A Large Scale Study of the Ethereum Arbitrage Ecosystem

Robert McLaughlin, Christopher Kruegel, Giovanni Vigna
University of California, Santa Barbara
{robert349, chris, vigna} @ cs.ucsb.edu

Abstract

The Ethereum blockchain rapidly became the epicenter of
a complex financial ecosystem, powered by decentralized
exchanges (DEXs). These exchanges form a diverse capital
market where anyone can swap one type of token for another.
Arbitrage trades are a normal and expected phenomenon in
free capital markets, and, indeed, several recent works identify
these transactions on decentralized exchanges.
Unfortunately, existing studies leave significant knowledge
gaps in our understanding of the system as a whole, which hin-
ders research into the security, stability, and economic impacts
of arbitrage. To address this issue, we perform two large-scale
measurements over a 28-month period. First, we design a novel
arbitrage identification strategy capable of analyzing over 10x
more DEX applications than prior work. This uncovers 3.8
million arbitrages, which yield a total of $321 million in profit.
Second, we design a novel arbitrage opportunity detection sys-
tem, which is the first to support modern complex price models
at scale. This system identifies 4 billion opportunities and
would generate a weekly profit of 395 Ether (approximately
$500,000, at the time of writing). We observe two key insights
that demonstrate the usefulness of these measurements: (1) an
increasing percentage of revenue is paid to the miners, which
threatens consensus stability, and (2) arbitrage opportunities
occasionally persist for several blocks, which implies that price-
oracle manipulation attacks may be less costly than expected.

1 Introduction

Decentralized Finance (DeFi) is an alternative financial
infrastructure primarily run on the Ethereum blockchain
(the blockchain) [46]. The blockchain is fundamentally a
distributed state machine intended to facilitate transaction
settlement between non-trusting parties [52]. Financial assets
and instruments alike execute on the blockchain as “smart
contracts” — small interoperable programs that run on the
Ethereum Virtual Machine (EVM) [46, 52].

For example, USD Coin [21] (USDC) is one such ownable
asset represented by a smart contract on the blockchain. That
smart contract uses an interface compliant with the ERC-20

Token API [50], which is de facto standard for financial
instruments of this type. In particular, this standard interface
includes functions to check an account’s balance and transfer
value from one user to another.

Other financial instruments are likewise deployed as
smart contracts on the blockchain. These include ex-
changes [4, 16, 20], leverage providers [3], derivatives [17],
loans [2], and other applications.

In this work, we focus specifically on a type of transaction,
arbitrage, performed with a specific type of exchange, an
Automated Market Maker (AMM). Arbitrage is defined as
the simultaneous purchase and sale of the same asset in two
different markets for advantageously different prices, and is
widely considered a benign, yet critical element of modern
efficient markets [40,47]. An AMM, put simply, is a smart
contract that enables users to swap one token for another
at an automatically determined price. AMMs are the most
popular form of exchange in the blockchain ecosystem and
they represent a very large Total Value Locked (TVL). For
example, the Uniswap v2 [20] AMM has more than $5 billion
of value deposited at the time of writing [7].

A recent publication from Zhou et al. made the shocking
finding that by using a simple arbitrage-detection algorithm
one could feasibly generate a weekly revenue of $76,592 [55].
Moreover, Qin et al. found that, over a study period of
32 months, $277.02 million in value was extracted by
arbitrageurs [44]. Making matters yet more dramatic, Wang et
al. found that unexploited arbitrage opportunities consistently
yield more than 1 ETH (at the time of their publication, about
$4,000) [51]. Daian likewise finds that arbitrageurs are not only
pervasive but also compete with each other aggressively [33].

However, we need more methods and materials to properly
understand the current situation of arbitrage on the blockchain,
above and beyond what has been studied by past works, which
have a number of limitations. Zhou’s method of arbitrage
opportunity detection is engineered to be real-time capable,
but this is accomplished by limiting the focus to a small subset
of decentralized exchanges, which results in missing sub-
stantial portions of the arbitrage phenomenon. Daian’s work
determined that arbitrage bots bid reactively to one another,

but since then, Qin notes the emergence of a centralized,
private transaction relayer, called FLASHBOTS. This destroys
one arbitrageur’s ability to react to the actions of another,
forcing a new type of fee bidding, which must be revisited.
Qin’s recent study performs a broad-based identification
of profit-generating transactions, but in doing so settles for
applying application-specific knowledge of a handful of
AMMs in order to detect arbitrage, missing important parts
of the exchange ecosystems. Lastly, Wang’s study revealing
persistent, high-value arbitrage opportunities needs to be
properly explained, so that we can assess the security and
economic implications of an inefficient market in terms of the
ability of an attacker to maliciously influence price oracles.

In this work, we perform two key measurements over a
study period of about 28 months, ranging from block number
9,569,113 (February 28, 2020) to block number 15,111,876
(July 10, 2022) using novel methods to address these gaps and
expand the community’s knowledge of arbitrage.

First, we perform a historical review of the actions real
arbitrageurs have taken on the Ethereum blockchain. We use
anovel method to perform application-agnostic identification
of AMM-based arbitrages, which is able to account for ten
times more AMM applications with respect to prior work and
identifies 4 million arbitrages performed on the blockchain.

Second, we take the six most arbitraged AMM applications,
as identified by activity from the prior measurement, and we
run a novel arbitrage opportunity detection system over the
study period. This yields 4 billion arbitrage opportunities. We
then selectively execute each opportunity on a private fork of
the blockchain, as if it were to have run at that point in history,
showing that these opportunities would have generated a
weekly profit of 395 Ether, a much larger figure than what was
previously computed.

In summary, our contributions are the following:

* We present an application-agnostic method of identi-
fying arbitrage transactions on the blockchain, which
automatically recognizes arbitrage across ten times more
applications than prior systems.

* We design and construct a system capable of identifying
and profit-maximizing arbitrage opportunities. To our
knowledge, this is the first study that designs such a
system that is (i) capable of efficiently exploring large
numbers of exchanges, (ii) supports exchanges that do
not use the “constant-product” pricing invariant, and (iii)
is capable of reasoning about “fee-on-transfer’” tokens.

* We present several findings from both systems, including
(1) increasing share of arbitrage revenue sent to the block
producer as fees, which threatens consensus stability
by simplifying “time-bandit” attacks, (ii) arbitrage used
as a tool in sandwich-attacks, which requires specific
attention when measuring arbitrage, and (iii) a typical
arbitrage opportunity duration of 1 to 3 blocks, which

significantly reduces the expected cost of price-oracle
attacks as modeled in prior work [38].

We make our source code and artifacts available at
https://github.com/ucsb-seclab/goldphish.

2 Background

The Ethereum blockchain is a distributed, permissionless,
strictly ordered ledger of transactions. Networked participants
coordinate with each other in a consensus protocol to emit
blocks that bundle transactions together. When a user requests
the inclusion of a transaction in the blockchain, the transaction
is added to the public mempool, waiting to be selected by a
block producer. Transactions have an associated incentive that
expresses the willingness of the transaction originator to pay a
premium to the block producer to get their transaction selected
for inclusion. However, each block producer has the exclusive
privilege of deciding which transactions are included in a block
and in which order the transactions occur. Also, a block pro-
ducer can include in a block its own transactions or transactions
that have not been previously added to the mempool.

Transactions. Ethereum transactions can be of three types:
they either (i) send Ether — Ethereum’s native currency — from
one address to another, (ii) deploy a small piece of software,
called a “smart contract,” or (iii) execute a smart contract’s
function with user-supplied input data.

Smart Contracts. Transactions (ii) and (iii) execute on
the Ethereum Virtual Machine (EVM), a deterministic and
Turing-complete computing environment. Every smart
contract has a unique address on the blockchain, and its code
is immutable. When a transaction invokes a smart contract’s
function the corresponding EVM bytecode is executed, which
may modify the smart contract’s state, send or receive Ether,
emit event logs, and invoke other contracts. Every instruction
on the EVM costs a fixed amount of gas. After the EVM exits
the transaction, the transaction originator pays a fee equal to
the amount of gas times a gas price.

Tokens. The EVM code in a smart contract can serve several
high-level purposes, such as managing loans, implementing
games, or supporting a voting system. A very common form of
asmart contract is used to issue and track ownership of an asset.
Such contracts are typically called fokens, and ERC-20 [50]
standardizes their function interface and behavior. These
tokens have become extremely popular — there are currently
more than 400,000 token smart contracts deployed on the
Ethereum blockchain — and they can have a substantial
economic value — at the time of writing, the USDC token [21]
has a market capitalization of over $40 billion. In addition,
Ether, the native currency of the Ethereum blockchain, is often
traded in its “tokenized” form, called Wrapped Ether (WETH).

DeFi. Decentralized Finance (DeFi) is an ecosystem of
smart contracts that operate advanced, composable financial

https://github.com/ucsb-seclab/goldphish

functions on the blockchain. In this paper, we specifically
focus on decentralized exchanges (DEX) — a type of smart
contract that allows one to swap a token for another type of
token (or a token for Ether). In particular, we will focus on a
type of DEX called an Automated Market Maker (AMM).

AMM Structure. AMMs are a new type of exchange that
does not maintain buy-and-sell order books — i.e., they do
not match buyers and sellers. Instead, an AMM maintains
a balance of the tokens it trades, i.e., a liquidity pool. When
a user wishes to execute a swap, they invoke the AMM’s
smart contract; the AMM then automatically determines a
fair price, accepts tokens from the user as payment, deducts
some fees, and then invokes the transfer function on the
purchased token to send some of the liquidity pool’s balance to
the user. An AMM’s liquidity pool is maintained by liquidity
providers, who deposit tokens into the AMM in exchange for
a proportional share of the fees collected on each swap.

An AMM determines price according to its swap invari-
ant. In Section 4, we make use of three swap invariants:
constant-product [31], weighted constant-product [39], and
Uniswap v3’s bounded-liquidity constant-product [27]. Other
invariants, such as StableSwap [26], have also been proposed.

Briefly, a constant-product AMM permits any swap of
tokens o and P such that

ROLRB < (ROL +nin> (R[S _nout)7

where Ry and Rg are the contract’s reserves of tokens o and [3
before the swap, n;, is the amount of token o paid to the AMM,
and n,,, is the amount of token [sent to the user by the AMM.

Creating an AMM. AMMs commonly follow the factory
pattern — anyone can add support for trading between a given
pair of tokens by invoking the factory smart contract. Then,
the factory smart contract deploys on the blockchain a new
contract that trades the specified pair of tokens. The liquidity
pool starts at zero balance, and users who wish to be liquidity
providers then begin adding tokens. At the time of writing,
we measure that the Uniswap v2 factory has deployed over
100,000 of such token-pair contracts.

