
Remote Code Execution from SSTI in the Sandbox:
Automatically Detecting and Exploiting Template Escape Bugs

Yudi Zhao1, ¶, Yuan Zhang1, ¶, and Min Yang1

1School of Computer Science, Fudan University, China
¶co-first authors

Abstract
Template engines are widely used in web applications to ease
the development of user interfaces. The powerful capabilities
provided by the template engines can be abused by attackers
through server-side template injection (SSTI), enabling severe
attacks on the server side, including remote code execution
(RCE). Hence, modern template engines have provided a
sandbox mode to prevent SSTI attacks from RCE.

In this paper, we study an overlooked sandbox bypass
vulnerability in template engines, called template escape,
that could elevate SSTI attacks to RCE. By escaping the
template rendering process, template escape bugs can be
used to inject executable code on the server side. Template
escape bugs are subtle to detect and exploit, due to their
dependencies on the template syntax and the template
rendering logic. Consequently, little knowledge is known
about their prevalence and severity in the real world. To this
end, we conduct the first in-depth study on template escape
bugs and present TEFUZZ, an automatic tool to detect and
exploit such bugs. By incorporating several new techniques,
TEFUZZ does not need to learn the template syntax and
can generate PoCs and exploits for the discovered bugs. We
apply TEFUZZ to seven popular PHP template engines. In
all, TEFUZZ discovers 135 new template escape bugs and
synthesizes RCE exploits for 55 bugs. Our study shows that
template escape bugs are prevalent and pose severe threats.

1 Introduction
Template is a specialized programming language designed
to develop web interfaces [13]. With a simplified syntax,
template significantly reduces the bar for web application
developers and facilitates the development of server-side
applications. By designing the HTML views in templates, web
application developers use template engines (TE) to render
dynamic HTML views from the templates. With the help of
templates and TEs, it is easier to separate the view code from
the business code in web application development. Therefore,
TEs are widely used in web applications, such as wikis, blogs,
and content management systems (CMS) [15].

To support template development, TEs provide plenty of
programmable interfaces. Since the template code runs on
the server side, templates also open a new attack surface. By
injecting payloads into a template, an attacker could abuse the
capabilities provided by the TEs, causing severe attacks on the
server side, such as remote code execution (RCE). This kind
of attack is known as server-side template injection (SSTI), a
popular and well-known attack vector [12].

The root cause of SSTI is that an attacker gains the
capability of controlling template code. However, template
code injection is hard to avoid, due to the nature of TEs,
i.e., rendering template code according to external inputs [4,
7]. Moreover, template code modification can be achieved
through other vulnerabilities, e.g., file upload vulnerability [6,
8], and is usually provided as standard functionality in
many web applications, e.g., style customization. Another
underlying cause of SSTI attacks is that TEs provide template
code with much more capabilities than really needed, while
these powerful capabilities might be abused by an external
attacker through template code modification. In light of this, to
prevent SSTI attacks, modern template engines (e.g., Smarty
and Twig) provide a sandbox mode. In general, the sandbox
mitigation mechanism significantly constrains the capabilities
acquired from the template code. Hence, under the sandbox
mode, SSTI attacks become pretty hard to achieve RCE.

In this paper, we study an overlooked vulnerability in
TEs that could bypass the sandbox mode and elevate SSTI
attacks to RCE. This vulnerability occurs during the template
rendering process. Taking PHP as an example, most PHP TEs
adopt a generation-based design in template rendering. These
TEs translate a template file into a PHP file and execute the
generated PHP file for HTML view rendering. By caching the
generated PHP files, the template rendering process achieves
near native performance to the PHP code. However, due to the
improper implementation of the TEs, the template code may
escape the template semantic during the rendering, leading to
PHP code injection into the generated PHP files. We name
this vulnerability as template escape.

With the capability of PHP code injection, template escape
bugs cause severe consequences. However, due to the depen-
dencies on the template syntax and the template rendering
logic, template bugs are subtle to detect and exploit. Therefore,
little knowledge is known about their prevalence and severity
in real-world TEs. To this end, we aim to conduct an in-
depth study on template escape bugs. Our study requires
an automatic tool to detect template escape bugs and assess
their exploitability. However, it is non-trivial to automatically
detect and exploit template escape bugs due to several reasons.
First, the root cause of the bug lies in the template rendering
logic, which heavily intertwines with the syntax parsing and
is hard to understand and reason automatically. Second, the
input to trigger and exploit a template escape bug is a highly-
structured input with grammar. It is challenging to construct
such inputs. Third, unlike memory corruption bugs, template
escape bugs are semantic errors and hard to identify.

In light of these limitations, we propose TEFUZZ, a tailored
fuzzing-based framework to facilitate the detection and
exploitation of template escape bugs. The advantages of
dynamic testing are two-fold: it not only avoids understanding
the complicated template syntax but also takes the generated
PHP code to facilitate bug detection and exploitation. The
major technical challenges of TEFUZZ are how to guarantee
testing coverage and meanwhile reduce redundant testing.
Technically, TEFUZZ incorporates several important designs
to make the bug detection quite effective, such as balancing
the exploration and the exploitation, leveraging PHP syntax
to guide PoC generation, leveraging coverage information
to cluster similar testcases, and leveraging feedback to adapt
failed testcases. In short, by collecting a set of well-structured
template files as seeds, TEFUZZ first mutates these seeds to
discover potential escape points in them (named as interesting
testcases) and then looks for the right payloads that could
leverage these interesting testcases to escape the template
semantic (i.e., finding the PoCs). By fixing the escaped
context of the PoCs in the generated PHP code, TEFUZZ
further turns PoCs into RCE exploits.

We apply TEFUZZ to seven popular PHP TEs. TEFUZZ
detects 135 template escape bugs in six TEs, showing that
template escape bugs are quite prevalent. Further, TEFUZZ
successfully exploits 55 bugs, covering every vulnerable
TE. Moreover, we have verified the full exploitability of
the synthesized RCE exploits with 11 (five N-day and six
0-day) real-world SSTI vulnerabilities, indicating template
escape bugs as severe threats. Besides, our evaluation shows
that none of these bugs could be detected by existing SSTI
scanners. Based on the discovered bugs, we also shed light
on the root causes of these less-understood bugs and compare
the practices among TEs in rendering templates. At last,
we measure the usefulness of each design in TEFUZZ. The
results show that all the incorporated designs significantly
help TEFUZZ to guarantee testing coverage while reducing
testing scope.

In summary, this paper makes the following contributions:

• We study an overlooked and severe sandbox bypass vulner-
ability in template engines and demonstrate its root cause.

• We present an automatic tool to detect and exploit template
escape bugs and introduce several new techniques.

• We discover 135 bugs in seven PHP template engines and
construct 55 exploits that enable RCE attacks.

2 Background
2.1 Template Engine

Template Engine (TE) facilitates the development of server-
side web applications. With the support of a TE, web appli-
cations generate dynamic HTML views from the templates.
In general, there are two kinds of content in a template: the
HTML content that would be directly output to the front-
end and the template code that defines the instructions for
generating HTML content. Given a template, TE first parses
its syntax and then renders it into HTML content by following
the instructions defined in the template code.

Compared with PHP code, template code is more con-
venient to design front-end views, owing to its simplified
language features and optimized programming interfaces.
Taking PHP as an example, we find that more than 65% of
popular PHP applications on GitHub use TEs to generate their
front-end views. Popular TEs include Smarty 1, Twig 2, etc.
There are many different TEs, but their syntax is quite similar.
To be specific, template code is usually defined within tags.
An obvious difference among TEs is the delimiter they used
to mark tags. For example, Smarty uses ‘{’ and ‘{*’ as the
delimiters while Twig uses “{{”, “{#” and ‘{%”. Further, TEs
usually provide a different set of tags. For example, Smarty
has a {config_load} tag for loading configuration variables
from an external file while other TEs do not.

Though there are various tags, they can be divided into three
categories: comment, variable, and function. ❶ Comment
tags are only used in the templates while not output to the
front-end. ❷ Variable tags are used to either define variables
or print the values of the variables. Within a variable tag,
most TEs support filters to manipulate the variables flexibly.
For example, Smarty provides an upper filter to capitalize
the value of a variable before printing, which looks like
{$a | upper}. Common data types are supported in variable
tags, e.g., numeric, string, and array. Except for the template-
defined variables, the template code can access PHP variables
that are propagated into the template and the TE-defined
global variables. ❸ Function tags are used to invoke TE-
defined functions or template-defined functions. Similar to
a PHP function, the function tags can be invoked with
parameters, such as {func param1=‘val1’ param2=‘val2’}.

According to the template rendering workflow, TEs can be
divided into two types: interpretation-based and generation-

1https://www.smarty.net/
2https://twig.symfony.com/

https://www.smarty.net/
https://twig.symfony.com/

based. Interpretation-based TEs parse a template and directly
render the HTML content by interpreting its tags. For every
rendering request to the template, interpretation-based TEs
always need to parse the template and interpret the logic of
template tags. Hence, the whole rendering process is time-
consuming and introduces negligible cost. By contrast, given
a template, generation-based TEs parse its syntax and translate
the template (including the logic of its tags) into a PHP
file. Then, the translated PHP file is executed to generate
the final HTML content. By caching the translated PHP file,
all the subsequent rendering requests to the template are
handled by executing the PHP file. Besides, once a template
is modified, TE would automatically update the cached PHP
file through re-translation. In this way, generation-based TEs
achieve superior performance than interpretation-based TEs.
Therefore, most popular TEs are generation-based.

2.2 SSTI and TE Sandbox

During the template rendering process, template code is either
directly executed by a TE through interpretation or indirectly
executed by running the translated PHP code. Such capability
opens a new injection vector for attackers, known as server-
side template injection (SSTI). An SSTI attacker is assumed
to have control over the code of a template. By triggering
the rendering of the template, the attacker can execute any
template code on the server side.

Since TEs usually provide the template code with rich
functionalities, SSTI attacks lead to severe consequences. The
most severe exploit primitive enabled by an SSTI attack is
remote code execution (RCE). For example, Smarty allows
a function tag to invoke the system() PHP function, which
could run any shell command, e.g., {system(“ls”)}. Besides,
Smarty even provides a {php} tag to run PHP code in the
template. Other popular TEs also provide the template code
with similar capabilities. By leveraging these TE-supported
capabilities, an SSTI attacker could invoke sensitive PHP
functions and even run arbitrary PHP code on the server side,
achieving an RCE exploit primitive. Moreover, diversified
tags in TEs also enable SSTI attacks to achieve other exploit
primitives, e.g., Local File Include (LFI) and Cross-Site
Scripting (XSS) [26].

To defeat SSTI attacks, TE developers have designed some
mitigation mechanisms. The common idea is to introduce
a sandbox mode to restrict the capabilities of the tags
provided with a template. For example, Smarty sandbox mode
disables dangerous tags such as {php} and sets an allowlist
of callable PHP functions from the template. Although some
vulnerabilities have been reported in the TE sandbox due
to the incomplete implementation (e.g., CVE-2014-8350,
CVE-2015-7809), the TE sandbox mode is quite effective
in mitigating SSTI attacks. Under the sandbox mitigation
mechanism, attackers become hard to achieve RCE through
SSTI. Hence, sandbox mode is frequently recommended as a
countermeasure for SSTI attacks [1].

