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Abstract
A Risk-Limiting Audit (RLA) is a statistical election tabula-
tion audit with a rigorous error guarantee. We present ballot
polling RLA PROVIDENCE, an audit with the efficiency of
MINERVA and flexibility of BRAVO, and prove that it is risk-
limiting in the presence of an adversary who can choose
subsequent round sizes given knowledge of previous samples.
We describe a measure of audit workload as a function of the
number of rounds, precincts touched, and ballots drawn and
quantify the problem of obtaining a misleading audit sample
when rounds are too small, demonstrating the importance
of the resulting constraint on audit planning. We describe
an approach to planning audit round schedules using these
measures and present simulation results demonstrating the
superiority of PROVIDENCE.

We describe the use of PROVIDENCE by the Rhode Island
Board of Elections in a tabulation audit of the 2021 elec-
tion. Our implementation of PROVIDENCE in the open source
R2B2 library has been integrated as an option in Arlo, the
most commonly used RLA software.

1 Introduction

It is well-known that electronic voting systems are vulnerable
to software errors and manipulation which may be undetected.
Errors and/or manipulation may not always change an election
outcome, but we want to know when they do. Software inde-
pendent voting systems [17,18] are ones where an undetected
change in the software cannot lead to an undetectable change
in the election outcome. The evidence-based elections [21] ap-
proach requires that election outcomes be supported by strong
affirmative evidence. The evidence is generated during the
election and publicly examined at the end, enabling citizens to
determine whether it provides strong support of the election
outcome or is not sufficiently convincing. One approach to
evidence-based elections is to use voter-verified paper ballots,

∗odbroadrick@gmail.com
†Authors supported in part by NSF Award 2015253

store them securely, and perform public audits—a compliance
audit to determine whether the ballots were stored securely
and procedures were followed; and a rigorous tabulation au-
dit, known as a risk-limiting audit (RLA) [10], to determine
whether the outcome is correctly computed from the stored
ballots.

As a formalized approach to the examination of evidence
supporting vote tabulation, an RLA is an important part of
an evidence-based election. When correctly implemented, it
serves to vastly improve the trustworthiness of the election.

Significant efforts by nationwide organizations (such as
Verified Voting, Brennan Center for Justice, Common Cause
and Democracy Fund), local organizations, citizen advocates
and experts have led to great progress towards the use of
RLAs. Nonprofit VotingWorks has developed open-source
election audit software, Arlo [24], and provides training in
its use. Six states (Colorado, Georgia, Nevada, Pennsylvania,
Rhode Island, Virginia) now require RLAs; three have statu-
tory pilot programs (Indiana, Kentucky, Texas); four allow
RLAs to satisfy a more general audit requirement (California,
Ohio, Oregon, Washington); and two have an administrative
pilot program (Michigan, New Jersey) [23]. The effort to
broaden the reach of RLAs continues, as election officials ap-
pear very keen to improve the trustworthiness of the elections
they administer.

1.1 Background on RLAs

A tabulation audit will either end with a declaration that an
election outcome is correct, or escalate to a full hand count.
The integrity of an audit may be judged by how it deals with
incorrect outcomes. A risk-limiting audit (RLA) guarantees
a minimum probability that it will perform as it is supposed
to (escalate to a full hand count) if the outcome is incorrect.
Equivalently, this is also a guarantee of a maximum prob-
ability with which it will perform erroneously (declare the
audit correct) when the outcome is incorrect. The risk limit
of an RLA is the (guaranteed) maximum probability that an
incorrect election outcome would be declared correct. Lower



risk limits are better.
There are three types of RLAs: ballot comparison RLAs,

batch comparison RLAs and ballot polling RLAs. This paper
focuses on ballot polling RLAs which have been used in
a number of US state pilots (California, Georgia, Indiana,
Michigan, Ohio, Pennsylvania, Virginia and elsewhere), real
statewide audits (Georgia, Virginia) [23] and audits of smaller
jurisdictions, such as Montgomery County, Ohio [27]. Ballot
and batch comparison RLAs are described in section 1.2.

1.1.1 The Workflow of a Ballot Polling RLA

A ballot polling RLA [10] is based on manual examination
of the sampled ballots, and does not require any information
from the tabulating system other than the tally. More detail
about the storage of ballots is required, however: a complete
ballot manifest (a list of ballot storage containers and the
number of ballots in each) which enables the creation of a
well defined list of the ballots and their locations (the fifth
ballot in box number 20, for example) to enable the sampling
of specific ballots from the list.

All RLAs draw one or more ballots at a time; each such
set of ballots is referred to as a round. We use notation and
terminology from [5, 11, 26, 27] and also assume ballots are
drawn with replacement.

Ballot polling audits proceed as follows.

1. The ballot manifest is published.

2. A first round size [27] is chosen.

3. Ballots on the ballot manifest are sampled uniformly at
random, with replacement, using a pseudorandom num-
ber generator—typically seeded by a natural source of
randomness like rolling dice.

4. The physical ballots are found and manually interpreted;
the interpretations are recorded.

5. The stopping condition A , a function of the manual in-
terpretations of the current cumulative sample of ballots
X , is computed. It outputs:

(a) Correct: stop the audit or

(b) Undetermined: sample more ballots.

Election officials may choose to abort this procedure and
go to a full hand count at any time and should have a
plan for how to decide whether to do so; we discuss this
in more detail below and in section 2.

6. If more ballots are to be drawn, the next round size is
chosen, and the audit goes back to step 2.

Round sizes, including the first one, may be computed
based on a desired probability of audit completion at the end
of the round, and may take into consideration loose estimates

of the resources required. For RLAs required by statute or
legislation, the successful completion of the RLA (or a full
hand count confirming the certified outcome) is usually nec-
essary before certification1 and certification deadlines would
play a large role in round size and hand count decisions.

1.1.2 The Audit Model

An audit is typically defined as a binary hypothesis test. If the
null, H0, is defined as the incorrect outcome hardest to detect
(generally a tie, see [22]), we have the following definition of
an RLA.

Definition 1 (Risk Limiting Audit (α-RLA)). An audit A is
a Risk Limiting Audit with risk limit α iff for sample X

Pr[A(X) = Correct |H0]≤ α

Definition 1 is valid at the end of the RLA, and not at the
end of each round. Thus it is not the case that an incorrect
election will pass the audit if a sufficient number of rounds
is drawn. In fact, the larger a sample, the more accurate the
estimate of election correctness can be, and the more the audit
will diverge from one that would stop (see the example below).
It is possible to declare an incorrect outcome as correct even
after drawing a large sample, but a good audit is less likely to
make this error.
Full Hand Count: It is worth noting here that if election offi-
cials do not have a plan for when they will move to a full hand
count, and the election outcome is incorrect, at least a fraction
(1−α) of the audits will never stop, and new rounds will
continue to be drawn. See Figure 1 in section 4 for the results
of 10,000 simulations of PROVIDENCE on tied elections (risk
limit of 0.1, across election margins of 0.05 and larger in the
statewide contests for US President in 2020). Observe that,
for each margin studied, more than 90% of the audits do not
stop after five rounds. To illustrate this idea, we present two
example simulations from among those used to compute the
statistics reported in section 4.

A total of 11,315,056 votes were cast in the 2020 US Presi-
dent contest in the state of Texas [7]; candidate Trump won
with 5,890,347 votes, and the second highest vote count was
that of candidate Biden, who received 5,259,126 votes, for a
margin of 0.0566 in the pairwise contest. A pairwise contest
between two candidates treats invalid votes and those received
by other candidates as irrelevant to determining which of the
two won the pairwise contest. Its margin is the difference
between their vote counts as a fraction of the sum of their
votes. Ballot polling audits used to audit government elec-
tions (such as BRAVO, MINERVA and PROVIDENCE) audit

1If an RLA were performed after certification and determined that the
outcome was incorrect, there may not be a legal means of changing the
outcome and this could significantly impact citizen confidence. For example,
till recently, the state of Virginia required RLAs but they were to be performed
after certification and could not be used to change an outcome. This was
corrected through new legislation passed in April 2022.



a multi-candidate contest by conducting multiple audits of
the pairwise contests between the winner and every other
candidate.

A first round size of 2,217 corresponds to a stopping prob-
ability of 0.9 and a risk limit of α = 0.1 for PROVIDENCE
(see [27] for a description of how first round size may be com-
puted, MINERVA and PROVIDENCE are identical in the first
round). If the PROVIDENCE ratio is denoted ω, the audit stops
when ω−1 ≤ α, or equivalently (see Definition 6) if ω ≥ α−1.
We describe two audit simulations using these parameters.

