (3,224,224) (3,224,224)
Target Class 5 (Dog) 38 (Keep Right) 60 (Miley Cyrus) 762; 578; 897
Model PreActResNet-18 VGG-16 ResNet-18 ResNet-18
Epochs 200 50 60 200
Optimizer SGD [46] Adam [47] RAdam [48] SGD [46]
ACC 95.33 97.55 94.01 92.60; 86.00; 89.80
Tar-ACC 93.50 99.48 96.33 92.00; 92.00; 86.90

Table 3: Hyperparameters and settings to obtain clean baseline
models. The target class of each dataset is fixed across all
attacks with one target label. ACC and Tar-ACC represent the
value of these metrics without any attacks.

4. We follow the poison ratio in the original attack papers. We
mark the settings where the attacks are not successful (i.e.,
the attack settings that failed to result in an ASR above 50%)
in red and remove them from comparison. We also exclude
PubFig and ImageNet for the Smooth attack (colored in gray)
as they were not considered in the original paper [11].

As size requirements for base sets in existing defenses are
mostly less than 1000 samples, we will mainly examine each
method’s ability to sift out a 1000-size base set on each poi-
soned dataset. However, we will show that META-SIFT can
sift out more clean samples, but the performance may vary
from attack to attack. Finally, we run the defense 3 times with
different random seeds for all the results that include random-
ness (e.g., SGD for optimizations or random augmentations)
and present the respective means and standard deviations.
META-SIFT Settings. META-SIFT is equipped with a classi-
fier model θ, weight-assigning network ψ, and a list of gradi-
ent samplers Γ. We will use the same ψ and Γ on all datasets.
But for θ, we will select the model architecture based on
the dataset size. θ functions as a feature extractor in META-
SIFT and a larger, more complex dataset naturally requires a
larger model for feature extraction. Specifically, for CIFAR-10
and GTSRB, we adopt ResNet-18; for PubFig and ImageNet,
we use ResNet-34 and ResNet-50, respectively.

4.2 Sifting Performance
Now we evaluate and compare META-SIFT with the five

existing automated methods previously discussed in Section
2—DCM, MI-DCM, SF-Least [25], Loss-Scan [26], and Self-
IF [27]. Table 4 compares NCR of the five baselines and
META-SIFT across different datasets with richer attack set-
tings than Table 2. An NCR value above 100% indicates that
the selection performance is worse than the naive random
baseline. By contrast, an NCR value below 100% implies bet-
ter selection than random. The best possible NCR is 0%. We
mark the results worse than random selection in red , the time-
consuming selection results in yellow , and the best baseline
among the four existing automated methods in blue . If our
result is better than those of the existing methods and achieves
the maximum precision, we mark them in green . Note that
across all the baselines, no augmentations technique is in-
cluded (i.e., sample-dilution). To ablate the effect of sample
dilution, we present additional results in Table 18, Appendix
6.7, and show that sample-dilution is not the decisive factor

(a) Targeted Label-Flipping (b) Narcissus Backdoor (c) Badnets Backdoor

Figure 5: Sifting results of META-SIFT under representative
settings of each attack category, GTSRB. Shades depict stan-
dard deviation among different runs.

that can help other techniques resolve the sifting problem.
Table 5 evaluates the sifting methods on CIFAR-10 aginst

different attacks. CIFAR-10 is a balanced dataset containing
10 classes. Hence, we select 100 samples per class to form
the base set of a total size 1000. In most settings, the five
baselines do not yield a completely clean base set, and the
performance varies largely from one attack to another (even
within the same category). By contrast, META-SIFT produces
a clean subset (NCR = 0%) in all the evaluated settings while
enjoying a lower computational overhead than most of the
baselines. Note that many attacks listed in Table 4 can achieve
similar attack effects but with a smaller poison ratio. Primarily,
many defense works have found attacks with lower poison
ratios are harder to be identified [20, 50]. Thus, we present
additional results of META-SIFT on CIFAR-10 with smaller
poison ratios in Table 11, Appendix 6.5. Similar results can
be found on GTSRB and PubFig, which are deferred to the
Appendix 6.6 due to the page limitations.

Finally, the ImageNet results are presented in Table 6. As
discussed, we break down the ImageNet dataset into smaller
subsets and sift each subset sequentially to accelerate the
sifting process. Table 6 demonstrates the sifting performance
on three randomly selected 10-class subsets from ImageNet.
The most important contribution of META-SIFT is that it‘s
the only method that can reliably sift out a completely clean
base set (NCR = 0%) across different attacks.

While we set the base set size to 1000 samples for the above
experiments, we also study the behavior of META-SIFT for
selecting a larger base set. Figure 5 depicts the percentage
of clean samples under different sifting budgets on GTSRB.
META-SIFT can select around 4000 (10%) clean samples
under the Targeted Label-Flipping case. Notably, META-
SIFT can achieve almost a perfect split when the poisoned
instances are generated by the BadNets backdoor attack. On
GTSRB, a general observation is that META-SIFT achieves a
better split on attacks that manipulate labels. This is because
the features for every class in GTSRB samples have relatively
low variance and are distinct from other classes. Since incor-
porating data corrupted by label manipulations into the split
for testing largely increases the outer loss in Eqn. (11,12),
these data will be assigned a small weight and thus get un-
selected. Meanwhile, META-SIFT ’s effectiveness is worse
on attacks that only involve feature manipulation such as the
Narcissus backdoor attack, but it can still maintain a high

Label-only Feature-only Label-Feature
Targeted Label-

Flipping [3]
Random Label-

Flipping [4]
Clean-

Label [6]
Narcissus

Backdoor [7]
Poison

Frogs [5]
BadNets

One-Tar [8]
Smooth

One-Tar [11]
IAB

One-Tar [49]
Blended

One-Tar [9]
BadNets

All-to-all [8]
Smooth

All-to-all [11]
Blended

All-to-all [9]
Attack

Settings
[3 → 5];

Tar: 16.67%
[all];

All: 20%
[5];

Tar: 10%
[5];

Tar: 10%
[5];

Tar: 10%
[5];

Tar: 33%
[5];

Tar: 33%
[5];

Tar: 33%
[5];

Tar: 33%
[all];

All: 20%
[all];

All: 20%
[all];

All: 20%

C
IF

A
R

-1
0

Results
(%)

ACC: 91.77
ASR: 27.56

Tar-ACC: 83.78
ACC: 71.8

ACC: 91.52
ASR: 99.98

ACC: 93.26
ASR: 100

ACC: 92.88
ASR: 100

ACC: 84.03
ASR: 95.78

ACC: 85.63
ASR: 96.17

ACC: 92.21
ASR: 91.20

ACC: 89.43
ASR: 91.26

ACC: 85.57
ASR: 84.15

ACC: 84.05
ASR: 78.67

ACC: 84.53
ASR: 88.74

Attack
Settings

[2 → 38];
Tar: 16.67%

[all];
All: 20%

[38];
Tar: 10%

[38];
Tar: 10%

[38];
Tar: 10%

[38];
Tar: 33%

[38];
Tar: 33%

[38];
Tar: 33%

[38];
Tar: 33%

[all];
All: 20%

[all];
All: 20%

[all];
All: 20%

G
T

SR
B

Results
(%)