2.3 Sandbox Bypass: Template Escape Bugs

In this paper, we study an overlooked TE bug that could
empower an SSTI attack to bypass the sandbox and gain
RCE again. We use CVE-2021-26120 as an example to
illustrate such kind of bug. Figure 1 (a) shows a code piece
of Smarty that translates the {function} tag in a template
into PHP code. At Line 1, the function name defined in the
{function} tag (i.e., the $_name variable) is used to compose
the corresponding PHP function name. Later at Line 6, the
composed PHP function name is directly output to the PHP
file, including other translated lines. By examining the code
piece in Figure 1 (a), we observe that the $_name variable
at Line 1 can be controlled by an SSTI attacker, and its
value is directly output to the PHP file at Line 6 without
any sanitization. Such code logic puts the translated PHP
code at the risk of being manipulated. However, a normal
$_name can not gain execution as PHP code. To gain code
execution through the controlled template function name, an
attacker should escape the template semantic of using it as a
part of a PHP function name.

By carefully crafting the template function name, Fig-
ure 1 (b) shows a payload that successfully exploits the
weakness at Line 1 of Figure 1 (a) to inject PHP code into
the translated PHP file and gains execution. The translated
corresponding PHP file is shown in Figure 1 (c), and the
injected PHP code is system(“id”) at Line 1. We observe that
there are three important parts in the malformed template func-
tion name, i.e., “name(){};system(“id”);function ”. First,
the “name(){};” part is used to close the definition of the
corresponding PHP function for the function tag. Second, the
“system(“id”)” part is the real injected PHP code. Third, the
“function ” part is used to fix the incomplete implementation
code of the corresponding PHP function for the function tag.
In summary, the bug of the unsanitized input at Line 1 of
Figure 1 (a) could only be exploited to enable an RCE attack
by concatenating all these three parts.

Based on the above analysis, we conclude that the root
cause of the bug in Figure 1 (a) is that the attacker-controlled
inputs in the template code escape the template semantic
during the translation to PHP code. Hence, we name such
a bug as template escape. With the capability of bypassing
the TE sandbox and elevating SSTI attacks to RCE, template
escape bugs are considered to be severe. However, after a
thorough examination of NVD, we find only two known
template escape bugs (i.e., CVE-2017-1000480 and CVE-
2021-26120), and both are reported in Smarty. Since the
template translation process covers both the template code
parsing and the PHP code generation, which involves lots of
complicated string operations, we suspect template escape
bugs should not be so rare in the wild. These facts motivate
us to study the prevalence and the severity of template escape
bugs in real-world TEs.

{function name='name(){};system("id");function '}{/function}

1

2
3

4

function smarty_template_function_name(){}; system("id");
function _87515559($_smarty_tpl, $params) {
 foreach ($params as $key => $value) {
 $_smarty_tpl->tpl_vars[$key] = new Smarty_Variable($value,
 $_smarty_tpl->isRenderingCache);
}

1

b) Smarty Template (Exploit Demo)

c) Compiled PHP File

$_funcName = "smarty_template_function_{$_name} \
 _{$compiler- >template->compiled->nocache_hash}";
$output .= "function {$_funcName}(Smarty_Internal_Template \
 $_smarty_tpl, \$params) {\n";
$output .= $_paramsCode;
$output .= "foreach (\$params as \$key => \$value) {\n\
 $_smarty_tpl->tpl_vars[\$key] ...";
…
$output .= "?>\n";
$compiler->parser->current_buffer->append_subtree(…, $output);

a) Smarty Template Engine Code Piece

1

2

3
4

5
6

Figure 1: A Template Escape Bug in Smarty (CVE-2021-26120).

3 Overview
To study the prevalence and the severity of template escape
bugs, we need an automated tool that could give a PoC to
confirm a template escape bug and give an exploit to assess
its exploitability. In the following, we will clarify the threat
mode of template escape bugs, elaborate on the challenges of
building such a tool, and give an overview of our approach.

3.1 Threat Model

To exploit template escape bugs, we assume that an attacker
can inject template code, i.e., having an SSTI vulnerability.
We observe that attackers can gain SSTI capability in (at least)
three ways:

1. Direct Template Code Injection. It is common to accept ex-
ternal inputs during template rendering, making template
injection a pervasive threat to web applications [4, 7].

2. Exploiting Other Types of Vulnerabilities. For example,
template injection can be achieved by exploiting a file
upload vulnerability which cannot upload PHP files but
may support overwriting a template file [6, 8].

3. Abusing Some Normal Functionalities of Web Applica-
tions. For example, WordPress, Drupal, and OctoberCMS
support UI customization through template modification;
Cachet allows users to create customized reports by
defining new templates.

Based on the above analysis, we conclude that SSTI attacks
are hard to avoid in the real world. However, even with the
capability of template code injection, an attacker cannot gain
RCE, due to the TE sandbox. That is why template escape
bugs are considered to be a type of severe vulnerability, for
the capability of turning an SSTI attack into an RCE attack.

3.2 Challenges

In essence, the internal logic of a TE is quite complicated. On
the one hand, it needs to parse a template file according to its
specific syntax. On the other hand, it requires generating well-
formed PHP code. Both steps involve massive string-related
operations. Therefore, as illustrated in §2.3, it is pretty subtle
to trigger and exploit template escape bugs. The complicated
nature of a TE also brings vast challenges to the automated
detection and exploitation of such bugs. We summarize the
following challenges.

Challenge-I: It requires a fine-grained analysis of the
template input for a TE. Though an attacker could control
the template input, only a part of the input will be output to
the PHP file, e.g., the name of a self-defined template function
at Line 1 of Figure 1 (b). Therefore, detecting template escape
bugs requires a fine-grained analysis to identify the structured
elements of template input. However, since different TEs have
their specific grammar, it is hard to learn the syntax of the
template input.

Challenge-II: It requires a specific payload to trigger
and exploit a template escape bug. As shown in Figure 1 (a),
the PHP code generation process involves a lot of string-
related operations (e.g., checks and transformations). Only
carefully-constructed payloads could trigger a template es-
cape bug. Furthermore, synthesizing an exploit is also quite
challenging. Taking Figure 1 (b) as an example, successful
exploitation requires carefully adapting the payload to the
code around the escaped point in the PHP file.

Challenge-III: There lacks an oracle for identifying
template escape bugs and successful exploitation. Unlike
memory corruption bugs which can be identified by sanitizers
(e.g., ASAN [47], UBSAN [11], and KMSAN [9]), the auto-
matic detection and the exploitation of template escape bugs
still lack an oracle. Specifically, no matter an input escapes
the template semantic or not, there is no reliable indicator.
Moreover, even if an input successfully exploits a template
escape bug, it is hard to judge whether the generated PHP file
has been injected with executable code.

3.3 Approach Overview

In light of these challenges, we propose a dynamic testing-
based approach, called TEFUZZ. The basic idea is to set up
a testing framework for different TEs and create testcases to
discover and exploit template escape bugs. The advantages of
dynamic testing are two-fold. First, it avoids complicated code
analysis in understanding the syntax of template code and
reasoning the control-/data-flow constraints. Second, it could
leverage the generated PHP file to facilitate the identification
of successful template escapes and exploitation.

However, TEFUZZ also meets the fundamental challenges
of being a testing-based framework: How to increase the
testing coverage and avoid redundant testing. Inspired by
the research progress in fuzzing, we adopt several classic

principles and propose some new designs in TEFUZZ to make
it an effective, tailored fuzzing framework for template escape
bugs. Before elaborating on the approach, we first define
several key terms to ease the presentation.

Testcase. In TEFUZZ, a testcase is a piece of code in the
format of the tested TE. TEFUZZ detects template escape
bugs by testing and mutating testcases.

Escape Point (EP). As described in §2.3, template escape
bugs occur when attacker-controlled inputs in the template
code escape the template semantic during the translation to
PHP code. However, only a part of the template code will
be output to the PHP file, thus having the potential to escape
template semantics. We use an escape point (EP) to refer to
such a part of a template testcase. For example, the $_name

variable of the {function} tag in Figure 1 (b) is an EP of the
testcase.

Interesting Testcase. According to the root cause of
template escape bugs, only testcases with EPs have the
potential to trigger template escape bugs. We denote a testcase
as an interesting testcase if it contains at least one EP.

Escape Context (EC). The triggering and exploitation of
template escape bugs require the malformed template code at
the EP to escape its original semantics in the translated PHP
file. We refer to the code context of the EP in the output PHP
file as the escape context (EC) of an interesting testcase. For
example, the EC in Figure 1 (c) is the function name of the
PHP function definition statement.

3.3.1 How to detect template escape bugs?

Principle-I: Balancing Exploration and Exploitation.3
Finding a balance between vulnerability exploration and
exploitation is a well-received principle in fuzzing. However,
the way to balance exploration and exploitation is different
and specific to the bug type. For example, binary fuzzing
favors new code blocks in the exploration stage but favors
new hits of covered code blocks in the exploitation stage [46].
According to the root cause of template escape bugs, we
organize the two fuzzing stages as follows: the exploration
stage aims to identify all interesting testcases; the exploitation
stage looks for the right payload to turn an interesting testcase
into a PoC. For each stage, we also propose a new technique
to make it more effective.

❶ Probing-based Interesting Testcase Identification. Since
a template testcase may contain many characters, it is chal-
lenging to efficiently infer the potential EP from a testcase (if
it has). To this end, we propose a testcase probing technique
to automatically identify interesting testcases, including their
EPs. The high-level idea is inspired by probing-based input
type inference [58] and challenge-based injection point
identification [27]. Technically, we insert a magic string 4

into every position of the template code to gather a set of new
testcases. By collecting the generated PHP file for each new

3The exploitation here means finding a PoC rather than an exploit.
4https://en.wikipedia.org/wiki/Magic_string

testcase, we could use the magic string to infer which position
of the given testcase will be output to the PHP code.

❷ PHP Syntax-Guided PoC Generation. To find the right
payload to trigger the template escape bug at an EP, a naive
mutation strategy would cause a vast testing space to explore.
Our observation is that when a payload triggers a template
escape bug, it also breaks the original code structure of the
generated PHP file. More specifically, with the aim to break
the PHP code structure, the payload should contain some
syntax characters of the PHP language (e.g., ‘;’ and ‘)’). Thus,
we could collect all these characters and use them to generate
PoC testcases. Moreover, by observing the code structure
of the generated PHP file, we could effectively identify a
successful template escape (i.e., a bug oracle).

Principle-II: Improving Code Coverage while Avoiding
Redundant Testing. Covering more code is useful for bug
detection, while redundant testing on similar testcases hurts
the fuzzing efficiency. Following this principle, we propose
two techniques to make the fuzzing process more effective.

❶ Testcase Adaption by Leveraging Error Feedback. To
increase the testing coverage, TEFUZZ would generate a lot
of new testcases. However, the newly-generated testcases
might meet various testing errors, due to dependencies on
the running environment, grammar issues, etc. Therefore, we
propose actively adapting the failed testcases to the testing
target. Our observation is that the error feedback given by a
TE usually conveys helpful information about how to fix the
failed testcases. Considering that a TE usually has few types
of error feedback, we introduce a semi-automated testcase
adaption technique by leveraging the TE feedback. This
technique substantially enhances the bug detection capability.