The first simulation assumed that the tally is correct and
resulted in 1,138 votes for Trump and 1,054 for Biden (the
rest were irrelevant votes). The audit stopped because:

ω
−1 = 0.047 < α

The second simulation assumed a tied election and did not
stop at the end of five rounds. Table 1 lists the cumulative
round sizes, cumulative votes for both candidates and the
inverse PROVIDENCE ratio after each draw. Each round size
was chosen for a conditional stopping probability of 0.9, given
that the audit did not stop so far. For example, this corresponds
to an approximate probability of 0.09 that the audit stops in
the second round (that it does not stop in the first round and
stops in the second), and so on.

Round Cumulative Trump Biden ω−1

No. Round Size
1 2,217 1,111 1,079 0.256
2 5,970 2,940 2,953 4.251
3 16,685 8,281 8,171 3,150
4 35,096 17,320 17,264 380,220,376
5 76,979 37,943 37,868 2.5e+22

Table 1: A simulation of a PROVIDENCE audit of a tied contest
with an announced margin of 0.0566, and α= 0.1. Each round
size is computed for a conditional stopping probability of 0.9.
The stopping condition is ω−1 ≤ α.

To avoid a scenario where election officials fruitlessly draw
round after round hoping the audit will stop when the elec-
tion outcome is incorrect, it might be worthwhile for election
officials to determine, before the audit begins, the latest date
by which either: the audit stops, or a hand count begins, so as
to be completed before certification.
The Adversary in an RLA: The goal of the adversary is
to increase the true risk beyond the declared risk limit—that
is, given an incorrect outcome, make the audit declare it as
correct with a chance larger than the risk limit. An audit is
an RLA only if there is a proof of its risk-limiting property.
Hence, at the very least, the adversary would need to invalidate
an assumption of the proof to obtain:

Pr[A(X) = Correct |H0]> α

1.2 Related Work

Ballot Polling RLA Process: Bernhard provides a good de-
scription of the RLA and its assumptions, and also describes
the process on the ground [2].

Election officials typically draw ballots in large round sizes,
see for example [6,15]. Note also that, in addition to allowing
users to directly enter a round size or choose the expected
number of ballots drawn by BRAVO, Arlo provides choices of
stopping probabilities of 0.9, 0.8 and 0.7. For the two audits
we attended, election officials chose stopping probabilities of
0.9 and 0.95. Estimates of round sizes with stopping proba-
bility 0.9 for each state in the 2020 US Presidential election
may be found in [27]. Thousands of ballots is quite a common
estimate; many estimates are as large as tens and hundreds of
thousands of ballots. We are not aware of any ballot polling
RLA performed on ballots cast in a governmental election
that drew ballots one at a time (though the stopping condition
can be computed one ballot at a time, the ballots are drawn in
rounds).
R2 and B2 Audits and the Classical BRAVO audit: A round-
by-round (R2) audit is the general audit, where the decision
of whether to draw more ballots or not is taken after drawing
a round of ballots. A ballot-by-ballot (B2) audit is the special
case of round size one—when the decision is made after each
ballot is drawn. The popular BRAVO audit [11] requires the
smallest expected number of ballots when the announced
tally of the election is correct, and stopping decisions are
taken a ballot at a time (that is, when it is used as a B2 audit).
However, BRAVO cannot be used as a B2 audit in the scenarios
described in the previous paragraph.

For use as an R2 audit, the BRAVO stopping condition
can be applied once at the end of each round (End-of Round
(EoR)), or retroactively after each ballot drawn if ballot order
is retained (Selection-Ordered (SO)). SO BRAVO is closer
to the original B2 BRAVO, and requires fewer ballots on av-
erage than EoR BRAVO. But it requires the additional effort
of tracking the order of ballots, and should be expected to
be inefficient because it does not use the information in the
ballots drawn towards the end of the round.
Newer Ballot Polling Audits: The MINERVA audit [26, 27]
does not need ballot order and relies only on sample and
round tallies. It was developed for use with large first round
sizes, and has been proven to be risk limiting when the round
schedule for the audit is fixed before any ballots are drawn.
First round sizes for a stopping probability of 0.9 when the
announced tally is correct have been shown to be smaller than
those for EoR and SO BRAVO for a wide range of margins.

The ALPHA audit [19] generalizes BRAVO to gain effi-
ciency in cases where the reported outcome is correct but the
reported margin is erroneous.
Simulations: Ballot polling audit simulations provide a
means of educating the public and election officials [20] and
understanding audit properties [3, 9, 11–13]. There is work



measuring the amount of time taken to examine a single bal-
lot [6]. Simple workload estimates may be obtained by using
the number of ballots drawn [16], a more thorough workload
estimation model includes the time taken to access individual
ballots [1].

Zagórski et al. present first round simulations demonstrat-
ing that MINERVA draws fewer ballots than SO BRAVO in the
first round for large first round sizes when the true tally is as
announced. Broadrick et al. provide further simulations show-
ing that MINERVA requires fewer ballots than EoR and SO
BRAVO over multiple rounds and for smaller stopping prob-
ability. As expected, the advantage of MINERVA decreases
for smaller stopping probability (smaller round sizes) as it
approaches a B2 audit, for which BRAVO is known to be most
efficient.
Ballot and Batch Comparison Audits: In a ballot compar-
ison RLA [10], the manual interpretation of each sampled
ballot is compared to the corresponding Cast Vote Record
(CVR), which is the machine interpretation of the ballot. Bal-
lot comparison RLAs require the fewest ballots of all known
RLA approaches, but also require a means of identifying
the CVR corresponding to a particular ballot. Not all vot-
ing systems record CVRs and their use can present privacy
challenges. A batch comparison RLA [6] samples batches
of ballots (typically, a batch is a storage box of ballots) and
compares the manual tally of each sampled batch with the
announced tally of that batch. Batch comparison typically
requires the sampling of a very large number of ballots, larger
than polling audits except for small enough margins.

In this work, we consider ballot polling RLAs only and
thus compare PROVIDENCE with BRAVO and MINERVA.

1.3 Gaps in Prior Work and Our Contribu-
tions

We describe relevant gaps in current knowledge of audits and
then describe our contributions.

1.3.1 Limitations of MINERVA

Zagórski et al. prove that MINERVA [27] is risk-limiting when
the number of relevant ballots drawn in each round is pre-
determined before any ballots are examined. They do not
address the case of a stronger adversary (such as an audit
insider) who can determine the size of the next round after
knowing what votes are on the ballots sampled thus far. An
open question about MINERVA is whether its RLA proof
holds in this case. Can the audit insider increase the audit’s
error probability beyond its declared risk limit? Or is there no
probabilistic adversarial advantage to being able to compute
next round sizes after knowing the drawn sample? We do not
answer this question, and to our knowledge, it remains open.

Until MINERVA is proven to be risk-limiting to a given risk
limit for the adversary who can determine next round size after

examining the current sample, it may not be used in audits
whose round sizes are not pre-determined. This presents a
major limitation, because the stopping probability of the next
round is better estimated using information of the sample
drawn thus far, but this would not be allowed for MINERVA.
The current implementation of MINERVA integrated as an
option in Arlo uses a fixed multiplier of the current round size
to compute the next round size, thus allowing the first round
to be computed as desired, and fixing the next round sizes
thereafter2. This could lead to the drawing of too few or too
many ballots and greatly constrains audit planning.

The risk limit for B2, EoR and SO BRAVO is fixed inde-
pendent of whether next round sizes are determined with or
without knowledge of the current sample. This allows BRAVO
audits the flexibility of choosing smaller subsequent round
sizes if the sample drawn so far is a “good” sample. An open
question is whether a ballot polling RLA exists with the effi-
ciency of MINERVA and this flexibility of BRAVO.

1.3.2 Limitations in Existing Workload Measures

A major limitation of our understanding of the ballot polling
problem as a community is that we use the number of bal-
lots drawn or values proportional to this number [1, 6, 13] as
measures of the workload of an audit. If this were a correct
measure of the workload of an audit, we would want to use
B2 audits (round size is one) and make decisions about stop-
ping the audit after drawing each ballot, because this leads to
the smallest expected number of ballots. As described in 1.2,
election officials, on the other hand, greatly prefer drawing
many ballots at once. From conversations with election offi-
cials and staff members of Verified Voting, Brennan Center
and Common Cause who have been training election officials
to perform RLAs, we estimate that this preference is likely
due to the following.

Firstly, each round has an overhead workload as well, in-
cluding setting up the round and communicating among the
various localities involved in conducting the audit (for exam-
ple, audits of statewide contests involve the drawing of ballots
at county offices where the ballots are stored). Secondly, there
is an overhead to finding a storage box and unsealing it. For
large round sizes, multiple ballots may be drawn at once from
a box, and the number of boxes retrieved is smaller than the
number of ballots (storage boxes commonly contain many
hundreds of ballots each). Finally, in the current environment
of misinformation, election officials fear a misleading audit
sample (with more votes for an announced losing candidate
than the winner), preferring to structure audits to reduce the
chances of such samples, thus implicitly choosing larger round
sizes.