ACC: 97.43
ASR: 91.72

Tar-ACC: 98.84
ACC: 95.28

ACC: 98.12
ASR: 6.41

ACC: 97.83
ASR: 100

ACC: 97.81
ASR: 100

ACC: 97.10
ASR: 97.43

ACC: 98.08
ASR: 98.92

ACC: 97.88
ASR: 95.72

ACC: 97.89
ASR: 98.11

ACC: 96.87
ASR: 95.49

ACC: 96.64
ASR: 95.75

ACC: 96.825
ASR: 95.84

Attack
Settings

[52 → 60];
Tar: 16.67%

[all];
All: 20%

[60];
Tar: 10%

[60];
Tar: 10%

[60];
Tar: 10%

[60];
Tar: 33%

[60];
Tar: 33%

[60];
Tar: 33%

[all];
All: 20%

[all];
All: 20%

Pu
bF

ig

Results
(%)

ACC: 91.33
ASR: 89.00

Tar-ACC: 93.75
ACC: 77.89

ACC: 93.42
ASR: 33.18

ACC: 93.50
ASR: 100

ACC: 93.28
ASR: 98.00

ACC: 91.19
ASR: 89.88

ACC: 92.73
ASR: 84.53

ACC: 93.57
ASR: 93.64

ACC: 76.45
ASR: 66.69

ACC: 91.84
ASR: 90.03

Attack
Settings

[385 → 762];
Tar: 16.67%

[all];
All: 20%

[762];
Tar: 10%

[762];
Tar: 10%

[762];
Tar: 10%

[762];
Tar: 33%

[762];
Tar: 33%

[762];
Tar: 33%

[all];
All: 20%

[all];
All: 20%

Im
ag

eN
et

-1

Results
(%)

ACC: 89.80
ASR: 88.80

Tar-ACC: 87.25
ACC: 77.40

ACC: 91.25
ASR: 5.33

ACC: 92.60
ASR: 100

ACC: 91.80
ASR: 100

ACC: 90.10
ASR: 98.20

ACC: 89.90
ASR: 95.20

ACC: 89.20
ASR: 92.00

ACC: 78.00
ASR: 76.60

ACC: 78.40
ASR: 72.40

Attack
Settings

[48 → 578];
Tar: 16.67%

[all];
All: 20%

[578];
Tar: 10%

[578];
Tar: 10%

[578];
Tar: 10%

[578];
Tar: 33%

[578];
Tar: 33%

[578];
Tar: 33%

[all];
All: 20%

[all];
All: 20%

Im
ag

eN
et

-2

Results
(%)

ACC: 84.00
ASR: 82.20

Tar-ACC: 88.00
ACC: 75.60

ACC: 86.00
ASR: 7.55

ACC: 85.60
ASR: 100

ACC: 86.00
ASR: 100

ACC: 86.80
ASR: 99.20

ACC: 85.80
ASR: 97.40

ACC: 85.80
ASR: 92.60

ACC: 74.90
ASR: 71.30

ACC: 72.40
ASR: 68.40

Attack
Settings

[830 → 897];
Tar: 16.67%

[all];
All: 20%

[897];
Tar: 10%

[897];
Tar: 10%

[897];
Tar: 10%

[897];
Tar: 33%

[578];
Tar: 33%

[897];
Tar: 33%

[all];
All: 20%

[all];
All: 20%

Im
ag

eN
et

-3

Results
(%)

ACC: 86.00
ASR: 96.00

Tar-ACC: 84.00
ACC: 75.20

ACC: 89.40
ASR: 6.22

ACC: 89.60
ASR: 99.83

ACC: 88.40
ASR: 100

ACC: 89.60
ASR: 95.20

ACC: 89.00
ASR: 91.56

ACC: 88.80
ASR: 99.20

ACC: 75.80
ASR: 72.30

ACC: 78.80
ASR: 76.00

Table 4: Effectiveness of different attacks on given datasets. We detail the attack settings by listing out the target labels (e.g.,
[3 → 5] indicates that samples from class 3 are manipulated to the target-class 5, and [all] indicates that samples are manipulated
to all classes). Here, ‘Tar’ and ‘All’ denote the poison ratio in that particular setting, for the target class and the whole dataset
respectively. Finally, attack performance is studied using ACC, ASR, or Tar-ACC as applicable. Note that the ASR of the Poison
Frogs denotes the attack confidence. For ImageNet, we report results over 3 separate subsets.

Label-only Feature-only Label-Feature
Targeted Label-

Flipping [3]
Random Label-

Flipping [4]
Clean-

Label [6]
Narcissus

Backdoor [7]
Poison

Frog [5]
BadNets

One-Tar [8]
Smooth

One-Tar [11]
IAB

One-Tar [49]
Blended

One-Tar [9]
BadNets

All-to-all [8]
Smooth

All-to-all [11]
Blended

All-to-all [9]
Overhead (s)

DCM 48.0 96.5 20.0 100.0 100.0 111.0 9.00 105.1 18.0 57.0 3.00 32.0 10
MI-DCM∗ 40.0±3.45 134.8±31.1 83.3±3.45 1000±0 273.3±35.1 114.0±0 135.0±0 120.0±0 123.4±0 100.0±13.2 5.68±0.58 10.8±6.78 5411+300
SF-Least∗ 104.0±3.45 20.0±5.50 166.7±3.45 60.0±0 130.0±0 72.0±3.00 68.0±1.73 48.0±10.2 65.2±4.52 51.8±6.79 65.6±3.28 58.3±7.89 5411+15
Loss-Scan∗ 185.9±67.2 451.0±53.2 80.0±0 180.0±10.0 80.0±0 99.0±16.0 135.0±19.9 84.0±22.4 161.0±123.9 69.5±15.7 68.5±7.80 733.1±307.5 210
Self-IF∗ 168.0±6.00 114.7±1.61 0±0 116.7±11.5 83.3±3.45 89.0±1.73 29.0±6.24 108.1±23.1 36.3±6.88 119.5±3.46 142.2±38.2 137.6±31.6 5411+19832
META-SIFT 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 5×100

Table 5: NCR results under the CIFAR-10 settings.
Label-only Feature-only Label-Feature

Targeted Label-
Flipping [3]

Random Label-
Flipping [4]

Narcissus
Backdoor [7]

Poison
Frog [5]

BadNets
One-Tar [8]

IAB
One-Tar [49]

Blended
One-Tar [9]

BadNets
All-to-all [8]

Blended
All-to-all [9]

Overhead (s)

DCM 82.5 132 76.9 115.4 127.9 72.0 129.8 118.5 118.5 10
MI-DCM∗ 59.8±2.80 94.0±5.20 56.4±8.88 115.4±20.3 104.1±4.0 108.0±1.9 122.8±4.7 97.9±2.9 127.5±0 7200+300
SF-Least∗ 97.1±4.11 123.4±3.80 113.3±5.20 78.1±4.10 132.3±6.83 54.0±7.51 108.7±15.4 112.6±13.6 109.2±12.5 7200+15
Loss-Scan∗ 185.9 366.1±65.4 80.0±0.0 80.0±0.0 51.0±16.3 63.1±18.4 35.9±8.36 271.3±18.9 238.8±68.1 240Su

bs
et

-1

META-SIFT 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 5×120
DCM 4.95 156.0 61.5 115.4 85.1 78.0 85.1 137.0 132.0 10
MI-DCM∗ 118.8±0 102.8±4.52 91.5±4.17 133.5±6.78 39.8±10.6 111.0±54.3 68.3±3.65 71.5±4.67 102.1±0.89 7200+300
SF-Least∗ 54.2±1.45 83.2±0.92 76.9±0 0.0±0 71.3±5.31 66.1±3.58 49.4±10.6 124.1±3.82 128.3±5.67 7200+15
Loss-Scan∗ 221.9±24.1 290.5±32.1 80.0±16.9 60.0±0.0 45.0±6.34 63.0±12.33 39.8±5.44 316.0±54.6 288.7±32.1 240Su

bs
et

-2

META-SIFT 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 5×120
DCM 148.5 106.5 46.1 76.9 91.1 84.1 91.1 107.0 107.0 10
MI-DCM∗ 99.0±0 99.0±0 31.2±3.43 98.72±2.34 93.8±5.87 93.1±4.66 62.3±6.78 93.3±10.9 113.5±4.62 7200+300
SF-Least∗ 92.1±10.9 82.0±0 63.5±5.65 61.5±3.23 61.2±4.67 69.0±3.69 79.2±8.75 90.8±4.53 68.3±12.0 7200+15
Loss-Scan∗ 85.9±12.6 233.5±23.1 90.0±8.20 70.0±0.23 42.0±4.32 84.0±15.6 35.7±0.60 89.0±6.89 105.5±19.2 240Su

bs
et

-3

META-SIFT 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 5×120

Table 6: NCR results under the ImageNet settings. We dropped Self-IF due to an exploding computational time.

precision up to the selection budget of about 2000 samples
(accounting for 5% of the total size).

