
Rethinking White-Box Watermarks on Deep Learning Models
under Neural Structural Obfuscation

Yifan Yan*, Xudong Pan*, Mi Zhang�, Min Yang�

Fudan University, China
{yanyf20, xdpan18, mi_zhang, m_yang}@fudan.edu.cn

(*: co-first authors; �: corresponding authors)

Abstract
Copyright protection for deep neural networks (DNNs) is

an urgent need for AI corporations. To trace illegally dis-
tributed model copies, DNN watermarking is an emerging
technique for embedding and verifying secret identity mes-
sages in the prediction behaviors or the model internals. Sacri-
ficing less functionality and involving more knowledge about
the target DNN, the latter branch called white-box DNN wa-
termarking is believed to be accurate, credible and secure
against most known watermark removal attacks, with emerg-
ing research efforts in both the academy and the industry.

In this paper, we present the first systematic study on how
the mainstream white-box DNN watermarks are commonly
vulnerable to neural structural obfuscation with dummy neu-
rons, a group of neurons which can be added to a target model
but leave the model behavior invariant. Devising a comprehen-
sive framework to automatically generate and inject dummy
neurons with high stealthiness, our novel attack intensively
modifies the architecture of the target model to inhibit the
success of watermark verification. With extensive evaluation,
our work for the first time shows that nine published water-
marking schemes require amendments to their verification
procedures.

1 Introduction

Nowadays, the computational and engineering costs of train-
ing a giant DNN model increase faster than ever [1–4]. As a
critical asset of AI corporations, well-trained DNNs are ex-
posed under the risk of model stealing attacks [5–10], which
makes the need for model copyright protection current and
pressing. As a rescue, the past few years witness the emer-
gence of DNN watermarking [11–22] for tracing illegal model
copies in the wild [23]. Generally, a model watermarking
scheme consists of watermark embedding and verification.
At the former stage, a secret identity message, i.e., the wa-
termark, is first embedded into the target model along with
the training process. At the latter stage, the scheme verifies

Table 1: Compared with existing attacks, our attack is the first
to disable the verification procedures of nine state-of-the-art
white-box watermarks under no requirements on utility loss,
dataset access, training costs or watermark knowledge.

Attack
Type

Attack
Class

Utility
Loss

Training
Cost

Dataset
Access

Watermark
Knowledge

Pruning Parameter
Finetuning Parameter
Overwriting Parameter
Extraction Structure
Ours Structure

* / / denote large/moderate/no tradeoff in each dimension.
the ownership according to whether the same or a similar
watermark is detected from a suspect model.

According to the location of the embedded message, ex-
isting DNN watermarks are categorized into black-box and
white-box. Intuitively, a black-box watermark is embedded
in the model’s prediction behavior on a special set of in-
puts [20–22,24], while a white-box watermark is embedded in
the model internals, including the model parameters [11–17]
and the neuron activation [18, 19]. The difference above also
determines the required access mode to the suspect model for
verification. As suggested by Fan et al. [14], in a real-world
copyright dispute, the owner may first collect evidence of
model piracy via a black-box query and then attain the white-
box access via law enforcement for ownership verification.

Sacrificing less functionality and involving more informa-
tion for verification, white-box model watermarks are widely
considered more comprehensive compared with the black-
box counterpart [12–14, 22], with increasingly more research
efforts on top-tier AI/security/system venues and from indus-
try leaders (e.g., Microsoft [15, 19, 25]). In a typical attack
scenario, the adversary with a stolen DNN would modify the
parameters or the structure of the model to frustrate the suc-
cess of watermark verification [26–35]. To achieve the attack
goal, the primary constraints for the attacker are (i) the obfus-
cation process should not cost more resources than training a
DNN from scratch and (ii) the utility of the obfuscated model
should have no clear decrease.

However, as summarized in Table 1, none of the existing



approaches can balance well the cost on utility or comput-
ing resources for fully removing the embedded watermark.
On the one hand, removal attacks by parameter modification
inevitably encounter degradation in the normal model util-
ity [13–17, 20]. Relying on the internals of the suspect model,
the embedded identity messages in white-box watermarking
are much strongly connected with the model performance.
Therefore, attack attempts via conventional post-processing
techniques [26, 27], which show empirical success on black-
box model watermarks, inevitably perturb the model param-
eters at an unacceptable scale to fully remove a white-box
model watermark [11–19]. On the other hand, existing struc-
tural modification attacks apply knowledge distillation on
the target model to construct a substitute model with similar
performance but of different neural architecture [28,36]. How-
ever, they usually require additional computational resources
for training the substitute model. Besides, some attacks further
require the access to a domain dataset or require additional
knowledge about the embedded watermark [12], which are
usually impractical for attacks in the wild.
Our Work. We for the first time show, most of the state-of-the-
art white-box DNN watermarks share common vulnerabilities
in their verification procedures which assume the structural
integrity of the suspect model after being obfuscated by the
attacker. Our current work constructs a novel neural structural
obfuscation attack which intensively modifies the architecture
of the victim model to disable the verification procedures of
nine previously published schemes. Meanwhile, our attack
incurs no utility loss and training costs, and requires neither
dataset access nor the knowledge about the embedded water-
mark. At the core of our newly proposed attack is the concept
of dummy neurons, literally a group of neurons which can
be added to a target DNN model for intensively perturbing
the embedded watermark while provably leaving the model
behavior invariant (i.e., the model output remains the same
under the same input). A naive example is neurons which
have the input and output weights of zero values, which, if
added to a DNN model, have no contribution to its output. As
a preliminary yet effective attack, the adversary obfuscates
the protected model by injecting a number of these neurons to
every neural layer, which already inhibits most of the state-of-
the-art white-box watermarks from being executed, but has
clear limitation in its attack stealthiness (§5).

Alternatively, we propose a more comprehensive attack
framework to automatically generate and inject dummy neu-
rons into a victim model, which implements by-design stealth-
iness of the injected dummy neurons when the obfuscated
model is under inspection. For dummy neuron generation, we
propose NeuronClique and NeuronSplit, two novel structural
obfuscation primitives to construct groups of dummy neurons,
where the neurons are associated with non-vanishing weights
but still bring no change to the model output. Specifically,
the NeuronClique primitive directly generates an arbitrary
number of neurons which are assigned with weights that can

cancel the others’ output out, while NeuronSplit converts a
neuron in the victim model into two substitute neurons which
preserve the replaced neuron’s functionality (§6.2).

For dummy neuron injection, our proposed framework care-
fully designs the injection order and leverages the reciprocity
between dummy neurons in successive layers to enhance the
attack stealthiness (§6.3). Furthermore, we leverage the scal-
ing invariance in DNN [37] to provide the adversary with the
flexibility to specify the weight distribution of the dummy
neurons to follow the same distribution of the original neu-
rons, and the shuffling invariance in DNN [38] to randomize
the location of the injected dummy neurons among the origi-
nal neurons. Finally, we also introduce the kernel expansion
technique to further obfuscate the weight shape of the dummy
neurons, which, as the final straw, turns the victim model into
a structurally irrelevant model with its original self (§6.4).
In §7.4, we discuss and experiment with the feasibility for a
defender of different knowledge on our attack to attempt to
remove the dummy neurons.
Our Contributions. In summary, we mainly make the fol-
lowing contributions:
• We for the first time reveal the common vulnerability of

the state-of-the-art white-box DNN watermarks to neural
structural obfuscation with dummy neurons.

• We devise a comprehensive attack framework which auto-
matically generates groups of dummy neurons into a pro-
tected model with newly proposed attack primitives.

• We validate the success of our attack on a wide group of
DNNs protected by nine published white-box watermarking
schemes. Despite the claimed robustness, the success rate
of watermark verification is reduced to random after our
attack, while the normal model utility remains the same.

• We also provide a study on the stealthiness of these dummy
neurons and present a dummy neuron elimination algorithm.
This possible defense eliminates the dummy neurons, while
the original model watermark in the protected model is
recovered only when the defender has access to the original
watermarked model.