2Note that every draw may contain irrelevant ballots, and thus the true
number of relevant ballots can never be predetermined. However, because
this is random, and not controllable by an adversary once the size of the draw
is fixed, we assume that differences in the number of ballots average out, and
that a fixed draw size is sufficient, though this is not explicitly proven in [27].



Thus the workload of an audit is not simply a linear (or
affine) function of the number of ballots drawn. Relatedly,
an optimal round schedule is not completely determined by
the expected number of ballots drawn. It depends on other
variables as well, the consideration of which is necessary
while planning an audit.

1.3.3 Our Contributions

Our primary contribution is a new RLA, PROVIDENCE, which
gives the efficiency of MINERVA and is also resistant to an
adversary who can choose the next round size after knowing
the current sample. BRAVO is a very flexible audit enabling
audit planning; with the introduction of PROVIDENCE, similar
planning is possible with greater efficiency. In a contest with
a narrow margin (in the 2020 US Presidential election, eight
states had margins smaller than 0.03) the difference in number
of ballots sampled using PROVIDENCE over BRAVO could
correspond to many days of work which would need to be
completed before a certification deadline.

The stopping condition for MINERVA does not take into
account the sample obtained in previous rounds. The risk
limit is estimated through weighted averages across multiple
rounds, assuming that round sizes do not depend on the previ-
ous sample. Attempting to simplify the proof of MINERVA’s
risk-limiting property, we were able to define a different audit
PROVIDENCE. The RLA proof for PROVIDENCE does not
make an assumption about round sizes.

We provide the following:

1. Proof that PROVIDENCE is an RLA and resistant to an ad-
versary who can choose next round sizes after knowing
the current sample.

2. Simulations of PROVIDENCE, MINERVA, SO BRAVO,
and EoR BRAVO which show that PROVIDENCE uses
number of ballots similar to those of MINERVA, both
fewer than either version of BRAVO.

3. Results and analysis from the use of PROVIDENCE in a
pilot audit in Rhode Island.

4. A model of workload that includes the overhead effort of
each round and the overhead effort of retrieving a storage
unit of ballots; simulations that illustrate the use of this
model to compare the different types of ballot polling
audits and to plan an audit with minimal workload.

5. An analysis of round size as a function of the maximum
acceptable probability of a misleading audit sample.

6. Open source implementation of PROVIDENCE and audit
planning tools. The implementation of PROVIDENCE
has been integrated as an option in Arlo.

PROVIDENCE may be used in any audit where sampling
is with replacement and audited contests may be expressed

as pairwise plurality contests: for example, it can be used in
plurality and majoritarian elections.

1.3.4 Organization

Section 2 provides preliminaries on the BRAVO and MIN-
ERVA audits. Section 3 describes the PROVIDENCE audit,
section 4 the simulations comparing the number of ballots
drawn using various ballot polling audits and section 5 the
use of PROVIDENCE in an audit carried out by the Board of
Elections of Rhode Island. Section 6 presents our workload
model and describes its use for a ballot polling audit using
details of the 2016 US Presidential election in the state of
Virginia, while section 7 introduces the notion of a misleading
sample, illustrating it on the Virginia details as an example.
Our conclusions, the availability of an audit implementation
and acknowledgements may be found in sections 8, 9 and 10
respectively.

2 Preliminaries on the BRAVO and MINERVA
Audits

BRAVO and MINERVA are modeled as binary hypothesis tests
where the null hypothesis H0 corresponds to a tied election
and the alternative hypothesis Ha to an election tally as an-
nounced. (When the number of ballots is odd, H0 corresponds
to the announced loser winning by one ballot.)

The stopping conditions of BRAVO and MINERVA rely on
the following ratios.

Definition 2 (BRAVO Ratio). The BRAVO audit uses the ratio
σ. Consider a sample size of n ballots with k for the reported
winner. The proportion of ballots for the reported winner
under the alternative hypothesis and null hypothesis are pa
and p0 respectively.

σ(k, pa, p0,n)≜
pk

a(1− pa)
n−k

pk
0(1− p0)n−k

(1)

In BRAVO, p0 =
1
2 . A BRAVO audit outputs correct if and

only if

σ(k, pa,
1
2
,n)≥ 1

α
.

If K is the random variable indicating the number of ballots
in the sample that contain a vote for the reported winner, it is
easy to see that the ratio σ is the likelihood ratio:

Pr[K = k|Ha,n]
Pr[K = k|H0,n]

=

(n
k

)
pk

a(1− pa)
n−k(n

k

)
( 1

2 )
n

= σ(k, pa,
1
2
,n)

BRAVO is an instance of Wald’s Sequential Probability
Ratio Test (SPRT) [25]. Applying the general SPRT to RLAs,
there would be a third output, Full Manual Hand Count, in
addition to Correct and Undetermined. The test requires an



additional error parameter β (of audit error when the outcome
is correct): the probability of requiring a (unnecessary) hand
count when the outcome is correct. The test is:

A(X) =



Correct σ(k, pa, p0,n)≥ 1−β

α

Hand Count σ(k, pa, p0,n)<
β

1−α

Undetermined else

(2)

An example of the above use is [10]. In the more recent lit-
erature, for example [11], ballot polling audits do not include
this possibility (i.e. they set β = 0) in order to give maximum
flexibility to election officials in choosing when to proceed to
a full manual count. For a given election, σ is a function only
of k, and increases with k. Any non-zero value of β would
reduce the value σ is being compared with, and allow A to
declare Correct for lower values of k. Thus β = 0 is the most
stringent of this form of audit. The choice of going to a full
hand count when β = 0 will only reduce the risk because it
never results in an error (by definition, the true election out-
come is one that would be obtained by a full manual hand
count of the ballots) and prevents future errors.

A manual hand count presents numerous logistical chal-
lenges. The decision to move to one would be influenced by
the certification deadline3, the estimated number of human
hours required for another round, the logistical costs of a full
hand count, and the impact of any decision on citizen con-
fidence. A better workload model would better inform the
decision. Election officials should announce ahead of time
their plans for when they would abort the audit procedure
and go to a full hand count, justifying it with an eye towards
completing certification requirements. This would provide
a more transparent process and protect them from political
pressures.

Where BRAVO uses the ratio of the values of the probability
distribution functions, MINERVA uses the ratio of their tails.
Now it becomes useful to have shorthand for a sequence of
cumulative round sizes and the corresponding sequence of
cumulative winner ballot tallies. We use:

nnn jjj ≜ (n1,n2, . . . ,n j) and kkk jjj ≜ (k1,k2, . . . ,k j)

Also, let K j be the random variable indicating the cumulative
number of ballots in the sample after the jth round is drawn.

Definition 3 (MINERVA Ratio). The R2 MINERVA audit uses
the ratio τ j. We use cumulative round sizes nnn jjj, with corre-
sponding kkk jjj ballots for the reported winner in each round.

3As mentioned earlier, audits going towards statutory or legal require-
ments would need to be completed by the certification deadline. Pilot audits,
performed after certification, usually end after a single round or fixed number
of rounds, providing a measured risk (the statistical p-value) at the end of the
round, and no decision regarding a full hand count needs to be made.

The proportion of ballots for the reported winner under the
alternative hypothesis and null hypothesis are pa and p0 re-
spectively.

τ j(k j, pa, p0,nnn jjj,α)≜

Pr[K j ≥ k j ∧∀i< j(A(Xi) ̸= Correct) | Ha,nnn jjj]

Pr[K j ≥ k j ∧∀i< j(A(Xi) ̸= Correct) | H0,nnn jjj]

(3)

Note that τ depends only on the most recent cumulative
votes for the winner, k j and not on older values. Here, if we
were to condition the ratio on the vector of cumulative winner
votes kkk j−1, or, equivalently, on the most recent cumulative
winner votes k j−1, we would get the binomial distributions
and be running a new first round each time.

The ratios for BRAVO and MINERVA are for two candidates.
As mentioned when describing the example in section 1.1.2,
audits of multiple-candidate contests are treated as multiple
audits of the pairwise contests between the announced winner
and all other candidates.

3 PROVIDENCE

In this section we describe the adversarial model and intro-
duce the stopping condition of PROVIDENCE, proving some
of its properties.

3.1 Adversarial Model for RLAs

Detailed descriptions of best practices for post-election audits
may be found in [4, 8]. For our purposes, we will assume that
best practices are followed: the paper trail consists of hand-
marked paper ballots and is secured; a public compliance audit
is carried out before the RLA to ensure that the processes for
securing the paper trail were followed; voter authentication
and registration processes are verified; and the risk-limiting
audit is public. We will further assume that all software used
in the RLA is open source and well-defined, so its output may
be reproduced and thus verified by an observer wishing to do
so with their own software.