We want to highlight that there is a trade-off between
META-SIFT ’s precision and the base set size to be selected.
However, existing defenses usually require only a small base
set (i.e., often less than 1% of the total size of the poisoned
set). The fact that META-SIFT can reliably sift out a pure
clean set of more than 5% of the total size across different
attacks makes it useful for defense applications (see detailed
evaluation in Section 4.3). By contrast, the precision of human
inspection does not change with the selection budget, because
each sample is examined separately. Moreover, the existing

automated methods constantly produce a very low precision
regardless of the selection budget.

4.3 Downstream Defense Evaluation
Now, we evaluate the performance of defenses with the

selected base set plugged in. Note that the data used to build
the Sifters is the poisoned training set. Downstream defenses
use the subset selected by the Sifters as the base set to achieve
their specific defense goals. The performance of each defense
is assessed on separate held-out clean and poisoned datasets.
We consider the defense categories introduced in Section 2.
We present the results of each defense when 1) the base set is

BadNets
[8]

Trojan-WM
[51]

Trojan-SQ
[51]

l2 inv
[52]

l0 inv
[52]

Clean 89.27 100.0 99.80 100 99.99
Random 44.88 25.83 30.55 53.42 0.23

META-SIFT 88.54 99.99 99.78 100.0 95.38

Table 7: PFRs (↑) of the Detector under CIFAR-10 attacks.

completely clean (Clean); 2) the base set is randomly selected
from the contaminated training set (Random); and 3) the base
set is selected by META-SIFT .
Poison Detection: Similar to the evaluation in Section 2, we
consider the state-of-the-art frequency-based poison detection
method [11]. Following the original work, we consider five
attack settings with a poison ratio of 5%. The original setting
of the frequency detector requires a base set of size 100. Table
7 compares the defense performance between the Clean, Ran-
dom, and META-SIFT -selected base set. META-SIFT enables
the frequency detector to obtain a defense result similar to the
result using the original clean set.
Trojan-Net Detection: BadNets

[8]
Blended

[9]
Clean 99.20 99.85

Random 47.34 49.83
META-SIFT 99.50 99.92

Table 8: AUCs (↑) of
MNTD on the MNIST.

Now we evaluate how META-
SIFT may help MNTD [12]. In
the original work, it require a
base set of size 1000 over the
MNIST dataset in the jumbo
training procedure to train 256 clean and 256 randomly poi-
soned models. Like the original work, we incorporate two
sets of backdoor attacks with a poison ratio of 5%, namely,
BadNets and Blended, and report the results of MNTD with
different base sets. The results are listed in Table 8, showing
that the performance with META-SIFT -generated base set is
even higher than that with a clean base set. This implies that
META-SIFT can help MNTD to work in a situation without
access to a clean base set.

BadNets
[8]

Trojan-WM
[51]

Trojan-SQ
[51]

l2 inv
[52]

l0 inv
[52]

No Defense 97.43 99.37 98.90 98.36 98.11
Clean 18.83 19.21 18.34 16.78 16.33

Random 62.67 71.34 68.78 59.06 61.32
META-SIFT 16.42 17.56 16.88 16.23 14.98

Table 9: ASRs (↓) of NC purified models on the GTSRB.
BadNets

[8]
Trojan-WM

[51]
Trojan-SQ

[51]
l2 inv
[52]

l0 inv
[52]

No Defense 97.43 99.37 98.90 98.36 98.11
Clean 12.58 7.28 5.30 18.82 12.82

Random 96.55 98.04 93.78 93.29 98.78
META-SIFT 10.65 4.50 5.62 6.75 5.77

Table 10: ASRs (↓) of I-BAU purified models on the GTSRB.

Backdoor Removal: Table 9 and 10 show the result of NC
and I-BAU using different 1000-size base sets on GTSRB.
We use the same attack settings as the original works. Inter-
estingly, by using the base set selected by META-SIFT , both
NC and I-BAU can achieve a slightly higher defense efficacy
than using a randomly selected clean base set. We conjecture
that META-SIFT is optimized to select more consistent and
robust information (as those selected samples have withstood
randomized sample-dilution and still end up at the high-value
end). Thus META-SIFT -selected data are naturally more ro-
bust to noises and harder to be misclassified when patched
with weak noise. This in turn helps both methods synthe-
size more accurate triggers that can be used for backdoor

Figure 6: ACCs (↑) vs. the number of epochs of FaMUS and
MW-Net on learning label-noisy CIFAR-10. Shades depict
standard deviation among different runs.

removal. Visual examples of the selection results over differ-
ent datasets are shown in Appendix, Figure 9; however, it is
hard to conclude the sample consistency directly from visual
observations. We further compare the synthesized triggers of
using NC equipped with the two different base sets (randomly
selected clean and the META-SIFT selected). We evaluate the
averaging loss of clean samples patching with the synthesized
triggers towards the target label. A much smaller loss indi-
cates a more accurate trigger synthesis. Averaging from five
different executions, we find the triggers synthesized using
META-SIFT base sets achieved an averaging loss of 0.2774.
The loss of trigger synthesized using randomly selected clean
base sets is only 0.3321, which confirms our conjecture.
Robust Training: Finally, we include the result of using
META-SIFT to help existing robust training methods work in
situations without additional clean samples. The representa-
tive works of this line of defense include MW-Net [19] and
FaMUS [15]. As shown in Figure 6, both methods utilizing
META-SIFT -generated base sets can achieve a similar level
of effectiveness to using an additional clean validation set.

Note that, in the original paper of FaMUS, they also intro-
duced a training strategy that does not need access to a clean
base set. However, it requires training two paralleled neural
networks and working in a manner that assigns pseudo labels
for each other throughout the training procedure, which we
find introduced 7× more GPU computational overhead than
the setting with a clean base set access. By using META-SIFT ,
we get away with the additional computational overhead while
still maintaining good performance in situations without ac-
cess to the additional clean base set.

4.4 Adaptive Attack Analysis
To evaluate the robustness of META-SIFT against adaptive

attacks, we consider a white-box scenario with the attacker
having full knowledge of META-SIFT and the access to the
entire training data, D. The evaluation settings will follow
the settings on the CIFAR-10 with PreActResNet-18 listed
in Table 3. With D, the defender will follow the workflow of
META-SIFT to train m Sifters (parameterized by m pairs of
(θ∗,ψ∗)) and use them to acquire the base set of size 1000.
An adaptive attacker seeks to update D in a way that, upon
providing the updated dataset, denoted as D̃, to the defender,
the base set selected by META-SIFT will contain poisons.
Poisoning the Majority: An intuitive but less practical adap-
tive attack is to poison the majority of D, thereby violating
the assumption stated in Section 3.1 (the number of poisons
in each class is less than 50%). As this attack has limited
practicality, we defer its analysis to Appendix 6.5.