2 Related Work

DNN Watermarking Schemes. Two categories of DNN wa-
termarking methods, i.e., black-box and white-box algorithms,
have been proposed to support model ownership verification.
The black-box watermark schemes [20, 22] mostly embed
the identity information into the input-output patterns of the
target model on a secret trigger set (similar to backdoor at-
tacks [39]). As reported in [20], the trade-off is sometimes
evident between successfully embedding a black-box water-
mark and preserving the correct predictions on normal inputs.
Moreover, recent progress on backdoor defenses also exposes
a new attack surface on these black-box watermark schemes
[35, 40, 41]. White-box watermarking requires access to the
parameters or the neuron activation of the protected model to



extract the watermark. According to the location of the em-
bedded message, the white-box watermarking methods can
be classified into three groups: weight-based [11–13, 16, 17],
activation-based [18, 19], and passport-based [14, 15]. Recent
watermarking schemes always show strong robustness against
existing removal attacks including fine-tuning, pruning and
overwriting [29]. Very recently, a concurrent work by Yan et
al. [42] reveals the overly dependence of existing white-box
watermarks on the local neuron features which are fragile
under neuron permutation and rescaling, while our revealed
vulnerability is rooted in their common dependence on the
structural identity of the target and the suspect model.

As the black-box and white-box watermarking schemes
do not conflict with each other, some recent works combine
them to provide more robust protection to the model copy-
right [14–17, 19]. During their watermark verification, these
hybrid watermark algorithms first collect sufficient evidence
via remote queries to the suspect models. Then, the owner fur-
ther attains full access to the model with law enforcement to
detect the identity information in the model internals, which
yields a strong copyright statement.
Program Obfuscation. To prevent data structures and control
flow of source code from being exposed through reverse engi-
neering attacks, program obfuscation transforms a computer
program that is semantic-equivalent to the original one but
is harder to be analyzed for protecting the confidentiality of
the program internals [43, 44]. This prevents an attacker or
an analyst from reverse-engineering or debugging a propri-
etary software program [45, 46] via layout transformation,
control-flow transformation, or data obfuscations [47–49].

Our proposed neural structural obfuscation is designed for
a similar goal as program obfuscation, i.e., to prevent the
copyright verification algorithm from successfully validating
the watermark existence. Technically different from program
obfuscation, neural structural obfuscation is done via different
structurally invariant transforms on a neural network protected
by the white-box watermarking. The obfuscated neural net-
work is functionally equivalent to the original one, while the
existing verification procedures can no longer recognize the
original watermark from the model.

3 Preliminary

Notations on Deep Neural Networks. Considering a DNN
with H layers, i.e., { f 1, f 2, . . . , f H}, each layer f l is com-
posed of a set of Nl neurons ( f l = (nl

1,n
l
2, ...,n

l
Nl
)). We de-

note the parameters of the lth (1≤ l ≤ H) layer as W l , which
can be further written as {wl

i j}
Nl−1,Nl
i=1, j=1 ∪{bl

j}
Nl
j=1. From the

neuron-level viewpoint, each element wl
i j is a scalar value

(i.e., weight) in a linear layer, or a matrix (i.e., kernel) in a
convolutional layer, which connects the neurons nl−1

i and nl
j,

and bl
j is the bias.

White-box DNN Watermarking. As an effective foren-

sic technique against model stealing attacks [5–10], a num-
ber of model watermark schemes are proposed from 2017
[11–22, 24], which allow the legitimate model owner to es-
tablish the legal ownership by verifying the existence of a
unique watermark, usually in the form of secret identity mes-
sages, in the suspect model. Our current work concentrates on
the security analysis of white-box watermarking schemes, an
important and evolving branch of DNN watermarking which
embeds and verifies the watermark in model internals (i.e.,
parameters [11–17] or activation maps [18, 19]).

Broadly speaking, a white-box model watermark scheme
consists of the following phases: watermark embedding and
watermark verification. In the former phase, the scheme em-
beds the secret message s (e.g., a bit string) into the parame-
ters or the intermediate activation maps of the owned model
fW . This is usually achieved by an additional regularization
term Lwmk alongside the primary learning objective L , i.e.,
L ′ = L +λLwmk, where λ is the hyper-parameter to balance
the utility and the specificity of the embedded watermark. For
example, Uchida et al. [11] embed a secret bit string s in the
kernels of a specified convolutional layer. Therefore, the reg-
ularization term Lwmk is designed as the binary cross entropy
loss between the secret bit string s and σ(X ·w), where w is
derived from the parameters of a specified convolutional layer
by channel-level averaging and flattening, X is a predefined
transformation matrix, and σ is the sigmoid function. During
the verification, a watermark extraction function E is imple-
mented to extract an equal-length message s′ from a given sus-
pect model fW̃ in polynomial time: s′ = E( fW̃ ,M,A), where
M is the mask matrix to select a set of the specific parameters
or activation maps directly from the suspect model fW̃ , and
A is a transformation function which projects the selected
weights or activation maps to obtain the extracted message.

To ensure a trustworthy ownership verification, a model
watermark scheme should satisfy the minimum set of require-
ments. For more advanced model watermark requirements,
please refer to [23].

• Fidelity: The utility of the model should have as small
decrease as possible when the watermark is embedded.

• Reliability: The watermark should be verified with high
confidence in positive suspect models, i.e., the same or a
post-processed copy of the watermarked model, and with
low confidence in negative suspect models, i.e., irrelevant
models owned by others.

• Robustness: The embedded watermark in the protected
model should be resistant to adversarial attempts which aim
at removing the watermark from the model (§4.2). More-
over, a watermarking scheme should also raise the bar for
the adversary to embed another fabricated watermark into
the target model to cause ownership ambiguity [14].



4 Security of White-Box DNN Watermark

4.1 Security Settings

Attack Taxonomy. According to the adversarial goal, we
first categorize existing attacks on white-box model water-
marking from previous works into ambiguity attacks and
removal attacks. In the former attacks, the adversary aims at
constructing a counterfeit watermark, when given the water-
marked DNN [15], to pass the verification process. Instead,
the removal attacks have a more straightforward goal: in-
validating the verification process by removing the secret
identity message from the protected model. Considering its
severe influence on establishing the model ownership, our
work concentrates on devising novel removal attacks to crack
the state-of-the-art white-box model watermarks. Below, we
formally describe the attack scenario.

Attack Scenario. In our threat model, the adversary has ob-
tained an illegal copy of a watermarked model which allows
full access to its model parameters. Such model piracy can be
accomplished via either algorithmic attacks [50,51] or system
attacks exploiting software/hardware vulnerabilities [8, 52].
To conceal the traces of model infringement, the attacker
attempts to invalidate the model ownership verification by
removing the existing watermarks.

Attack Budget. As listed in Table 1, the attack budget of a re-
moval attack is mainly measured in the following dimensions:
utility loss, training cost, dataset access, watermark knowl-
edge (similar to the ones on black-box watermark in [23]).

• Utility Loss: When removing the watermark, obfuscation
on the parameters or the structure of the DNN model seems
inevitable. In this case, the obfuscation should not incur
a large decrease in the normal model utility, which is oth-
erwise unacceptable because the attacker still requires the
normal utility of the pirated model for profits.

• Training Cost: For watermark removal, the adversary is
usually unwilling to cost a similar scale of computing re-
sources as retraining the DNN model from scratch. Typi-
cally, the adversary would avoid the expensive model train-
ing process, which usually involves the usage of high-end
graphical cards for training industry-level models, but prefer
to learning-free attacks.

• Dataset Access: As the training is usually a private asset
of the model owner, the access to the original training data
or even a public domain dataset brings an additional attack
budget. The adversary would prefer to involve no real data
inputs for conducting the attack.

• Watermark Knowledge: The adversary should have no
knowledge about the adopted watermark embedding and
extraction algorithms, which are usually exclusively known
to the owner until the ownership verification is launched.

4.2 Limitation of Existing Removal Attacks
Previous removal attacks are all limited in one or more of the
above dimensions for fully removing white-box watermarks
from a protected model.
• Pruning sets a proportion of redundant parameters in

DNN to zero, under which previous white-box watermark
is highly resistant. To fully remove the watermark, prun-
ing has to remove a substantial amount of weights, which
causes an unacceptable utility loss [11, 19].

• Finetuning continues the training operation for a few
epochs without the watermark-related loss. This removal
attack additionally requires a certain amount of domain data
and computational resources, otherwise the model utility
would degrade [32, 34].