❷ Testcase Clustering by Leveraging Runtime Information.
In the two-stage fuzzing, TEFUZZ would inevitably generate
similar testcases. First, the exploration stage would identify a
lot of similar interesting testcases, because the EP inference
is performed at every position of the testcase. Second,
the exploitation stage would find similar PoCs with the
same bug root cause. To cluster similar testcases, existing
fuzzing frameworks have devised some metrics, such as code
coverage [2, 39] and stack trace [37, 57]. In TEFUZZ, we
also propose useful metrics to cluster similar testcases at each
stage by leveraging the runtime information of testcases.

3.3.2 How to exploit template escape bugs?

Based on a PoC that triggers a template escape bug, TEFUZZ
further tries to generate an RCE exploit. After escaping
the template semantic, the malformed PoC also breaks the
original code structure of the generated PHP file, which cannot
execute normally. Thus, we need to adjust the PoC so that it
not only breaks the original PHP code structure but also keeps
it well-formed. The key challenge is that a PoC may break the
PHP code structure in different contexts (aka EC), and each
broken PHP code structure has to be fixed in its specific way.

https://en.wikipedia.org/wiki/Magic_string

Exploit Synthesis

Testing Framework

Bug Detection

Web Application Environement

Seed
Collection

Interesting Testcase
Identification

 Testcase
Adaption

PoC
Generation

Escape Context
Identification

Context-Sensitive
Code Wrapping

testing
reportsCorpus

template
testcase

Testcase
Runner

PoC

Figure 2: Overall Architecture of the TEFUZZ Framework.

Hence, we propose context-sensitive exploit synthesis.
Technically, there are two steps: ❶ identifying the EC of
the PoC in the PHP code and ❷ adjusting the PoC to keep the
injected PHP code fit the corresponding context. Note that
existing works on XSS payload generation also meet a similar
challenge, i.e., the injected payloads should fit various client-
side contexts (e.g., HTML, JavaScript) [27, 29] and adopt a
similar idea. Compared with existing works, our technical
contributions are the summarized ECs for template escape
bugs and the payload adjustment methods to fit PHP code.

4 Detailed Design
In this section, we present the detailed design of our approach.
Figure 2 shows the architecture of TEFUZZ, which consists
of four key modules. The Testing Framework module setups
a testing environment for each TE. It takes a template file
as input and returns a testing report for each testcase. The
Seed Collection module collects a set of template files as the
seeds for generating testcases, PoCs, and exploits. The Bug
Detection module mutates a seed testcase to discover template
escape bugs. When a bug is triggered, the testcase is collected
as the PoC. The Exploit Synthesis module takes a PoC as input
and weaponizes it as an exploit for the target bug. Algorithm 1
depicts the overall workflow. During the whole workflow, all
the testcases (including PoCs and exploits) are executed in
the testing framework. In all, there are four steps.

• Step 1: Seed Collection (Line 2). We collect an initial set of
testcases for each TE. The details are described in §5.2.

• Step 2: Interesting Testcase Identification (Lines 3-14). For
each seed testcase, we propose a probing-based technique
(§4.2.1) to create many testcases and identify which are
interesting ones. If some testcases run abnormally, we use
the error feedback to adapt these testcases (§4.2.3). We also
cluster the interested testcases to avoid redundant testing.

Algorithm 1: TEFUZZ Workflow
Input : TE
Output : PoCs, Exploits

1 interest_testcases← []; PoCs← []; Exploits← [];
2 seeds← SeedCollection ();
3 for testcase in seeds do
4 new_testcases← Probing(testcase);
5 for testcase in new_testcases do
6 report← ExecInFramework(testcase);
7 if IsTEError(report) then
8 testcase← TestcaseAdaption(testcase);
9 report← ExecInFramework(testcase);

10 if IsInteresting (report) then
11 Add(interesting_testcases, testcase);
12 end
13 end
14 interest_testcases← Clustering1(interest_testcases);

15 for testcase in interest_testcases do
16 new_testcases←Mutate(testcase);
17 for testcase in new_testcases do
18 report← ExecInFramework(testcase);
19 if IsTEError(report) then
20 testcase← TestcaseAdaption(testcase);
21 report← ExecInFramework(testcase);
22 if IsPoC (report) then
23 Add(PoCs, testcase);
24 break;
25 end
26 end
27 PoCs← Clustering2(PoCs);

28 for poc in PoCs do
29 context← ClassifyContext(poc);
30 exploit← CodeWrapping(poc, context);
31 report← ExecInFramework(exploit);
32 if IsExploit(report) then
33 Add(Exploits, exploit);
34 end

• Step 3: PoC Generation (Lines 15-27). For each interesting
testcase, we propose PHP syntax-guided testcase mutation
technique (§4.2.2) to create many testcases and identify
which ones can trigger template escape bugs (i.e., are PoCs).
For the error testcases, we also use the testcase adaption
technique (§4.2.3) to adapt them. We further cluster the
PoCs to remove duplicated bugs.

• Step 4: Exploit Synthesis (Lines 28-34). For a given PoC,
we first identify its EC in the generated PHP file (§4.3.1)
and then adjust the PoC to wrap the PHP code around the
EC (§4.3.2).

4.1 Testing Framework

Unlike traditional user-space programs, the testing of a TE has
various dependencies on the web environment. For example,
TEs usually access some global variables defined by the

web platform (e.g., $_SERVER). Hence, we set up a complete
PHP web application environment in the testing framework.
Further, upon the web application environment, we build
a testcase runner who runs a template testcase on a target
TE and collects the feedback to facilitate bug detection and
exploit synthesis. Since TEs have different interfaces, we
create a separate driver for each TE. The logic of a TE driver
is quite simple. It just invokes the target TE to render the
given template testcase.

For each testcase, the testing framework returns a testing
report. First, it collects the errors that occur during the testing.
The errors might be caused by two sources: ❶ TE errors that
happen during the template translation; ❷ PHP errors that
occur during the execution of the generated PHP file. Second,
it collects the covered code lines of a TE during the testing. As
it will be described later, the coverage information helps avoid
redundant testing. Third, it collects the generated PHP files,
which are used to identify escape points, synthesize exploits,
etc. Generally, the testing framework interacts with other
modules by receiving testcases and sending testing reports.

4.2 Bug Detection

4.2.1 Interesting Testcase Identification

We collect interesting testcases by identifying the escape
points (EPs) of each seed testcase. To avoid understanding the
complicated syntax of the template input, we adopt a probing-
based technique. There are mainly four steps (Lines 3-13 in
Algorithm 1):

1. We insert a magic string (e.g., “Un1QuE”) into each
position of the seed testcase and get a set of new testcases.

2. We send each new testcase to the Testing Framework
module to get its testing report. If there is a TE error
reported during the testing, we send the testcase to the
Testcase Adaption module to try to fix the error. If the TE
error cannot be fixed, we discard the testcase.

3. We extract the generated PHP file for each testcase from
its testing report and match the inserted magic string in
the PHP file. If there is no match, we discard the testcase
because there is no EP.

4. We collect all the testcases that have matched magic strings
in their generated PHP files, including their testing reports.
These testcases are identified as interesting testcases.

Interesting Testcase Clustering. Since the identification of
interesting testcases is based on inference, we may iden-
tify many similar interesting testcases. Let us consider
the function tag in Smarty as an example, as shown in
Figure 1 (b). When we insert a magic string before the
function name’s first and last character, we may get two
interesting testcases. However, they both belong to the same
EP (i.e., the function name of the tag). Thus, we need to
cluster similar interesting testcases to avoid redundant testing.
The key challenge is that the clustering method should not
rely on prior knowledge of the template syntax.

To this end, we propose a syntax-agnostic testcase cluster-
ing technique. Our insight is that similar interesting testcases
should have the same code footprint during the template
translation and the same EPs in the generated PHP files.
Specifically, we consider two testcases as different only when
they have different code coverage or EPs. The code coverage
of a testcase can be directly acquired from the testing report.
Meanwhile, the EPs in the generated PHP file are represented
by the line numbers of the magic string in the PHP file.
According to the evaluation (§5.7), the interesting testcase
clustering technique significantly helps to reduce a large
number of redundant testing.

4.2.2 PoC Generation

Based on an interesting testcase, we aim to find the right
payload to trigger a template escape at its EPs. Our observa-
tion is that if we expect the payload to escape the template
semantic, the payload should contain some pre-defined PHP
syntax characters, e.g., ‘;’ and ‘)’. Therefore, we propose
syntax-guided testcase mutation. It works in the following
four steps (Lines 15-26 in Algorithm 1):

1. We collect all the pre-defined PHP syntax characters by
reading the specifications. Besides, we also include some
other common escape characters, such as “*/”. In all, there
are 134 escape characters to test.

2. We insert these escape characters into each EP of an
interesting testcase to create new testcases.

3. We run each new testcase in the Testing Framework
module. We also use the Testcase Adaption module to
fix the TE errors reported during the testing.

4. We identify a PoC by using the generated PHP file as an
oracle. In particular, if the generated PHP file reports a
PHP error during the template rendering or its original
code structure changes, we consider the testcase as a PoC.

PoC Clustering. Like other fuzzing-based bug detectors,
TEFUZZ may report duplicate PoCs with the same root
cause [23, 52]. For example, {block “*/title”}{/block}

and {block name=“*/title” prepend}{/block} are two
PoCs but have the same root cause: the name attribute of
the block tag escapes the template semantic. To reduce the
manual efforts in bug validation, we remove duplicate bugs
by PoC clustering.

Inspired by the interesting testcase clustering technique,
we cluster PoCs based on their code coverage and EPs.
Specifically, given two PoCs, we first measure a coverage
similarity using the Jaccard index 5 between their covered
code line numbers. Then, we measure an EP similarity by
using the edit distance 6 between the PHP code lines that
include their EPs. To avoid identifying two unique bugs as the
same, we adopt a conservative design. On the one hand, we set
a high threshold (i.e., 0.95) for both the coverage similarity

5https://en.wikipedia.org/wiki/Jaccard_index
6https://en.wikipedia.org/wiki/Edit_distance

https://en.wikipedia.org/wiki/Jaccard_index
https://en.wikipedia.org/wiki/Edit_distance

and the EP similarity. On the other hand, we identify two
PoCs as the same only when both the coverage similarity and
the EP similarity exceed the thresholds.

4.2.3 Testcase Adaption

Both the Testcase Probing module and the PoC Generation
module create new testcases by mutation. These mutated
testcases may meet various errors during the testing. We try
to fix the failed testcases to improve the testing coverage.
However, fixing testcases is quite challenging due to the
semantic constraints on a valid testcase. Our observation is
that the error messages given by a TE for failed testcases
usually convey helpful information for fixing. Therefore, we
design feedback-guided testcase adaption. For each TE, we
manually collect the error messages that it may report during
the testing and compile the corresponding adaption rules to
fix the testcase. Fortunately, we find that the number of such
error messages is not large, which makes the manual analysis
affordable. According to our experience, we summarize three
types of TE errors: file errors, grammar errors, and attribute
errors. These errors are fixed in the following ways.

• File Adaption. A template testcase usually refers to some
files, while access to these files may cause errors. There are
two scenarios. First, the required file does not exist or is not
readable. For this error, we will create this file and give it
read permission. Second, if the included file directory is not
trusted by a TE, we will move the file to a trusted directory.
For example, when an error message says “unable to load
template test1.tpl”, we will create a “test1.tpl” file in
the corresponding directory.