Adversarial Noise using a Clean Model: Given the access
to the whole dataset, D, the attacker knows which portion
of D is clean and which will be poisoned when presenting
to the defender. Another intuitive but more practical idea is
to perturb poisoned samples generated by existing attacks in
ways that cause minimal loss on the classifier f (·|θcln) trained
using the clean portion of data:

δ
∗ = argmin

δ

L(f (x+δ|θcln),y) , (21)

where L denotes the loss function. x and y are the feature and
the label of a poisoned sample zpoi = (x,y). We optimize the
objective using SGD till convergence and find that the result-
ing perturbation can successfully minimize the loss without
introducing large visual artifacts. To obtain D̃, we compute δ∗

for each zpoi, and update zpoi = (x,y) with z̃poi = (x+δ∗,y).
We evaluate META-SIFT on three poisoned datasets that up-
dated with this adaptive design, each of which was originally
poisoned using a representative attack from one of three cate-
gories: Targeted Label Flipping, Narcissus, and BadNets. The
details of the implementation and D̃’s attacking performances
are provided in Appendix 6.4 and 6.5. Our results show that
the adaptively perturbed poisons can indeed achieve higher
weights, compared to the non-adaptive setting; yet, the 1000
samples with top weights are still pure clean, and thus META-
SIFT achieves a 0% NCR at a selection budget of 1000 (i.e., a
size that empowers downstream defenses, Section 4.3).
Adversarial Noise using Sifters: The third way to adap-
tively attack META-SIFT is to disguise each poisoned sample
by adding adversarial noise that allows these samples to ob-
tain a high average score when passing through m Sifters
(parameterized by m pairs of (θ∗,ψ∗) obtained from D):

δ
∗ = argmax

δ

1
m

m

∑
s=1

S
(

L(f (x+δ|θ∗s),y) ;ψ
∗
s

)
, (22)

where θ∗s and ψ∗
s denotes the parameters of the Sifter indexed

by s. We employ stochastic gradient ascent to solve the above
optimization till convergence and again found that the opti-
mized perturbation does not introduce much visual change. To
obtain D̃, we compute δ∗ for each zpoi, and subsequently up-
date zpoi with z̃poi = (x+δ∗,y). We evaluate META-SIFT with
the same three attack settings as above, and the details of the
implementation and D̃’s attacking performances are provided
in Appendix 6.4 and 6.5. From our results, we find the sifting
performance over D̃ at the selection budget of 1000 remains
0% NCR, although each z̃poi can obtain a high score using the
old Sifters parameterized by (θ∗,ψ∗) obtained from D.
Remark: The above analysis suggests the difficulty of adap-
tively attacking our method. We attribute the robustness to
adaptive attacks to three factors: (1) META-SIFT is based on a
robust insight that attacks, regardless of their mechanisms and
whether they are adaptive or not, introduce some perturbations
that eventually lead to a distributional shift from clean sam-
ples. A subset of clean samples, as long as poisons remain the
minority, can be found with a combinatorial splitting process.
(2) META-SIFT is, by design, a bilevel optimization; thus, it

is difficult to synthesize “optimal” attacks that require opti-
mizing through a multi-level optimization. (3) META-SIFT is
designed to select a relatively small set, as existing defenses
only require a small base set. Thus, a successful adaptive at-
tack would need to alter the poisons to achieve higher weights
than the majority of clean samples to be selected. How to
design such an attack remains an open question.

5 Conclusion and Outlook
This work presents the first focused study of the data sifting

problem, aimed at sifting out a clean subset from a dataset
potentially contaminated by unknown poisoning attacks. This
problem is of critical importance to successfully implement
and apply existing defenses against poisoning attacks, as most
of them require a clean base set to initiate the defense mech-
anisms. We first show that the performance of the popular
and many state-of-the-art defenses is sensitive to the precision
of clean data selection. Our study of the existing automated
methods and human inspection shows that both cannot reach
the precision required to achieve effective defenses. We fur-
ther propose META-SIFT as a first solution to the data sifting
problem. META-SIFT is based on an intuitive and reliable
insight that regardless of how poisoned samples are gener-
ated, when one trains on only the clean data, the prediction
loss of the trained model on these poisoned examples is large.
Our evaluation shows that META-SIFT is faster than existing
automated methods by significant orders of magnitude while
achieving much higher sifting precision. In particular, training
META-SIFT only requires going through the dataset for two
epochs, and using META-SIFT to sift data can be done in
minutes. Plugging the sifted samples into existing defenses
achieves comparable or even better performance than using
randomly selected clean data.
Limitations & Outlook. Despite the efficacy and time-
efficiency, META-SIFT can cause high memory overhead due
to the use of multiple perturbed datasets and Sifters. To sup-
port memory-constrained applications, further reduction of
overhead is necessary. Additionally, there is a trade-off be-
tween META-SIFT ’s precision and the size of the set to be
sifted, as shown in Figure 5, META-SIFT can confidently sift
out approximately 5% of the size of the dataset to be clean
across different settings, datasets, and attacks, which is suffi-
cient for most existing defenses (as discussed in Section 4.3).
However, the size is insufficient for any model trained directly
on the sifted samples to perform well. Therefore, expanding
the scale of META-SIFT ’s performance and enabling direct
training is future work that needs to be addressed.

Additionally, there are a number of interesting venues for
future exploration. For example, is it possible to design suc-
cessful and practical adaptive attacks against META-SIFT that
enabling the infiltration of poisoned samples past our sifting?
Also, it might be interesting to explore other methods for
resolving the proposed sifting or splitting problem and gener-
alize the idea to more settings beyond image classification.

Acknowledgement
This work is partially supported by Sony AI. RJ and the

ReDS lab appreciate the support of the Amazon - Virginia
Tech Initiative for Efficient and Robust Machine Learning and
the Cisco Award. YZ is supported by the Amazon Fellowship.

References

[1] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh,
S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark
et al., “Learning transferable visual models from natural
language supervision,” in ICML, 2021, pp. 8748–8763.

[2] R. S. S. Kumar, M. Nyström, J. Lambert, A. Marshall,
M. Goertzel, A. Comissoneru, M. Swann, and S. Xia,
“Adversarial machine learning-industry perspectives,” in
2020 IEEE SPW, 2020, pp. 69–75.

[3] V. Tolpegin, S. Truex, M. E. Gursoy, and L. Liu, “Data
poisoning attacks against federated learning systems,”
in ESORICS, 2020, pp. 480–501.

[4] M. Ren, W. Zeng, B. Yang, and R. Urtasun, “Learning to
reweight examples for robust deep learning,” in ICML,
2018, pp. 4334–4343.

[5] A. Shafahi, W. R. Huang, M. Najibi, O. Suciu, C. Studer,
T. Dumitras, and T. Goldstein, “Poison frogs! targeted
clean-label poisoning attacks on neural networks,” in
NeurIPS, vol. 31, 2018.

[6] A. Turner, D. Tsipras, and A. Madry, “Label-consistent
backdoor attacks,” arXiv:1912.02771, 2019.

[7] Y. Zeng, M. Pan, H. A. Just, L. Lyu, M. Qiu, and R. Jia,
“Narcissus: A practical clean-label backdoor attack with
limited information,” arXiv:2204.05255, 2022.