Referring to the ballot polling audit steps described in sec-
tion 1.1.1, we further assume that the ballot manifest is veri-
fied by the compliance audit; a secure PRNG is used; the seed
is generated uniformly at random in a public process; the pro-
cess of locating ballots is publicly observable and the located
ballots can be viewed by the public. Because the PRNG is
well-defined, as is the stopping condition, we may assume
that the stopping condition is correctly computed, because it
can be checked by the public through knowledge of the seed
and the drawn ballots. Thus the only variable is round size.

We define a weakly round-choosing adversary as one who
can choose the first and subsequent round sizes before the
audit begins and a strongly round-choosing adversary as one
who can choose any round size at any time (before, of course,



that particular round begins). In particular, a strongly round-
choosing adversary may use information about the sample
drawn thus far to decide the next round size, but a weakly
round-choosing adversary may not.

Definition 4 (Weakly Round-Choosing Adversary). A weakly
round-choosing adversary may choose the first and conse-
quent round sizes as a pre-determined function of audit pa-
rameters. That is, the jth round size is a function

n j(α, pa, p0,ballot_mani f est)

determined before the audit begins.

Definition 5 (Strongly Round-Choosing Adversary). A
strongly round-choosing adversary may choose any round
size as any function of audit parameters and all preceding
samples. That is, the first round size is a function

n1(α, pa, p0,ballot_mani f est),

and for all rounds j ≥ 2, the round size is a function

n j(α, pa, p0,ballot_mani f est,kkk j−1,nnn j−1)

The functions n j, j ≥ 1 may be chosen at any time before the
jth round begins.

3.2 Intuition Behind the Properties of PROVI-
DENCE

Before defining PROVIDENCE, we give some intuition for
how it is designed to avoid the problem of MINERVA.

Consider any ballot polling audit in round j, designed to
stop for some value of K j = k j smaller than the round size.
In general, if k j is large, the probability of this value of K j
given a correct outcome, Pr[K j = k j | H1], is larger than the
corresponding risk—Pr[K j = k j | H0], the probability of this
value of K j given a tie. The risk is generally not zero, how-
ever. Thus, corresponding to each such value of K j, a risk is
incurred. To obtain the total risk for the round, one adds the
risks corresponding to each value of K j for which the audit
can stop, weighted by the probability of drawing that value of
K j. The stopping condition may provide relationships among
the various quantities. To obtain the risk of the entire audit,
one sums the risks of each round.

In MINERVA, the stopping condition relates the weighted
average of the risks to the weighted average of the stopping
probabilities over all values of K j for which the audit stops,
for a given round size. Separate relationships between risk and
stopping probability are not available for individual values of
K j. If the next round size depends on K j, expressions relating
the risks are not available, and we are not able to obtain an
expression bounding the sum of the risks across rounds. Thus
we are not able to determine if MINERVA is an RLA in this
case, or if it is vulnerable to the strongly round-choosing
adversary [19, 26, 27].

In PROVIDENCE, we choose a stopping condition that ap-
plies separately to the risk and stopping probabilities for each
value of K j, avoiding the problem of MINERVA, and allowing
for optimal round size choices, which depend on the drawn
sample. The PROVIDENCE audit is risk-limiting even if a
strongly round-choosing adversarial auditor determines round
sizes after drawing the sample, and next round size computa-
tions may use knowledge of the current sample.

3.3 Definition
Definition 6 ((α, pa, p0,k j−1,n j−1,n j)-PROVIDENCE). For
cumulative round size n j for round j and a cumulative k j bal-
lots for the reported winner found in round j, where samples
are drawn with replacement, the R2 PROVIDENCE stopping
rule for the jth round is:

A(X j) =

{
Correct ω j(k j,k j−1, pa, p0,n j,n j−1)≥ 1

α

Undetermined else

where ω1 ≜ τ1 and for j ≥ 2, we define ω j as follows:

ω j(k j,k j−1, pa, p0,n j,n j−1)≜

σ(k j−1, pa, p0,n j−1) · τ1(k j − k j−1, pa, p0,n j −n j−1)
(4)

Notice that PROVIDENCE requires the computation of τ j
for j = 1 and no other values of j. The value of τ1 is simply
the ratio of the the tails of the binomial distributions (the
distributions are binomial because the sampling is with re-
placement) for the two hypotheses and can be fairly efficiently
computed. The computation of τ j for j ≥ 2, as required in
MINERVA, relies on the convolution of two probability distri-
bution functions and is hence computationally considerably
more expensive. Smaller computational complexity makes
audit planning and analysis using simulations as in section 6
more feasible.

Notice also that PROVIDENCE and MINERVA are identical
for j = 1.

3.4 Risk-Limiting Property: Proof
We now prove that PROVIDENCE is risk-limiting against a
strongly round-choosing adversary using lemmas from basic
algebra which are given in Appendix A.

Theorem 1. (α, pa, p0,k j−1,n j−1,n j)-PROVIDENCE is an α-
RLA in the presence of a strongly round-choosing adversary.

Proof. Let A = (α, pa, p0,k j−1,n j−1,n j)-PROVIDENCE. Let
nnn jjj be the cumulative round sizes used in this audit, with
corresponding cumulative tallies of ballots for the reported
winner kkk jjj. For round j = 1, by Definitions 6 and 3, we see
that the A = Correct (the audit stops) only when

τ1(k1, pa, p0,n1) =
Pr[K1 ≥ k1 | Ha,n1]

Pr[K1 ≥ k1 | H0,n1]
≥ 1

α
.



By Lemma 7 and Definition 7, there is a value kmin,1 =

kpa,p0,α,0
min,1,0,n1

such that

Pr[K1 ≥ k1 | Ha,n1]

Pr[K1 ≥ k1 | H0,n1]
≥

Pr[K1 ≥ kmin,1 | Ha,n1]

Pr[K1 ≥ kmin,1 | H0,n1]
≥ 1

α
.

For any round j ≥ 2, by Definition 6 and Lemma 7, A =
Correct (the audit stops) if and only if

ω j(k j,k j−1, pa, p0,n j,n j−1,α)≜

σ(k j−1, pa, p0,n j−1) · τ1(k j − k j−1, pa, p0,n j −n j−1)≥
1
α
.

By Lemma 8 and Definition 3, this is equivalent to

Pr[K j−1 = k j−1 | Ha,n j−1]Pr[K j ≥ k j | k j−1,Ha,n j−1,n j]

Pr[K j−1 = k j−1 | H0,n j−1]Pr[K j ≥ k j | k j−1,H0,n j−1,n j]

≥ 1
α
.

By Lemma 7 and Definition 6, we see that there exists a
kmin, j = k

pa,p0,α,k j−1
min, j,n j−1,n j

≤ k j for which

Pr[K j−1 = k j−1 | Ha,n j−1]Pr[K j ≥ k j | k j−1,Ha,n j−1,n j]

Pr[K j−1 = k j−1 | H0,n j−1]Pr[K j ≥ k j | k j−1,H0,n j−1,n j]
≥

Pr[K j−1 = k j−1 | Ha,n j−1]Pr[K j ≥ kmin, j | k j−1,Ha,n j−1,n j]

Pr[K j−1 = k j−1 | H0,n j−1]Pr[K j ≥ kmin, j | k j−1,H0,n j−1,n j]

≥ 1
α

The above may be rewritten as

n j

∑
k=kmin, j

Pr[(K j,K j−1) = (k,k j−1) | H0,n j−1,n j]≤

α

n j

∑
k=kmin, j

Pr[(K j,K j−1) = (k,k j−1) | Ha,n j−1,n j]

The left hand side above is the probability of stopping
in the jth round and K j−1 = k j−1, given the null hypoth-
esis, which is smaller than α times the same probability
given the alternate hypothesis. For different possible val-
ues of k j−1, different round sizes n j can be used, and this
same relationship will hold. That is, the relationship4 holds
even if the values of n j depend on k j−1, if n j is a function
n j(α, p0, p1,ballot_mani f est,kkk j−1,nnn j−1).

Summing both sides over all values of k j−1 < kmin, j−1 gives
us a similar relationship between the probabilities of stopping

4MINERVA enforces a similar relationship between risk and stopping
probability but does so at the level of the round rather than for each indi-
vidual value of K j−1. By enforcing this relationship for each value of K j−1,
PROVIDENCE is resistant to a strongly round-choosing adversary.

in round j (given the null and alternate hypotheses respec-
tively)5. When both sides of the inequality are further summed
over all rounds, we get:

Pr[A = Correct | H0]≤ αPr[A = Correct | Ha]

Finally, because the total probability of stopping the audit
under the alternative hypothesis is not greater than 1, we get

Pr[A = Correct | H0]≤ α.