• Overwriting is first proposed in [29] to show the vulnera-
bility of [11]. Considering the adversary has full knowledge
about the watermarking process, he/she may confuse the
verification by embedding his own identification informa-
tion. However, the details of watermark schemes are always
not available in real-world settings. Meanwhile, overwriting
attacks usually fail to encode a new message into the target
model following more advanced schemes [14–16, 18].

• Extraction refers to an attack class which utilizes knowl-
edge distillation techniques [28] on the pirated model to
obtain an obfuscated model which usually has a different
architecture. The extraction attack inevitably involves a
substantial amount of training costs to distill a well-trained
obfuscated model. Although some very recent works in
knowledge distillation eliminate the assumption on dataset
access [53], most mainstream extraction attacks still use the
conventional knowledge distillation approaches and require
the access to a domain dataset to reduce the utility loss.

5 A Motivating Example

What is Dummy Neurons? Literally, dummy neurons are de-
fined to be those neurons which leave the prediction behavior
of the original DNN intact after being inserted into the model.

Definition 1 (Dummy Neurons). When we insert a group of
neurons {mi}M

i=1 into a given DNN f to obtain a structurally
obfuscated model f

′
, we call the group of neurons dummy

neurons if for every input x ∈ X , f (x) = f
′
(x).

We present motivating examples of dummy neurons in
Fig.1. In Fig.1(a), given the target fully-connected neural
network (FCN), we inject two additional neurons (i.e., m1 and
m3) into each hidden layer of the model. By definition, each
injected neuron mk is associated with vectors of incoming and
outgoing weights, which connects the k-th dummy neuron
with the i-th neuron in the precedent layer and j-th neuron
in the successive layer (denoted as ui,k and vk, j, respectively).
According to the architecture specification, a neuron may
optionally be associated with a bias ol

k.
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Figure 1: A schematic diagram of NeuronZero on (a) fully-
connected layers and (b) convolutional layers.

To make the injected neurons dummy, a naive strategy is to
set the incoming/outgoing weight of the neuron to be a vector
of all 0, the optional bias 0 but leave the incoming/outgoing
weights arbitrarily assigned. For example, the dummy neuron
m1 in Fig.1(a) has the outgoing weights of values 0 (i.e.,
v1, j = 0 for j). Therefore, its contribution of m1 to any of the
neurons in the successive layer is constantly 0. Alternatively,
the dummy neuron m3 has the incoming weights of values 0,
which implies that the activation of m3 is constantly 0. Both
cases provably ensure no impact on the next layer’s output
and finally leaves the utility of the model intact. As a fully
connected layer in DNNs is a simplified form of convolutional
layer, we can add the dummy neurons in convolutional neural
network (CNN) in the same way (Fig.1(b)), i.e., setting the
weights of all the incoming or outgoing filters to 0. We refer to
the above construction of the dummy neurons as NeuronZero.
• A Preliminary Attack. With NeuronZero, the adversary
is ready to obfuscate the protected model by injecting an ar-
bitrary number of dummy neurons with incoming/outgoing
weights of values 0 to every neural layer. The process requires
no knowledge about whether and what type of watermark is
embedded, and does not need to train the protected model.
As we analyze below, the attack is also effective to invali-
date the mainstream white-box model watermark schemes by
perturbing the watermark-related parameters.
Procedural Vulnerability of White-Box Watermark After
dummy neurons are injected into each neural layer of the
protected model, the parameters once embedded with the wa-
termark information are now messed with the weights of the
dummy neurons. Consequently, when the verification process
invokes the watermark extraction algorithm on the tampered
weights, the extracted watermark information is very likely
to suffer a large distortion. Worse yet, most of the state-of-
art white-box watermarks do not implement error-handling
procedures to properly address the case when the size of
the weights from the watermarked layer mismatches the ex-
pected size in the watermark extraction algorithm. Therefore,
these watermark schemes are inexecutable for extracting valid
watermarks from the suspect model and thus can no longer
protect the intellectual property of the victim model.

• An Example. Uchida et al. embed the watermark into
the convolutional filter weights of a target layer, i.e., W ∈
Rn×c×w×h, where n is the number of filters, c is the number
of channels, and w, h are the width and height of these fil-
ters [11]. To extract the watermark, the verification process
first averages these convolutional weights at channel level
and then flattens the result to Ŵ ∈ Rc·w·h. Finally, a bit string
with length of b is obtained according to the signs of Ŵ , i.e.,
s′= Th(A ·Ŵ ) = {0,1}b, where Th is a hard threshold function
which output 1 when the input is positive and 0 otherwise, and
A∈Rb×(c·w·h) is a pre-defined transform matrix sampled from
the normal distribution. Once we add a group of dummy neu-
rons into the next layer of watermarked layer (e.g., Fig.1(b)),
the weight W ′ ∈ Rn′×c′×w×h in the watermarked layer now
has an expanded shape, i.e., the numbers of filters and chan-
nels in the target layer increase to n′,c′ due to the injected
dummy neurons. After being flattened, the parameters be-
come Ŵ ′ ∈Rc′·w·h in vector form. As a result, the verification
process cannot be executed as the dimension of Ŵ ′ is incom-
patible with the second dimension of the transform matrix
A ∈ Rb×(c·w·h). By error-handling the flattened weight Ŵ ′ via,
e.g., random sampling or max pooling, to satisfy the dimen-
sion consistency with A, a bit string can still be obtained from
the watermarked layer. However, as validated in Section 7.1,
the extracted message remains almost at random unless the
verifier were able to precisely eliminate the impact of the
dummy neurons from Ŵ ′ to restore the watermark integrity.
• Limitation of NeuronZero. However, we notice that this
preliminary attack suffers from the limitation of stealthi-
ness: The dummy neurons can be easily detected due to
the anomaly weight distribution. For example, to determine
whether the protected models in Fig.1 are maliciously injected
with dummy neurons, the watermark verifier would first check
all the neurons in the suspect model by inspecting the values
of incoming and outgoing weights. Once the verification pro-
cess finds out that the input or output parameters of a certain
neuron all equal to value 0, this neuron is likely to be dummy
neurons and is provably has no contribution to the output of
the watermarked model. Therefore, the watermark verifier
can safely eliminate the detected dummy neurons and the
associated weights before the ownership verification.

6 Neural Structural Obfuscation

6.1 Attack Overview
In Fig.2, our proposed attack consists of three major steps.
1) Dummy Neuron Generation: Inspired by the preliminary
attack in Section 5, we propose two non-trivial dummy neu-
ron generation primitives, i.e., NeuronClique and NeuronSplit,
to construct dummy neurons associated with non-vanishing
weights. This inhibits the direct detection based on the van-
ishing weights. 2) Dummy Neuron Injection: The adversary
will generate and inject the dummy neurons from the back to
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Figure 2: Overview of our proposed watermark removal attack by neural structural obfuscation with dummy neurons.

front considering the stealthiness of these injected neurons. 3)
Further Camouflage: The final step is to further camouflage
the dummy neurons in terms of the scale, the location, and
the shape of the associated weights via other invariant trans-
forms on DNNs, aiming at transforming the original model
into an the obfuscated model which has almost no structural
similarity with its original self, while provably preserves the
normal model utility.

Without loss of generality, we present our methodology
below with a H-layer CNN f , where the weights of the l-th
convolutional layer is denoted as W l ∈RNl−1×Nl×h×w. Follow-
ing the notations in Section 5, we denote the input and the
output weights of the dummy neuron ml

k injected in the l-th
hidden layer as U l

k,in = {ul
i,k}

Nl−1
i=1 and V l

k,out = {v
l+1
k, j }

Nl+1
j=1 , re-

spectively. We do not consider the bias term because modern
DNN models with batch normalization usually have no bias
terms [54]. Appendix B.2 provides the technical details on
applying our attack framework to more complicated neural
architectures (e.g., ResNet [1] and Inception [55]).