[8] T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg, “Bad-
nets: Evaluating backdooring attacks on deep neural net-
works,” IEEE Access, vol. 7, pp. 47 230–47 244, 2019.

[9] X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted
backdoor attacks on deep learning systems using data
poisoning,” arXiv:1712.05526, 2017.

[10] T. A. Nguyen and A. T. Tran, “Wanet-imperceptible
warping-based backdoor attack,” in ICLR, 2020.

[11] Y. Zeng, W. Park, Z. M. Mao, and R. Jia, “Rethinking
the backdoor attacks’ triggers: A frequency perspective,”
in ICCV, 2021.

[12] X. Xu, Q. Wang, H. Li, N. Borisov, C. A. Gunter, and
B. Li, “Detecting ai trojans using meta neural analysis,”
in 2021 IEEE S&P, 2021, pp. 103–120.

[13] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng,
and B. Y. Zhao, “Neural cleanse: Identifying and mit-
igating backdoor attacks in neural networks,” in 2019
IEEE S&P, 2019, pp. 707–723.

[14] Y. Zeng, S. Chen, W. Park, Z. Mao, M. Jin, and R. Jia,
“Adversarial unlearning of backdoors via implicit hyper-
gradient,” in ICLR, 2022.

[15] Y. Xu, L. Zhu, L. Jiang, and Y. Yang, “Faster meta update
strategy for noise-robust deep learning,” in CVPR, 2021,
pp. 144–153.

[16] W. Guo, L. Wang, X. Xing, M. Du, and D. Song, “Tabor:
A highly accurate approach to inspecting and restor-
ing trojan backdoors in ai systems,” arXiv:1908.01763,
2019.

[17] K. Liu, B. Dolan-Gavitt, and S. Garg, “Fine-pruning:
Defending against backdooring attacks on deep neural
networks,” in RAID, 2018, pp. 273–294.

[18] Z. Xiang, D. J. Miller, H. Wang, and G. Kesidis, “Reveal-
ing perceptible backdoors in dnns, without the training
set, via the maximum achievable misclassification frac-
tion statistic,” in MLSP, 2020, pp. 1–6.

[19] J. Shu, Q. Xie, L. Yi, Q. Zhao, S. Zhou, Z. Xu, and
D. Meng, “Meta-weight-net: Learning an explicit map-
ping for sample weighting,” in NeurIPS, vol. 32, 2019.

[20] Z. Xiang, D. J. Miller, and G. Kesidis, “Post-training
detection of backdoor attacks for two-class and multi-
attack scenarios,” arXiv:2201.08474, 2022.

[21] R. Wang, G. Zhang, S. Liu, P.-Y. Chen, J. Xiong, and
M. Wang, “Practical detection of trojan neural networks:
Data-limited and data-free cases,” in ECCV, 2020, pp.
222–238.

[22] Y. Gao, C. Xu, D. Wang, S. Chen, D. C. Ranasinghe,
and S. Nepal, “Strip: A defence against trojan attacks on
deep neural networks,” in ACSAC ’19, 2019, p. 113–125.

[23] H. Chen, C. Fu, J. Zhao, and F. Koushanfar, “Deepin-
spect: A black-box trojan detection and mitigation
framework for deep neural networks.” in IJCAI, vol. 2,
no. 5, 2019, p. 8.

[24] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inver-
sion attacks that exploit confidence information and ba-
sic countermeasures,” in SIGSAC, 2015, pp. 1322–1333.

[25] B. Tran, J. Li, and A. Madry, “Spectral signatures in
backdoor attacks,” in NeuIPS, 2018, pp. 8000–8010.

[26] Y. Li, X. Lyu, N. Koren, L. Lyu, B. Li, and X. Ma, “Anti-
backdoor learning: Training clean models on poisoned
data,” in NeurIPS, vol. 34, 2021.

[27] P. W. Koh and P. Liang, “Understanding black-box pre-
dictions via influence functions,” in ICML, 2017, pp.
1885–1894.

[28] X. Shao, A. Skryagin, W. Stammer, P. Schramowski, and
K. Kersting, “Right for better reasons: Training differen-
tiable models by constraining their influence functions,”
in AAAI, vol. 35, no. 11, 2021, pp. 9533–9540.

[29] S. Kong, Y. Shen, and L. Huang, “Resolving training
biases via influence-based data relabeling,” in ICLR,
2021.

[30] M. Goldblum, D. Tsipras, C. Xie, X. Chen,
A. Schwarzschild, D. Song, A. Madry, B. Li, and
T. Goldstein, “Dataset security for machine learning:
Data poisoning, backdoor attacks, and defenses,” IEEE
TPAMI, 2022.

[31] N. Carlini and A. Terzis, “Poisoning and backdooring
contrastive learning,” in ICLR, 2021.

[32] M. Pan, Y. Zeng, L. Lyu, X. Lin, and R. Jia, “Asset:
Robust backdoor data detection across a multiplicity of
deep learning paradigms,” arXiv:2302.11408, 2023.

[33] J. Steinhardt, Robust learning: Information theory and
algorithms, 2018.

[34] A. F. Agarap, “Deep learning using rectified linear units
(relu),” arXiv:1803.08375, 2018.

[35] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification,” in ICCV, 2015, pp. 1026–1034.

[36] E. Jang, S. Gu, and B. Poole, “Categorical reparameteri-
zation with gumbel-softmax,” arXiv:1611.01144, 2016.

[37] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga
et al., “Pytorch: An imperative style, high-performance
deep learning library,” NeurIPS, vol. 32, pp. 8026–8037,
2019.

[38] R. Liu, J. Gao, J. Zhang, D. Meng, and Z. Lin, “In-
vestigating bi-level optimization for learning and vi-
sion from a unified perspective: A survey and beyond,”
arXiv:2101.11517, 2021.

[39] R. Grazzi, L. Franceschi, M. Pontil, and S. Salzo, “On
the iteration complexity of hypergradient computation,”
in ICML, 2020, pp. 3748–3758.

[40] Y. Li, T. Zhai, B. Wu, Y. Jiang, Z. Li, and S. Xia,
“Rethinking the trigger of backdoor attack,”
arXiv:2004.04692, 2020.

[41] H. Qiu, Y. Zeng, S. Guo, T. Zhang, M. Qiu, and B. Thu-
raisingham, “Deepsweep: An evaluation framework for
mitigating dnn backdoor attacks using data augmenta-
tion,” in ASIACCS, 2021, pp. 363–377.

[42] A. Krizhevsky, G. Hinton et al., “Learning multiple lay-
ers of features from tiny images,” 2009.

[43] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel,
“Man vs. computer: Benchmarking machine learning al-
gorithms for traffic sign recognition,” Neural networks,
vol. 32, pp. 323–332, 2012.

[44] N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar,
“Attribute and simile classifiers for face verification,” in
ICCV, 2009, pp. 365–372.

[45] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bern-
stein et al., “Imagenet large scale visual recognition
challenge,” IJCV, vol. 115, no. 3, pp. 211–252, 2015.

[46] S. Ruder, “An overview of gradient descent optimization
algorithms,” arXiv:1609.04747, 2016.

[47] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” in ICLR, Y. Bengio and Y. LeCun, Eds.,
2015.

[48] L. Liu, H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and
J. Han, “On the variance of the adaptive learning rate
and beyond,” in ICLR, 2019.

[49] T. A. Nguyen and A. Tran, “Input-aware dynamic back-
door attack,” NeurIPS, vol. 33, pp. 3454–3464, 2020.