Arbitrage. Arbitrage is “the process of earning risk-less
profits by taking advantage of differential pricing for the same
... asset or security” [47]. This is a common and expected
component of capital markets and develops naturally whenever
exchange prices for the same asset deviate significantly.

Arbitrage on AMMs. AMMs offer a unique opportunity for
those seeking to make nearly risk-free profits. Because the
smart contracts running these AMMs are immutable, one can
anticipate an AMM'’s pricing model and construct a profitable
arbitrage transaction when an asset has different prices on
different AMMs. Moreover — since transactions are atomic
— an arbitrageur can interact with each exchange, one after the
other, within a single transaction and ensure that everything
executes appropriately. If anything is not as expected, then the

SushiSwap: WETH-WBTC

139 WETH ($243k) Oxcef...as8 2
Transaction 5.7 WBTC ($267k)
0xb7..88 A

1 Relayer 2

0x: WBTC-Tether
0x£f55...007
2

..... 2.2m Tether ($2.2m)
ol
1.3k WETH ($2~m Uniswap v2: Tether-WETH

0x0d4...852
2

— 0%000...£56 |g-

Figure 1: Arbitrage transaction in February 2021, which profits
the bot operator $2 million in a single atomic transaction. An
arbitrage bot sends a transaction invoking their relayer contract
on the blockchain. Then, the relayer sends 139 WETH from
itself to SushiSwap’s WETH-WBTC liquidity pool as payment
for 5.7 WBTC tokens. Next, the relayer uses the 5.7 WBTC
tokens to buy 2.2 million Tether tokens via 0x exchange. Last,
the relayer sends the 2.2 million Tether tokens to Uniswap’s
Tether-WETH liquidity pool as payment for 1,352 WETH.
Sushi Swap sends the WETH back to the relayer, and the bot
profits about 1,373 ETH ($2 million). This was made possible
by a counter-party’s very large order on the Ox exchange, which
swaps WBTC for Tether well above the prevailing market rate.

transaction is reverted, and no exchanges take place. This helps
guard against the risk of unfavorable AMM price changes
between the time of transaction construction and its execution
in the blockchain. Arbitrageurs typically deploy a utility smart
contract on the blockchain that manages trades and routes
value to and from exchanges. These utility contracts are simple
executors and are controlled by off-chain bots that implement
the sophisticated financial analysis logic that detects arbitrage
opportunities.

We include a concrete example of such an arbitrage in
Figure 1, which yields the bot owner $2 million.

FLASHBOTS. The FLASHBOTS system was motivated as
a response to Daian’s [33] work, which shows that high
activity among arbitrage bots leads to network congestion, as
competing bots try to bypass each other to capture arbitrage
opportunities that are published in the mempool. The FLASH-
BOTS system is a private, centralized, third-party relay between
bot operators and block producers. Bot operators are able to use
this system to purchase priority placement of their transactions
near the top of the block without going through the mempool,
preventing other bots from stealing the arbitrage opportunity
by offering higher incentives to the block producers.

On Proof-of-Stake. While preparing this publication, the
Ethereum network changed the consensus mechanism from
Proof-of-Work to Proof-of-Stake, in an event called The
Merge. While our data was collected in the Proof-of-Work
period, we re-run the analyses described in the remainder of
this paper over a span of 14 days and find that the situation
is fundamentally unchanged. Arbitrages still occur with

approximately the same frequency as before. Furthermore,
the Ethereum community remains concerned about the impact
of excessive arbitrage activity and other profit-generating
transactions, even more so now that this activity might create
“economies of scale” that centralize capital among the group
of already-wealthy staking block producers [14].

3 Executed Arbitrages

In this section, we present a novel analysis approach to iden-
tify arbitrages that were executed on the Ethereum blockchain.
We run this analysis over a study period of about 28 months —
from block 9,569,113 (February 28, 2020) to block 15,111,876
(July 10, 2022), encompassing about 1 billion transactions.
We then analyze the results and discuss several findings.

3.1 Identification Algorithm

One method of identifying arbitrage transactions is to parse
and analyze application-specific event log structures that are
emitted by DEXs when executing a (token) swap. This strategy
is employed by Qin [44], Wang [51], and Daian [33] alike.
This method is fast and simple, but it lacks generality because
these swap event logs are not standardized. Consequently,
a non-trivial amount of manual effort is required for each
individual DeFi application to extract a high-level financial
interpretation of the activity that occurred within a transaction.
This strategy does not scale as the DeFi ecosystem grows,
since expanding the scope of the analysis requires both the
knowledge of the mere existence of these applications and
manual effort to interpret their swap event logs.

To broaden our view of on-chain arbitrage activity, we use
an application-agnostic identification strategy that lifts this
limitation. Our approach makes the following assumptions:

1. All arbitrages are atomic — i.e., the multiple exchange
operations that execute the arbitrage are wholly contained
within a single transaction that executes the entire flow.

2. All assets transferred in an arbitrage trade conform to
the ERC-20 standard [50], which states that tokens emit
Transfer event logs whenever value is sent from one
address to another. Different from application-specific
Swap event logs, Transfer event logs are standardized,
so we use them as the basis for our analysis.

3. ADEX exchange executes a swap by accepting one token
and emitting another one.

Given these assumptions, we design a new algorithm
to identify arbitrage transactions, leveraging standardized
ERC-20 Transfer events that are found within a given
transaction. Intuitively, we extract meaning on two levels: first,
we infer exchange (swap) operations, and then we extract the
financial strategy that was performed.

Our algorithm operates in four steps. We begin by inferring
a high-level interpretation of the exchange operations that

a transaction executes. Next, we construct a directed graph
indicating the flow of value. Then, we perform cycle detection
on this graph to determine if the value flows in a closed loop,
a key indicator of arbitrage. Last, we analyze the cycles to
extract information about the arbitrage. The details of these
four steps are discussed below.

The algorithm runs once for each transaction on the
blockchain and outputs whether that particular transaction
was or was not an arbitrage — and if so, what strategy was used.

Step 1: Exchange Inference. We examine all ERC-20
Transfer events and, for each kind of token, sum the net
value sent from and received by each address. We infer likely
exchanges in the transaction by identifying any address
that accepted exactly one kind of token and emitted exactly
one other kind of token. We perform this anew every single
transaction. This process is similar to that of Wu [53], who
also infers exchange operations using ERC-20 Transfer events,
but for the purpose of identifying price-manipulation attacks.

Step 2: Graph Construction. We build a directed multi-graph
G where the vertices v; € V are kinds of tokens, and the edges
v; — v;j € E are the inferred exchanges from the prior step.
Edges are drawn from the payment token (net value received)
toward the emitted token (net value sent.)

Step 3: Cycle Detection. We run Johnson’s cycle-detection
algorithm [36] to look for loops in the multi-graph G con-
structed in the prior phase. A loop of edges vo —vi,...,v; — Vg
indicates an arrangement of exchange operations such that
each exchange feeds into the next, and the first kind of token
sent as payment is the same as the final one emitted. If no cycle
is found, then the transaction is labeled as not an arbitrage
and the procedure completes.

Step 4: Cycle Analysis. If only a single cycle is found, then we
ensure that there exists a token that appears to have been both
bought and sold for differing prices — forming an arbitrage.
We call this token the pivot token.

Occasionally, multiple tokens meet this definition. For
example, a “fee-on-transfer” token may charge 2% tax on each
transfer. If 100 units of the token are bought on a DEX, then 98
units of the token are received by the trade executor contract.
The executor then sells 96.04 units of the token to the next
exchange, appearing as if they have taken 1.96 tokens as profit
—but, in fact, that was taken as a fee. To account for these cases,
we adopt this simple heuristic: when multiple tokens appear
to show a profit, we select as the pivot token the one with the
highest profit.

Example. Consider a transaction with the following ERC-20
Transfer events: Alice sends 100 token o to address “AMMI1,”
address “AMM?2” sends 120 token o to Alice, and “AMM1”
sends 200 token B to “AMM?2.”

Each of the addresses “AMMI1” and “AMM?2” accepted one
type of token, and emitted a different type, so we mark them

as potential exchanges. Then, we generate a graph with the
directed edges oo — P and p — a (i.e., the directions of token
movements through exchanges). We can clearly see the cycle:
o, B, o Finally, we notice that Alice both sold 100 units of token
o, and bought 120 units of token o.. We label o as the pivot
token, describe the arbitrage as profiting Alice 20 units of c.

Limitations of Identification Algorithm. Our approach to
arbitrage detection allows for a more comprehensive charac-
terization of on-chain arbitrage activity compared to previous
approaches that leveraged application-specific swap event
logs. However, this generality comes with some limitations.

First, because this strategy of analysis is blind to the
movement of (un-wrapped) Ether, we may experience both
false-positive and false-negative detections of some exchanges.
For example, Uniswap v1 is written to trade ERC-20 tokens for
Ether, but we cannot detect these exchanges. In Appendix A,
we evaluate the risk of false-positive detections and determine
that this risk is minimal.

Second, because we do not parse application-specific logs,
it is possible that some actions are mislabeled. For example,
a “wrapping” smart contract may accept deposits of one token
and then emit a different token always in a 1:1 ratio, which we
may mislabel as an exchange. Our exchange attribution in Sec-
tion 3.2.3 only finds a small number of unexplained exchanges,
so we accept this as a small but possible source of error.

Lastly, we make the assumption that an AMM contract
must use an ERC-20 Transfer to emit tokens. This assumption
is violated, for example, by Balancer v2 [4]. All Balancer
v2 AMM contracts keep their balances in a “vault” smart
contract, which centralizes token custody for all of their
application’s liquidity pools. This is contrary to the design
of Uniswap v2 and v3, for example, where every trading pair
of two tokens has a separate contract, and balances are kept
under the custody of that contract. Token transfers from one
Balancer v2 exchange to another Balancer v2 exchange are
accomplished by internal accounting in the “vault,” without
performing an ERC-20 Transfer to change token custody.
However, Transfer events are still emitted when Balancer v2
emits tokens externally (see Figure 2). We accept as a source
of error that Balancer v2’s activity (and potentially the activity
of other, similar exchanges) will be under-represented.

3.2 Results

We execute our identification algorithm on every transaction
within the study period — about 1 billion. This results in
4,070,938 arbitrage transactions.

Based on these identified arbitrage transactions, we ask
ourselves the following questions: What strategies are used to
perform arbitrage? How much money is made by arbitrageurs?
What are the security implications of arbitrage?

3.2.1 False Positives and False Negatives

We immediately notice a high number of transactions with
a surprisingly large number of arbitrage loops —up to 15 con-

tained within just one transaction. We manually inspect a sub-
setof these and identify 193,941 false positives arising from the
exchange aggregators CoW Swap [5], Dexible [8], and Token-
lon [19]. Those applications bundle users’ exchange orders into
one transaction, which creates several spontaneous arbitrage-
like patterns of token movement. However, users do not control
this bundling behavior, so we dismiss these transactions as false
positives, reducing the results to 3,876,997 transactions.