3.5 Consequences of resistance to an adversary
choosing round size

To illustrate the practical implication of this property, we con-
sider a toy example: an RLA of a two-candidate contest with
margin 0.01 and risk limit 0.1. For a conditional stopping
probability of 0.9 in each round of a PROVIDENCE audit, we
can compute next round sizes based on the current sample.
MINERVA, however, would have a predetermined round sched-
ule. We use the default MINERVA round schedule of audit
software Arlo: [x,2.5x,6.25x, ...]; that is, the next marginal
round size is 1.5 times the current one—equivalently, the next
total round size is 2.5 times the current one. This approach is
known to give, over a wide range of margins, a conditional
probability of stopping roughly 0.9 in the second round if the
first round size was determined for a probability of stopping
0.9.

Both the audits of our toy example therefore begin with a
first round size of 17,272 with a 0.9 probability of stopping,
and both will stop in the first round if the sample contains at
least 8,725 ballots for the winner. The audits are identical in
the first round, and both numbers of ballots may be computed
as described in [27] and used by Arlo. We now consider two
cases for which the audit proceeds to a second round.

In one case there are 8,724 votes for the winner in the sam-
ple, just one fewer than the minimum needed to meet the risk
limit. In the MINERVA audit, we are already committed to a
second round size of 43,180 which, given the nearly-passing
sample of the first round is higher than necessary, achieving a
stopping probability in the second round of 0.954. The PROV-
IDENCE audit samples more than 9,000 fewer ballots with a
round size of 34,078, achieving the desired 0.9 probability of
stopping.

In a less lucky first round sample, the winner recieves 8,637
ballots, few more than the loser recieves. In the MINERVA
audit, we again have to use a second round size of 43,180,
but now this round size only achieves a 0.727 probability of
stopping, significantly less than the desired 0.9. Again, the

5In fact, this is the relationship MINERVA enforces for its stopping condi-
tion, additionally requiring that n j be fixed for all values of k j−1.



PROVIDENCE audit can scale up the second round size accord-
ing to the first sample and achieve the desired 0.9 probability
of stopping with 58,007 ballots.

3.6 Theoretical Properties
Here we present two interesting theoretical properties of
PROVIDENCE.

3.6.1 Efficiency

It is easy to see that, for any sample for which the EoR BRAVO
stopping condition is met, the PROVIDENCE stopping condi-
tion is also met. This implies that PROVIDENCE will never
draw more ballots than EoR BRAVO.

Lemma 1. For any risk-limit α ∈ (0,1), for any margin and
for any round schedule [n1, . . . ,n j], the PROVIDENCE RLA
stops before or in the same round as EoR BRAVO.

Proof. Appendix A

3.6.2 Markov-like Stopping Condition

After j−1 rounds, having drawn n j−1 cumulative ballots with
k j−1 cumulative winner ballots, the PROVIDENCE stopping
condition in round j with size n j is equivalent to the PROVI-
DENCE stopping condition for a second round where the first
round size is n1 = n j−1 with k1 = k j−1 winner ballots and a
second round size n2 = n j. The particular sequence of round
sizes and winner ballots does not affect the PROVIDENCE
stopping condition; only the previous cumulative round size
and number of winner ballots matters. MINERVA does not
have this property, but BRAVO also does.

Lemma 2. Let [n1, . . . ,n j−1,n j] be a round schedule for an
execution of PROVIDENCE audit that has not stopped in any
of its first j− 1 rounds (i.e., for every i = 1, . . . , j− 1: ki <

k
pa,p0,α,k j−1
min, j,n j−1,n j

), then:

k
pa,p0,α,k j−1
min, j,n j−1,n j

= k
pa,p0,α,k j−1
min,2,n j−1,n j

.

Proof. This is easily observed.

4 PROVIDENCE Audit Simulations

We use simulations to provide additional evidence for our
theoretical claims regarding PROVIDENCE and to gain insight
into audit behavior. As done in [5], we use margins from the
2020 US Presidential election—state-wide pairwise margins
of 0.05 or larger between the two leading candidates. Nar-
rower margins are computationally expensive, especially for
the simulations of tied elections, which, by design, have a low
probability of stopping and hence quickly increase in sample
size. We use the simulator in the R2B2 software library [14].

For each margin, we perform 104 PROVIDENCE audit trials
each on a tied election (hypothesis H0, the null hypothesis)
and the election as reported (hypothesis Ha, the alternate hy-
pothesis). We use risk limit α = 0.1, as is common in RLAs,
see for example [15] and [6]. All trials have a maximum of
five rounds and a conditional stopping probability of 0.90 in
each round. That is, each next round size is selected to be
large enough to give a 0.90 conditional probability of stop-
ping in that round, assuming the announced tally is correct
and given the tally of previous rounds. We use a maximum
of five rounds because, if the tally were correct, virtually no
audits would progress beyond five rounds given the large
conditional probability of stopping in each round.

4.1 Tied Elections
In the simulations of PROVIDENCE audits of a tied election,
the fraction of audits that stop, as shown in Figure 1, is an
estimate of maximum risk. For all margins, this estimated
maximum risk is less than the risk limit, supporting the claim
that PROVIDENCE is risk-limiting.

Figure 1: The fraction of simulated PROVIDENCE audits on
tied elections that stopped in any round (we performed five
rounds at a risk limit of 0.1) as a function of contest mar-
gin. This value is an estimate of the maximum risk of the
PROVIDENCE audit. Observe that it is below the risk limit, as
expected.

Simulations of audits of the election as reported provide
insight into stopping probability and number of ballots drawn
when the election is as reported. Figure 2 shows that the stop-
ping probabilities over the first rounds are near and slightly
above 0.9 as expected, since our software chose round sizes
to give at least a 0.9 conditional stopping probability. The
values are not as tight around 0.9 for later rounds because
fewer audit trials make it to later rounds, and our experimental
probability estimates are not as accurate.



Figure 2: The fraction of simulated PROVIDENCE audits of the
election as reported that stopped for each round as a function
of margin. This value is an estimate of the stopping probability
conditioned on the sample of the previous round. The average
fraction for rounds 1, 2, and 3 is 0.8996, 0.9052, and 0.9098
respectively. We show only the first three rounds since so few
audits make it to rounds 4 and 5 (of the order of 104 × (0.1)3

and 104 × (0.1)4 respectively).

4.2 Efficiency of PROVIDENCE

We now investigate the efficiency of PROVIDENCE compared
to MINERVA, SO BRAVO, and EoR BRAVO by taking a sin-
gle margin as an example: the 2020 US Presidential election
in the state of Texas, with margin 0.057. We run an addi-
tional 104 simulations for each of the three other audits on the
same underlying election and on a tied election. Both BRAVO
implementations use a conditional stopping probability of
0.9 for each round, while MINERVA uses a first round size
with stopping probability 0.9 and a multiplier of 1.5 to obtain
subsequent round sizes.

Figure 3 shows the probability of stopping as a function
of the number of ballots sampled, a plot similar to those pre-
sented in [5]. Points above (higher probability of stopping)
and to the left (fewer ballots) represent more efficient audits.
As shown, PROVIDENCE has comparable efficiency to MIN-
ERVA, while both are significantly more efficient than either
implementation of BRAVO.

5 Pilot Use

The Rhode Island Board of Elections performed a pilot au-
dit in the city of Providence in February 2022. The contest
audited was a single yes-or-no question in the November
2021 election: Portsmouth’s Issue 1, "School Construction
and Renovation Projects". The question had a reported margin
of 0.2567 and the audit used a risk-limit of 0.10.

Figure 3: For the entire audit, consisting of all five rounds,
the fraction of simulated audits that stopped as a function
of the average number of ballots drawn for PROVIDENCE,
MINERVA, EoR BRAVO, and SO BRAVO. The average sample
number (ASN) for B2 BRAVO is included for context.

A first round size of 140 ballots with large probability of
stopping (0.95) was selected. Selection order was tracked for
the sake of analysis. As expected, the audit concluded in the
first round. The PROVIDENCE risk measure was 0.0418. This
is the smallest risk for which the sample would have passed a
PROVIDENCE RLA for the announced election—the p-value
of the statistical test and the inverse of the PROVIDENCE ratio
ω of Definition 6. Table 2 shows risk measures for the drawn
sample using PROVIDENCE, MINERVA and BRAVO (both
EoR and SO), all similarly defined.

ballots PROVID
ENCE

M
IN

ERVA

SO
BRAVO

EoR
BRAVO

140 0.0418 0.0418 0.0541 0.366

Table 2: Risk measures for the drawn first round of 140 ballots
in the RI pilot audit. Risk measures in bold meet the risk-limit
(10%) and thus correspond to audits that would stop.