[50] Y. Liu, W.-C. Lee, G. Tao, S. Ma, Y. Aafer, and X. Zhang,
“Abs: Scanning neural networks for back-doors by ar-
tificial brain stimulation,” in SIGSAC, 2019, pp. 1265–
1282.

[51] Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang,
and X. Zhang, “Trojaning attack on neural networks,” in
NDSS, 2018.

[52] S. Li, M. Xue, B. Zhao, H. Zhu, and X. Zhang, “Invisible
backdoor attacks on deep neural networks via steganog-
raphy and regularization,” IEEE TDSC, 2020.

[53] A. Saha, A. Subramanya, and H. Pirsiavash, “Hidden
trigger backdoor attacks,” in AAAI, vol. 34, 2020, pp.
11 957–11 965.

[54] Y. Liu, X. Ma, J. Bailey, and F. Lu, “Reflection backdoor:
A natural backdoor attack on deep neural networks,” in
ECCV, 2020, 2020, pp. 182–199.

[55] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in CVPR, 2016, pp. 770–
778.

6 Appendix
6.1 Detailed Attack Settings in Section 2.3

We detail the 4 attacks in evaluating existing methods:
• For Label-only attacks, we use Targeted Label-Flipping [3].

We randomly selected 1000 “cat” samples and mislabeled
them into “dog” samples to launch the attack. Compared to
the standard Random Label-Flipping, which is considered
in most label-noise defenses, our study finds that Targeted
Label-Flipping is much harder to be mitigated.

• For Feature-only attacks, we consider two representative
works, namely, Narcissus4 [7], a clean-label backdoor at-
tack, and Poison Frogs5 [5], a targeted poisoning attack.
For both attacks, we poison 10% of the dog-class samples.

• For the Label-Feature attacks, we consider BadNets6 [8].
Following the setting in the original paper, we manipulate
5% of the CIFAR-10 by patching the trigger and changing
the label to the target class.

6.2 Detailed Attack Settings in Section 2.4
We detail the 16 attacks in human studies as follows:

• For Label-only attacks, Random and Targeted Label-
Flipping leads to mislabeled samples. However, since hu-
mans can only classify at a sample-wise level, these attacks
present the same level of difficulty to humans. Hence, we
only evaluate Random Label-Flipping, where we randomly
shuffle a poisoned sample’s label to a different class.

• For Feature-only attacks, we consider three representa-
tive works: Label-Consistent attack 7 [6], Hidden Trigger
backdoor8 [53], and the Narcissus attack [7]. We include
three different designs of triggers from the original paper:
vanilla Narcissus with l∞ = 16/255; watermarked Narcis-
sus, which used a mask to constrain the trigger within a
pre-defined shape; and Narcissus-Smooth trigger, which
is constrained to be low-frequency.

• For Label-Feature attacks, we study a comprehensive list
of dirty-label backdoor attacks with different trigger de-
signs: 1) Patch-based triggers that adopt an arbitrary trigger
pattern in small regions: BadNets, and Masked random
noise (Masked-Noise) [12], Watermark [41]; 2) Blending-
based triggers that blend the trigger into the original image
for better stealthiness: Blended random noise (Blended-
Noise) [9] and Refool9 [54]; 3) Attack based on elas-
tic transformation: WaNet10 [10]; 4) Optimized triggers
within norm-balls: l0 and l2 invisible triggers [52]; 5) Opti-
mized low-frequency triggers: the smooth trigger11 [11]; 6)
Input-specific triggers with trigger patterns customized to
individual inputs: the input aware backdoor (IAB)12 [49].

4https://github.com/ruoxi-jia-group/Narcissus
5https://github.com/LostOxygen/poison_froggo
6https://github.com/verazuo/badnets-pytorch
7https://github.com/MadryLab/label-consistent-backdoor-code
8https://github.com/UMBCvision/Hidden-Trigger-Backdoor-Attacks
9https://github.com/DreamtaleCore/Refool

10https://github.com/THUYimingLi/BackdoorBox
11https://github.com/YiZeng623/frequency-backdoor
12https://github.com/THUYimingLi/BackdoorBox

6.3 Pseudocode of the Training Stage
Algorithm 1: Training Algorithm of One Sifter

Input: θ (Classifier Model); ψ (weight-assigning network);
Γ (meta-gradient-samplers);
D (dataset that requires sifting);

Output: (θ∗,ψ∗) (pair of parameters for one Sifter);
Parameters: α,β > 0 (step sizes)

/* A.Warming-up θ, i.e., normal training with
all weights setting to 1 */

1 for each n-size mini-batch in D do
2 θ = θ−α× 1

n ∑
n
i=1

∂Li(θ)
∂θ

;

/* B. Updating Process */
3 for each n-size mini-batch in D do

/* 1. Virtual-update */
4 Formulate gradients according to (14) ;

/* 2. Gradient Sampling */
5 Gradient sampler updating and sampling (15) ;

/* 3. Meta-update */
6 Updating ψ with sampled hypergradients (18) ;

/* 4. Actual-update */
7 Updating θ according to (19) ;

8 return (θ∗,ψ∗)

6.4 Detailed Adaptive Designs in Section 4.4
Poisoning the Majority: This adaptive design simply poi-
sons more than 50% of the samples following existing attack
design. This attack design is effective as it breaks our basic
assumption that the poisoned samples of each class account
for less than 50% (Section 3.1). This attack design is less
practical as manipulating the majority of the samples is hard.
Adversarial Noise using a Clean Model: Following the
noise synthesis formulation in Eqn. (21), for each given poi-
soned sample in the original D, zpoi = (x,y), we use SGD
with the Adam optimizer and a learning rate of 0.01 for 100
rounds. We do not introduce additional norm constraints on
the perturbation as we find that the converged perturbation
does not introduce large visual artifacts. As we consider a
white-box attack scenario, the model structure is the same as
what we adopted for the feature extractor in Sifters.
Adversarial Noise using Sifters: Following the noise syn-
thesis formulation in Eqn. (22), for each given poisoned sam-
ple, zpoi = (x,y), we use stochastic gradient ascent with the
Adam optimizer and a learning rate of 0.01 for 100 rounds.
Note that we consider the original D to follow the same at-
tack settings (poison ratio, trigger design, label manipulation,
if applicable) as listed in Table 5, and the adaptive noise is
adopted to perturb the original poisoned samples.

6.5 Additional Results (CIFAR-10)
Lower Poison Ratios. Table 4 in the main text uses the poison
ratios reported in the original papers for these attacks. The at-
tacks can achieve similar attack effects but with a smaller poi-
son ratio. Primarily, many defense works have found attacks
with lower poison ratios are harder to be identified [20, 50].

https://github.com/ruoxi-jia-group/Narcissus
https://github.com/LostOxygen/poison_froggo
https://github.com/verazuo/badnets-pytorch
https://github.com/MadryLab/label-consistent-backdoor-code
https://github.com/UMBCvision/Hidden-Trigger-Backdoor-Attacks
https://github.com/DreamtaleCore/Refool
https://github.com/THUYimingLi/BackdoorBox
https://github.com/YiZeng623/frequency-backdoor
https://github.com/THUYimingLi/BackdoorBox

Label-only Feature-only Label-Feature
Targeted Label-

Flipping [3]
Random Label-

Flipping [4]
Clean-

Label [6]
Narcissus

Backdoor [7]
Poison

Frog [5]
BadNets

One-Tar [8]
Smooth

One-Tar [11]
IAB

One-Tar [49]
Blended

One-Tar [9]
BadNets

All-to-all [8]
Smooth

All-to-all [11]
Blended

All-to-all [9]
Poison ratio Tar: 2% All: 5% Tar: 1% Tar: 1% Tar: 1% Tar: 9.1% Tar: 9.1% Tar: 9.1% Tar: 9.1% All: 5% All: 5% All: 5%
META-SIFT 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0
Poison ratio Tar: 9% All: 10% Tar: 5% Tar: 5% Tar: 5% Tar: 16.7% Tar: 16.7% Tar: 16.7% Tar: 16.7% All: 10% All: 10% All: 10%
META-SIFT 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0