We manually inspect a random sample of 100 arbitrages. 93
samples are completely correct (true positives). We find three
false positives due to other exchange aggregators (in addition
to the three mentioned above). Additionally, four instances are
correctly identified as arbitrages, buthave a minor classification
issue. Specifically, three of these four arbitrages incorrectly
identified the profit-token because of a fee-on-transfer not
observed in event logs, and one arbitrage was labeled as single-
cycle but in fact contains two (one uses raw Ether). These four
cases do not impact our statistics of cycle length nor exchanges
used. Moreover, no WETH-profiting arbitrage was found to be
incorrect—we attribute this to the fact that WETH does not have
fee-on-transfer, and conforms to expected ERC-20 behavior.

False negatives may arise from the various limitations
identified above. However, given our large set of automatically
identified exchanges in Section 3.2.3, we believe that we have
achieved sufficient coverage of the ecosystem in general, and
that our aggregate statistics are a fair high-level representation.

3.2.2 Arbitrage Cycle Properties

We find that 3,797,259 arbitrages (or 98%) contain exactly
one exchange cycle, which demonstrates that bots typically
use a basic strategy of one arbitrage per transaction. To
simplify the analysis, hereon we only focus on the transactions
that have just one exchange cycle.

Table |1 counts each of the one-cycle arbitrages by cycle
length. It is important to note that 91% of these arbitrages
use either two or three exchanges, which also validates the
simplifying heuristics that Wang [51] and Zhou [55] make
when computing profitable arbitrage opportunities.

Additionally, Table 2 counts all arbitrages by their pivot to-
ken (token taken as profit). Here, we can clearly see that nearly
all arbitrages (92%) use Wrapped Ether [23] (WETH) as their
chosen token to take a profit. This validates another important
heuristic used by Wang [51] and Zhou [55]: when seeking arbi-
trage opportunities, one may constrain the search space to only
cycles that use WETH and still effectively examine the vast ma-
jority of opportunities that arbitrageurs are willing to execute.

We use this measurement as justification to re-use these two
simplifying heuristics ourselves in Section 4, where we look
back in history and compute profitable arbitrage opportunities.

3.2.3 Exchange Attribution

As a result of running our arbitrage detection, we have
identified 50,081 addresses as decentralized exchanges (as
a reminder, per Section 3.1, exchanges are the edges on
multi-graph G that participated in the arbitrage cycle).

Exchange Count Arbitrages (#) Arbitrages (%)
2 1,797,940 47.3%
3 1,658,735 43.7%
4 280,078 7.4%
5+ 60,506 1.6%
Total 3,797,259 100%

Table 1: Count of arbitrage cycle lengths, by number of
exchanges used.

Token Arbitrages (#) Arbitrages (%)
Wrapped Ether [23] 3,507,128 92.4%
USDC [21] 75,701 2.0%
Tether [18] 48,381 1.3%
Dai [13] 41,389 1.1%
Other 124,660 33%
Total 3,797,259 100%

Table 2: Count of arbitrages by token taken as profit.

We manually examined these exchanges and, when possible,
attributed them to DEX applications. Attribution was done
by checking for smart contract source code or vanity address
labels added to Etherscan [9]. When we uncover a new appli-
cation in this manner, we consult their documentation for an
automated method to list all of the application’s DEX contracts
and then use this data to attach labels to the application’s
other contract addresses. This manual investigation reveals
that a significant number of applications are direct clones of
Uniswap v2 with minimal source code modifications, if any.

We take the remaining unexplained exchanges and auto-
matically scan the blockchain for the type of event log that a
Uniswap v2 clone’s factory contract would emit if it were to de-
ploy that exchange, and then verify via dynamic trace that it did
indeed deploy that contract. This reveals 180 unique Uniswap
v2 factories, each a separately deployed AMM application.

The results of this attribution are displayed in Figure 2, and
we also provide an extended accounting in Appendix C. Our re-
sult shows that while Uniswap V2 is dominant in the arbitrage
ecosystem (44% of exchange-uses), Uniswap v3 is also quite
popular among arbitrageurs (14% of exchange-uses). This is
significant because, at the time of writing, we are not aware of
any study that attempts to detect and analyze arbitrage opportu-
nities with Uniswap v3. We accomplish this in Section 4, where
we model Uniswap v3 and several other frequently arbitraged

DEX applications from this list, and detect profit opportunities.

3.2.4 Sandwich Attacks

A sandwich attack is a strategy used to extract profit from
a victim attempting to trade on a DEX [29,44,49]. Sandwich

attacks consist of three transactions, in the following order:

(1) the attacker manipulates DEX exchange prices, (2) the

1e6 Use Count of DEX Applications

[w EN

Count of Uses in Arbitrage

o

Y T & T F& 5 o5 OFOYNS
§ &5 5 § 5 S &5 ¢ § 5 5
5§ 52 8§ 5 S 2 7 & 8 5
i 5 3 3 5 s £ 5 5 5
5 5 4 & S 5 &5 5 =
~
DEX Application

Figure 2: Exchanges used in arbitrage, by frequency.

victim executes at unfavorable prices, and (3) the attacker
de-manipulates DEX exchange prices and collects profit.

While examining the arbitrages identified by our system,

we noticed a large number of extremely profitable trades
performed by a small number of actors. Further investigation
revealed that these are not simple arbitrages, but rather
Phase (3) — the de-manipulation step — of sandwich attacks.
These sandwich-attack arbitrages are paired with a Phase
(1) transaction, which appears as an arbitrage that loses an
amount of money slightly less than that gained in Phase (3). In
effect, the appearance of extreme arbitrage profit in Phase (3)
is because of the great expense paid in Phase (1) to manipulate
the exchanges.

We check for each of the three phases listed above and iden-
tify 63,257 sandwich-attack arbitrages. This reduces the appar-
ent sum of arbitrage profit by $5.2 billion — future research must
take care to avoid inclusion of these arbitrages, to avoid skew-
ing the data. These transactions are removed from our dataset.

Attack Example. We illustrate with a real-world example
where the attacker profits about $59 before fees / $10 after fees.
Manipulation transaction (0x6fd4..5564): The attacker
spends 1,239,768 DAI to buy 298,613 HOPR on Uniswap
v2, and then spends the 298,613 HOPR to buy 38,122 DAI
on Uniswap v3. Notice that a naive interpretation would label
this as an arbitrage that loses about 1.2 million DAL
Victim transaction (0x5ca7..72£5): The victim sells
500,000 HOPR for 63,143 DAI on Uniswap v3, then 63,143
DAL for 63,139 USDC, and finally 63,139 thousand USDC
for 54 Ether. Because of the manipulation, the victim’s swap
executes at a less favorable price than expected.
De-manipulation transaction (0x8269. . 7ac4): This trans-
action operates on a reverse of the exchange circuit used during
the manipulation phase. The attacker sells 38,122 DAI for
300,868 HOPR on Uniswap v3, then sells 300,868 thousand
HOPR for 1,239,827 DAI on Uniswap v2. Accounting for the
initial losses, this yields the attacker 59 DAI ($59).

Behavior Count %
No change 2,108,655 55.5%
No arbitrage 875,515 23.1%
Reverted 506,213 13.3%
Profit changed 238,329 6.3%
Sandwich 63,257 1.7%
New pivot token 5260 0.1%
Cycle count changed 30 0.0%
Total 3,797,259 100%

Table 3: Observed behavior when executing identified
arbitrages at the top of the block.

3.2.5 Back-Running

It is well-known that arbitrageurs use a strategy called back-
running [44,51,57]. In this strategy, an arbitrageur monitors the
queue of pending transactions (the mempool) and examines it
for other users’ transactions that modify DEX prices. Occasion-
ally, one can observe a pending transaction that modifies prices
such that profit can be made from arbitrage. The arbitrageurs
then seek to construct and include this arbitrage immediately
after the observed target transaction. This is accomplished in
one of two ways, by either (a) exploiting the fact that block pro-
ducers tend to include transactions in order of descending trans-
action fees or (b) by using FLASHBOTS [22] (see Section 2).

Strategy (a) is a commonly noted method of exploiting trans-
actions placed in the mempool [33,34,42-44,49,57]. Using
this approach, one can strategically place a transaction either
immediately before, or immediately after a target transaction.

Strategy (b), however, is a more recent emergence, and is still
lightly studied [34,42,44]. The FLASHBOTS system is a central-
ized, third-party service that connects users seeking to avoid
the publicly observable mempool with block producers who
are willing to include their transactions for a fee. This keeps a
transaction’s content private (with respect to the Ethereum peer-
to-peer network) until its inclusion in a block. As an additional
feature, the FLASHBOTS system allows users to specify that a
block producer should relay several transactions in a predeter-
mined order. Arbitrageurs use this to back-run transactions.

In order to identify back-running arbitrages, we introduce
the following approach. For each identified arbitrage transac-
tion, we use a modified version of GANACHE [11] to fork the
blockchain at the block immediately preceding its inclusion.
Then, we re-play the transaction as if it were to execute first in
its block. Lastly, we observe the resulting ERC-20 token move-
ment logs and use them to run our arbitrage identification algo-
rithm. The results of this experiment are displayed in Table 3.

We define a back-running arbitrage as one which, when
re-ordered and executed as the first transaction in its block,
fails to re-produce an arbitrage —i.e., either it reverts or is no
longer labeled as an arbitrage under our analysis. This yields a
total of 1,381,728 back-running transactions. The profit-share

Back-running Percent of Profit Over Time

100

80

Share of Profit (%)
8

&
S

20 4 EEE Back-running
BN Non-back-running
Unknown

o~ o~ S o~
I 5§ £ 5 & & = 5 g &
S IS S ~ ~ ~ ~ & N]
R 3
s § § § § § § § § ¢
N N N N N N N N N g

Figure 3: Share of total arbitrage profits taken by back-running
vs non-back-running transactions, drawn as a percentage
over a window of 6,646 blocks (about one day). We see
back-running emerge as a strategy around May 2020.

of back-running behavior is also plotted over time in Figure 3.

We augment this experiment with the publicly available
FLASHBOTS data feed [10], which identifies the transactions
that were relayed through their system. Based on this feed,
we find that 468,431 back-running transactions (or 32.4%)
leverage FLASHBOTS.

3.2.6 Revenue and Fees

In this section, we analyze the revenues, profits, yields, and
fees paid for arbitrage transactions. In order to make a fair
apples-to-apples comparison of revenue without dealing with
token-to-token conversion rates, we further limit the scope of
this analysis to only those arbitrages that took profitin WETH.