Note that the risk measures shown in Table 2 imply that, for
the sample obtained in the pilot audit, an EoR BRAVO audit
would not have stopped in the first round, despite the large
round size. Further, if the risk limit had been 0.05 instead of
0.10, SO BRAVO also would have required moving on to a
second round.

We can use simulations to better understand typical audit
behavior for the margin of this pilot audit and contextualize
the results we obtained in the pilot. We run 104 trial audits for



several stopping probabilities p. Each round size is chosen to
give a probability of stopping p assuming the announced tally
and given the results of previous rounds. We use the same 0.1
risk limit and margin of 0.2557.

Figure 4 shows the average number of ballots sampled for
each value of p in the simulations. The vertical line denotes
the stopping probability of the first round size of relevant
votes drawn in the pilot (140 ballots). The large value of p
corresponds to a large first round size and a corresponding
large value of average number of ballots. In later sections we
show why average number of ballots is not the only metric to
optimize, and how large round sizes can be beneficial from
the perspective of other important metrics.

Figure 4: The total number of ballots sampled on average as
a function of p, the conditional stopping probability used to
select each round size. We use the same contest parameters
and risk limit as the Rhode Island pilot.

For this pilot audit, extensive planning of the round sched-
ule was not necessary because the margin was large enough
that relatively few ballots were needed to achieve the high
probability of stopping. In section 6 we consider a larger state-
wide contest in Virginia, where selecting the round schedule
has more significant implications. Virginia also currently uses
ballot polling RLAs, whereas Rhode Island primarily uses
batch comparison RLAs. Some of the ideas introduced in
section 6 provide a context for this pilot case as well.

For the sake of analysis, the selection order of the ballots
sampled during the pilot was also recorded. Figure 5 shows
the cumulative tally of winner ballots after each new ballot in
the selection order is added to the sample.

We observe two interesting phenomena in this particular
sample’s selection order. First, an SO BRAVO audit of this
sample stops because the BRAVO condition is met when the
winner votes in the sample (orange line) surpasses the min-
imum number of winner ballots need to meet the BRAVO

Figure 5: For each sample size from 1 to 140, the intermediate
cumulative sum of ballots for the announced winner is shown.
Observe that SO BRAVO would stop because the minimum
number of ballots required to satisfy the BRAVO stopping
condition (blue line) is achieved early on (when the orange
line crosses the blue one) in the audit. However, because the
BRAVO condition is no longer satisfied at 140 ballots, an EoR
BRAVO audit would not have stopped. Further, at a sample
size of 11, the orange line is not even above the dotted green
line representing half the sample size and the winner has
fewer than half the relevant votes in the sample.

stopping condition (blue line) earlier in the sample6. EoR
BRAVO, however, does not stop at sample size 140, the num-
ber of relevant ballots drawn during the pilot. It might be
difficult to explain to the public why SO BRAVO stops in
more extreme cases like this, where the condition is met early
in the sample, but the rest of the sample is ignored. Second,
the orange line is below the dotted green line, which repre-
sents half the sample size, at a sample size of 11; only 5 of the
first 11 ballots were for the announced winner. A first round
of size 11 would have resulted in a smaller average total num-
ber of ballots drawn, but would have provided a misleading
sample (suggesting that the winner was incorrectly reported)
due to a too-small sample size.

6 Audit Workload

Some election audits have benefited from a one-and-done ap-
proach: draw a large sample with high probability of stopping
in the first round and usually avoid a second round altogether.

6Such cases also provide insight into how PROVIDENCE is a sharper test
in expectation because SO BRAVO ignores information from the rest of the
sample after the BRAVO condition is met at some point earlier in the selection
order.



This is appealing for two reasons. Firstly, rounds have some
overhead in both time and effort. Thus the time and person-
hours of an audit grows not just with the number of ballots
sampled but also with the number of rounds. Secondly, smaller
first round sizes are not large enough to accurately capture
the distribution of votes. There is a higher probability that the
true winner has fewer votes in the audit sample than some
other candidate. On the other hand, a one-and-done audit may
draw more ballots than are necessary; a more efficient round
schedule could require less effort and time pre-certification.
To evaluate the quality of various round schedules, we con-
struct a simple workload model. Using this model we show
how optimal round schedules can be chosen. We provide soft-
ware that can be used by election officials to choose round
schedules based on estimates of the model parameters like
maximum allowed probability of a misleading audit sample.

As an example, we consider the US Presidential contest
in the 2016 Virginia statewide general election. This contest
had a margin of 0.053 between the two candidates with the
most votes. Analytical approximation of the expected audit
behavior (quantities like expected total number of ballots
sampled or total number of rounds) is not straightforward.
Therefore we use the typical approach of simulations, again
with risk limit 0.1.

We simulate audits considering each candidate with a col-
umn in the results available at the Virginia Department of
Elections website, including irrelevant ballots. We consider
a simple round schedule, in which each round is selected to
give the same probability of stopping, p. That is, if the audit
does not stop in the first round, we select a second round size
which, given the sample drawn in the first round, will again
have a probability of stopping p in the second round. Note
that since there are multiple candidates, we compute the min-
imum round size to achieve stopping probability p for each
pairwise contest between the winner and one of the losers,
and we then select the largest such minimum round size and
scale it up according to the proportion of the total ballots that
are relevant to that pairwise contest. For this round schedule
scheme, a one-and-done audit is achieved by choosing large p,
say p = .9 or p = .95. We run 104 trial audits for each value
of p, assuming the reported results are correct7.

Note that simulations of audits of tied elections are not
necessary, as all the audits we are considering are risk-limiting
and hence we already know the performance to expect when
auditing a tied election, even one not reported as such.

Importantly, note that MINERVA does not appear in the
analysis in this section. Questions about the efficiency of
MINERVA for its necessarily fixed round schedules are ad-
dressed in section 4, but in this section round sizes are chosen
to have specified probabilities of stopping given previous sam-
ples. MINERVA is not known to be risk-limiting in this setting,

7For this particular round schedule scheme, computing the expected num-
ber of rounds is straightforward analytically, but the expected number of
ballots is still difficult, and so we use simulations.

and thus cannot be used for RLAs that proceed in this way.

6.1 Person-hours
6.1.1 Average total ballots.

The simplest workload models are a function of just the total
number of a ballots sampled8. Figure 6 shows the average
total number of ballots sampled as a function of p.

Figure 6: The average total number of ballots sampled, as a
function of p, the conditional stopping probability used to
select each round size, for ballot polling audits of the 2016
US Presidential election in the US State of Virginia. Error
bars show the 0.25 and 0.75 quantiles. For sufficiently large p
(p ≥ 0.75), the 0.25 and 0.75 quantiles are both equal to the
first round size, and this is shown by the downward arrows.

It is straightforward to show that PROVIDENCE and both
forms of BRAVO collapse to the same test when each round
corresponds to a single ballot. Figures 6 shows that for larger
stopping probabilities p (i.e. larger rounds), PROVIDENCE
requires fewer ballots on average. In particular, the savings
of PROVIDENCE become larger as p increases; for p = 0.95,
EoR BRAVO and SO BRAVO require more than 2 and 1.4
times as many ballots as PROVIDENCE respectively.

6.1.2 Round overhead.

It is clear that average number of ballots alone is an inadequate
workload measure. (Consider a state conducting its audit by
selecting a single ballot at random, notifying just the county
where the ballot is located, and then waiting to hear back for
the manual interpretation of the ballot before moving on to

8Sometimes total distinct ballots sampled is used, but for the margins
we use in our examples in this section, the difference between total distinct
ballots and total ballots is very small [26]. It is straightforward to modify the
model we discuss here to account for total distinct ballots.



the next one. This of course is inefficient and is why audits
are actually performed in rounds.)

In a US state-wide RLA, the state organizes the audit by
determining the random sample and communicating with the
counties, but election officials at the county level physically
sample and inspect the ballots after drawing them from se-
cure storage boxes stored in county locations. Therefore each
audit round requires some number of person-hours for set up
and communication between state and county. This overhead
for a round includes choosing the round size, generating the
random sample, and communicating that random sample to
the counties, as well as the communication of the results back
to the state afterwards.