Table 11: NCR results of our method under the CIFAR-10 settings with lower poison ratios.
Label-only Feature-only Label-Feature

Targeted Label-
Flipping [3]

Random Label-
Flipping [4]

Clean-
Label [6]

Narcissus
Backdoor [7]

Poison
Frog [5]

BadNets
One-Tar [8]

Smooth
One-Tar [11]

IAB
One-Tar [49]

Blended
One-Tar [9]

BadNets
All-to-all [8]

Smooth
All-to-all [11]

Blended
All-to-all [9]

Poison ratio Tar: 40% All: 40% Tar: 40% Tar: 40% Tar: 40% Tar: 40.2% Tar: 40.2% Tar: 40.2% Tar: 40.2% All: 40% All: 40% All: 40%
DCM 63.0 94.3 37.8 102.0 112.2 98.3 27.5 104.6 54.6 78.2 27.6 63.8
MI-DCM∗ 71.2±10.5 100.7±8.8 93.5±0 362.0±88.6 311.0±76.9 131.5±15.6 168.6±20.9 163.8±30.1 153.6±25.5 117.0±19.6 153.8±16.8 137.3±26.3
SF-Least∗ 97.4±1.67 31.2±4.63 86.3±3.45 43.6±0 106.3±9.88 32.4±0.0 28.3±1.67 44.6±3.53 60.3±2.71 56.7±0 58.9±0 63.2±6.72
Loss-Scan∗ 173.9±16.9 443.1±57.8 163.6±23.4 188.0±41.1 134.0±23.8 83.6±16.3 116.7±22.9 106.9±31.6 142.6±13.8 96.7±19.6 85.8±9.8 91.6±16.6
Self-IF∗ 135.9±23.6 154.6±33.7 0.0±0.0 336.7±85.7 56.8±14.6 39.8±6.8 59.6±10.0 117.6±22.4 88.4±26.3 132.4±33.6 154.9±8.7 146.5±25.6
META-SIFT 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0

Table 12: NCR results under the CIFAR-10 settings with higher poison ratios.
Label-only Feature-only Label-Feature

Targeted Label-
Flipping [3]

Random Label-
Flipping [4]

Clean-
Label [6]

Narcissus
Backdoor [7]

Poison
Frog [5]

BadNets
One-Tar [8]

Smooth
One-Tar [11]

IAB
One-Tar [49]

Blended
One-Tar [9]

BadNets
All-to-all [8]

Smooth
All-to-all [11]

Blended
All-to-all [9]

Poison ratio Tar: 50% All: 50% Tar: 50% Tar: 50% Tar: 50% Tar: 50% Tar: 50% Tar: 50% Tar: 50% All: 50% All: 50% All: 50%
META-SIFT 35.2±21.4 23.6±11.6 46.1±15.4 58.9±20.1 38.6±16.2 53.6±14.3 54.2±15.3 63.1±19.2 46.4±10.8 56.3±13.7 53.6±13.3 43.7±10.3

Table 13: NCR results of our method when poisons are of the majority under the CIFAR-10 settings.

Targeted Label-
Flipping [3→5]

BadNets
One-Tar [→5]

Narcissus
[→5]

Clean
(Class 5)

Adv-Noise using a Clean Model Adv-Noise using Sifters

Figure 7: Visual results of the original poisoned samples and
the adversarial noise disguised poisoned samples (CIFAR-10).

Thus, we present additional results of META-SIFT on CIFAR-
10 with smaller poison ratios in Table 11. In particular, for
each evaluated attack, we re-examine META-SIFT with two
settings of smaller poison ratios (half of or quarter of the origi-
nal poison ratio) listed in Table 11. We found META-SIFT can
still reliably provide high-precision sifting results.
Higher Poison Ratios. In addition to lower poison ratios,
we also evaluate whether META-SIFT ’s effectiveness can
extend to high poison ratios. We tested the competitors and our
proposed solution on corrupted datasets with higher poison
ratios (40%) in Table 12. A higher poison ratio results in a
significant decrease in the performance of methods that utilize
model output features, such as DCM, MI-DCM, and SF-Least.
This is because as the poison ratio gets higher, the features
of poisoned samples are getting more diverse. At the same
time, the inclusion of a larger number of poisoned samples in
the optimization process results in a heightened difficulty in
reducing the average loss of poison samples. As a result, the
efficacy of the Loss-Scan method is also impacted. However,
we found META-SIFT generates a completely clean base set
consistently under the evaluated higher poison ratios.
Poisoning the Majority. Elaborated in Section 3.1, we as-
sume that the number of poison samples should be less than
that of clean samples. This assumption is plausible under
normal circumstances. Now we study how our method will
perform in an extreme case where the attacker controls more
than half of the samples. We evaluate the performance of our
method through a series of experiments with each attack using
a large poison ratio over 50% in Table 13. Noting this attack

Targeted Label-
Flipping [3]

Narcissus
Backdoor [7]

BadNets
One-Tar [8]

Cln-Model-Based
Adv-Noise (%)

ACC: 92.01
ASR: 6.35

Tar-ACC: 88.08

ACC: 93.31
ASR: 5.78

ACC: 85.36
ASR: 88.92

META-SIFT 0±0 0±0 0±0

Sifter-Based
Adv-Noise (%)

ACC: 91.56
ASR: 45.71

Tar-ACC: 82.51

ACC: 93.19
ASR: 9.81

ACC: 84.33
ASR: 91.64

META-SIFT 0±0 0±0 0±0

Table 14: Adversarial-noise-based adaptive attacks’ effects
on the original attack results and the results of META-SIFT .

setting is a plausible but less practical adaptive attack as dis-
cussed in Section 4.4. The results show that our defense can
no longer sift out a purely clean base set since the underlying
assumption is not met. Nevertheless, poisoning the majority
of the dataset in practice is hard, e.g., to poison the training
set of CLIP [1] requires the attacker to at least have access
and be able to manipulate 200 million image-text pairs.
Adaptive Attacks via Adversarial Noise. For the clean-
model-based design, we first train θcln using the clean portion
of D, achieving an average training loss of 0.001. Then, we
use this model to synthesize the noise following Eqn. (21),
for each zpoi. The average loss over these poisoned samples
dropped from 5.135 to 0.0015 (with z̃poi). For the Sifter-based
design, we plug 5 trained Sifters (which can sift out a clean
base set of size 1000 from D) into Eqn. (22) for noise syn-
thesis. Then, with the updated dataset D̃, we find the old five
Sifters trained using D will select only poisons for the tar-
get class to form the base set. Both results indicate that the
synthesized noise aligns with our optimization goals, as we
expected. The poisoned samples perturbed by the synthesized
noises are visualized in Figure 7. The attack performance
on models trained over D̃ and the sifting results with META-
SIFT are shown in Table 14. Despite the noises being effective
in achieving low loss on the clean model or being selected by
the old Sifters, META-SIFT remains a 0% NCR when applied
to D̃ that contains adaptively designed poisons.