We say that the revenue of a transaction is the amount of
pivot token received minus the amount emitted to fund the
arbitrage trade.

The profit of a transaction is the revenue minus any fees
paid to the block producer. This is an important distinction.
As Daian [33] observed, arbitrage runners compete with each
other in “progressive gas-price auctions,” where arbitrageurs
bid ever-increasing fees for the privilege of being included
before all others seeking the same arbitrage opportunity. In
such gas auctions, the revenue stays the same, but the profit
kept by the arbitrageur approaches zero as they attempt to
out-bid the other bots. Note that transactions relayed through
FLASHBOTS may optionally include a direct transfer of Ether
to the block producer in addition to the standard transaction
fee, so we also collect all these direct transfers of Ether and
include them within the fees of the transaction.

Finally, we define the yield of an arbitrage transaction to be
the percentage of revenue that is taken as profit, where revenue
is positive.

The aggregate statistics of profit, revenue, and yield of our
identified arbitrages are summarized in Table 4. There are

Revenue (ETH) Profit (ETH) Fee (ETH) Yield (%)
Percentile ~ 250 500 75t 25t 5o 75t o5 5t 75t g5t 5ot 75t
Back-running 0.023 0.050 0.115 0.004 0.019 0.065 0.008 0.018 0.032 13.11 51.39 75.35
Not back-running 0.011 0.023 0.045 0.001 0.004 0.013 0.007 0.015 0.029 6.2 2093 40.28
FLASHBOTS 0.011 0.021 0.044 0.001 0.002 0.005 0.003 0.012 0.024 3.29 7.6 19.0
Not FLASHBOTS 0.017 0.036 0.079 0.003 0.012 0.041 0.009 0.018 0.033 20.24 42.39 65.84
All 0.014 0.030 0.067 0.001 0.007 0.027 0.008 0.016 0.031 8.06 28.34 56.57
Table 4: Revenue, Profit, Fee, and Yield of various sets of identified arbitrages, broken down by percentile.
several important findings to highlight here. First, we can 0 Block Producer's Share of Profits
independently confirm Piet’s [42] observation that, for FLASH-
BOTS-relayed arbitrages, the vast majority of revenue is paid ol
out in mining fees (only 7.6% yield). In contrast, arbitrages
not relayed through FLASHBOTS achieve a much higher yield € o
of 42%. Consequently, non-FLASHBOTS arbitrages achieve ;; °
median six-fold higher profits. Interestingly, we also show % o
that the median fee paid by FLASHBOTS arbitrages and non- e
FLASHBOTS arbitrages is somewhat lower, with 0.012 vs 0.019 "
Ether, respectively. So, the difference in yield is best explained
not by the fact that fees are typically higher, but by the fact
that FLASHBOTS transactions tend to have smaller revenue. T 5 8 5 & 5 & L % &
The situation is similar for back-running versus non-back- § § § § 5§ & & 8 & 0§

running arbitrages. We see that those who are able to use
the more advanced back-running strategy are rewarded with
median five-fold higher profits, and much higher yield (51%
vs 21%). Because the median fee paid is in fact higher when
the transaction is back-running, the increase in yield is best
explained by the higher median revenue.

3.2.7 Impacton MEV

Maximal Extractable Value (MEV) — sometimes called
Block Extractable Value, or BEV [44] —commonly refers to the
maximum amount of risk-free value that a block producer can
extract from a block by selectively including, excluding, and/or
re-ordering transactions in a block [29,33,34,42-44,55]. Prior
work has raised the alarm about MEV — as too much of it can
set the stage for a so-called “time-bandit attack™ [33,37,44]. In
fact, Qin [44] demonstrates that several thousand blocks in the
Ethereum blockchain already exist with MEV far exceeding
the typical block reward, setting the scene for this attack.

In brief, this attack is performed by a financially motivated
block producer who notices that a recently included block
contains an abnormally high MEV. Then, the rational choice
is no longer to produce blocks honestly, which yields nominal
profits, but instead fork the blockchain immediately before
the valuable block’s inclusion and attempt to itself become
the producer, which results in a windfall profit.

Piet’s [42] study period of about two weeks found that an
alarmingly large share of arbitrage profit is being sent to the
block producer. Our much larger window enables us to see that
this is, in fact, an ongoing and long-running trend. Figure 4

Figure 4: Block producers’ share of profits, computed as a
median over a 1-day rolling time window. We see that block
producers’ share is rapidly approaching 100%.

shows that the block producer’s share of the revenue from arbi-
trage is rapidly approaching 100% in recent times. This implies
that time-bandit attacks remain a viable and worrisome threat.

4 Detecting Arbitrage Opportunities

In this section, we perform an experiment to examine which
arbitrage opportunities existed in the past, and in the process
make several important observations about the difficulties ar-
bitrageurs encounter when attempting to perform arbitrage
identification in real-time. We begin in Section 4.1 by describ-
ing the system for detecting potential arbitrages based on DEX
prices and optimizing for maximum profit. Then, in Section 4.2,
we execute a selection of these potential arbitrages and automat-
ically diagnose execution failures. Finally, in Section 4.3, we
examine the results of executing these (potential) arbitrages.

4.1 Arbitrage Detection System

Consulting Figure 2, we decide to simplify the task of de-
tecting arbitrage opportunities by limiting the supported DEX
applications to Uniswap v2 and v3 [20], Shushi Swap [16],
ShibaSwap [15], and Balancer v1 and v2 [4]. We do not use

the exchange Ox [1], as it is not an Automated Market Maker
(AMM), but rather an exchange settlement application with
an off-chain order book, for which we do not have records to
analyze. We also opted to use Balancer v2 over crypto.com [6],
as we know that the former is under-counted (see Section 3.1).
Thus, we include in our analysis the six most frequently used
AMM-based exchanges. These exchanges total 94,495 smart
contracts and include 78, 605 unique ERC-20 tokens. See
Appendix E for a breakdown of count by DEX application.

The detection of arbitrage opportunities is challenging. At
a high level, it includes two tasks. First, one must use the spot
prices of all (supported) tokens of each AMM to compute
exchange rates and determine where arbitrage is possible
(Section 4.1.2). Second, one must determine how much profit
can be made and, simultaneously, how much money to spend
funding the trade — we contribute a novel approach to solving
this problem (Section 4.1.3).

Only Uniswap v2, Sushi Swap, and ShibaSwap use the
“constant-product” swap invariant, shown in Section 2. This
is both well-studied and known to have fast, analytic solutions
to those two problems [28, 29, 45]. Constant-product swap
invariants maintain the AMM’s token reserves at a 50% / 50%
share of value between its two paired tokens.

However, both Balancer v1 and v2 use a weighted version
of the constant-product invariant pricing model [39]. Here,
administrators may manually set the percentage of the total
pool’s value thatis allocated to each token. Moreover, Balancer
AMMs may maintain a liquidity pool of up to 8 assets, any
of which may be exchanged for any other. So, for example,
a Balancer AMM could have 3 tokens, o, 3, and 7y, occupying
50%, 25%, and 25% of the pool, respectively. Balancer also
provides a generalized analytical solution to arbitrage on
weighted constant-product AMMs [39].

Making matters yet more complex, Uniswap v3 uses a
different swap invariant entirely [27]. Uniswap v3 allows lig-
uidity providers to bound their price tolerance, which removes
assets from market-making when the price deviates beyond the
user’s parameters. In effect, reserves of its two paired tokens
increase and decrease dynamically as the price moves into
and out of liquidity providers’ pre-set tolerance bounds. This
adjustment may occur several times within a single atomic
swap, as the price moves due to slippage (defined below).

Wang’s approach [51] relies on the known fast solution
for constant-product exchanges, and hence, will not work
for all our exchanges — owing to the complexity of Uniswap
v3’s swap invariant, which frequently adjusts available token
reserves, frustrating analytic solutions. Zhou’s approach [55]
works by gradually increasing the amount of funds sent in
order to find the optimal profit. This strategy is not efficient
enough to process swaps (exchanges) at the scale we require
— in fact, Zhou only considers 25 tokens when looking for
arbitrage opportunities, versus our 78,605 tokens.

In what follows, we present an approach that efficiently
searches for arbitrage opportunities.

4.1.1 Definitions

First, we define some key terms and notation.

Spot Price. The spot price of an AMM is the current rate
of exchange from one token to another. We denote the spot
price of an exchange e when swapping token o for token 3
at blockchain state G as:

Po—sp:(0) =R

Slippage. Every exchange on our selected AMMs experiences
slippage on every exchange operation, which describes the
situation where the actual price charged when executing an
exchange is worse than the AMM s initial spot price.

Marginal Price. The marginal price of an AMM is simply the
spot price after spending n units of token o to buy token 3 on ex-
change e in blockchain state 6. Because slippage is guaranteed,
the marginal price increases with n. We write this as:

Og—sp: (o) = R

Swap Function. The swap function of an AMM returns the
amount of token B one can purchase by spending 7 units of
token o in blockchain state 6. We write this as:

So—p:(0n) = R

Each of our modeled exchanges imposes a constant tax
rate on each transaction. For simplicity, we include this tax
in the spot price, marginal price, and swap functions, simply
by multiplying by the tax rate.

Fee-on-transfer Token Fees. Some ERC-20 tokens deduct
a small tax each time a transfer from one address to another
occurs. We assume that, for token o, the amount received
when transferring from one address to another is a constant
multiple of the quantity transferred, which we capture as the
parameter fo € (0,1].

Exchange Cycle. An exchange cycle indicates a closed,
directed cycle of exchanges. This can be expressed as an
ordered list of k tuples:

E=(e1,0u,B1), ... ,(ex, 0, Pr),

where exchange e¢; accepts token o; and emits token [3;.
Because this is a cycle, B; = a1 fori <k and o] =f, i.e., the
output token of each exchange is the input token the next, and
the first and last token are the same.

4.1.2 Cycle Detection

Our first task is to identify candidate exchange cycles,
which we later optimize for maximum profit.

We begin by observing that each of our target AMMS emits
event logs whenever their internal state updates. These event
logs contain enough information to fully infer the internal
state of the AMMs, which we refer to as G.

We manually build five models for the functions p, ¢, and
s: one for the constant-product model used in Uniswap v2,
Sushi Swap, and ShibaSwap, one for Balancer v1, one for
Uniswap v3, one for Balancer v2’s “weighted pool,” and one
for Balancer v2’s “liquidity bootstrapping pool.” The structure
of these exchanges is more rigorously examined by Xu [54].