• Grammar Adaption. The mutated testcases frequently meet
grammar errors. We find three categories of such errors: i)
missing parameters or attributes, ii) unclosed symbols, and
iii) unclosed tags. Accordingly, we match these errors and
try to fix them. For example, when we meet an error saying

“unclosed {block} tag”, we will add {/block} at the end
of the seed to fix the unclosed tag error.

• Attribute Adaption. The mutation may break the values of
some tag attributes, making their type unsatisfied. For such
errors, we will change the values until they become legal.
For example, when an error message says “illegal value for
option attribute inline”, we will change the value of the
inline attribute into another type.

These adaptions help run more testcases during the testing,
which ultimately helps discover more bugs. Note that when
a single round of adaption fails to fix a testcase, we would
repeat the adaption until the total round of adaptions reaches
a given limit (e.g., 2 in our current setting).

4.3 Exploit Synthesis

4.3.1 Escape Context Identification

EC Taxonomy. According to the output position of an EP in
the generated PHP file, we summarize five types of ECs.

• Function/class definition. When defining some PHP func-
tions or classes, TEs may name them using template code
elements.

• Function invocation statements. The template code ele-
ments may be used to refer to the PHP function or its
parameters at function invocation statements.

• Assignment statements. TEs usually use template code
elements to generate assignment statements, e.g., when
translating variable tags.

• Conditional statements. The variables defined in the tem-
plate code may appear in some conditional statements of a
generated PHP file, e.g., if statements, foreach statements.

• Comments. To increase the readability of the generated PHP
file, TEs usually generate comments in the PHP file using
some elements of the template code.

Based on the above taxonomy, we identify the EC of a PoC
by locating its EP in the abstract syntax tree (AST) of the
generated PHP file. Note that when a PoC triggers a template
escape bug, it breaks the proper code structure of the PHP file,
making locating the EP very hard. Therefore, we use a benign
input to replace the malformed payload of the PoC and then
generate a valid PHP file. By locating the node of the benign
input in the valid AST, we identify the PHP statement that
this node belongs to and the EC based on this PHP statement.

4.3.2 Context-Sensitive Code Wrapping

According to the specific EC, we adjust the PoC to inject
malicious PHP code into the generated PHP file. The most
difficult part is to keep the generated PHP file well-formed,
which requires finding the right payload to wrap the PHP
code before and after the EP. Our idea is to use the EC
taxonomy in §4.3.1 as guidance and adopt a template-based
approach to generate the right wrapping payload for each PoC.
Specifically, there are three steps.

1. According to the EC and the EP, we look for the right
payload to close the current PHP statement. The overall
strategy is like a switch case, i.e., using the EC and EP as
the key to locate the corresponding template for payload
generation. For example, if the EC is a PHP function
definition statement and the EP is the function name (see
Figure 1), we can use the payload “name(){};” to close
the function definition statement For another example, if
the EC is a PHP function invocation statement and the EP
is the parameter, we can use “));” to close the function
invocation statement (the number of the right parentheses
depends on the number of the left parentheses in the EC).

2. After wrapping the code before the EP, we locate the
AST nodes for the code after the EP. A straightforward
way to close these nodes is to put them into a comment.
For example, in most cases, we can use the payload “//”
to wrap the code after the EP. However, a line comment
could not wrap all the code when the remaining code spans
multiple lines. In this case, we adopt the same strategy as

the previous step to seek a payload that could turn the
remaining code into a valid PHP statement. Specifically,
we define several payload generation templates according
to the EC and EP of the current PHP statement. For
example, if the EC is a PHP function definition statement,
we can use “function ” to close the remaining code (see
Figure 1).

3. Using the above two payloads to wrap the code around the
EC, we insert the target RCE code between the payloads.
For example, we simply use “system(‘id’);” as the RCE
payload to demonstrate the success of the exploit.

Following these steps, we synthesize an exploit from a
PoC. We further run the synthesized exploit in the testing
framework to verify its validity.

5 Evaluation
5.1 TEFUZZ Prototype

We implemented a prototype of TEFUZZ for PHP TEs, which
consists of 4,300 lines of Python code and 560 lines of PHP
code. The Seed Collection module is built with the Python
requests package. The Testing Framework module is set up
on an Apache web server with PHP version 7.2.34 to provide
a running environment for the tested TEs. It communicates
with other modules via HTTP, i.e., a template testcase is sent
to the testing framework as an HTTP request, and the testing
report is returned within the HTTP response. During the test,
Xdebug 7 is used to collect the code coverage of the tested
TE. Both the Bug Detection module and the Exploit Synthesis
module are implemented in Python. The two modules execute
in the way by sending testcases to the Testing Framework
module and analyzing the returned testing reports.

5.2 Experimental Setup

TE Dataset. Our study requires collecting a TE dataset. In
particular, we set three criteria to select TEs. First, we only
consider generation-based TEs. Second, it should be a popular
TE. Third, the TE should have a sandbox mode to mitigate
SSTI attacks (e.g., preventing RCE) or should not support
executing PHP code in the template.

More specifically, we first used keywords (e.g., template
engine) to search all the TE candidates on GitHub. We set the
language to PHP and only collected the TEs with more than
100 GitHub stars. Following this way, we constructed a list of
18 TEs. Then, we filtered those TEs that are not generation-
based (5 TEs) and those TEs that support direct PHP code
execution in the template and do not have a sandbox mode (6
TEs). At last, we collected 7 PHP TEs that satisfy all the above
three criteria. As listed in Table 1, our study is conducted on
these TEs. Note that the latest versions of these TEs are used
in the dataset.

We give a short description of these TEs. In our dataset,
Smarty, Latte, Dwoo, and Fenom all provide some tags for

7https://xdebug.org/

PHP code execution and designs a sandbox mode to restrict
the usage of these sensitive tags. Though Twig does not
introduce a specific tag for PHP code execution, developers
could run arbitrary PHP code using some filters, such as map

and sort. The sandbox mode of Twig is designed to restrict
the usage of these filters in the variable tags. Unlike other
TEs, Mustache is a simple, logic-less TE, which inherently
does not support PHP code execution nor support invoking
PHP functions in the template, so an attacker can not gain
RCE by controlling a Mustache template. Owing to its
lightweight design, Mustache is extremely popular. ThinkPHP
is well-known as a PHP application framework; however, its
internal template engine has also been widely used by other
web applications. Therefore, we also include its TE in the
dataset. ThinkPHP TE provides some tags to support PHP
code execution, and its sandbox mode limits the execution of
PHP code by sanitizing the parameters to these tags through
“TMPL_DENY_PHP”, and “tpl_deny_func_list”.

We manually make the following adaptions to apply
TEFUZZ to the collected TEs. First, we manually created
a driver for each TE to support testing its template testcases
in the Testing Framework module. The testcase driver is easy
to develop and usually requires less than 50 lines of PHP
code. To discover bugs that could escape the TE sandbox, the
sandbox mode of the TE is also enabled during the testing.
Second, we extracted the delimiters that each TE uses from
the documentation. As listed in Table 1, we find that though
TEs use different delimiters for function tags, variable tags,
and comment tags, the numbers of delimiters are small. These
delimiters are used in the Seed Collection module and the
Testcase Adaption module to facilitate the template seed
collection and the template error fixing, respectively. Third,
according to the error messages that are reported during the
testing, we manually compiled adaption rules in the Testcase
Adaption module to fix these errors. On average, 5.4 adaption
rules are defined for a TE (see Table 1).

Seed Collection. The seeds of each TE are collected in two
steps. First, for each TE, we use crawlers to collect its official
documents and the testing files in its source code. Second, we
write regular expressions based on the delimiters to extract
the template code from the crawled texts. In this way, we
collected an initial corpus of 2,527 template testcases. We run
these testcases in the testing framework and find that 1,621
ones can run normally. For the 906 cases that report errors,
we used the Testcase Adaption module to fix them, which
successfully fixed 107 cases. At last, we collected a set of
1,728 testcases as the initial seeds for TEFUZZ. Table 1 shows
the number of collected seeds for each TE. In all, the whole
process of seed collection costs about 3.5 man-hours.

Experiments. In the following, our experiments are organized
by answering the following questions.

• RQ1: How prevalent are template escape bugs?
• RQ2: How severe are template escape bugs?

https://xdebug.org/

Table 1: Dataset of the Target TEs and Their Basic Information.
TE Name Version Stars LoC Mitigation Delimeter # of Seeds # of Adaption Rules

Smarty v3.1.39 2k 25,986 Sandbox {,}; {*,*} 523 13
Twig v3.3.1 7.5k 18,378 Sandbox {{,}}; {%,%}; {#,#} 339 9
Dwoo v1.3.7 168 80,405 Sandbox {,}; {*,*} 208 4
Latte v2.10.5 802 6,949 Sandbox {,}; {*,*} 289 5
Mustache v2.14.0 3.1k 6895 No PHP Execution {{,}}; {{!,}} 17 2
Fenom v2.12.1 431 11,974 Sandbox {,}; {*,*} 181 4
ThinkPHP v6.0.12 2.4k 2,280 Sandbox {,}; {/,/} 171 1

Table 2: Detected Bugs (RQ1 & RQ2).
TE Name Unique Bugs Exploitable Bugs RCE?

Smarty 3 3 ✓
Twig 0 0
Latte 49 24 ✓

Mustache 1 1 ✓
Dwoo 38 2 ✓
Fenom 10 10 ✓

ThinkPHP 34 15 ✓

All 135 55

• RQ3: How does TEFUZZ compare to SSTI scanners?
• RQ4: How feasible is exploiting template escape bugs in

real-world applications?
• RQ5: How helpful are the internal designs of TEFUZZ?

5.3 Prevalence of Template Escape Bugs (RQ1)

We have manually analyzed the reported PoCs by following
their execution traces and pinned the code lines that cause
these bugs. We deem two bugs as the same if they are caused
by the same (buggy) code lines. Table 2 presents the bug
detection results and Column 2 shows the number of bugs
detected in each TE. From Column 2, we find that almost
every TE has template escape bugs. In all, TEFUZZ reports
135 bugs in these TEs. The results show that template escape
bugs are quite prevalent.

From Table 2, we also observe that the number of bugs
varies significantly among different TEs. For example, Latte
has 49 bugs, while Twig reports no escape bugs. Therefore,
we further investigate the following two questions: ❶ What
are the root causes of these bugs? ❷ Why do some TEs have
fewer bugs? With the help of the generated PoCs, we manually
examined all the code that uses and checks the malformed
inputs. Technically, we find the template translation process
can be divided into two continuous steps: template code
parsing and PHP code generation. In each step, improper
input validation would cause template escape bugs. We
present the manual analysis results below.
Root Cause. In general, we find two causes for these bugs.

• Incomplete validation in template code parsing (120 bugs).
During the parsing of the template code, TEs need to
validate whether the template code elements fit the template
syntax. For example, the name of a template variable should
only include digits, letters, and underscores. However, we
observe that some bugs are caused because the TEs do

not perform a complete validation on the template code
elements. Taking Latte as an example, it accepts special
symbols (e.g., ‘/’ and ‘;’) as a part of a variable name
during the parsing. Though these bugs do not affect the
normal functionality of template parsing, they can be used
to inject malformed payloads into the template translation.