6.6 Additional Results (GTSRB, PubFig)
We further study the sifting effectiveness of different meth-

ods over the popular traffic signs dataset GTSRB in Table
15 and the real-world face dataset PubFig in Table 16. These

Label-only Feature-only Label-Feature
Targeted Label-

Flipping [3]
Random Label-

Flipping [4]
Narcissus

Backdoor [7]
Poison

Frog [5]
BadNets

One-Tar [8]
Smooth

One-Tar [11]
IAB

One-Tar [49]
Blended

One-Tar [9]
BadNets

All-to-all [8]
Smooth

All-to-all [11]
Blended

All-to-all [9]
Overhead (s)

DCM 103.1 107.5 37.7 75.5 29.6 44.4 87.0 44.4 38.5 121.0 108.0 10
MI-DCM∗ 28.1±0 112.5±0 1000±0 528.3±0 51.9±0 196.3±0 105.1 108.9±0 118.5±0 30.5±0 41.2±0 480+300
SF-Least∗ 0.0±0 18.5±1.73 75.47±0 113.21±0 74.1±0 62.96±0 63.0±0 54.8±0 1.0±0 3.33±0.58 3.33±0 480+15
Loss-Scan∗ 347.9±56.4 507.0±0.0 32.6±2.35 10±0.0 23.7±6.73 23.7±5.45 45.0±6.47 63.7±2.67 325.0±56.1 285.5±104.3 271.6±57.9 110
Self-IF∗ 128.1±5.41 107.5±0 125.8±10.9 245.3±0 37.0±7.41 51.9±0 84.0±0 54.8±1.21 110.5±0 105.5±0 102.2±0 480+17432
META-SIFT 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 5×80

Table 15: NCR results under the GTSRB settings.
Label-only Feature-only Label-Feature

Targeted Label-
Flipping [3]

Random Label-
Flipping [4]

Narcissus
Backdoor [7]

Poison
Frog [5]

BadNets
One-Tar [8]

IAB
One-Tar [49]

Blended
One-Tar [9]

BadNets
All-to-all [8]

Blended
All-to-all [9]

Overhead (s)

DCM 173.3 97.1 135.0 90.0 74.1 24.0 88.9 148.1 135.1 10
MI-DCM∗ 38.4±0 100.3±5.83 74.1±0 86.4±21.4 167.5±4.33 81.1±0 142.5±26.0 55.5±9.6 41.3±2.25 2100+300
SF-Least∗ 160.3±11.1 187.3±8.69 74.1±0 111.1±0 87.5±4.33 78.0±4.33 122.5±4.33 40.3±1.26 92.8±4.37 2100+15
Loss-Scan∗ 167.9±56.3 438.5±118.3 90.0±0 60.0±0 63.0±9.87 54.1±6.78 56.7±6.57 193.5±56.1 192.8±16.9 140
Self-IF∗ 179.5±61.8 108.7±6.83 74.1±0 86.4±21.4 85.0±11.6 63.0±11.6 57.5±11.5 111.2±12.8 121.2±8.39 2100+21045
META-SIFT 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 5×80

Table 16: NCR results under the PubFig settings.

datasets are more representative of ML tasks encountered in
real-world applications. Both GTSRB and PubFig are imbal-
anced, unlike CIFAR-10. Therefore, we maintain the same
class distribution when sifting the samples from each class.
Again, similar to the observation in the main text, none of the
baselines can constantly produce a fully clean base set for
these two datasets. Even with datasets more challenging than
CIFAR-10, META-SIFT continues to deliver a completely
clean base set with zero variance in each evaluated attack
setting and also is faster than the other baselines.
6.7 Ablation Study

Throughout this study, we compare the empirical upper
bound on the size of the clean subset sifted under varying
parameter settings. Note that this upper bound value implies
that for given parameters, META-SIFT can sift out a clean base
set (of size equal to the upper bound) with 100% precision.

Sifter 1 3 5 10
Clean subset size 155(×10) 274(×10) 517(×10) 533(×10)

Table 17: Sifting performance vs. number of Sifters.
First, we study the effect of adding additional Sifters to

select the clean base set (Table 17). We consider the CIFAR-
10 [42] for all ablation studies. The hyperparameter settings
remain as declared in Table 3, except we use the ResNet-18
[55] architecture. We poison the dataset with the BadNets [8]
in this study with a 5% poison ratio into target class 5. We
observe that as the number of Sifters increases, the upper
bound on the base set size also increases. The subset size
grows sharply from one to five Sifters, i.e., from 155(×10) to
517(×10). Although the subset size keeps growing after five
Sifters, the pace is comparatively gradual.

Figure 8: Clean base set size with different sample-dilution
settings. The last column reflects the average over the row.

Secondly, we discuss the impact of different random aug-
mentations used in sample-dilution towards the size of achiev-
able clean base set (Figure 8). We adopt the widely used

Without dilution With dilution Change
DCM 7(×10) 3(×10) -4(×10)

MI-DCM∗ 12(×10) 9(×10) -3(×10)
SF-Least∗ 11(×10) 15(×10) +4(×10)

Loss-Scan∗ 6(×10) 2(×10) -4(×10)
Self-IF∗ 8(×10) 14(×10) +6(×10)

Table 18: Baseline results with sample-dilution.

augmentation settings for all experiments throughout this pa-
per. Specifically, for Random Crop, the image size is 32px,
and the padding size is 4px; for Gaussian Blur, the kernel size
is 3px; for Random Horizontal & Vertical Flip, the probability
is 0.5. From Figure 8, we observe that different augmenta-
tions impact the size of the clean base set greatly. For example,
when only applying Random Horizontal Flip, we can acquire a
clean set of 178(×10) samples. However, the sole application
of Random Vertical Flip results in a size of only 15(×10) sam-
ples. We also found combinations of the augmentations lead
to better performance, e.g., combining Random Crop with
Gaussian blur increases the size from 333(×10) to 499(×10).
In our evaluation, we use no more than four random augmen-
tations in the sample-dilution since too many augmentations
may lead to large information loss. Note that, without any aug-
mentation being adopted, our method can still sift out a clean
base set of 28(×10). In comparison, other baselines’ best re-
sults with or without sample dilution is only 15(×10), Table
18. It also goes without saying that these baseline approaches
have inconsistent performance against different types of at-
tacks, and they might even have worse performance against
other settings of attacks (Table 1,5,6,15,16).

6.8 Visual Examples of the Selected Points.
Figure 9 show examples of data selected by the META-

SIFT or random-sampled. The META-SIFT -selected samples
exhibit slightly better semantic information for the label In
comparison. However, it is hard to draw conclusions about
sample consistency based solely on visual observations

Meta-Sift

CIFAR-10: “Dog”

PubFig: “Miley Cyrus”

ImageNet: “Theater Curtain”

Random

GTSRB: “Keep Right”

Meta-Sift Random

Figure 9: Selected sample comparison.

	Introduction
	Sifting Out a Clean Enough Base Set is Hard
	Defense Requires a Highly Pure Base Set
	The Data Sifting Problem
	How Effective are Existing Methods
	How Effective is Human Inspection

	Meta-Sift
	Reducing to a Splitting Problem
	Relaxation of the Splitting Problem
	Overall Algorithm

	Evaluation
	Experimental Setup
	Sifting Performance
	Downstream Defense Evaluation
	Adaptive Attack Analysis

	Conclusion and Outlook
	Appendix
	Detailed Attack Settings in Section 2.3
	Detailed Attack Settings in Section 2.4
	Pseudocode of the Training Stage
	Detailed Adaptive Designs in Section 4.4
	Additional Results (CIFAR-10)
	Additional Results (GTSRB, PubFig)
	Ablation Study
	Visual Examples of the Selected Points.