For each model, we also build the transition function
q(1,6) — o', which accepts event log / and state ¢ and returns
new state ¢’ after applying the information contained in the
event log. Logs contain information about various actions
that people have taken on the AMM — for example, they
could indicate a price update after a swap, the contribution
of liquidity, an adjustment of the relative weight of a token
(for Balancer v2), or an adjustment of a liquidity provider’s
parameters (Uniswap v3).

Each time that we examine a block, we apply all logs to the
state update function, g, and collect the set of all exchanges
whose internal state was updated. Then, we construct all
cycles that include two or three exchanges (and at least one
exchange that was just updated).

Note that we filter out exchange cycles that are not profitable.

We do this by pushing a tiny amount of 10~8 WETH forward
through the cycle. If this operation already proves unprofitable
(and returns under 10~ WETH in output), we discard the
cycle. Otherwise, we proceed to profit maximization.

4.1.3 Generalized Profit Maximization

Using our models and transition functions, we can compute
the revenue gained by running an arbitrage on a fixed cycle
E of length i using n units of the pivot token on state G:

5&-)5(57 n)fB EZ(aB)
Out(sg_w(c, n).fB,E/) E=

Revenue(n, E)=0ut(n, E)- fo, —n

Out(n,E)=

where Out(n, E) recursively computes the revenue of the
arbitrage cycle, including fees-on-transfer.

In order to maximize our revenue, we must find the
appropriate amount N that satisfies

N =argmax|Revenue(n, E)].
n

The following insight allows us to significantly simplify the
search for this value N. As stated previously, the marginal price
of each exchange e¢; for o; — B; monotonically increases as
n increases — in other words, the more value we send through
each exchange, the less favorable the prices will be. This
makes sense financially as well, as the very act of performing
an arbitrage equalizes prices across exchanges, making that
arbitrage cycle no longer profitable [47].

In fact, for some small value €, there must exist some » such
that Revenue(n, E) > Revenue(n+¢, E) — that is, the rate of
change in revenue with respect to n eventually turns negative,

e, o
(e’ (x? B)?E,

reducing revenue as n increases. We can compute this rate
of change in revenue — we will call it marginal revenue, or
®(n, E) — using our model for marginal price:

'Y'f(x E
y~fa-d>(sg_>ﬁ(n)-fa,E’) E=(e,0p), E'

where y=0g,_,4(n)

CD(n,E):{

where ®(n, E) multiplies together the marginal prices of the
cycle E after n tokens are applied. Put simply, we are computing
the ratio of the cycle’s output per the amount of input n we
attempt to send. If the marginal revenue is less than 1, then
this is sub-optimal — sending more input into the cycle will
cost less than the amount of output we receive. If the marginal
revenue is above 1, then it is past the optimal amount — as
each additional unit of input sent will not yield more than that
amount of output.

Since we know that all ¢s are monotonically increasing
as n increases (guaranteed slippage), and that s increases as n
increases, we can conclude that ®(n,E) is also monotonically
increasing with respect to 7.

From here, the task of finding N is reduced to solving the
equation ®(N,E) = 1 — where the ratio of revenue to input is
exactly equal. In other words, we must find the turning point
where purchasing any additional output costs more in input
than will be received, which decreases revenue. Since ®(n,FE)
is monotonically increasing, we use a simple binary search
to discover N, the input amount which maximizes profit.

We plot an example optimization problem in Appendix G.

4.1.4 Experimental Setup

We have developed a system that loads the blockchain
state as needed by the models and performs the transition
function ¢(/,0) to update the model state in response to logs
observed in the blockchain history. We set the fee multiple
fu for eleven common fee-on-transfer tokens, and initialize
the remainder fy to 1, which optimistically assumes zero fees
(this is automatically corrected later in Section 4.2).

Because our set of exchanges is so large, a naive application
of our cycle detection algorithm (Section 4.1.2) would quickly
result in a combinatorial explosion of possible exchange
cycles to consider. To combat this, we use four simplifying
heuristics to keep the problem tractable:

1. We limit exchange cycle length to 3, which Table 1
indicates was used in 91% of observed actual arbitrages.

2. We fix the pivot token to WETH, which Table 2 indicates
was used in 92% of arbitrages.

3. We set minimum exchange balance thresholds on all
exchanges that hold WETH [23], USDC [21], Tether [18],
Wrapped Bitcoin (WBTC) [24], and Uniswap Token [25].
We disregard any exchange that trades one of these

tokens with a balance smaller than this threshold. See
Appendix F for specifics.

4. We disregard any potential arbitrages which do not
produce at least 0.001 Ether in revenue.

We break the about 5.5-million blocks observed during our
study period into 5,500 contiguous segments of approximately
one thousand blocks each. Each of these segments of blocks
forms a work queue. Workers in the system are assigned
segments to analyze, and they do so block by block, starting
from the oldest one and scanning forward into the future. For
each block, we only analyze exchange cycles that contain an
exchange that updated its state in the prior block.

We use GNU Parallel [48] to spawn approximately 500 pro-
cesses across a set of five machines, each with dual Intel Xeon
Gold 6330 CPUs, a minimum of 350 GB of RAM, running
Ubuntu 20.02. We load-balance across two full-archive Go
Ethereum [12] nodes. The computation takes about two weeks
and yields 4,580,282,058 potential arbitrages.

4.1.5 Comparison to Prior Work

We use this experimental setup to compare our method of ar-
bitrage profit optimization vs Zhou’s [55] strategy of gradually-
increasing linear search. To accomplish this, we replace our
strategy with a linear search, set to stride in increments of 107>
Ether (about $0.01). We randomly select 100 contiguous seg-
ments of 20 blocks each within our study window, and run both
strategies over this selection while measuring both wall-clock
time consumed and the number of model-queries performed.
We find that the linear search strategy consumes 44 times more
wall-clock time, and executes 55 times more model-queries.
Moreover, our strategy runs to much greater precision.

4.2 Executing Arbitrages

The prior experiment yields more than four and a half billion
potential arbitrages, but we still need to know which of these
are truly possible to execute, and if so, how much gas each
transaction consumes. This will aid us in gaining a realistic
view of which arbitrages were once possible in the blockchain.

First, in Section 4.2.1, we compute a simple gas-price oracle
to help us reason about expected fees. Then, in Section 4.2.2,
we discuss our system that automatically constructs and
executes an arbitrage transaction to verify that it is actually
possible to take. In Section 4.2.3 we overview the experimental
setup. Finally, the results are compiled in Section 4.3.

4.2.1 Estimating Fees and Gas Prices

Although an arbitrage may have positive revenue, we need
to know whether it is profitable after we deduct the transaction
fees paid to the block producer. To do this, we need to estimate
how much gas price an arbitrageur would typically need to
bid to get their transaction included in a block. We devise a
simple but effective strategy to create a gas-price oracle that
estimates how much this might be.

To devise this oracle, we examine the identified arbitrages in
Section 3. We limit our view to arbitrages that meet two criteria:
(i) they must only use the six labeled exchanges supported by
our detection system, and (ii) they must be non-back-running
arbitrages. Then, we categorize each into a bucket: a 3-tuple
that indicates (1) whether this was a FLASHBOTS transaction,
(2) the set of DEX applications that it used, and (3) the cycle
length. If a transaction included a direct Ether transfer to the
block producer, we factor that into the gas price as well. More
precisely, we compute how much additional Ether was trans-
ferred per gas expended, and then add this value to the gas price.

We perform a linear scan over the arbitrages and construct
the gas-price oracle for each block based on a rolling window
of the previous 276 blocks (about 1 hour). For each period, we
record the 25", 50" (median), and 75" percentile gas price
that arbitrages used within that window.

4.2.2 Automated Execution and Failure Diagnosis

Executing an arbitrage on the blockchain requires a relaying
smart contract to invoke the correct exchanges and to manage
the flow of tokens. Abstractly, correctly invoking this relayer
is all that is required to execute an arbitrage. To this end, we
write our own relayer contract and ensure that it is capable of
invoking each of our supported exchanges.

Our system executes arbitrages against historical blockchain
states. We use GANACHE [11] to fork the blockchain exactly
at the block where the arbitrage should be possible (that is,
the block where our system detects the opportunity). We then
deploy our relayer contract, fund it with a sufficiently large
amount of Ether, and finally run the transaction that executes
the arbitrage.

Failure Diagnosis. In certain cases, the arbitrage fails to
properly execute when running. When this failure occurs, we
take a dynamic trace of the execution and attempt to diagnose
the issue. We discuss the two main sources of failure below
and describe a few more in Appendix H.

Token Reverts. ERC-20 token smart contracts occasion-
ally insert application-specific logic into the functions
transfer(..) orbalanceOf (..). Thislogic might cause ei-
ther of these functions to revert the transaction, causing failure.
Logic to revert transactions can be intentional or unintentional,
based on a whitelist, based on a blacklist, or other reasons. For
example, some tokens have an imposed limit on the maximum
transfer value. Others are whitelisted to only known exchanges
and initial investors, and any transfer to an address outside of
the whitelist will fail. In our dynamic trace, if we ever identify
that one of these two ERC-20 functions reverts, then we mark
the token as faulty and discard the potential arbitrage.

Non-supported Tokens. Balancer v1 requires that tokens
return true upon calling transfer(..), which should
indicate success. However, many tokens do not return any data
whatsoever, and, instead, indicate failure by simply reverting
the transaction. If we ever see that Balancer v1 attempts to

transfer a token that does not return data, then we mark the
token as “not supported” and discard the potential arbitrage.

4.2.3 Experimental Setup

It is computationally difficult to execute the entire set of
four and a half billion possible arbitrages. Thus, we select a
subset to replay. Specifically, we create two sets of arbitrages.

For the first set, we execute all 20,622,390 arbitrages that
purport to generate over one Ether in revenue. That is, we
want to further analyze all large arbitrage opportunities that
we identified.

If our system manages to successfully executes one of these
arbitrages, we search backward and forward (from the current
block) for other potential arbitrages that involve the exact same
exchange cycle E. We then continue executing these arbitrages
(in both directions) until the arbitrage disappears. Finally, we
store these arbitrages (for a particular cycle) together as a con-
tiguous campaign. This is important to do for two reasons — so
we can reason about an arbitrage’s properties over time, and so
that we can disambiguate arbitrages which, in reality, cannot all
be executed simultaneously. For example, attempts to naively
sum arbitrage profits block-by-block will dramatically over-
represent the real situation, as taking a single arbitrage in a con-
tiguous campaign would move prices to an unprofitable state.

For the second set, we divide the study period into 834
segments of 6,646 blocks (about 1 day). We randomly sample
30 of these segments and execute all 126,147,388 potential
arbitrages within these segments. The selected segments
are listed in Appendix ??. When an arbitrage is successfully
executed, we again perform a linear scan through the segment
and group possible arbitrages with the same exchange cycles
into contiguous campaigns.