• Incomplete sanitization in PHP code generation (15 bugs).
After parsing the template code, the template code elements
will be used to generate different PHP code statements.
Even when these elements have been validated to fit the
template syntax, TEs still need to sanitize them to prevent
the PHP syntax from escaping. However, we observe
that some TEs do not properly perform all the necessary
sanitization, causing template escape bugs. For example,
the Dwoo template code “{assign bar foo}” is used to
assign the foo variable with a constant string “bar”. During
the code generation, the template code is translated into a
PHP function invocation statement, and the constant string
“bar” is used as a parameter. However, though Dwoo has
sanitized some characters (e.g., ‘(’) for the constant string
attribute, we find that it forgets to sanitize the character ‘\’.
Therefore, TEFUZZ reports an escape bug in this case.

Different Practice among TEs. In all, we find four features
of the TEs that are more prone to template escape bugs.

• Complex template syntax. Mustache has the most simple
syntax in our TE dataset and the smallest number of tags.
Therefore, we only find one bug in it.

• Directly mapping the template variables to PHP variables.
Defining variables in the template code is supported in every
TE. Some TEs directly map these variables to PHP variables
with the same name during the template code translation.
Such practice allows attackers to use malformed template
variable names to escape the PHP syntax. We find that both
Latte and ThinkPHP follow this practice and report many
bugs due to this reason.

• Optimistic template code parsing. Some TEs parse the
template code in an optimistic way, e.g., Latte, Dwoo and
ThinkPHP. That is, they try not to report syntax errors
during the parsing. However, optimistic template parsing
would make the PHP code generation prone to escape bugs.
On the contrary, Smarty, Twig, Mustache, and Fenom all
adopt strict syntax parsing, thus having fewer bugs.

• Lacking sanitization on the generated PHP code. When
generating PHP code, TEs should sanitize the generated

https://www.smarty.net/
https://tiki.org/
https://github.com/dwoo-project/dwoo
https://latte.nette.org/
https://github.com/bobthecow/mustache.php
https://github.com/fenom-template/fenom
https://github.com/top-think/framework

{block name="*/system('id');//"}{/block}

1
2
3
4
5
6
7

/* {block "*/system('id');//"} */
class Block_19842409 extends Smarty_Internal_Block{
 public $subBlocks = array (
 '*/system(\'id\');//’ => array (0 => 'Block_19842409',),
);
 …
}

1

(a) Smarty Tmplate File

(b) Translated PHP File

Figure 3: A Template Escape Bug in the {block} Tag of
Smarty (RQ2).

code according to its context in the PHP file. For example,
if the generated code appears in the comments, the “*/”
characters should be sanitized. Among all the TEs, we only
observe Twig performing a context-aware code sanitization.
As a result, TEFUZZ has not discovered a bug in Twig.

5.4 Severity of Template Escape Bugs (RQ2)

Based on the reported 135 template escape bugs, TEFUZZ
successfully exploits 55 bugs (see Table 2). Right now, we
have been assigned 4 CVEs. From Table 2, we also find
that TEFUZZ successfully generates an exploit for every
TE reported with a template bug. Among all the TEs in
our dataset, only Twig has no template escape bug. For
other TEs, an attacker could escalate a template modification
vulnerability to RCE with the help of the synthesized exploits.
We give a case study about the discovered exploitable bugs
and the synthesized exploits.

Case Study: An Exploitable Bug in Smarty. TEFUZZ
reports a bug in the {block} tag of Smarty (v3.1.39). As
shown in Figure 3, when translating the {block} tag of
a template, Smarty generates a PHP class for the block,
including a brief comment to describe the class. From the
generated PHP file, we can find that the name of the block
directly appears in the generated comment. Using a “*/” in
the block name, TEFUZZ successfully generates a testcase to
escape the comment definition in the generated code, as shown
in Figure 3 (b). When synthesizing the exploit, TEFUZZ
further analyzes the comment escape context in the generated
PHP file and adds some wrapping code to the block name
to fit the escape context. At last, the synthesized exploit in
Figure 3 (a) successfully injects the target RCE code into the
generated PHP file, enabling an RCE attack.

5.5 Comparison with SSTI Scanners (RQ3)

To our knowledge, TEFUZZ is the first tool to detect and
exploit template escape bugs. Nevertheless, we noticed an
SSTI scanner, named tplmap, which claims to be capable of
bypassing the TE sandbox. Thus, we conduct a comparison
experiment between tplmap and TEFUZZ. Our experiment
seeks to answer two questions: ❶ Can tplmap discover
template escape bugs? ❷ Can TEFUZZ help tplmap to
discover exploitable SSTI vulnerabilities?

Table 3: Comparison Results between tplmap and TEFUZZ.

TE Name Version
tplmap tplmap + TEFUZZ

SSTI Escape1 RCE SSTI Escape1 RCE

Smarty v3.1.39 ✓ ✕ ✕ ✓ ✓ ✓
Twig v3.3.1 ✓ ✕ ✕ ✓ ✕ ✕
Dwoo v1.3.7 ✓ ✕ ✕ ✓ ✓ ✓
Latte v2.10.5 ✓ ✕ ✕ ✓ ✓ ✓
Mustache v2.14.0 ✓ ✕ ✕ ✓ ✓ ✓
Fenom v2.12.1 ✓ ✕ ✕ ✓ ✓ ✓
ThinkPHP v6.0.12 ✓ ✕ ✕ ✓ ✓ ✓

1 Triggering a template escape bug

Experiments. We use the TEs in Table 1 to test the tplmap.
Since tplmap requires a standalone web application for
scanning, we use the application drivers used to run the
template testcases in the Testing Framework module as the
entry points for tplmap. This setting eases the discovery of
template injection points for tplmap. Besides, we find that
tplmap only supports Smarty and Twig in our TE dataset.
Therefore, we enhanced tplmap to support other TEs in our
dataset (e.g., Mustache, Latte), by carefully following its
internal mechanism.

In addition, according to our study on tplmap, we find
that it relies on a set of manually-curated payloads to bypass
the TE sandbox. Thus, we also use the RCE payloads that
are automatically generated by TEFUZZ to enhance tplmap
(when tplmap fails to break the sandbox).

Results. We present the results in Table 3. The results show
that tplmap successfully discovers the template injection
points in the application driver of each TE. However, due
to the incapability of generating new sandbox bypassing
payloads, tplmap fails to bypass the sandbox of any TE. In
contrast, using the RCE payloads generated by TEFUZZ,
tplmap successfully breaks the sandbox of every TE (except
Twig). The results show that tplmap cannot discover template
escape bugs, and TEFUZZ and tplmap are complementary in
detecting exploitable SSTI vulnerabilities.

5.6 Feasibility of Full Exploitation (RQ4)

In the threat model of template escape bugs (§3.1), an attacker
must gain the capability of template code injection. In this
research question, we evaluate the feasibility of template code
injection in the real world. Specifically, the experiments are
conducted from two orthogonal directions. First, we assess
the feasibility of SSTI attacks by looking into a database
of known vulnerabilities. Second, we try to verify the full
exploitability of template escape bugs by discovering some
0-day SSTI vulnerabilities.

5.6.1 Searching Known Vulnerabilities

By scrutinizing known SSTI vulnerabilities in the CVE
database, we seek to answer the following two questions:
❶ What are the root causes of the SSTI vulnerabilities in the
wild? ❷ Can known SSTI vulnerabilities be used to exploit
the template escape bugs discovered by TEFUZZ?

Experiment-I: Root Causes of Known SSTI Vulnera-
bilities. First, we investigate the root causes of real-world
template injection vulnerabilities to assess the feasibility of
our threat model. To this end, we collect a set of template
injection vulnerabilities by using the keywords “SSTI” and
“template injection” to search the CVE database, and get
145 search results. We find that many of the searched
vulnerabilities do not belong to template injection. Thus, we
manually examine all the search results and eventually found
80 SSTI vulnerabilities. During the manual examination,
we also pinpointed the root cause of each confirmed SST
vulnerability according to the vulnerability description. In all,
we find 45 vulnerabilities belong to Direct Template Code
Injection, 8 vulnerabilities belong to Exploiting Other Types
of Vulnerabilities, and 25 vulnerabilities belong to Abusing
Some Normal Functionalities of Web Applications. Note that
we fail to identify the root causes of 2 vulnerabilities due to
the incomplete CVE description.

Experiment-II: Full Exploitation on Known SSTI Vul-
nerabilities. Second, we check whether the collected SSTI
vulnerabilities can facilitate the discovered template escape
bugs to achieve full RCE exploitation. We adopt two methods
to confirm the used TE of an SSTI vulnerability: 1) examining
the source code of the affected web application and 2) reading
the description of the official website of the application.
Following this way, we find three vulnerabilities that use a
vulnerable TE in our dataset: two SSTI vulnerabilities that
use Smarty (CVE-2020-35625 and CVE-2017-16783) and
one vulnerability that uses ThinkPHP (CVE-2020-25967).

Note that though we only find three vulnerabilities that use
a vulnerable TE in our dataset, there should be more cases
in the real world. For example, by reading some security
blogs and vulnerability reports, we also found two SSTI
vulnerabilities (CVE-2017-6070 and CVE-2020-15906) that
use Smarty, but have not been covered in the experiment.
Therefore, we successfully collect five SSTI vulnerabilities
that use a vulnerable TE in our dataset. With the help of the
public vulnerability reports, we reproduced all these SSTI
vulnerabilities. By using the synthesized RCE payloads by
TEFUZZ, we successfully conduct full RCE exploitation in
the affected web applications. In the following, we give two
case studies about the full exploitation.

Case 1. Tiki Wiki 8 is a free and open-source wiki-based
content management system (CMS), which is built with
Smarty. It has been reported with an authentication bypass
vulnerability, i.e., CVE-2020-15906, which allows an attacker
to reset the admin password. Since template modification
is provided as a normal functionality, an attacker can run
arbitrary template code on the server side by modifying the
template. However, due to the sandbox mode of Smarty,
the attacker is hard to run PHP code using the template
modification capability. By leveraging the exploit synthesized

8https://tiki.org/

for Smarty (e.g., Figure 3), we successfully run arbitrary PHP
code at the vulnerable server. This case shows how a template
escape bug elevates an authentication vulnerability to RCE.

Case 2. CMS Made Simple (CMSMS) 9 is an open-source
CMS built with Smarty and widely used by developers and site
owners. In CMSMS 1.X, there is an SSTI vulnerability (CVE-
2017-6070) that allows an attacker to render arbitrary template
content by using the “brp_fora_form_template” parameter,
leading to an RCE attack [5]. This vulnerability lies in the
Form Builder component of CMSMS, which helps users
create feedback forms. Though the vulnerability affects both
CMSMS 1.X and CMSMS 2.X, an RCE attack is only feasible
on version 1.X (which may also depend on the configuration
of the Smarty). The reason is that, on CMSMS 2.x, Smarty is
used with the sandbox mode. As a result, an attacker is hard to
exploit CVE-2017-6070 to achieve RCE on CMSMS 2.x. To
verify the severity of the discovered template escape exploits
in Smarty, we set up the exploitation environment for CMSMS
2.x. We find that though an attacker can inject arbitrary
template code on the server side, it is hard to run arbitrary
PHP code due to Smarty’s sandbox mode. By replacing
the injected template code with the exploit synthesized by
TEFUZZ (e.g., Figure 3), we successfully run “system(‘id’)”
on the server side. The results demonstrate the severity of
template escape bugs that enlarge the attacking capability of
an SSTI vulnerability.