6.2 Dummy Neuron Generation

How to construct dummy neurons with non-vanishing in-
put or output weights is challenging. It is mainly because,
when the adversary has no knowledge on the input data to
the victim model, the contribution of a newly added neu-
ron with non-vanishing weights to the next layer is highly
unpredictable, likely to cause a noticeable loss to the origi-
nal model performance. To eliminate the negative impact of
such dummy neurons on the victim model, we alternatively
construct groups of dummy neurons which work together to
preserve the model’s prediction behavior. We devise the fol-
lowing structural obfuscation primitives, i.e., NeuronClique
and NeuronSplit. Appendix A rigorously proves why these
two primitives construct valid groups of dummy neurons.
• NeuronClique. Our first proposed primitive, NeuronClique,
generates a group of dummy neurons assigned with the iden-
tical incoming weights and arbitrary outgoing weights which
satisfies that they cancel the others’ output out. In the follow-
ing, we elaborate on the case where the adversary attempts

Original Weights
Assigned Weights

Cancel-Out Identity

Activation Identity

Scaling Positivity
λ1, λ2, λ4 > 0
Uik = Ui1

V1j + V2j + V4j = 0

Figure 3: A schematic diagram of NeuronClique combined
with the parameter rescaling invariance.

to generates d(≥ 2) dummy neurons, i.e., {ml
1,m

l
2, ...m

l
d}, for

the l-th layer of the target model f with NeuronClique. For-
mally, the input and output weights of these dummy neurons
are designed to satisfy the following conditions:

U l
k,in =U l

1,in ∈ RNl−1×w×h, for k = 1,2, ...,d, (1)

d

∑
k=1

V l
k,out = 0 ∈ RNl+1×w×h, (2)

where U l
1,in and {V l

k,out}
d−1
k=1 are randomly sampled from the

parameter distribution of the normal neurons to implement
by-design stealthiness. For example, in Fig.3, we generate
three dummy neurons by NeuronClique and inject them into
the l-th layer of the prototypical target model.
• NeuronSplit. Our second primitive for dummy neuron gen-
eration further aims at enhancing the connection between
the outputs of the dummy neurons and the original neurons.
Specifically, the primitive NeuronSplit converts the normal
neuron into a number of substitute neurons which work to-
gether to preserve functionality of the replaced neuron for the
following layers. Without loss of generality, we split the first
neuron in l-th layer, i.e., nl

1, into d+1 substitute neurons, i.e.,
{ml

1,m
l
2,m

l
3, ...m

l
d+1}, by which we replace the original neu-

ron with ml
1 and view others as d dummy neurons. Formally,

we construct these substitute neurons by setting the input and
output weights to satisfy the conditions:

U l
k,in =W l

1,in ∈ RNl−1×w×h, for k = 1,2, ...,d +1, (3)
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Figure 4: A schematic diagram of NeuronSplit combined with
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d+1

∑
k=1

V l
k,out =W l

1,out ∈ RNl+1×w×h, (4)

where W l
1,in,W

l
1,out are the associated incoming weights and

outgoing weights of the original neuron nl
1 before the sub-

stitution, {V l
k,out}d

k=1 are randomly sampled from the similar
distribution of the normal neurons’ weights. For example, as
is shown in Fig.4, we can split the first neuron in l-th layer into
three neurons by NeuronSplit. Then we replace the original
neuron with one substitute neuron and two dummy neurons
into the same layer.

6.3 Dummy Neuron Injection
Without knowing the specific layers where the watermark
is embedded, our attack framework randomly generates and
injects groups of dummy neurons via the two primitives (i.e.,
NeuronClique and NeuronSplit) from the last hidden layer to
the first layer of the victim model. Specifically, As is shown
in Fig.2, we first inject dummy neurons into l-th layer and
then insert the dummy neurons generated by NeuronSplit into
(l−1)-th layer. It turns out that each dummy neuron in the first
group now has different incoming weights with one another,
as the these weights of each dummy neuron in l-th layer are
expanded with the randomly sampled output parameters of
the dummy neurons in (l−1)-th layer, which does not satisfy
Eq.(1) any longer. This substantially increases the detection
budget for a skilled defender in Section 7.4.

As a final remark, generating each dummy neuron group
only involves sampling random vectors and several floating-
point operations, which incurs almost no additional computa-
tional costs than training/finetuning the protected model as in
previous attacks. It is worth to note that, the injection process
has no change on the dimension of the model’s input and
output dimension, leaving the prediction API of the victim
model in its original form.

6.4 Advanced Camouflage Techniques
To wind up, our proposed attack further camouflages the in-
jected dummy neurons among the original neurons by obfus-
cating the location, the scale, the shape, and the distribution

of the weights associated with the dummy neurons, which are
stealthier against possible elimination attempts compared to
the preliminary dummy neurons.
• Exploiting Shuffling and Scaling Invariance. We offen-
sively exploit the usage of the shuffling and scaling invariance
in DNN [37, 38]. With the scaling invariance, the adversary
can obfuscate the weight scale by scaling up the incoming
weights of every injected dummy neuron with a positive value
λ and scaling down its outgoing weights at the same ratio,
which can prevent the weight distribution of the dummy neu-
rons from being abnormal as these weights in scaling equiva-
lence do not satisfy the conditions of NeuronClique or Neu-
ronSplit any longer. To randomize the fake weight’s location,
our attack framework leverages the permutation invariance of
neural networks to disperse the dummy neurons among the
original ones. We use random permutation on the neurons of
every expanded layer to randomize the location of the injected
dummy neurons, rather than injecting the dummy neurons as
an independent module, or otherwise the location information
would be exploited for neuron inspection.
• Kernel Expansion. Furthermore, the adversary can further
modify the architecture of the protected model by expanding
the kernel size of every convolutional layers, which obfuscates
the weight shape of the dummy neurons. For intuition, we can
obtain an equivalent model by padding the kernel matrix with
all 0, while increasing the amount of the implicit padding
of the input activation maps. Combined with the injected
dummy neurons, our proposed attack can pad the kernels
within the same layer with non-vanishing values, which not
only improves the stealthiness of injected neurons but also
introduces more perturbation to the verification process. More
technical details on kernel expansion are in Appendix B.1.

7 Evaluation and Results

Overview of Evaluation. To validate the effectiveness of our
attack, we provide a systematic study on the vulnerability of
nine state-of-the-art white-box watermark schemes published
at top-tier venues and span the different stages of DNN water-
mark development. Before the detailed evaluation results, we
concisely introduce the evaluation setups.
• Target Watermark Schemes. As Table 2 shows, our eval-
uation covers most of the existing white-box DNN water-
marks spanning the different stages of DNN watermark de-
velopment, which faithfully reflected the three representative
branches, i.e., weight-based, activation-based and passport-
based schemes.
• Weight-based Watermarks [11–13, 16]: In weight-based

watermarking schemes, the legitimate owner would secretly
select one/more neural layers from the target model, and
embed the identity message into a preprocessed version of
the layer parameters during the training process.

• Activation-based Watermarks [18, 19]: In contrast to the
weight-based ones, activation-based watermarking schemes



Table 2: Summary of nine mainstream white-box model
watermarks embedded in industry-level DNNs in our experi-
ments. Results in the Utility column report the performance
of the protected model before/after our attack.

Category Scheme Model Utility Threshold

Weight

Uchida et al. [11] WRN 91.55%/91.55% 43.86%
RIGA [12] Inceptionv3 95.90%/95.90% 42.74%
IPR-GAN [16] DCGAN 54.33/54.33 41.96%
Greedy [13] ResNet18 55.05%/55.05% 43.77%
Lottery [17] ResNet18 66.40%/66.40% 34.50%

Activation DeepSigns [19] WRN 89.94%/89.94% 42.68%
IPR-IC [18] ResNet50+LSTM 72.06/72.06 46.22%

Passport DeepIPR [14] ResNet18 67.94%/67.94% 46.26%
Passport-Aware [15] ResNet18 74.78%/74.78% 45.79%

embed the identity message into the activation maps of a
special set of data inputs at the target layers. Some works
argue activation-based watermarks are more dynamic and
data-dependent, which makes them more robust against
obfuscation on model parameters [19].

• Passport-based Watermarks [14, 15]: Passport-based water-
marking schemes can be viewed as a hybrid of the weight-
based and the activation-based schemes. On the one hand,
the identity information is typically embedded to the learn-
able parameters of normalization layers in the target model.
On the other hand, they reassert the validity of the owner-
ship by inserting a special passport layer into the suspect
model to check whether the DNN model inference perfor-
mance is unyielding [14].