We again use GNU Parallel to execute this analysis across
the same five machines described in Section 4.1.4. This
experiment takes about one week to complete.

4.3 Results

In this section, we discuss the results of the arbitrage
opportunity detection, execution, and failure diagnosis system.

4.3.1 Discovered Arbitrage Opportunities

As mentioned, we find about 4.5 billion arbitrage oppor-
tunities. This means that there are, on average, 826 new (or
updated) potential arbitrage opportunities in each block.
Recall that we record arbitrages only when an exchange’s state
updates, so this is, in fact, a lower bound on the number of
arbitrage opportunities that are available within a block — some
remain from previous blocks, unchanged. These arbitrages
purport an average revenue of 0.097 ETH and range from the
threshold minimum —0.001 ETH —to 1,039 ETH.

4.3.2 Execution and Diagnosis

In this section, we discuss the results of executing all
20,622,390 potential arbitrages with over 1 Ether in revenue.
The results are shown in Table 5. We see that only

Count %
20,622,390 100%
106,139 0.5%

All transactions

Successfully executed

All failures 20,516,251 99.5%
Token reverts 11,305,290 54.8%
Non-supported token 8,832,238 42.8%

Other 220,760 1.1%
Exchange-balance disorder 102,834 0.5%
Interference 29,102 0.1%
No arb. after fee-on-transfer 26,027 0.1%

Table 5: Results for potential arbitrages over 1 Ether.

106,139 (0.51%) of these arbitrage opportunities are executed
successfully. Moreover, the vast majority of those transactions
that execute successfully do not produce profit significantly
greater than 1 Ether — we display the distribution in Figure 5.
Finally, and most importantly, the results clearly indicate that
one cannot naively assume that an arbitrage is present without
verifying that the transaction can actually be concretely exe-
cuted. In practice, 93% of the arbitrage opportunities cannot be
executed because the token they require is either incompatible
with the exchange it is listed on, or a token simply reverts.

Our results indicate that actually executing any perceived
opportunities is critical for a large-scale study of arbitrage.
However, this has not been discussed in previous work on arbi-
trage, such as in Zhou’s [55] or Wang’s [51] studies. Although
Zhou’s [55] work is likely not significantly impacted because
they hand-picked a small number of known good exchanges
and tokens, Wang’s [51] study likely over-represents arbitrage
opportunities.

We now focus on the 106,139 arbitrages that were executed
successfully. The results show that — using the “median”
gas-price oracle — the successfully executed arbitrages arrange
into 57,392 contiguous campaigns. This is another important
realization: When we reason about arbitrages over time,
we discover that, in fact, many of these are simply prior
arbitrages carrying forward. Critically, this is another source
of over-counting that studies must avoid.

We then use the following method to compute the window
of opportunity for each of these campaigns. First, we locate
the earliest block which maximizes the campaign’s profit after
fees. Then, we scan forward and locate the first block where
this profit falls below either half of the maximum profit or
below 1 Ether, whichever is smaller. The distance between
these two blocks is the duration of the window of opportunity
for the arbitrage. Our analysis shows that the duration of
opportunity is just 1 block at the S0™ percentile, 4 blocks at
the 75" percentile, and 548 blocks at the 95" percentile.

This result indicates that large arbitrages do not persist for
long periods of time and that, generally, such opportunities
are quite rare. This is a distinct development in the ecosystem

Profit After Fees
Successful Large Potential Arbitrages

Count

200 300
ETH Profit

)

Figure 5: Profit distribution of successfully executed “large’
arbitrages giving revenue over 1 ETH. We use the “median’
gas-price oracle to compute fees. To show more detail, we
have used a log scale on the y-axis.

)

since Wang’s [51] publication, which found that the revenue
of the most profitable arbitrage in Uniswap v2 is persistently
higher than 1 Ether.

Finally, we compute the total value of the arbitrage
opportunities. To accomplish this, we cannot simply sum the
maximum profit value in each campaign, as campaigns that
share exchanges may interfere with each other —i.e., taking
one arbitrage may move prices such that the other is no longer
profitable. Thus, it is important to ensure that we only sum
the profit of arbitrages that do not interfere with one another,
or else we risk over-counting (again).

We cast this computation as an instance of the maximum
weighted independent set optimization problem over conflict
graph G, where the vertices are the arbitrage campaigns,
the weights on the vertices are their respective profits, and
the edges indicate campaigns that overlap in both time
and exchanges used. Because this optimization problem is
known to be strongly NP-hard [35], we use a simple greedy
algorithm to find a maximal set of non-conflicting campaigns.
The algorithm produces 2,065 non-conflicting campaigns,
yielding a total of 3,860 Ether, or $5,715,862 in total value,
as measured at the time of arbitrage opportunity.

Comparison with Identified Arbitrages. We build confi-
dence in our modeling by comparing identified arbitrages
that were actually executed on the blockchain (Section 3) to
the set of detected opportunities that we claim were possible
to execute (as described in this section). We detect 93% of
the arbitrages that were actually taken and for which we
should detect a corresponding opportunity. Next, we randomly
sample and analyze the identified (real) arbitrages for which
we did not have a corresponding opportunity. About one-third
were arbitrages that were executed as part of a more complex
DeFi transaction. These can be considered false positives of

Profit After Fees
Random Sample

30 50 60
ETH Profit

Figure 6: Profit distribution of arbitrage campaigns derived
from 30 randomly-sampled segments of time about 1 day long.
Profits are computed using the “median” gas-price oracle.
Notice that to show more detail we have used a log scale on
the y-axis.

our arbitrage identification algorithm. Hence, it makes sense
that our model did not detect the opportunity. Another half
was due to an inaccuracy in our model that led us to disregard
some exchange cycles involving Balancer v1 (and that were
specific to this exchange). The remainder was due to execution
failure, where a closed-source token either reverts or has
token-exchange interference that our bot is not capable of
overcoming. Overall, we believe that the strong alignment
between our models and the identified arbitrages provides a
good indication of the correctness of our analyses.

4.3.3 Execution and Diagnosis — Random Sample

In this section, we discuss the results of executing all
126,147,388 potential arbitrages within 30 randomly-sampled
day-long segments of time. This set of potential arbitrages
shows a dramatically higher rate of success than the prior set

—only 7,214,976 (5.72%) tailed to execute. We break down
the results in Table 8 in Appendix [, which shows that the main
cause of failure was a token reverting the transaction.

Unlike in the prior section, the arbitrages may make revenue
as low as 0.001 Ether. In fact, the median attainable profit,
after computing campaigns, is just 0.006 Ether when we use
the realistic gas-price oracle — we plot the full distribution of
profits in Figure 6. This plot reveals that the overwhelming
majority of actually executable arbitrage opportunities yields
very little in profit.

Next, we compute the total possible profit over the 30-day
sample (full detail of this analysis are in Appendix I). Recall
again that taking one arbitrage in a contiguous campaign will
cause it to be no longer profitable in the future, so we must
again solve the maximal weighted independent set problem
as described in Section 4.3.2. In total, the algorithm selects
50,533 non-conflicting arbitrages, which totals 1,692 Ether

in profit using the realistic gas-price oracle.

This amounts to a potential weekly profit of 395 Ether,
which greatly exceeds Zhou’s [55] system’s estimated weekly
profitof 191 ETH.

In order to compare to Zhou’s work, we greedily gather
exchanges from the most profitable arbitrages, greatest to least,
until we have 100 total exchanges. When we limit our scope
to just these 100 exchanges, and again solve the maximal
weighted independent set problem as above, we see a weekly
profit of just 72 Ether — which demonstrates the necessity of
large-scale analysis.

Note that this differs from the profit in Section 3 because
many bots are back-running, which this analysis does not
support (as it operates on the state at the start of each block).

4.4 Security Implications on Price Oracles

Smart contracts on the blockchain occasionally need access
to price data in order to value a token. For example, this assists
automated loan providers in valuing the collateral supplied
for a loan. AMMs are a convenient source for this sort of price
data, but ultimately prove to be insecure.

In the bZx hack, an attacker managed to steal nearly $1
million by manipulating an AMM’s price oracle [41]. Atahigh
level, the attack worked as follows. First, the attacker made a
large purchase of tokens on an AMM, which forced the price
significantly higher. Then, they use these tokens as collateral
to take out a loan from an automated provider. But the loan
provider used the manipulated AMM’s price, which valued
the collateral too high. The attacker was able to loan out much
more value than expected. The attacker walked away with the
loaned Ether, and the loan provider was left with the debt.

A modern defense against this attack is the Time-Weighted
Price oracle (TWAP), which functions similarly to a sliding-
window price average. This forces an attacker to keep the price
manipulated for a long period of time, expending significant
capital in the process. Recent work has modeled and discussed
costs and methods of attack that overcome the TWAP — the
typical multi-block manipulation assumes “no fees, an in-
finitely liquid reference market, and the no-arbitrage condition,
meaning that arbitrageurs are assumed to de-manipulate the
price every block” [38]. The attacker must re-manipulate the
oracle each time arbitrageurs de-manipulate the price.

Recall that we just measured that arbitrages regularly extend
beyond one block in duration, even for large arbitrages. In fact,
our “large” arbitrage campaigns from recent blocks — 14.5
million and on, since about April 2022 — have a mean duration
of 6 blocks. This implies that the true cost of launching a
price-oracle manipulation attack is likely significantly cheaper
than expected.

5 Related Work

Daian et al. [33] first described the concept of MEV. This
work also introduces the “time-bandit” attack, a threat that

occurs when too much MEV is available on the blockchain.
The authors report that this entices profit-motivated miners
into forking the blockchain, possibly causing instability in
the consensus system. They also first identify and discuss
what they call “Priority Gas Auctions” (PGAs), where bots
bid against each other in order to obtain priority execution
for MEV extraction. This publication directly motivated the
creation of FLASHBOTS [22], an effort to mitigate network
congestion arising from PGAs and to create fairer conditions
for relaying profit-generating transactions.

Qin et al. [44] quantify MEV — which they call BEV —in the
form of arbitrages, “sandwich” attacks, and liquidations. They
demonstrate that the setting for a time-bandit attack is already
present. Moreover, they argue that the introduction of FLASH-
BOTS in fact aggravates both network congestion and MEV,
by creating a situation of highly increased competition. Piet et
al. [42] use a method of detecting arbitrage, back-running, and
front-running transactions on the blockchain to analyze the
MEYV extraction ecosystem, focusing on the impacts of FLASH-
BOTS and private transaction relaying. Eskandari et al. [34]
provides an SoK on these MEV-generating transactions.