Consequently, we now consider a model with a constant
per-ballot workload wb and a constant per-round workload
cr. So for an audit with expected number of ballots Eb and
expected number of rounds Er, we estimate that the workload
W of the audit is

W (Eb,Er) = Ebwb +Ercr +C (5)

Note there is also some constant overhead of workload for
the whole audit, namely C in Equation 5, which we take to be
zero in our examples but could be used by election officials
to represent, for example, the effort of constructing a ballot
manifest. For simplicity, (and without loss of generality), we
measure in multiples of the per ballot workload; that is, we
assume it is one unit, wb = 1. A per round workload of cr = x
corresponds to a per round workload which is x times the per
ballot workload. We use cr = 1000 as a conservative example.
That is, we set the overhead of a round equal to the workload
of sampling 1000 ballots. Based on available data [6], the
time retrieving and analyzing each individual ballot is on the
order of 75 seconds which means that cr = 1000 is equivalent
to roughly 20 person-hours of workload. This corresponds
to about 15 minutes being spent, on average, per round in
each of the 133 counties of Virginia, a clearly conservative
workload estimate. We do not consider cr < 1 because it is
not possible for the round overhead to be smaller than the
workload corresponding to a single ballot.

As shown in Figure 7, average workloads first reduce as
stopping probability increases; this is likely due to a decrease
in the number of rounds. After hitting a sweet spot, aver-
age workloads again increase with stopping probability; this
time, likely because the average number of rounds does not
decrease much and the cost changes because of number of
ballots drawn, which increases with round size. PROVIDENCE
achieves the lowest minimum average workload at roughly
p = 0.7 for our example choice of cr = 1000.

Importantly, this gives us a way to estimate the minimum
expected workload, as well as which round schedule value
p achieves it, for arbitrary round workload. For each round
workload cr, we produce a dataset analagous to that of Fig-
ure 7 and then find the minimum average workload achieved

Figure 7: For workload parameters wb = 1 and cr = 1000,
this plot shows the expected workload for various values of
p. Expected workload is found using Equation 5 and the
average number of ballots and rounds in our simulations as
the expected number of ballots and rounds. The 0.25 and 0.75
quantiles are shown as in Figure 6.

for each of the audits and its corresponding stopping proba-
bility p.

Figure 8 shows the optimal achievable workload for a wide
range of per round workloads. For very low round workloads,
the workload function approaches just the total number of
ballots, and so workload is minimized by minimizing the
number of ballots drawn, which corresponds to small round
sizes, and we would expect all three audits to behave similarly,
as ballot-by-ballot audits, with the smallest workload. On the
other hand, for extremely large values of round workload, the
average number of ballots has little impact on the workload
function, and so the three audits again have similar values,
all corresponding to large round sizes in order to minimize
the number of rounds. We know that there is variation in the
number of ballots used by each type of audit for large round
sizes (a factor of two for p = 0.9), but these values would
be small in comparison to cr. We observe this behaviour in
Figure 8 for extremely small and large workload values. For
more reasonable values of the round workload cr, SO BRAVO
and EoR BRAVO achieve minimum workload roughly 1.1 and
1.3 times greater than that of PROVIDENCE.

Figure 9 shows the corresponding round schedule param-
eters p that achieve these minimal workloads. As expected,
an overhead for each round means that larger round sizes are
needed to achieve an optimal audit, and so for all three audits
p increases as a function of cr. Notice that PROVIDENCE is
generally above and to the left of SO BRAVO, and SO BRAVO
is generally above and to the left of EoR BRAVO. This rela-
tionship reflects the fact that for the same round workload,



Figure 8: For varying round workload cr, the optimal aver-
age workload achievable by each audit, as a fraction of the
PROVIDENCE values.

PROVIDENCE can get away with a larger stopping probability
because it requires fewer ballots.

Figure 9: The optimal (workload-minimizing) stopping prob-
ability p for varying workload model parameters cr. (Note
that the steps in this function are a consequence of our
subsampling the workload function. That is, the workload-
minimizing value of p for each cr is only allowed to take on
values at increments of 0.05.)

6.1.3 Precinct overhead.

For a more complete model, we can also introduce container-
level workload. If a round requires multiple ballots from a
single container, the container need only be unsealed once.

Figure 10: Optimal average workload using the workload
Equation 6 for varying cp, given as a fraction of the value for
PROVIDENCE. Similar to Figure 8, we show a generous range
of values for the workload variable, cp in this case. If the time
for a single ballot is 75 seconds, then cp = 50 corresponds
to over an hour of extra time to sample a ballot from a new
container.

Based on a Rhode Island pilot RLA report [6], this may mean
that a ballot from a new container requires roughly twice the
time as a ballot from an already-opened container. Typically
available election results give per-precinct granularity of vote
tallies, rather than individual container information. In Vir-
ginia, however, most precincts have a single ballot scanner
whose one box has sufficient capacity for all the ballots cast
in that precinct anyways, and so we model the per-container
workload as a per-precinct workload, cp. In this model, the
workload estimate incurs an additional workload of cp every
time a precinct is sampled from for the first time in a round.
That is, let Epi be the expected number of distinct precincts
sampled from in round i, and let Ep = ∑i Epi. Then the new
model is

W (Eb,Er,Ep) = Ebwb +Ercr +Epcp +C (6)

We can again explore the minimum achievable workloads
under this model, as shown in Figure 10.

6.2 Real time
Given tight certification deadlines, the total real time to con-
duct the RLA is also an important factor to consider when
planning audits. Because each county can sample ballots for
the same round concurrently, the total real time for a round de-
pends only on the slowest county. In Virginia, Fairfax County
typically has the most votes cast by a significant difference;
in the contest we consider, Fairfax County had 551 thousand



votes cast, more than double the 203 thousand of second-
highest Virginia Beach City. Consequently, we model the
expected total real time T of an audit using just the largest
county, and we define analagous variables for the expected
values in just the largest county. Note that some other county
may be slower, having fewer votes but also less auditing re-
sources; but still, a slowest county exists. In this example, we
take it to be Fairfax, the largest. For the slowest county, let the
expected total ballots sampled be Ēb, the expected number
of rounds Ēr, and the expected number of distinct precinct
samples summed over all rounds be Ēp. Similarly, we use real
time per-ballot, per-round, and per-precinct workload vari-
ables, tb, tr, and tp. So the real time of the audit is estimated
by

T (Ēb, Ēr, Ēp) = Ēbtb + Ērtr + Ēptp +C (7)

As before, we can use our simulations to estimate Ēb, Ēr,
and Ēp using the corresponding averages over the trials. Avail-
able data to estimate values for tb, tr, and tp is limited, and so
we take as an example the values tb = 75 seconds, tr = 3 hours,
and tp = 75 seconds9. In practice, election officials could use
our software and their own estimates of these values to ex-
plore choices for round schedules. Figure 11 shows how the
estimated real time for these values differs as a function of
p. It should be noted that real values of tb, tr, and tp will vary
greatly based on the number of parallel teams retrieving and
checking ballots, the distribution of ballots and containers
both in number and physical space, and other factors. We pro-
vide Figure 11 only as an example of the general shape and
behavior of this function. Use of this optimal scheduling tool
would depend on parameter estimates tailored to each case.

7 Misleading samples

Unfortunately, efficiency alone is not sufficient for planning
audits. In the US today, election officials have a legitimate
need to include personal safety as a consideration. In a ran-
dom sample, a true loser may receive more votes than the
true winner. This happens more often when the sample sizes
are small, like for a hypothetical first round size of 11 in the
pilot audit, as seen in Figure 5. In the abstract, a misleading
sample in an early round is dealt with by drawing more bal-
lots (moving on to another round), but in practice it serves to
create expectations or suspicions that then need to be man-
aged by election officials. Hence there is reason to structure
round sizes so that they are unlikely to misrepresent the true
outcome.

We introduce the notion of a misleading sample, any cu-
mulative sample which, assuming the announced outcome is
correct, contains more ballots for a loser than for the winner.

9The value tb = 75 seconds corresponds to a serial retrieval and interpre-
tation of the ballots based on the [6] timing, tp = 75 seconds corresponds to
the approximate doubling in time for new-box ballots as reported in [6] in
the ballot-level comparison timing data, and tr = 3 hours is just a guess at an
approximate order of magnitude for this variable.

Figure 11: The real time as estimated by Equation 7 for vary-
ing p with expected values as estimated by our simulations.
Error bars show the 0.25 and 0.75 quantiles. Unlike Figures
6 and 7, the quantiles still differ for large p because while the
the number of ballots drawn in the first round in Virginia is
constant, the number drawn in Fairfax County is variable.

We can again use our simulations to gain insight into the fre-
quency of misleading samples. For each stopping probability
p, Figure 12 gives the proportion of simulated audits that had
a misleading sample at any point. Notably, this proportion is
as high as 1 in 5 for the smaller stopping probability round
schedules. Accordingly, we introduce a new parameter to our
audit-planning tool, the maximum acceptable probability that
the audit is misleading, the misleading limit.