• Choices of Error-Handling Mechanisms. We find most
of the tested watermark schemes in Table 2 (except Greedy
Residuals [13]) are not executable when the parameters or the
activation maps from the target layers are incompatible with
the shape constraint of the predefined watermark extraction
algorithm E . To evaluate watermark existence, we therefore
propose to implement an error-handling mechanism, which
restores watermark-related parameters/activation maps to a
valid size. Specifically, we get inspirations from [13] to greed-
ily remove the neurons with the less absolute mean value
of the incoming and outgoing weights for each layer before
the model watermark extraction. We call this error-handling
strategy as Max-First. In Section 7.4, we further investigate
more adaptive defenses on dummy neurons.
• Implementation of Watermark Schemes. For each wa-
termarking scheme, we strictly follow the same experiment
settings in the official implementations to reproduce a water-
marked model for fair evaluation. This includes but not lim-
ited to the model architecture, dataset and watermark-related
hyper-parameters, on which they claim the robustness to ex-
isting removal attacks. Also, we employ the same signature
s =“this is my signature” in these known watermark schemes.
These methods protect the IP of diverse models, including
ResNet, Inception for image classification, DCGAN for im-
age generation and LSTM for image captioning task, which
hence support the broad applicability of our proposed attack.

• Evaluation Metrics. For attack effectiveness, we use Bit
Error Rate (BER), i.e., the proportion of modified bits in the
extracted watermark compared to the pre-defined signature, to
measure how much the watermark is tampered by our removal
attack. To compare the robustness of different white-box wa-
termark schemes we follow [23] to determine the decision
threshold and then re-scale the BER results. Table 2 sum-
marizes the decision threshold for the mainstream white-box
watermark schemes. After modeling the decision threshold
for each watermark, we also define a linear scaling func-
tion S(x,θ) similar to [23] as follows: S(x;θ) = min

(
1, θ′

θ
x
)

,
which relates the BER from different white-box watermark
methods with each other. As a result, the watermark is re-
moved if the rescaled BER is higher than 50%. Otherwise,
the watermark is retained. For utility loss, we report the per-
formance of the watermarked model before/after our removal
attack, i.e., FID [56] for image generation and BLEU-1 [57]
for image captioning task and classification accuracy for other
tasks [16, 18].
• Summary of Results. Fig.5 summarize the effective of our
proposed attacks, where the x-axis reflects the attack strength
defined as the ratio of added and modified dummy neurons in
the target neural network. We make the observation that most
of the resulting scaled BER exceeds the removal threshold
50%. This validates that, due to the heavy assumption of
existing schemes on the integrity of the neural architecture,
most of them lose the claimed robustness to some or all the
previously known attacks when evaluated under our proposed
attack. To apply error-handling mechanisms such as Max-
First cannot restore the embedded watermark from structural
obfuscated model by NeuronClique and NeuronSplit. In most
cases, the BER is increased over 50% once we add less than
5% dummy neurons, indicating the innate vulnerability of
these white-box watermarking schemes. In the following, we
provide a case-by-case analysis on the vulnerability of each
scheme and how our attack cracks them by neural structure
obfuscation with dummy neurons.

7.1 Attacking Weight-based Watermarks
(1) Uchida et al. Uchida et al. [11] introduce one of the
earliest white-box schemes which embed the model water-
mark into the convolutional weights of the target model. To
extract the model watermark, the scheme first averages the
convolutional weights w ∈ RNl−1×Nl×w×h of the watermark-
related layer through first dimension and flattens the weight
to ŵ ∈ R(Nl ·w·h). Then, a binary string s′ is obtained from ŵ
through a pre-defined linear matrix A and a threshold func-
tion Th at 0, i.e., s′ = Th(X · ŵ), which is matched with the
owner-specific message s in terms of BER for validation.
• Discussion. Although this approach is previously shown to
be vulnerable to overwriting, known attacks however require
the specific prior knowledge of the watermark algorithm as
well as a domain dataset, both of which are usually impractical.
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Figure 5: The re-scaled BER of the watermarked models after inserting a certain proportion of neurons by our attacks. The
dashed horizontal lines report the BER of the irrelevant mode.

Our attack reveals the insecurity of this algorithm by directly
modifying the structure of the target model while leaving the
utility intact. Specifically, the dimension of ŵ is increased
once the adversary injects dummy neurons into watermark-
related layers. As a result, during the extraction procedure of
s′i from the victim model, the second dimension of pre-defined
linear transformation matrix X is unmatched to the dimension
of expanded ŵ any longer.
• Evaluation Results. We run the code of [58] they publicly
released to reproduce a watermarked model of Wide Residual
Network (WRN) trained on CIFAR10 dataset. We perform
our removal attack to inject dummy neurons generated via
different methods into each layer, which presents the same
original utility with classification accuracy of 91.55% while
the verification procedure is inhibited if with no error handling
mechanism. As Fig.5 shows that applying Max-First cannot
restore the embedded watermark from structural obfuscated
model by NeuronClique and NeuronSplit, as the BER is in-
creased over 50% once we add less than 5% dummy neurons,
indicating the innate vulnerability of this scheme.
(2) RIGA. Wang et al. [12] replace the linear transformation
matrix in Uchida et al. with a learnable fully-connected neural
network (FCN) to boost the encoding capacity of watermark-
ing messages. That is, the intuition behind this watermark
scheme is closely identical to Uchida et al. We present the
full details in Appendix C and report the results in Fig.5.
(3) IPR-GAN. To extend the watermarking primitive to gener-
ative adversarial networks (GANs) [59], Ong et al. present the
first model watermark framework which first invokes black-
box verification to collect some evidence from the suspect

model via remote queries, and then utilizes the white-box veri-
fication for further extracting the watermark from the specific
weights of suspicious model through the law enforcement.
Different from [11], Ong et al. embed the identification infor-
mation into the scale parameters γ of the normalization layers,
rather than the convolutional weights. Correspondingly, the
transformation function used in watermark verification stage
consists of only a hard threshold function Th, which actually
extracts the signs of γ in selected normalization layers as a
binary string, i.e., s′ = Th(γ).

• Discussion. We focus on the white-box part of the wa-
termark method. Previous works have shown that the scale
parameters γ of normalization layers are more stable than
the convolution weights against existing removal attacks and
ambiguity attacks, as small perturbation to these watermark-
related parameters would cause significant drops to the orig-
inal model utility. However, the number of scale weights in
the watermark-related layer can be increased once we inject
a group of dummy neurons. As a result, the length of binary
string s′ extracted by the transformation function Th in this
watermarking scheme is incompatible with the length of the
target watermark any longer.
• Evaluation Results. We follow their evaluation setups to
watermark DCGAN trained on the CUB200 dataset, which
achieves 54.33 in terms of FID and has 0% BER [60]. As
the watermark verification procedure is blocked with our pro-
posed removal attacks, we leverage the error-handling meth-
ods on the scale weights to measure the BER of the extracted
signature, which only has at most 55.86% matched bits to the
pre-defined binary signature while the FID of the generator is



perfectly preserved as 54.33, as Fig.5 shows.
(4) Greedy. Liu et al. [13] propose to greedily select fewer
yet more important model weights called the greedy resid-
uals, which is more important to the normal model utility
and hence improves the watermark robustness against pre-
vious attacks. Specifically, the method extracts the identity
information by first applying the transformation function A
on the one-dimensional average pooling over the flattened
parameters ŵ in the chosen convolutional layers, and then
greedily takes the largest absolute values in each row by a
ratio of η to build the residuals. Finally, the secret binary
string can be extracted from the signs of residuals by hard
threshold function Th after being averaged to a real-valued
vector. Formally, the extraction procedure can be written as
s′ = Th(Avg(Greedy(Avg_pool_1D(ŵ)))).
• Discussion. Greedy Residuals utilize some important pa-
rameters for embedding, which are more stable than choosing
all the convolution weights in the specific layer proved in
their ablation evaluations. Moreover, this watermark scheme
greedily select the larger absolute values in each row from the
intermediate feature matrix to build the residuals with fixed
number of values, the verification procedure is not inhibited
with the injection of dummy neurons. However, as the average
pooled feature matrix before residual construction is impacted
by some arbitrary values introduced by the injected dummy
neurons, the extracted watermark after our attack would be
perturbed unexpectedly.
• Evaluation Results. We run the source codes of Greedy
Residuals publicly released by the authors [61] to reproduce
a watermarked ResNet18 training on Caltech256 dataset with
55.05% accuracy and 0% BER. We embed the secret water-
mark on the parameters of the first convolution layer with
η = 0.5. We prove that our removal attack can utterly destroy
the model watermark embedded into the residual of fewer
parameters, for example, leading to an increase in the BER to
57.57% after injecting dummy neurons from NeuronClique
whereas the model utility remains unchanged.
(5) Lottery. The Lottery Ticket Hypothesis (LTH) explores
a new scheme for compressing the full model to reduce the
training and inference costs. As the topological information
of a found sparse sub-network (i.e., the winning ticket) is
a valuable asset to the owners, Chen et al. propose a water-
mark framework to protect the IP of these sub-networks [17].
Specifically, they take the structural property of the original
model into account for ownership verification via embedding
the watermark into the weight mask in several layers with
highest similarity to enforce the sparsity masks to follow cer-
tain 0-1 pattern. The proposed lottery verification uses the
QR code to increase the capacity of the watermark method.
For watermark verification, this algorithm first selects a set of
watermark-related weight masks m and then averages the cho-
sen masks to a 2-dimensional matrix, which is further trans-
formed to a QR code via Sign function, i.e., s′= Sign(Avg(m))
and can be validated via a QR scanner.