A separate but related research thrust focuses on detecting
MEY opportunities. Zhou et al. [55] design a system capable of
detecting MEV in real-time, both via arbitrage cycle detection
— with heavily limited scope — and via solver-aided modeling,
which uncovers advanced DeFi attacks. Wang et al. [51] create
asystem that can find arbitrage opportunities, but it is limited to
those that use the “constant-product invariant” pricing model,
which limits the analysis to Uniswap v2 and Sushi Swap.

While there are a number of other works that explore various
aspects of MEV and attacks against AMMs [29, 30, 32,56, 57],
the works described above are the closest related to our
research, and we see them as fundamental first steps towards
understanding the arbitrage phenomenon. Our work builds
upon these results and introduces a modeling approach that
allows for the accounting of more AMMs, resulting in more
complete identification of arbitrage transactions and more
accurate prediction of arbitrage opportunities.

6 Conclusions

Decentralized finance applications and protocols based on
the Ethereum blockchain have a Total Value Locked (TVL)
of tens of billions of dollars. However, the mechanisms
that govern the market are sometimes opaque and not well
understood. This might result in security risks for users and
a barrier to adoption.

In this paper, we presented a novel analysis of arbitrage.
Our analysis, which has a larger scale than previous work,
both confirms prior observations and uncovers new insights
about the arbitrage phenomenon. In particular, we observe that
the way in which fees are distributed to the block producers
might incentivize attacks that threaten consensus stability.
In addition, an analysis of the duration of certain arbitrage

opportunities indicates that price-oracle attacks might be
less expensive than what was previously assumed. We also
measure the potential arbitrage opportunities, showing that
the extractable value is higher than previously thought.

References

[1] Ox: Powering the decentralized exchange of tokens on
ethereum. https://www.0x.0rg/.

[2] Aave - open source liquidity protocol. https:
//aave.com/.

[3] Alpha homora - yield farming on leverage.
https://homora.alphaventuredao.io/.

[4] Balancer amm defi protocol. https://balancer.fi/.
[5] CoW protocol overview. https://docs.cow.fi/.

[6] Crypto.com: The best place to buy bitcoin, ethereum,
and 250+ altcoins. https://crypto.com.

[7] Decentralized finance - rankings, analysis and
news. https://dappradar.com/defi/protocol/
ethereum.

[8] Dexible - the professional dex aggregator.
https://dexible.io/.

[9] Ethereum (ETH) Blockchain Explorer. https:
//etherscan.io/.

[10] Flashbots Blocks API. https://blocks.flashbots.
net/.

[11] Ganache: A tool for creating a local blockchain
for fast ethereum development. https:
//github.com/trufflesuite/ganache.

[12] Go ethereum. https://geth.ethereum.org/.
[13] The maker ecosystem. https://docs.makerdao.com/.

[14] MEV in Ethereum Proof-of-Stake (PoS).
https://ethereum.org/en/developers/docs/
mev/#mev-in-ethereum-proof-of-stake.

[15] Shibaswap. https://shibaswap.com/.
[16] Sushiswap. https://www.sushi.com/.

[17] Synthetics | the derivatives liquidity protocol.
https://synthetix.io/.

[18] Tether. https://tether.to/en/.
[19] Tokenlon protocol. https://www.tokenlon.im/.

[20] Uniswap protocol. https://uniswap.org/.

[21] Usd coin. https://www.coinbase.com/usdc/.

[22] Welcome to Flashbots. https://docs.flashbots.
net/.

[23] wETH | ERC20 tradable version of eth.
https://weth.io/.

[24] Wrapped bitcoin (WBTC) an erc20 token backed 1:1
with bitcoin. https://wbtc.network/.

[25] Introducing UNI. https://uniswap.org/blog/uni,
Sept 2020.

[26] Curve documentation. https://curve.readthedocs.
io/_/downloads/en/latest/pdf/, 2022.

[27] Hayden Adams, Noah Zinsmeister, Moody Salem,

River Keefer, and Dan Robinson. Uniswap v3 core.
https://uniswap.org/whitepaper-v3.pdf, 2021.

[28] Guillermo Angeris, Hsien-Tang Kao, Rei Chiang,

Charlie Noyes, and Tarun Chitra. An analysis of
Uniswap markets, 2019.

[29] Massimo Bartoletti, James Hsin-yu Chiang, and

Alberto Lluch Lafuente. Maximizing Extractable
Value from Automated Market Makers. In Financial
Cryptography and Data Security, May 2022.

[30] Massimo Bartoletti, James Hsin-yu Chiang, and Alberto

Lluch-Lafuente. A theory of automated market makers
in defi. In Ferruccio Damiani and Ornela Dardha, editors,
Coordination Models and Languages, pages 168—187,
Cham, 2021. Springer International Publishing.

[31] Yiling Chen and David M. Pennock. A utility framework

for bounded-loss market makers. CoRR, abs/1206.5252,
2012.

[32] Michele Ciampi, Muhammad Ishaq, Malik Magdon-

Ismail, Rafail Ostrovsky, and Vassilis Zikas. Fairmm:
A fast and frontrunning-resistant crypto market-maker.
In Shlomi Dolev, Jonathan Katz, and Amnon Meisels,
editors, Cyber Security, Cryptology, and Machine
Learning, pages 428-446, Cham, 2022. Springer
International Publishing.

[33] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li,

Xueyuan Zhao, Iddo Bentov, Lorenz Breidenbach, and
Ari Juels. Flash boys 2.0: Frontrunning in decentralized
exchanges, miner extractable value, and consensus
instability. In 2020 IEEE Symposium on Security and
Privacy (SP), pages 910-927, 2020.

[34] Shayan Eskandari, Seyedehmahsa Moosavi, and Jeremy

Clark. SoK: Transparent Dishonesty: Front-Running At-
tacks on Blockchain. In Andrea Bracciali, Jeremy Clark,
Federico Pintore, Peter B. Rgnne, and Massimiliano

https://www.0x.org/
https://aave.com/
https://aave.com/
https://homora.alphaventuredao.io/
https://balancer.fi/
https://docs.cow.fi/
https://crypto.com
https://dappradar.com/defi/protocol/ethereum
https://dappradar.com/defi/protocol/ethereum
https://dexible.io/
https://etherscan.io/
https://etherscan.io/
https://blocks.flashbots.net/
https://blocks.flashbots.net/
https://github.com/trufflesuite/ganache
https://github.com/trufflesuite/ganache
https://geth.ethereum.org/
https://ethereum.org/en/developers/docs/mev/#mev-in-ethereum-proof-of-stake
https://ethereum.org/en/developers/docs/mev/#mev-in-ethereum-proof-of-stake
https://shibaswap.com/
https://www.sushi.com/
https://synthetix.io/
https://www.tokenlon.im/
https://uniswap.org/
https://docs.flashbots.net/
https://docs.flashbots.net/
https://weth.io/
https://wbtc.network/
https://uniswap.org/blog/uni
https://curve.readthedocs.io/_/downloads/en/latest/pdf/
https://curve.readthedocs.io/_/downloads/en/latest/pdf/
https://uniswap.org/whitepaper-v3.pdf

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Sala, editors, Financial Cryptography and Data Security,
pages 170-189, Cham, 2020. Springer International
Publishing.

M. R. Garey and D. S. Johnson. “strong” np-
completeness results: Motivation, examples, and
implications. J. ACM, 25(3):499-508, jul 1978.

Donald B. Johnson. Finding all the elementary circuits
of a directed graph. SIAM Journal on Computing,
4(1):77-84,1975.

Aljosha Judmayer, Nicholas Stifter, Alexei Zamyatin,
Itay Tsabary, Ittay Eyal, Peter GaZi, Sarah Meiklejohn,
and Edgar Weippl. SoK: Algorithmic Incentive Manipu-
lation Attacks on Permissionless PoW Cryptocurrencies.
In Financial Cryptography Workshop on Trusted Smart
Contracts, 2021.

Torgin Mackinga, Tejaswi Nadahalli, and Roger
Wattenhofer. Twap oracle attacks: Easier done than said?
pages 1-8, 05 2022.

Fernando Martinelli and Nikolai Mushegian. A non-
custodial portfolio manager, liquidity provider, and price
Sensor. https://balancer.fi/whitepaper.pdf,
2019.

Ronald W. Melicher. Introduction to finance : markets,
investments, and financial management. Wiley, Hoboken,
New Jersey, fifteenth edition. edition, 2014 - 2014.

palkeo. The bzx attacks explained. https://www.
palkeo.com/en/projets/ethereum/bzx.html, 02
2020.

Julien Piet, Jaiden Fairoze, and Nicholas Weaver.
Extracting godl [sic] from the salt mines: Ethereum
miners extracting value, 2022.

Kaihua Qin, Liyi Zhou, Pablo Gamito, Philipp Jovanovic,
and Arthur Gervais. An Empirical Study of DeFi
Liquidations: Incentives, Risks, and Instabilities. In
Proceedings of the 21st ACM Internet Measurement
Conference, IMC ’21, pages 336-350, New York, NY,
USA, 2021. Association for Computing Machinery.
event-place: Virtual Event.

Kaihua Qin, Liyi Zhou, and Arthur Gervais. Quantifying
blockchain extractable value: How dark is the forest? In
2022 IEEE Symposium on Security and Privacy (SP),
pages 198-214, 2022.

Kaihua Qin, Liyi Zhou, Benjamin Livshits, and Arthur
Gervais. Attacking the defi ecosystem with flash loans for
fun and profit. In Nikita Borisov and Claudia Diaz, edi-
tors, Financial Cryptography and Data Security, pages 3—
32, Berlin, Heidelberg, 2021. Springer Berlin Heidelberg.

[46]

[47]

(48]

[49]

(50]

(51]

[52]

(53]

[54]

[55]

[56]

[57]

Fabian Schir. Decentralized finance: On blockchain-
and smart contract-based financial markets. Review,
103(2):153-174, Feb 2021.

William F. Sharpe. [Investments. Prentice-Hall,,
Englewood Cliffs, N.J. :, 3rd ed. edition, 1990.

O. Tange. Gnu parallel - the command-line power tool.
;login: The USENIX Magazine, 36(1):42—-47, Feb 2011.

Christof Ferreira Torres, Ramiro Camino, and Radu
State. Frontrunner Jones and the Raiders of the Dark
Forest: An Empirical Study of Frontrunning on the
Ethereum Blockchain. In 30th USENIX Security
Symposium (USENIX Security 21), pages 1343-1359.
USENIX Association, August 2021.

Fabian Vogelsteller and Vitalik Buterin. EIP-20: Token
Standard. https://eips.ethereum.org/EIPS/
eip-20, Nov 2015.

Ye Wang, Yan Chen, Haotian Wu, Liyi Zhou, Shuiguang
Deng, and Roger Wattenhofer. Cyclic arbitrage in
decentralized exchanges. In Companion Proceedings
of the Web Conference 2022, WWW ’22, page 12-19,
New York, NY, USA, 2022. Association for Computing
Machinery.