Summary: We have two findings from the above experi-
ments. ❶ The root causes of real-world SSTI vulnerabilities
are consistent with the threat model in §3.1. That is, there
are at least three ways to achieve SSTI, rendering it a real
threat. ❷ By putting in great manual efforts (about 80 man-
hours), we successfully verified the full exploitability of the
discovered template escape bugs with five real-world SSTI
vulnerabilities.

5.6.2 Discovering 0-day Vulnerabilities

In addition to searching for known SSTI vulnerabilities, we try
to discover some 0-day SSTI vulnerabilities. To this end, we
first collect a set of PHP applications and then try to discover
SSTI vulnerabilities in these applications in two ways: SSTI
scanners and manual hacking.

Application Dataset. We only collect the PHP applications
that use the vulnerable TEs in our dataset. The collection
process consists of three steps. First, we use keywords (e.g.,
“CMS”) to search the projects in GitHub and only select the
PHP applications with 500+ stars. In this step, we find 7
PHP applications that use the vulnerable TEs in our dataset.
Second, we use some keywords (e.g., “Best Popular CMS
2022”, “Best Popular PHP CMS”, and “PHP CMS”) to
search popular PHP applications in Google. We initially got
55 applications from the search results and only kept nine
applications that fit our requirements. Third, for those TEs

9http://www.cmsmadesimple.org/

https://tiki.org/
http://www.cmsmadesimple.org/

Table 4: Details of the Collected 18 Real-world PHP Applications that Use TEs in Our Dataset.

CMS TE Version SSTI Vulnerabilities RCE Stars URLtplmap Manual

CMSMS Smarty 2.2.16 ✕ ✓ ✓ http://www.cmsmadesimple.org/
lmxcms Smarty 1.41 ✕ ✓ ✓ http://www.lmxcms.com/
Piwigo Smarty 13.0.0 ✕ ✓ ✓ 2.2k https://github.com/Piwigo/Piwigo

UQCMS Smarty 1.0.27 ✕ http://www.uqcms.com/
MediaWiki Smarty 1.38.2 ✕ ✓ ✓ 3.2k https://github.com/wikimedia/mediawiki

alltube Smarty 3.0.3 ✕ 2.6k https://github.com/Rudloff/alltube
pH7-Social-Dating Smarty 17.2.0 ✕ 807 https://github.com/pH7Software/pH7-Social-Dating-CMS

postfixadmin Smarty 3.3.11 ✕ 721 https://github.com/postfixadmin/postfixadmin
DouPHP Smarty 1.7 ✕ https://www.douphp.com/
MODX Smarty 3.0.1-pl ✕ https://modx.com/

Tiki Wiki CMS Smarty 21.7 ✕ ✓ ✓ https://tiki.org/HomePage
BlackCat Dwoo 1.3.6 ✕ https://blackcat-cms.org/

tuleap Mustache 13.9.99.33 ✕ 811 https://github.com/Enalean/tuleap
Fansoro Fenom 2.0.4 ✕ 106 https://github.com/fansoro/fansoro

Fastadmin ThinkPHP 1.3.4 ✕ 1.5k https://github.com/karsonzhang/fastadmin
feifeiCMS ThinkPHP 4.3.201206 ✕ https://www.feifeicms.org/

74CMS ThinkPHP 3.12.0 ✕ https://www.74cms.com/
ejucms ThinkPHP SP4 ✕ ✓ ✓ https://www.ejucms.com/

that have not been covered in the collected applications, we
use their names as keywords to search for some specific PHP
applications. Following the above steps, we collect a set of
18 PHP applications (as shown in Table 4). We find that the
most number of applications have used Smarty. Besides, we
do not find an application that uses Latte. According to the
official website of Latte, we infer the reason is that Latte
is mostly used by online websites [14], rather than open-
source PHP applications. Next, we use the latest version of
each application to set up a running environment for further
vulnerability discovery.

Experiment-I: SSTI Scanners. Since tplmap is the only
SSTI scanner we can find, we use it to discover SSTI
vulnerabilities in the collected PHP applications. According
to the documentation of tplmap, it should be given a set of
URLs and parameters. Therefore, we use crawlergo [3, 62],
a powerful crawler, to discover URLs in these applications,
including the parameters, and then feed them to tplmap to test
which URLs and parameters lead to template code injection.
Overall, crawlergo costs 54 hours to discover 17,424 URLs
and 41,940 parameters from these applications. However,
after a total scanning period of 140 hours on these URLs and
parameters, tplmap reports no SSTI vulnerabilities.

Given that there are many known SSTI vulnerabilities (see
§5.6.1), we think the poor performance of tplmap renders a
promising research direction to design a more effective SSTI
scanner. According to our experience in using tplmap, we
summarize two major limitations in its design. First, tplmap
relies on the HTTP response to identify a successful template
injection, which cannot identify second-order injections [19,
40]. Second, tplmap uses fixed payloads to test template
injection points which are hard to satisfy the complicated
constraints on the injected parameters [27].

Experiment-II: Manual Discovery. Due to the poor per-
formance of tplmap, we resort to discovering some SSTI

vulnerabilities manually. Inspired by the analysis of known
SSTI vulnerabilities (see §5.6.1), we decided to test whether
these applications provide some normal functionalities of tem-
plate code injection. In all, we find template code injections
in six applications, which are presented in Table 5. Among
these applications, only Piwigo provides template selection
as the normal functionality, while all other applications allow
direct template injection. For Piwigo, we also discover a file
upload vulnerability that can overwrite template files on the
server side. Thus, we also gain template injection in Piwigo
by combining the file upload vulnerability and the template
selection functionality. With the synthesized RCE exploits by
TEFUZZ, we successfully achieve full exploitation on these
applications.

Summary: We have two findings from the above experi-
ments. ❶ Though SSTI vulnerabilities are severe, the auto-
matic discovery of SSTI vulnerabilities still requires further
research. ❷ By escaping the TE sandbox, template escape
bugs lead to severe security consequences for real-world
applications. We have demonstrated the full exploitability
of the discovered template escape bugs in six popular PHP
applications.

5.7 Internal Results of TEFUZZ (RQ5)

TEFUZZ has introduced several important designs to effec-
tively detect and exploit template escape bugs. In this research
question, we measure how do these designs help TEFUZZ by
reporting some internal results of TEFUZZ.
Testcase Probing. TEFUZZ creates a lot of new testcases
from the seeds to discover some interesting testcases. As
shown in Table 6, based on the collected 1,728 seeds,
TEFUZZ creates 64,491 new testcases, while 36,540 ones
of them are found to contain EPs. Since many interesting
testcases share the same EP, TEFUZZ further identifies 4,484
(12.3%) unique interesting testcases with coverage-guided

Table 5: Manually Discovered SSTI Vulnerabilities in Real-world PHP Applications.
Application Version Stars TE RCE Root Cause

CMSMS 2.2.16 Smarty ✓ Normal Functionality of Template Modification
lmxcms 1.41 Smarty ✓ Normal Functionality of Template Modification
Piwigo 13.0.0 2.2k Smarty ✓ File Upload to Template Overwrite + Normal Functionality of Template Selection
MediaWiki 1.38.2 3.2k Smarty ✓ Normal Functionality of Template Modification
TikiWiki CMS 21.7 Smarty ✓ Normal Functionality of Template Modification
Ejucms SP4 ThinkPHP ✓ Normal Functionality of Template Modification

Table 6: Internal Results of TEFUZZ in Generating Interesting Testcases and PoCs (RQ5).

TE Seeds
Testcase Probing PoC Generation

Created Testcases Interesting Testcases (A/U)1 Created Testcases PoCs (A/U)1

Smarty 523 16664 (11,663 / 700) 93,425 (23 / 3)
Twig 339 16,290 (8,172 / 850) 113,900 (0 / 0)
Dwoo 208 9,335 (5,600 / 557) 70,407 (68 / 46)
Latte 289 8,930 (5,635 / 721) 74,280 (263 / 63)
Mustache 17 563 (482 / 106) 10,385 (15 / 1)
Fenom 181 5,447 (3,116 / 343) 46018 (13 / 10)
ThinkPHP 171 7,262 (6,310 / 591) 53,086 (279 / 47)

All 1,728 64,491 (36,540 / 4,484) 546,893 (661 / 170)
1 A(ll) represents the number of all the cases; U(nique) represents the number of unique cases.

Table 7: Internals Results of the Testcase Adaption in Different Modules (RQ5).

TE
Seed Collection Testcase Probing PoC Generation

TE Errors Fixed Cases Fix Rate TE Errors Fixed Cases Fix Rate TE Errors Fixed Cases Fix Rate

Smarty 268 42 15.67% 2840 1403 49.40% 14,593 13,453 92.19%
Twig 245 12 4.90% 2,622 1,349 51.45% 29,044 17,803 61.30%
Dwoo 52 11 21.15% 1583 816 51.55% 1,630 1,402 86.01%
Latte 237 15 6.33% 334 106 31.74% 158 103 65.19%
Mustache 0 0 - 171 130 76.02% 2893 2,802 96.85%
Fenom 78 16 20.51% 360 138 38.33% 5,830 4,011 68.80%
ThinkPHP 26 11 42.31% 115 11 9.57% 497 469 94.37%

All 906 107 11.81% 8,025 3,953 49.26% 54,645 40,043 73.28%

clustering. The results show that the probing technique effec-
tively identifies a lot of interesting testcases and significantly
reduces the testing workload.

PoC Generation. For each interesting testcase, TEFUZZ
inserts PHP syntax characters at its EPs to trigger template
escape bugs. Table 6 presents the internal results. Based on
the discovered 4,484 interesting testcases, TEFUZZ creates
546,893 new testcases to discover bugs. In all, TEFUZZ has
discovered 661 PoCs that trigger bugs.

With the help of the PoC clustering technique, TEFUZZ
automatically clusters 170 unique PoCs. We manually an-
alyzed these PoCs and confirmed 135 real bugs (as shown
in Table 2). The manual bug diagnosis on 170 unique PoCs
costs about 79 man-hours. The results show that the PoC
clustering technique largely saves the manual analysis of the
reported bugs. To understand the false negatives of the PoC
clustering, we randomly selected 200 cases from the 663 PoCs
for manual verification. We find that TEFUZZ never identifies
unique PoCs as the same (i.e., zero false-negative rate). It
mainly owes to the conservative design in PoC clustering.

Table 8: Utility of the Testcase Adaption in Seed Collection,
Bug Detection and Exploit Synthesis (RQ5).

TE
Seeds PoCs Exploits

w/ w/o w/ w/o w/ w/o

Smarty 523 479 3 1 3 1
Twig 339 327 0 0 0 0
Dwoo 208 197 38 34 2 1
Latte 289 274 49 40 24 20
Mustache 17 17 1 0 1 0
Fenom 181 165 10 8 10 8
ThinkPHP 171 160 34 28 15 12

All 1,728 1,619 135 111 55 42

Testcase Adaption. TEFUZZ features testcase adaption to fix
the testcases that meet testing errors. This technique is used
in the Seed Collection module, the Testcase Probing module,
and the PoC Generation module. Table 7 presents the internal
results of the testcase adaption. In all, TEFUZZ meets TE
errors in 64,491 testcases and successfully fixes 44,103 cases
(fix rate: 69.4%). Considering that template testcase fixing is
difficult, our testcase adaption technique achieves quite good

performance. We also randomly selected 100 failed cases to
analyze the causes. Our investigation shows two scenarios
that make TEFUZZ fail to fix an error testcase. First, some
errors cannot be fixed. For example, new tags may be created
during the mutation while the tested TE does not support these
tags. Second, sometimes the error messages do not convey
sufficient information for fixing.