Figure 6: The QR codes extracted from ResNet-20 water-
marked by [17] after an α ratio of dummy neurons are added.

• Discussion. While most existing watermark techniques ex-
plore the specific model weights or prediction to embed the
secret watermark, the lottery verification leverages the sparse
topological information (i.e., the weight masks) to protect
the winning ticket by embedding a QR code which can be
further decoded into the secret watermark. However, our at-
tack directly obfuscates the topological information of the
target model by injecting groups of dummy neurons with the
corresponding weight masks, which enlarges the shape of
extracted QR code from the weight mask of trained winning
ticket unexpectedly. As this QR code without valid shape is
not decodable, we leverage the error-handling mechanism to
extract the embedded watermark for ownership verification,
where remains a large distortion.
• Evaluation Results. We follow the evaluation settings
in the original paper to watermark a ResNet20 training on
CIFAR-100 dataset, which achieves 66.41% accuracy and
0% BER [62]. Although the QR code has the ability to cor-
rect some errors which improves the robustness against ex-
isting attacks, the identity information decoding procedure
from the extracted QR code is invalidated by adding only a
few (e.g., 1%) dummy neurons in the victim model as Fig.6
shows. Moreover, the original design of Lottery Ticket is in-
hibited (due to the unmatched size) when attackers insert the
dummy neurons into the protected model, while it retains
robust against structure obfuscation with our proposed error-
handling mechanisms. In other words, Lottery Ticket would
have better robustness against neural structural obfuscation
than other schemes if the unmatched size of neural layers are
properly addressed in its design.

7.2 Attacking Activation-based Watermarks
(1) DeepSigns. As a representative of activation-based white-
box watermarking schemes, DeepSigns proposes to embed the
model watermark into the probability density function (PDF)
of the intermediate activation maps obtained in different lay-
ers on the white-box scenario. Specifically, DeepSigns adopts
a Gaussian Mixture Model (GMM) as the prior probability
to characterize the hidden representations, and considers the
mean values of the PDF at specific layers to share the same
role as the watermark-related weights in Uchida et al. [11].
Similar to the verification procedure of [11], a transforma-
tion matrix A, randomly sampled in embedding procedure,
projects the mean values of chosen intermediate features to
a real-valued vector. With the final hard threshold function,



the resulted binary string s′ is matched to the owner-specific
watermark for claiming the model ownership.
• Discussion. The notable difference between DeepSigns
and [11] is where to embed the model watermark. However,
as the hidden features utilized by DeepSigns are generated by
the weights in the preceding layer, e.g., ai = Wi · x+ bi, the
structural information of target model is closely related to the
shape of output feature maps. For example, the shape of the
watermark-related layer’s output is expanded after injecting
dummy neurons, which inhibits the ownership verification due
to the incompatible dimension of the output activation maps
and the pre-defined transform matrix. As a result, DeepSigns
is almost as vulnerable as [11] under our attack.
• Evaluation Results. We run the source code of DeepSigns
from [63] to watermark a wide residual network trained on CI-
FAR10. This watermarked WRN achieves 89.94% accuracy
and 0% BER. With the error-handling method, it is shown that
the ownership verification of the target model is completely
confused by our removal attacks. For example, the BER is
increased to 47.59% with dummy neurons from NeuronSplit
while the original model functionality is intact.
(2) IPR-IC. As previous watermarking schemes are mainly
designed for image classification models, they are insufficient
to IP protection for image captioning models and cause in-
evitable degradation to the image captioning performance.
Therefore, Lim et al. [18] embed a unique signature into Re-
current Neural Network (RNN) through hidden features. At
the ownership verification stage, the mask matrix M first se-
lects the hidden memory state h of given watermarking image
in protected RNN model. Then, the hard threshold function
transforms the chosen h to a binary string s′, which can be
formally written as s′ = Th(h).
• Discussion. Similar to DeepSigns [19] and IPR protection
on GANs [16], the topological information is closely related
to the shape of hidden memory state. Although the protected
image captioning model contains an RNN architecture, we
can adopt our structural obfuscation method to expand the
size of hidden state, e.g., with vanishing weights, to produce
an equivalence of the original model with the same output.
• Evaluation Results. We run the official implementation
[64] to reproduce a watermarked Resnet50-LSTM trained
on COCO, which achieves 72.06 BLEU-1 and has 0% BER.
With our proposed removal attacks, the signature extracted
from the hidden memory state h is not compatible to the
size of the owner-specific binary message. We leverage error-
handling mechanisms, e.g., Max-First to extract the identity
message, which is perturbed with 56.95% and 52.60% BER
for NeuronClique and NeuronSplit, while no loss is brought
to the image captioning performance.

7.3 Attacking Passport-based Watermarks

(1) DeepIPR. DeepIPR is one of the earliest passport-based
DNN ownership verification schemes [14]. By inserting

owner-specific passport layers during the watermark embed-
ding procedure, DeepIPR is designed to claim the ownership
not only based on the extracted signature from the specific
model parameters but also on the model performance with the
private passport layer. Consequently, this scheme shows high
robustness to previous removal attacks and especially to the
ambiguity attacks, which mainly forge counterfeit watermarks
to cast doubts on the ownership verification.

In our evaluation, we focus on the following passport ver-
ification scheme in [14]. This scheme generates two types
of passport layers simultaneously by performing a multi-task
learning, i.e., public passports for distribution and private
passports for verification, both of which are actually based
on normalization layers. Generally, DeepIPR leverages pre-
defined digital passports P = {Pγ,Pβ} to obtain the scale and
the bias parameters of the private passport, which are writ-
ten as: γ = Avg(Wc⊙Pγ),β = Avg(Wc⊙Pβ), where Wc is the
filters of the precedent convolution layer, and ⊙ denotes the
convolution operation. DeepIPR adopts a similar watermark
extraction process as [11], where the transformation function
A converts the signs of the private γ into a binary string to
match the target signature.
• Discussion. As the private γ and β are obtained from the
preceding convolution weights, DeepIPR actually embeds
the secret signature in the hidden output of the convolutional
layer with the weights Wc given the input Pγ or Pβ. Similar
to the activation-based watermarking scheme, the unmatched
extracted watermark can not be used to ownership verification
due to the expanded shape of Wc.
• Evaluation Results. We evaluate our attack on the water-
marked ResNet18 trained on the CIFAR-100 dataset with
DeepIPR [65] which achieves 67.94% accuracy. When we
inject an α proportion of neurons with our attack, the sig-
nature extracted from the victim model becomes totally un-
readable, from “this is my signature” (α = 0, BER= 0%)
to “ÎÍ¿±C¾Ýzü½¤L°!²/Ã9Ûå” (α = 0.5, BER= 51.25%). By
injecting 50% of dummy neurons, our attack successfully in-
creases the BER to almost random, while causing no change
in the accuracy of the model with the public passports.
(2) Passport-aware Normalization. Zhang et al. [15] pro-
pose another passport-based watermark method without mod-
ifying the target network structure by maintaining the statistic
values independently for passport layer. As the watermark
embedding and extracting procedures are nearly identical to
DeepIPR, we report the results in Fig.5 and provide the details
of Passport-aware Normalization in Appendix C.