In Figure 12, horizontal lines are included to show mislead-
ing limits of 0.1, 0.01, and 0.001. To achieve a probability of
a misleading sample of at most 0.1, a round schedule with at
least roughly p = .3 is needed. To achieve a probability of
misleading of roughly 0.01, a round schedule with p = 0.8 is
needed, and to achieve a probability of misleading of roughly
0.001, a round schedule with p = 0.95 is needed. It is not
unreasonable to think that election officials might choose a
misleading limit of 0.01, or smaller, given the state of public
perception of election security in the US and the associated
threats of violence. Consequently, the desired misleading limit
may be a deciding constraint in the choice of round schedule.

If election officials wish to enforce a misleading limit for
all the rounds, our simulation analysis could help. On the
other hand, for a given round, it is straightforward to compute
analytically the probability that a loser has more votes than
the winner in the sample. Table 3 shows for various margins
the minimum first round size n that guarantees a probability
of a misleading sample at most M ∈ {0.1,0.01,0.001}. For
all values of M and all margins, PROVIDENCE achieves a
higher probability of stopping than either EoR BRAVO or SO



Figure 12: The proportion of simulated PROVIDENCE audits
for the Virginia election parameters that had a misleading
sample in any round.

BRAVO. As seen in the Table 3, to enforce M = 0.01 requires
minimum round sizes with at least roughly a 0.8 probability
of stopping in the first round. Even if the most efficient audit
schedule (by either workload or real time measures) would
use a lower stopping probability p to choose the first round
size, the election officials may opt to use this constraint on
the probability of a misleading sample as the deciding factor
in planning their audits.

8 Conclusion

A rigorous tabulation audit is an important part of a secure
election. We present PROVIDENCE and demonstrate that it
is as efficient as MINERVA and as flexible as BRAVO. We
present proofs and simulation results to verify the claimed
properties of PROVIDENCE, and we provide an open source
implementation of the stopping condition and useful related
functionality for planning audits. We define the constraint of
an acceptable probability of a misleading audit sample, and
describe its importance to the planning process.

9 Availability

PROVIDENCE is implemented in the open source R2B2 soft-
ware library for R2 and B2 audits [14]. PROVIDENCE has also
been incorporated as an option in Arlo, the most commonly
used RLA software.

R2B2 contains software to test stopping conditions and
find round sizes for given probability of stopping and proba-
bility of a misleading sample. The code for simulations and
workload and real time analysis is also provided.

M margin n Prov SO EoR
0.1 0.25 25 0.221 0.152 0.115

0.15 73 0.202 0.186 0.141
0.05 657 0.227 0.192 0.127
0.03 1825 0.246 0.194 0.124
0.01 16423 0.246 0.196 0.124

0.01 0.25 85 0.792 0.707 0.559
0.15 239 0.817 0.712 0.549
0.05 2163 0.817 0.721 0.569
0.03 6011 0.824 0.723 0.573
0.01 54117 0.824 0.724 0.57

0.001 0.25 149 0.962 0.889 0.783
0.15 421 0.958 0.894 0.801
0.05 3815 0.96 0.896 0.785
0.03 10607 0.961 0.897 0.787
0.01 95491 0.962 0.897 0.787

Table 3: For various margins, this table gives the minimum
first round size n to achieve at most a probability M of a mis-
leading sample in the first round. The corresponding stopping
probabilities of PROVIDENCE, SO BRAVO, and EoR BRAVO
are given for each value of n.
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A Proofs

Lemma 1. For any risk-limit α ∈ (0,1), for any margin and
for any round schedule [n1, . . . ,n j], the PROVIDENCE RLA is
more efficient than EoR BRAVO.

Proof. Let [n1, . . . ,n j] be a round schedule, and assume that
an EoR BRAVO audit stops in round j, after observing
k1, . . . ,k j ballots for the announced winner in each round
respectively. That is, the EoR BRAVO stopping condition is
true:

σ(k j, pa, p0,n j)≥
1
α
.

To see the PROVIDENCE stopping condition is fulfilled, we
rewrite as

1
α
≤ σ(k j, pa, p0,n j)

= σ(k j−1, pa, p0,n j−1) ·σ(k j − k j−1, pa, p0,n j −n j−1)

≤(∗)
σ(k j−1, pa, p0,n j−1) · τ1(k j − k j−1, pa, p0,n j −n j−1)

= ωr(k j,k j−1, pa, p0,n j,n j−1).

Where inequality (∗) follows from [26, Theorem 6]. Note
that we apply this result on τ j for just j = 1.

Lemma 3. For 0 < p0 < pa < 1 and n > 0, the ratio
σ(k, pa, p0,n) is strictly increasing as a function of k for
0 ≤ k ≤ n.

Proof. See [27, Lemma 4].

Lemma 4. Given a monotone increasing sequence:
a1
b1
, a2

b2
, . . . , an

bn
, for ai,bi > 0, the sequence: zi =

∑
n
j=i a j

∑
n
j=i b j

is also
monotone increasing.

Proof. See [27, Lemma 2].

Lemma 5. For 0 < p0 < pa < 1 and n > 0, the ratio
τ1(k, pa, p0,n) is strictly increasing as a function of k for
0 ≤ k ≤ n.

Proof. Apply Lemmas 3-4.

Lemma 6. Given a strictly monotone increasing sequence:
x1,x2, . . .xn and some constant A,

A ≤ xi ⇔∃imin ≤ i s.t. ximin−1 < A ≤ ximin ≤ xi,

unless A ≤ x1, in which case imin = 1.

Proof. Evident.

Lemma 7. For A = (α, pa, p0,k j−1,n j−1,n j)-PROVIDENCE,
there exists
a k

pa,p0,α,k j−1
min, j,n j−1,n j

= kmin, j(PROVIDENCE, pa, p0,k j−1,n j−1,n j)

such that

A(X j)=Correct ⇐⇒ k j ≥ kmin, j(PROVIDENCE,nnn jjj, pa, p0).

Proof. From Definition 6,

A(X j) = Correct ⇐⇒ ω j(k j,k j−1, pa, p0,n j,n j−1)≥
1
α
.

Now to apply Lemma 6, it suffices to show that ω j is mono-
tone increasing with respect to k j. For j = 1, we have ω1 = τ1,
so ω1 is strictly increasing by Lemma 5. For j ≥ 2,

ω j(k j,k j−1, pa, p0,n j,n j−1,α) =

σ(k j−1, pa, p0,n j−1) · τ1(k j − k j−1, pa, p0,n j −n j−1).

As a function of k j, σ is constant, and thus ω is strictly in-
creasing by Lemma 5. Therefore by Lemma 6, we have the
desired property.

Lemma 8. For j ≥ 1,

Pr[KKK jjj = kkk jjj | nnn jjj,Ha]

Pr[KKK jjj = kkk jjj | nnn jjj,H0]
= σ(k j, pa, p0,n j).

Proof. We induct on the number of rounds. For j = 1, we
have

Pr[KKK111 = kkk111 | nnn111,Ha]

Pr[KKK111 = kkk111 | nnn111,H0]
=

Pr[K1 = k1 | n1,Ha]

Pr[K1 = k1 | n1,H0]

=
Bin(k1,n1, pa)

Bin(k1,n1, p0)
= σ(k1, pa, p0,n1).

Suppose the lemma is true for round j = m with history kkkmmm.
Observe that

Pr[KKKm+1 = kkkm+1 | nnnm+1,Ha]

Pr[KKKm+1 = kkkm+1 | nnnm+1,H0]

=
Pr[KKKm = kkkm | nnnm+1,Ha] ·Pr[K′

m+1 = k′m+1|kkkmmm,nnnm+1,Ha]

Pr[KKKm = kkkm | nnnm+1,H0] ·Pr[K′
m+1 = k′m+1|kkkmmm,nnnm+1,H0]

= σ(km, pa, p0,nm) ·
Pr[K′

m+1 = k′m+1|kkkmmm,nnnm+1,Ha]

Pr[K′
m+1 = k′m+1|kkkmmm,nnnm+1,H0]

by the induction hypothesis. Then this is simply equal to

σ(km, pa, p0,nm)·
Bin(k′m+1,n

′
m+1, pa)

Bin(k′m+1,n
′
m+1, p0)

=σ(km+1, pa, p0,nm+1)

Definition 7. Let [n1, . . . ,n j] be the round schedule of an
audit that has not stopped by the round j−1. Let us define

kpa,p0,α,k j−1
min, j,n j−1,n j

= min
{

k : ω j(k,k j−1, pa, p0,n j,n j−1)≥
1
α

}
. (8)

As we have seen in Lemma 7, such a value of k
pa,p0,α,k j−1
min, j,n j−1,n j

exists and k j ≥ k
pa,p0,α,k j−1
min, j,n j−1,n j

if and only if the result of the
audit is Correct.
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