Gavin Wood. Ethereum: A secure decentralised
generalised transaction ledger. Ethereum project yellow
paper, 151:1-32,2014.

Siwei Wu, Dabao Wang, Jianting He, Yajin Zhou,
Lei Wu, Xingliang Yuan, Qinming He, and Kui Ren.
Defiranger: Detecting price manipulation attacks on defi
applications. CoRR, abs/2104.15068, 2021.

Jiahua Xu, Krzysztof Paruch, Simon Cousaert, and
Yebo Feng. Sok: Decentralized exchanges (dex) with
automated market maker (amm) protocols, 2021.

Liyi Zhou, Kaihua Qin, Antoine Cully, Benjamin
Livshits, and Arthur Gervais. On the just-in-time
discovery of profit-generating transactions in defi
protocols. In 2021 IEEE Symposium on Security and
Privacy (SP), pages 919-936, 2021.

Liyi Zhou, Kaihua Qin, and Arthur Gervais. A2mm:
Mitigating frontrunning, transaction reordering and
consensus instability in decentralized exchanges.
https://arxiv.org/abs/2106.07371,062021.

Liyi Zhou, Kaihua Qin, Christof Ferreira Torres, Duc V
Le, and Arthur Gervais. High-frequency trading on
decentralized on-chain exchanges. In 2021 IEEE Sympo-
sium on Security and Privacy (SP), pages 428-445, 2021.

https://balancer.fi/whitepaper.pdf
https://www.palkeo.com/en/projets/ethereum/bzx.html
https://www.palkeo.com/en/projets/ethereum/bzx.html
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
https://arxiv.org/abs/2106.07371

Appendix

A Evaluating Risk of False-Positive
from Unwrapped Ether

Only 11% of our set of identified transactions contains a
transfer of Ether that is not either (a) a direct payment to the
miner or (b) a wrapping or un-wrapping operation executed
by Wrapped Ether [23]. We randomly sampled 10 of these
transactions for manual analysis, and the transfers contained
within all of them are benign transfers that do not impact
the correctness of the analysis. So we are confident that this
limitation does not compromise our results.

B Example Transactions

One cycle, two exchanges.
0x60376ledc2acdd3ce3ade2e29£55009b1 8cdf £d5696935b£596499106b89943
0xd9f9aad09530cc54bbff46el1847bea281£54862cb10a595f£2163b6faddfcffd

One cycle, three exchanges.
0x5739e2ab65ae48bbf60£89777a205d0056ddc0400£80034d05bb7526977cfadl

Two arbitrage cycles.
0x6d9%e998d9ef0b1c3920c72f64e29a066b%e8ac29fdbl9ceabodbb283£09d5¢ccO

C DEX Attribution from Labeling

Application Use in Arbitrages (#) Use in Arbitrages (%)
Uniswap v2 4,491,762 44.9%
Uniswap v3 1,524,600 15.2%
Sushi Swap 1,350,260 13.5%
Balancer v1 1,085,147 10.8%
Unknown 535,942 5.4%
Ox 233,133 23%
Shiba Swap 172,880 1.7%
crypto.com 127,129 13%
Balancer v2 93,461 0.9%
Bancor V2 85,761 0.9%
curve.fi 81,409 0.8%
PowerPool 37,037 0.4%
SakeSwap 36,565 0.4%
indexed.finance 30,679 0.3%
Cream 24,749 0.2%
Orion V2 19,005 0.2%
Kyberswap 16,658 0.2%
SwipeSwap 12,415 0.1%
Bitberry 11,399 0.1%
WSwap 10,103 0.1%
Equalizer 9,611 0.1%
Convergence 7,636 0.1%
dodo 6,450 0.1%
defi plaza 4,976 0.0%
linch 4,349 0.0%

Table 6: Count of times each DEX application was identified
as an exchange in labeled arbitrage.

D Sandwich Attack with Arbitrage:
Example Transaction Hashes

Manipulation transaction.

0x6fd4fcl1d21877c4ee087790262dalfefaafdlf0f%7ae8£35¢1d53519525564

Victim transaction.
0x5ca70135b394e5a709b8303214521602348ac9302423030ed1lab22ea482572£5

De-manipulation transaction.
0x826903513£9077£f0febef19d3dd57af4db8956£381£57d72451e93f7eb8f7ac4

E AMM Exchanges in Selected DEXs

DEX Application Count of Exchanges

Uniswap v2 79.884
Uniswap v3 7272
Sushi Swap 2,984
ShibaSwap 475
Balancer v1 3,279
Balancer v2 601
All 94,495

F Thresholds on Exchange Balances

Token Minimum Threshold
WETH 0.01
usDC 10
Tether 10
UNI 0.25

WBTC 0.0001

Table 7: Minimum holding thresholds imposed.

G Example of Optimization Procedure

Consider that we have two Uniswap v2 constant-product
AMMs, AMM1 and AMM?2. Both of these AMMs trade token
o and B. AMMI has 1 million units of o and 2 million units
of B, whereas AMM2 has 1.5 million units of o and 2 million
units of . In this set-up, the spot exchange rate on AMMI
from o to B is 1:2, and for AMM? it is 1.5:2, setting up the
possibility of an arbitrage.

In Figure 7 we plot both the revenue, in units of o, and
the marginal revenue, in units of o output per o input.
Notice that the marginal revenue falls below 1 exactly at
the point of optimal profit (about 111,400) of token o input.
Our optimization procedure takes advantage of this fact to
search for this marginal revenue crossing-point. Because the
exchanges we model guarantee price slippage, all revenue
curves must be concave-down, guaranteeing a unique solution
like that shown here.

H Other Sources of Failure

Fee-on-transfer Required. Initially, we optimistically assume
that a token’s fee-on-transfer tax is zero. Occasionally, this as-
sumption turns out to be incorrect. We precisely encode the ex-
pected amount of each token that is moved between exchanges
at each step of the arbitrage. If our relayer smart contract en-
counters an unexpected balance, the execution reverts. We
detect this by carefully tracking all calls to ERC-20 token’s
transfer(..) function, and we keep an accounting of the
balance that we expect each address to possess. Each time a
contract calls a token’s balanceOf (address) function, we

1e4

21 /
1]

ol

0 50000 100000 150000 200000 250000 300000

Revenue

1.4+

1.2

1.0

Marginal Revenue

0.6 q

(I) 50600 100b00 150b00 200‘000 250’000 300‘000

Amount input

Figure 7: Simple arbitrage optimization problem example.

ensure that the balance returned for the specified address is ex-
actly as expected by our accounting. If our accounting is incor-
rect, we automatically infer the fee multiple fy and re-run the
arbitrage opportunity routine with the updated fee-on-transfer.

Token Interferes with Exchange. Some ERC-20 fee-on-
transfer tokens boost the profits of the token administrators
by selling a portion of that fee on every call to transfer(..).
Occasionally, this interferes with the prices of an exchange
in our cycle, which causes unexpected price behavior and
ultimately transaction failure. If we ever observe such
interference, we discard the potential arbitrage.

Exchange Balance Disorder. Some ERC-20 tokens use
complex application-specific logic to determine an address’
balance. Occasionally, this logic may actually reduce an
address’ balance without informing the owner. The AMM
exchanges in our study keep an internal cache of the last
known balance, and if the token’s logic causes the cached
value to become out of sync with the actual balance, the
pricing behavior becomes unexpected. We detect and discard
any affected potential arbitrages.

Other. We group all other failures into this category, including
undiagnosed failures.

I Random Sample Analysis

When analyzing the arbitrages in the 30-day random
sample, a significant number of them will turn unprofitable
after accounting for gas fees paid to the block producer. We
use the three gas-price oracles described in Section 4.2.1 to

give an optimistic, realistic, and pessimistic gas price estimate.

After application, profitable arbitrages amount to only 1.6,
1.3, and 1.1 million, respectively — a reduction of about 99%
across the board.

Next, we compute the duration of these arbitrages. We
find that all three gas price oracles yield the same aggregate

duration statistics — the campaigns last for a duration of 1, 2,
and 6 blocks at the 25", 50 and 75" percentile, respectively.

Distribution of Arbitrages by Duration and Profit

19
17
10*

Zis
o
g
<13
g 3
k-] 107 =
En g
=
a S
z9
k=1
E)
27 10°
&

5

3 1

10
14 . :
0.00 001 0.02 0.03 0.04 0.05

ETH Profit

Figure 8: 2-dimensional histogram of profit and duration of
arbitrage opportunities

Lastly, we compute the maximum total profit from these
arbitrages. We perform this measurement from two directions.
First, we maximize for extractable value on a per-block basis.
Then, we use the method from Section 4.3.2 to sum extractable
value across time.

To measure the total possible arbitrage profit on a per-block
basis, we perform a linear scan through the study period
and maintain a rolling record of the active arbitrages. At
each block, we solve the maximal weighted independent set
problem to find a conflict-free set of active arbitrages. We sum
the profits from this set of conflict-free arbitrages to arrive at
the maximum profit in each block. This shows that the total
possible profit in a single block ranges from 0 to 60 Ether, with
an average of 0.290 Ether and a median of 0.081 Ether.

Count %

All transactions 126,147,388 100%
Successfully executed 118,932,412 94.3%
All failures 7,214,976 5.7%
Token reverts 6,354,589 5.0%
Non-supported token 402,390 0.3%
Other 241,344 0.2%
No arb. after fee-on-transfer 135,497 0.1%
Interference 54,004 0.0%
Exchange-balance disorder 27,152 0.0%

Table 8: Results for a 30-day random sample.

	Introduction
	Background
	Executed Arbitrages
	Identification Algorithm
	Results
	False Positives and False Negatives
	Arbitrage Cycle Properties
	Exchange Attribution
	Sandwich Attacks
	Back-Running
	Revenue and Fees
	Impact on MEV

	Detecting Arbitrage Opportunities
	Arbitrage Detection System
	Definitions
	Cycle Detection
	Generalized Profit Maximization
	Experimental Setup
	Comparison to Prior Work

	Executing Arbitrages
	Estimating Fees and Gas Prices
	Automated Execution and Failure Diagnosis
	Experimental Setup

	Results
	Discovered Arbitrage Opportunities
	Execution and Diagnosis
	Execution and Diagnosis – Random Sample

	Security Implications on Price Oracles

	Related Work
	Conclusions
	Evaluating Risk of False-Positive from Unwrapped Ether
	Example Transactions
	DEX Attribution from Labeling
	Sandwich Attack with Arbitrage: Example Transaction Hashes
	AMM Exchanges in Selected DEXs
	Thresholds on Exchange Balances
	Example of Optimization Procedure
	Other Sources of Failure
	Random Sample Analysis