7.4 Stealthiness of Injected Dummy Neurons

Finally, we provide a preliminary study on potential adaptive
approaches to detect and eliminate dummy neurons. Specif-
ically, we consider two types of defenders, (a) a partially
knowledgeable defender, i.e., who knows the existence of
dummy neurons but has rare knowledge about the detailed
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Figure 7: Detection rate of anomaly detection algorithms on
different types of dummy neurons.

algorithm for generating the dummy neurons, (b) a skilled
defender, who has a perfect knowledge about our attack frame-
work but does not have access to the original model (a com-
mon setting in existing watermarking protocols), and (c) a
fully knowledgeable defender, who also has the original model
for reference.
(a) A Partially Knowledgeable Defender. If knowing the ex-
istence of dummy neurons in the suspect model, the defender
is likely to apply anomaly detection algorithms to detect and
eliminate the suspicious neurons from the target layer. Specif-
ically, by considering the incoming and outgoing weights of
each neuron as the feature vector, we implement two represen-
tative anomaly detection algorithms, i.e., cluster-based [66]
and SVD-based [67], to evaluate the stealthiness.
• Experimental Settings. We first inject the dummy neurons
generated by NeuronZero, NeuronClique, and NeuronSplit
into the watermarked models, respectively. Then, we concate-
nate the flattened incoming and outgoing weights of each
neuron as its feature vector. The cluster-based detection lever-
ages K-Means to separate the neurons from the same layer
and assigns the abnormal cluster as dummy neurons [66],
while the SVD-based detection utilizes the covariance matrix
of the neurons’ feature representation to filter outliers [67].
• Results & Analysis. As is shown in Fig.7, the dummy
neurons with vanishing values generated by NeuronZero are
more likely to be recognized as abnormal neurons under both
detection approaches, while the dummy neurons produced by
NeuronSplit from the original neurons show stronger stealth-
iness compared to both NeuronZero and NeuronClique, as
their weights have the same distribution to the normal ones.
(b) A Skilled Defender. Besides the above defense, we con-
sider a more adaptive defender who has perfect knowledge
about our proposed attack. From our construction in Section
6.2 (combined with the defense results above), the only ex-
ploitable information for dummy neuron elimination is in the
first layer where the dummy neurons are injected. According
to Eq.1&3, if there are no dummy neurons in the previous

Algorithm 1 A possible dummy neuron elimination algo-
rithm.
Input: W (the parameters of the suspect model), H (the num-

ber of layers in the suspect model).
Output: W , the parameters of the suspect model after

dummy neuron elimination.
1: Thash←{}

/* Find the neurons with proportional incoming weights.*/
2: for l = 1,2, ...,H−1 do
3: W (l),W (l+1)←W [l],W [l+1] // Obtain the incom-

ing and outgoing weights of the neurons in the lth layer
4: Ind,W̃ (l),W̃ (l+1)← 0,zeros_like(W (l)),zeros_like(W (l+1))

5: for each input weight W (l)
·i of the ith neuron in the lth

layer do
6: w← Flatten(W (l)

·i )

7: wnorm← Normalize(W (l)
·i )

8: w← W (l)
·i

wnorm
9: if w not in Thash.keys() then

10: Thash[w]← Ind
11: Ind← Ind +1
12: else
13: /* Merge the neurons in the same hash bucket.*/
14: i′← Thash[w]
15: W̃ (l)

·i′ ← w

16: W̃ (l+1)
i′· ← W̃ (l+1)

i′· +wnorm ·W
(l+1)
i·

17: end if
18: end for
19: W (l),W (l+1)← W̃ (l),W̃ (l+1)

20: Remove the neurons with zero incoming or outgoing
weights in W (l), W (l+1).

21: end for
22: return W

layer, then the dummy neurons belonging to the same group
generated by NeuronClique or NeuronSplit would have their
incoming weights, if viewed as vectors, proportional to each
other. Based on this characteristic, the defender may imple-
ment the following procedures to detect and eliminate dummy
neurons from each layer:
• Step 1. Normalize the incoming weights of each neuron

in the current layer and move the neurons with the same
normalized weight into the same hash bucket.

• Step 2. Merge the neurons of the same hash bucket into one
neuron: Its incoming weights take the normalized weights
of either one of the neurons and its outgoing weights take
the sum of these neurons.

• Step 3. After the merging, check the flattened outgoing
weights of each neuron: If the weights are a zero vector,
then remove the neuron and its associated weights.
By iterating the above procedure from the first hidden layer

to the last one, the algorithm is expected to detect the dummy
neurons and restore the original neural architecture from the
obfuscated model. The detailed algorithm is shown in Al-
gorithm 1. Our experiments find, even though there is no



Table 3: The scaled BER for each white-box watermarking
scheme under dummy neuron elimination.

Schemes Uchida et al. RIGA IPR-GAN Greedy

BER 52.99% 54.83% 62.37% 51.79%

Lottery DeepSigns IPR-IC DeepIPR Passport-Aware

54.45% 52.74% 53.76% 57.42% 54.59%

dummy neurons after the elimination, the BER of the rec-
ognized watermark in the restored model remain over 50%
in Table 3, yielding no evidence for the claimed ownership.
This is because, after the merging, the original scale of the
parameter could still not be recovered, because the defender
does not know how the attacker has rescaled the parameters
of the dummy neurons during NeuronClique and NeuronSplit.
Therefore, when the defender has no access to the original
model, they could not adjust the parameter scale to cancel out
the obfuscation effect. Hence, the original watermark is not
recovered.
(c) A Fully Knowledgeable Defender. Finally, we discuss
the case when the defender also refers to the original water-
marked model for watermark recovery. Then they can further
compare the parameters of the original model with the ob-
fuscated model in order to recover the order and the scale of
the parameters. For the dummy neurons constructed in Sec-
tion 6.2, they can eliminate the dummy neurons and recover
the watermark accuracy at the cost of some additional com-
puting power. As the security research on white-box model
watermark is an evolving game between the attacks and the
defenses, we leave the study on more effective de-obfuscation
approaches to future work.

8 Discussions

• Applicability of Our Attack. For simplicity, our method-
ology part uses the convolutional and fully-connected layers
as the motivating example. Nevertheless, First, our proposed
neural structure obfuscation with dummy neurons is applica-
ble to many other neural network components, most of which
are already involved in the covered victim models we evaluate
in Section 7. We leave the technical details in Appendix B.2.
• Coverage of Attack Targets. Recently, an increasing num-
ber of white-box model watermarking schemes have been
published at top-tier venues, some of which are authored by
industrial research institutes (e.g., from Microsoft [19] and
WeBank [14]), and are cited in patents [68]. It implies that
white-box model watermarking is an active research area.
Considering the recent proposal of standards and laws on AI
copyright [69, 70], we believe the need for research on model
copyright protection is current and pressing. In this work,
we covered nine published white-box watermarking schemes.
We leave the evaluation on some more recent watermarking

Table 4: Effectiveness of our attack on DEEPJUDGE. The
threshold is excerpt from the evaluation result of DEEP-
JUDGE [72]. For each white-box metric, x/y stands for the
results w/o. or w/. error handling.

Metric w/o. Attack Threshold NeuronZero NeuronClique NeuronSplit

NOD 0 1.79 −/3.82 −/259.20 −/0.03
NAD 0 6.14 −/113.78 −/8.1 −/1.31
LOD 0 6.89 −/8.16 −/1309.98 −/1.61
LAD 0 3.01 −/3.17 −/7.97 −/0.88

schemes to future work.

•More Threats of Neural Structural Obfuscation. During
our extensive literature research, we surprisingly discover that
not only the white-box watermarking schemes but also other
works have strong dependence on the integrity of the neural
structure. For example, Chen et al [71] present DEEPJUDGE,
a testing platform based on non-invasive fingerprint for copy-
right protection of DNNs, which measures the similarity be-
tween the suspect model and victim model using multi-level
testing metrics. Despite the authors claiming strong robust-
ness against various attacks in their evaluation, we notice that
four out of the six testing metrics in DEEPJUDGE measure
the distance between the two models’ hidden layer/neuron
outputs in the white-box scenario, most of which are also
sensitive to the existence of dummy neurons. In our prelim-
inary results reported in Table 4, the scheme fails to verify
the stolen model under neural structure obfuscation when us-
ing the same threshold suggested in DEEPJUDGE [72]. The
additional results further highlight our revealed vulnerability
is important for future research works on model copyright
verification to circumvent this design pitfall.