Table 7 also shows the number of fixed cases in each
module. We can observe that the fix rate in the Seed Collection
module is quite low (i.e., 11.8%). The reason is that its error
testcases are collected from the wild, which cannot be fixed.
For example, some testcases require third-party plugins; some
testcases use forbidden tags in the sandbox mode. Besides,
the PoC Generation module reports the most testcase errors
(i.e., 54,645 cases that occupy 86.0% of all the TE errors),
while its fix rate is also the highest. The large number of
error testcases is due to a large number of newly-generated
testcases in this module. The reason for its high fix rate is
that the TE errors at this stage are mostly caused by similar
reasons and are easier to model and fix.

Table 8 presents the numbers of the collected seeds, the
discovered PoCs and the synthesized exploits when testcase
adaption is present (w/) or not (w/o). The results show that
testcase adaption significantly helps to collect 6.7% more
seeds, discover 21.6% more bugs, and synthesize 31.0% more
exploits.

Exploit Synthesis. For every discovered PoC, TEFUZZ
successfully synthesizes an exploit for it. However, among
the 135 synthesized exploits, 80 ones fail to run in the testing
framework. By manually analyzing all the failed exploits, we
find that they all report TE errors during the template parsing
step. According to the error messages returned by the TE, we
classify two causes for these failures.

• Template Parsing Errors (58 cases). In these cases, the
payloads that are used to wrap the escape context in the
PHP file make the TE fail to parse the template code.
For example, a PoC for Dwoo contains a capture tag;
however, when parsing the synthesized exploit, Dwoo fails
to recognize it as a capture tag, due to the new characters
introduced during the exploit synthesis.

• Template Validation Errors (22 cases). In this situation,
the TE correctly parses the synthesized exploit; however,
it raises TE errors when checking the format of the parsed
elements. For example, a synthesized exploit for Latte has a
variable tag. Though Latte correctly parses the exploit, it
reports TE errors because the variable name of the template
code contains unsupported characters of Latte.

5.8 Responsible Disclosure

We have responsibly disclosed all the discovered vulnera-
bilities in our experiments to the developers. We first use
email to contact them and then try GitHub issues (if we
cannot find the email address or do not receive a reply).

Currently, the vulnerabilities in Smarty, Latte and Mustache
have been patched, and the vulnerabilities in Fenom have been
confirmed. For the SSTI vulnerabilities discovered in §5.6.2,
we have contacted all the developers and MediaWiki has
updated their used version of Smarty to the patched version.

6 Discussion
Problem Scope. This paper conducts an in-depth study on
the template escape bug, an overlooked sandbox bypass
vulnerability in modern TEs. Our study shows that template
escape bugs are subtle, prevalent, and severe. Besides, there
are other bugs that could bypass the sandbox, mainly caused
by the incomplete implementation of the sandbox mode.
Different from such bugs, template escape bugs occur in
the template parsing and translation process, which are
prone to happen but quite challenging to detect, making
template escape bugs under-explored yet. Meanwhile, it is
found that template escape bugs only affect generation-based
TEs. Nevertheless, for the excellent performance, generation-
based TEs are more welcome, especially on script-based
web platforms, such as PHP, Node.js, and Python. Further,
though our tool and evaluation only target PHP TEs, template
escape bugs also affect TEs of other web platforms, which
has been verified in our early study on Python and Node.js
TEs. Besides, our approach can be adapted to TEs on other
platforms.

Technical Limitations. Template escape bugs are logic flaws
caused by improper sanitization when translating template
code into PHP code. Hence, the detection and exploitation
of template escape bugs are pretty challenging (see §3.2)
and make them not systematically studied. As the first work
to detect template escape bugs, TEFUZZ still meets several
limitations. First, TEFUZZ requires some manual efforts to
support a new TE, i.e., extracting its delimiters, creating a
testcase driver, and compiling adaption rules to fix invalid
testcases. According to our experience in the evaluation, we
find such efforts quite affordable. Second, TEFUZZ cannot
detect bugs for those uncovered template tags/syntax in the
seed corpus. In the future, TEFUZZ can be augmented with
some testcase generation techniques [41, 48]. Third, TEFUZZ
has not considered the control-/data-flow constraints in TEs
during the generation of PoCs and exploits, which may miss
some true bugs and exploits. This limitation can be addressed
by incorporating constraint solving [16, 50].

Non-exploitable Exploits. In our evaluation, TEFUZZ suc-
cessfully synthesizes 135 exploits; however, 80 of them meet
TE errors in the dynamic validation. As described in §5.7,
there are two causes for these 80 failed exploits: template
parsing errors and template validation errors. The underlying
reason for generating non-exploitable exploits is that the
current solution of finding the right payload to wrap the escape
context only considers the PHP syntax while ignoring the
template syntax. Therefore, these non-exploitable exploits

still have the potential to evolve into RCE exploits, e.g.,
by manipulating them to fit the syntax of template engine.
However, this requires sophisticated hacking skills. Beyond
the usage of exploitability assessment, PoCs facilitate bug
diagnosis and patch development. In our experience of fixing
template escape bugs, we find that PoCs conveyed much
useful information to understand the root causes of bugs.

Suggestions. In the evaluation, we find that the number
of template escape bugs varies significantly across TEs.
In §5.3, we have compared the practice of different TEs.
Based on our investigation of the discovered bugs, we have
two further suggestions for TE developers, which may help
avoid template escape bugs. First, we find that none of the
studied TEs develops the template parser on top of standard
parse generators (e.g., Bison, ANTLR). That is, the TE
parsers are developed in an ad-hoc manner. Though some
TEs perform strict validation on the template code syntax,
the maintenance cost is high. Second, we suggest that TE
developers should perform context-aware code sanitization
when generating PHP code. For example, different characters
would be sanitized when generating PHP code comments and
function invocation statements. According to our experience,
we only observe Twig following such practice. Further, since
code sanitization is complex and prone to be incomplete,
we suggest defining the sanitization logic as several unified
functions according to the context. The advantage is that
these unified sanitizing functions could be reused elsewhere.
However, we do not encounter a TE that has such practice.

7 Related Work
Vulnerability Detection/Exploitation in Web Applica-
tions. For the popularity of web applications, detecting
web application vulnerabilities has received much attention.
Specifically, various techniques have been explored, such as
static analysis [17, 24, 56], dynamic testing [22, 28, 51],
hybrid analysis [16], and machine/deep learning [27, 60].
Most web application vulnerabilities are injection-based,
such as cross-site scripting [27], SQL injection [60], file
upload [28]In addition to injection-based vulnerabilities,
web applications also have logic flaws [44]. Access control
vulnerability is a classical logic flaw [32, 38]. Execution
after redirect vulnerability allows the server-side execution
to continue after the request redirection [21, 43]. Cross-site
request forgery is an attack that tricks an authenticated user
into executing unwanted actions on a web application [45].
ReDoS [49] is a new logic flaw that exploits algorithmic
complexity on regular expressions [33, 34, 36]. To the best of
our knowledge, this paper is the first to study template escape
bugs, and our study shows that they are prevalent and severe.

Meanwhile, exploiting web vulnerabilities is becoming
more and more sophisticated, which usually requires com-
bining multiple vulnerabilities. For example, PHP object
injection (POI) vulnerabilities are exploited together with
POP chains [20, 42]; exploiting JavaScript prototype pollution

vulnerabilities need to stitch with prototype gadgets [25, 30,
31]. Similarly, this paper exploits template escape bugs to
augment the capability of template modification vulnerabili-
ties.

Fuzzing-based Vulnerability Detection. Fuzzing has been
widely used in vulnerability detection. In essence, fuzzing
is mostly a random process, so it needs to balance vul-
nerability exploration and exploitation [59, 61]. Besides,
runtime feedback is critical to the success of fuzzing, which
significantly helps to increase the code coverage and avoid
redundant testing [53, 55]. Fuzzing is based on generating
new testcases. Thus, different seed mutation and selection
strategies have also been explored [18, 35, 54]. Due to the
effectiveness of fuzzing in generating crashes (i.e., finding
PoCs), accurate crash/PoC clustering is very important to
ease the bug triage [23, 52]. Inspired by existing works,
TEFUZZ has introduced several important designs to discover
template escape bugs effectively, and the evaluation results
have demonstrated their helpfulness.

8 Conclusion
This paper studies template escape bugs, an overlooked
sandbox bypass vulnerability in template engines that could
elevate SSTI attacks to remote code execution. To understand
the prevalence and the severity of template escape bugs,
this paper presents TEFUZZ to automatically detect and
exploit such bugs. TEFUZZ proposes a tailored fuzzing-based
approach to effectively detect template escape bugs, which
does not need to learn the syntax of the template code, and
gives PoCs and exploits for the discovered bugs. With the
help of TEFUZZ, we conduct an in-depth study with seven
popular PHP template engines. In all, TEFUZZ discovers 135
new template escape bugs and synthesizes real exploits for 55
bugs. Our study calls for attention to such subtle and severe
bugs, uncovers the root causes of these bugs, and sheds light
on the developing practice of template engines. The code and
data are released to facilitate follow-up research [10].

Acknowledgement
We would like to thank our shepherd and the reviewers
for their helpful comments and feedback. This work was
supported in part by the National Natural Science Foundation
of China (62172105, 62172104, 62102091, 62102093) and
the National Key R&D Program of China under Grant
2021YFB3101200. Yuan Zhang was supported in part by
the Shanghai Rising-Star Program 21QA1400700 and the
Shanghai Pilot Program for Basic Research-Fudan University
21TQ1400100 (21TQ012). Min Yang is the corresponding
author, and a faculty of Shanghai Institute of Intelligent
Electronics & Systems, Shanghai Institute for Advanced
Communication and Data Science, and Engineering Research
Center of CyberSecurity Auditing and Monitoring, Ministry
of Education, China.

References
[1] A Pentester’s Guide to Server Side Template Injection

(SSTI). https://www.cobalt.io/blog/a-pentest
ers-guide-to-server-side-template-injecti
on-ssti.

[2] American Fuzzy Lop. http://lcamtuf.coredump.c
x/afl/.

[3] crawlergo. https://github.com/Qianlitp/crawle
rgo.

[4] CVE-2017-16783. https://cve.mitre.org/cgi-b
in/cvename.cgi?name=CVE-2017-16783.

[5] CVE-2017-6070. https://cve.mitre.org/cgi-bin
/cvename.cgi?name=CVE-2017-6070.

[6] CVE-2022-22929. https://cve.mitre.org/cgi-b
in/cvename.cgi?name=CVE-2022-22929.

[7] CVE-2022-22954. https://cve.mitre.org/cgi-b
in/cvename.cgi?name=CVE-2022-22954.

[8] CVE-2022-44978. https://cve.mitre.org/cgi-b
in/cvename.cgi?name=CVE-2021-44978.

[9] KernelMemorySanitizer. https://github.com/goo
gle/kmsan.

[10] TEFuzz Release. https://github.com/seclab-fud
an/TEFuzz/.

[11] Undefined Behavior Sanitizer. https://clang.llvm
.org/docs/UndefinedBehaviorSanitizer.html.

[12] Understanding Template Injection Vulnerabilities. ht
tps://www.paloaltonetworks.com/blog/prisma
-cloud/template-injection-vulnerabilities/.

[13] Web Template System. https://en.wikipedia.org
/wiki/Web_template_system.

[14] Websites built with Latte. https://builtwith.nett
e.org/.

[15] What Are Template Engines? https://www.educat
ive.io/edpresso/what-are-template-engines/.

[16] A. Alhuzali, R. Gjomemo, B. Eshete, and V. Venkatakr-
ishnan. NAVEX: Precise and Scalable Exploit
Generation for Dynamic Web Applications. In USENIX
Security’18.

[17] M. Backes, K. Rieck, M. Skoruppa, B. Stock, and
F. Yamaguchi. Efficient and Flexible Discovery of PHP
Application Vulnerabilities. In EuroS&P’17.

[18] Y. Chen, Y. Jiang, F. Ma, J. Liang, M. Wang, C. Zhou,
X. Jiao, and Z. Su. EnFuzz: Ensemble Fuzzing with
Seed Synchronization among Diverse Fuzzers. In

USENIX Security’19.

[19] J. Dahse and T. Holz. Static Detection of Second-
Order Vulnerabilities in Web Applications. In USENIX
Security’14.

[20] J. Dahse, N. Krein, and T. Holz. Code Reuse Attacks in
PHP: Automated POP Chain Generation. In CCS’14.

[21] A. Doupé, B. Boe, C. Kruegel, and G. Vigna. Fear
the EAR: Discovering and Mitigating Execution after
Redirect Vulnerabilities. In CCS’11.

[22] B. Eriksson, G. Pellegrino, and A. Sabelfeld. Black
Widow: Blackbox Data-driven Web Scanning. In
S&P’21.

[23] Z. Jiang, X. Jiang, A. Hazimeh, C. Tang, C. Zhang, and
M. Payer. Igor: Crash Deduplication Through Root-
Cause Clustering. In CCS’21.

[24] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: a
Static Analysis Tool for Detecting Web Application
Vulnerabilities. In S&P’06.

[25] Z. Kang, S. Li, and Y. Cao. Probe the Proto: Measuring
Client-Side Prototype Pollution Vulnerabilities of One
Million Real-world Websites. In NDSS’22.

[26] J. Kettle. Server-Side Template Injection: RCE for the
Modern WebApp. In BlackHat US, 2015.

[27] S. Lee, S. Wi, and S. Son. Link: Black-Box
Detection of Cross-Site Scripting Vulnerabilities Using
Reinforcement Learning. In WWW’22.

[28] T. Lee, S. Wi, S. Lee, and S. Son. FUSE: Finding File
Upload Bugs via Penetration Testing. In NDSS’20.

[29] S. Lekies, B. Stock, and M. Johns. 25 Million Flows
Later: Large-Scale Detection of DOM-Based XSS. In
CCS’13.

[30] S. Li, M. Kang, J. Hou, and Y. Cao. Detecting Node.js
prototype pollution vulnerabilities via object lookup
analysis. In ESEC/FSE’21.

[31] S. Li, M. Kang, J. Hou, and Y. Cao. Mining Node.js
Vulnerabilities via Object Dependence Graph and Query.
In USENIX Security’22.

[32] X. Li, X. Si, and Y. Xue. Automated Black-Box
Detection of Access Control Vulnerabilities in Web
Applications. In CODASPY’14.

[33] Y. Li, Z. Chen, J. Cao, Z. Xu, Q. Peng, H. Chen, L. Chen,
and S.-C. Cheung. ReDoSHunter: A Combined Static
and Dynamic Approach for Regular Expression DoS
Detection. In USENIX Security’21.

https://www.cobalt.io/blog/a-pentesters-guide-to-server-side-template-injection-ssti
https://www.cobalt.io/blog/a-pentesters-guide-to-server-side-template-injection-ssti
https://www.cobalt.io/blog/a-pentesters-guide-to-server-side-template-injection-ssti
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/
https://github.com/Qianlitp/crawlergo
https://github.com/Qianlitp/crawlergo
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-16783
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-16783
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-6070
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-6070
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-22929
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-22929
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-22954
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-22954
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44978
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44978
https://github.com/google/kmsan
https://github.com/google/kmsan
https://github.com/seclab-fudan/TEFuzz/
https://github.com/seclab-fudan/TEFuzz/
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://www.paloaltonetworks.com/blog/prisma-cloud/template-injection-vulnerabilities/
https://www.paloaltonetworks.com/blog/prisma-cloud/template-injection-vulnerabilities/
https://www.paloaltonetworks.com/blog/prisma-cloud/template-injection-vulnerabilities/
https://en.wikipedia.org/wiki/Web_template_system
https://en.wikipedia.org/wiki/Web_template_system
https://builtwith.nette.org/
https://builtwith.nette.org/
https://www.educative.io/edpresso/what-are-template-engines/
https://www.educative.io/edpresso/what-are-template-engines/

[34] Y. Liu, M. Zhang, and W. Meng. Revealer: Detecting
and Exploiting Regular Expression Denial-of-Service
Vulnerabilities. In S&P’21.

[35] C. Lyu, S. Ji, C. Zhang, Y. Li, W.-H. Lee, Y. Song, and
R. Beyah. MOPT: Optimized Mutation Scheduling for
Fuzzers. In USENIX Security’19.

[36] R. McLaughlin, F. Pagani, N. Spahn, C. Kruegel, and
G. Vigna. Regulator: Dynamic Analysis to Detect
ReDoS. In USENIX Security’22.

[37] D. Molnar, X. C. Li, and D. A. Wagner. Dynamic Test
Generation to Find Integer Bugs in X86 Binary Linux
Programs. In USENIX Security’09.

[38] M. Monshizadeh, P. Naldurg, and V. Venkatakrishnan.
MACE: Detecting Privilege Escalation Vulnerabilities
in Web Applications. In CCS’14.

[39] J. Offutt, J. Pan, and J. M. Voas. Procedures for
Reducing the Size of Coverage-based Test Sets. In
Proceedings of the 12th International Conference on
Testing Computer Software (TCS), 1995.

[40] O. Olivo, I. Dillig, and C. Lin. Detecting and Exploiting
Second Order Denial-of-Service Vulnerabilities in Web
Applications. In CCS’15.

[41] M. Olsthoorn, A. van Deursen, and A. Panichella.
Generating Highly-structured Input Data by Combining
Search-based Testing and Grammar-based Fuzzing. In
ASE’20.

[42] S. Park, D. Kim, S. Jana, and S. Son. FUGIO:
Automatic Exploit Generation for PHP Object Injection
Vulnerabilities. In USENIX Security’22.

[43] P. Payet, A. Doupé, C. Kruegel, and G. Vigna. EARs
in the Wild: Large-scale Analysis of Execution after
Redirect Vulnerabilities. In SAC’13.

[44] G. Pellegrino and D. Balzarotti. In NDSS’14.

[45] G. Pellegrino, M. Johns, S. Koch, M. Backes, and
C. Rossow. Deemon: Detecting CSRF with Dynamic
Analysis and Property Graphs. In CCS’17.

[46] S. Rawat, V. Jain, L. C. Ashish Kumar, C. Giuffrida,
and H. Bos. VUzzer: Application-aware Evolutionary
Fuzzing. In NDSS’17.

[47] K. Serebryany, D. Bruening, A. Potapenko, and
D. Vyukov. AddressSanitizer: A Fast Address Sanity
Checker. In USENIX ATC’12.

[48] E. Soremekun, E. Pavese, N. Havrikov, L. Grunske, and
A. Zeller. Probabilistic Grammar-based Test Generation.

In Software Engineering 2021.
[49] C.-A. Staicu and M. Pradel. Freezing the Web: A

Study of ReDoS Vulnerabilities in JavaScript-based Web
Servers. In USENIX Security’18.

[50] M.-T. Trinh, D.-H. Chu, and J. Jaffar. S3: A Symbolic
String Solver for Vulnerability Detection in Web
Applications. In CCS’14.

[51] O. van Rooij, M. A. Charalambous, D. Kaizer, M. Pa-
paevripides, and E. Athanasopoulos. webFuzz: Grey-
Box Fuzzing for Web Applications. In ESORICS’21.

[52] R. van Tonder, J. Kotheimer, and C. Le Goues. Semantic
Crash Bucketing. In ASE’18.

[53] J. Wang, Y. Duan, W. Song, H. Yin, and C. Song.
Be Sensitive and Collaborative: Analyzing Impact of
Coverage Metrics in Greybox Fuzzing. In RAID’19.

[54] J. Wang, C. Song, and H. Yin. Reinforcement Learning-
based Hierarchical Seed Scheduling for Greybox
Fuzzing. In NDSS’21.

[55] Y. Wang, X. Jia, Y. Liu, K. Zeng, T. Bao, D. Wu,
and P. Su. Not All Coverage Measurements Are
Equal: Fuzzing by Coverage Accounting for Input
Prioritization. In NDSS’20.

[56] S. Wi, S. Woo, J. J. Whang, and S. Son. HiddenCPG:
Large-Scale Vulnerable Clone Detection Using Sub-
graph Isomorphism of Code Property Graphs. In
WWW’22.

[57] M. Woo, S. K. Cha, S. Gottlieb, and D. Brumley.
Scheduling Black-Box Mutational Fuzzing. In CCS’13.

[58] W. You, X. Wang, S. Ma, J. Huang, X. Zhang, X. Wang,
and B. Liang. ProFuzzer: On-the-fly Input Type
Probing for Better Zero-Day Vulnerability Discovery.
In S&P’19.

[59] T. Yue, P. Wang, Y. Tang, E. Wang, B. Yu, K. Lu, and
X. Zhou. EcoFuzz: Adaptive Energy-Saving Greybox
Fuzzing as a Variant of the Adversarial Multi-Armed
Bandit. In USENIX Security’20.

[60] K. Zhang. A Machine Learning Based Approach to
Identify SQL Injection Vulnerabilities. In ASE’19.

[61] L. Zhang, K. Lian, H. Xiao, Z. Zhang, P. Liu, Y. Zhang,
M. Yang, and H. Duan. Exploit The Last Straw that
Breaks Android System. In S&P’22.

[62] S. Zhu. crawlergo: A Powerful Browser Crawler for
Web Vulnerability Scanners. In BlackHat Europe, 2021.

	Introduction
	Background
	Template Engine
	SSTI and TE Sandbox
	Sandbox Bypass: Template Escape Bugs

	Overview
	Threat Model
	Challenges
	Approach Overview
	How to detect template escape bugs?
	How to exploit template escape bugs?

	Detailed Design
	Testing Framework
	Bug Detection
	Interesting Testcase Identification
	PoC Generation
	Testcase Adaption

	Exploit Synthesis
	Escape Context Identification
	Context-Sensitive Code Wrapping

	Evaluation
	TEFuzz Prototype
	Experimental Setup
	Prevalence of Template Escape Bugs (RQ1)
	Severity of Template Escape Bugs (RQ2)
	Comparison with SSTI Scanners (RQ3)
	Feasibility of Full Exploitation (RQ4)
	Searching Known Vulnerabilities
	Discovering 0-day Vulnerabilities

	Internal Results of TEFuzz (RQ5)
	Responsible Disclosure

	Discussion
	Related Work
	Conclusion