9 Conclusion

By thoroughly analyzing the protection mechanisms of the
state-of-the-art white-box model watermarks, our work for
the first time reveals their common and severe security flaw
in the resilience against neural structural obfuscation. To val-
idate this, we propose the novel notion of dummy neurons
and implement an automatic framework to generate and inject
dummy neurons into a given DNN model in a stealthy yet
offensive way, which arbitrarily tampers the embedded water-
marks while preserving the model utility. Through extensive
experiments, we find all nine state-of-the-art white-box model
watermarks with claimed robustness against existing removal
attacks fail to recognize the original watermark in the pro-
tected model after being obfuscated via our neural structural
obfuscation attack. As amendments, we discuss possible de-
fenses to strengthen the verification procedures and recover
the model from structural obfuscation.
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A Omitted Proofs

Correctness of NeuronClique. Below, we prove the output of
the obfuscated model is the same as the original one after this
group of dummy neurons is injected. First, we denote the
original outgoing weights and the output of i-th neuron in the
l-th layer are W l

i,out and hl
i , respectively. Then the output of

the (l +1)-th layer after injecting dummy neurons in the l-th
layer can be written as:

hl+1′ = ReLU(
Nl

∑
i=1

(W l
i,out⊙hl

i)+
d

∑
k=1

(V l
k,out⊙gl

k)), (5)

where gl
k = ReLU(U l

k,in ⊙ hl−1) is the output of the k-th
dummy neuron added into the l-th layer. As we set the in-
coming weights for each dummy neuron as identical, we have
gl

k = gl
1 for k = 1,2, ...,d. Combined with other conditions, the

contribution of the dummy neurons to the (l+1)-th layer is ac-
tually equal to 0, i.e., ∑

d
k=1(V

l
k,out⊙gl

k) = ∑
d
k=1(V

l
k,out)⊙gl

1 =

0⊙gl
1 = 0. As a result, we can further simplify the formula-

tion of hl+1′ as follows:

hl+1′ = ReLU(
Nl

∑
i=1

(W l
i,out ⊙hl

i)+0) = hl+1, (6)

which indicates that the output of the victim model after we
inject a group of dummy neurons generated by NeuronClique
is exactly same as before.

Correctness of NeuronSplit. Similar to NeuronClique, we
prove that splitting the original neuron into several substitute
neurons by NeuronSplit has no unexpected effect on the func-
tionality of the target model. With the selected neuron replace-
ment and dummy neuron injection, the output of the (l +1)-
th layer can be written as: hl+1′ = ReLU(∑

Nl
i=2(W

l
i,out ⊙hl

i)+

∑
d
k=0(V

l
k,out⊙gl

k)), where gl
k =ReLU(U l

k,in⊙hl−1+bl
k) is the

output of the k-th substitute neuron injected to the l-th layer.

Because the values of the incoming weights for each substitute
neuron are set as identical to the original neuron nl

1, we have
gl

k = hl
1 for k = 0,1, ...,d. Combined with other identities,

we formulate the contribution of these substitute neurons to
the (l+1)-th layer as ∑

d
k=0(V

l
k,out⊙gl

k) =∑
d
k=0(V

l
k,out)⊙hl

1 =

W l
1,out⊙hl

1, which is equivalent to nl
1 in the original model. As

a result, we can further simplify the formulation of hl+1′ as fol-
lows: hl+1′ = ReLU(∑

Nl
i=2(W

l
i,out ⊙hl

i)+W l
1,out ⊙hl

1) = hl+1,
which indicates that the output of the victim model after re-
placing the selected neuron and injecting a group of dummy
neurons generated by NeuronSplit is provably the same as
before.

B Omitted Technical Details

B.1 Technical Details of Kernel Expansion

In Section 6.4, we obfuscate the kernel shape of the dummy
neurons in convolutional layers with vanishing weights for
intuition. We provide the technical details of the kernel expan-
sion with non-zero values in this section. Consider a convo-
lutional layer with N neurons, i.e., {ni}N

i=1, we can split each
neuron ni into two substitute neurons as n′i and mi, which have
the same incoming weight and satisfy the replacement iden-
tity, i.e., W ′i,in =Ui,in =Wi,in and W ′i,out +Vi,out =Wi,out . As a
result, the expanded convolutional layer with 2×N neurons
can be denoted as {n′i}N

i=1∪{mi}N
i=1. Then we can expand the

kernel in the outgoing weight of replaced neuron n′i and mi
with opposite values, while the extra features values in the
next layer introduced by the expanded weights of n′i can be
canceled out by the dummy neuron mi, as their outputs in the
current layer are exactly the same to each other.

B.2 On Attack Applicability

Dealing with Normalization Layers. Similar to fully-
connected layers, normalization layers such as batch normal-
ization [73], group normalization, and instance normalization
implement an elementwise linear transformation on the input
x: x̂ = γ⊙ x−µ

σ
+β, where γ, β are learnable parameters and

µ,σ are the statistics of the historical training data. Typically,
a normalization layer follows a convolutional/fully-connected
layer in modern DNN architectures. Therefore, to stay com-
patible with the dummy neurons injected in the preceding
layers, our attack correspondingly expands the normalization
layers by assigning the identical coefficients for the inputs
from the dummy neurons in the same group.
Dealing with Other Complex Model Architectures. Be-
sides, our removal attack can be easily applied to the wa-
termarked DNNs with special connections between the neu-
rons of different layers, e.g. ResNet with shortcuts [1] and
Inception-V3 with parallel convolution [55] operations, which
have much more complicated architecture than the simple

https://github.com/TIANHAO-WANG/riga
https://github.com/ZJZAC/Passport-aware-Normalization
https://github.com/ZJZAC/Passport-aware-Normalization


convolutional neural networks. For example, we can obtain
the equivalent branches in each Inception block separately
to remove the embedded watermark in Inception-V3. More
technical details can be found in Appendix B.2. Only if the
adversary knows well about the forwarding computation in
the target DNN, which is a common knowledge in white-box
watermarking settings, he/she can readily extend our attack
with small adjustments, which is left for future works.

In Section 8, we discuss the broad applicability of our attack
on other watermarked models with various architecture, i.e.,
ResNet, not limited to simple convolutional neural network,
by carefully setting the injection positions. We provide more
detailed analysis and proofs below. First, we combine the l-th
convolutional layer with possible normalization layer (e.g.,
batch normalization) as follows:

yl = γ
Wc⊙ x−µ

σ
+β = (

γ

σ
·Wc) · x+(

µ
σ
−β), (7)

as the adversary has full control over the victim model. We
denote the weight of the combined convolutional layer as
W ′ = γ

σ
·Wc and b′ = µ

σ
−β.

For ResNet [1], we inject the same ratio of dummy neurons
into the same position of every layer to confront with the
existence of skip connections. As a result, the outputs of the
dummy neurons generated by our attacks for a certain layer
will produce the same feature maps, as we align the output
of dummy neurons from different layers with the same size
before the possible shortcut connections.

For Inception-V3 [55], the inception modules apply multi-
ple sizes of kernel filters to extract multiple representations,
which usually consists of several branches. As a result, we
generate the dummy neurons with the output weights which
satisfy the cancel-out or replacement identity for each indi-
vidual branch, and then inject these dummy neurons into each
layer as proposed in Section 6.3.

C Omitted Evaluation Results

RIGA. Wang et al. [12] enhance the covertness and robustness
of prior white-box watermarking methods against watermark
detection and removal attacks based on adversarial training
and more sophisticated transformation function. They train a
watermark detector to serve as a discriminator to encourage
the distribution of watermark-related weights to be similar to
that of unwatermarked models. Meanwhile, they replace the
watermark extractor, which has been previously implemented
with a predefined linear transformation [11], with a learnable
fully-connected neural network (FCN), for boosting the en-
coding capacity of watermarking messages. Similar to Uchida
et al. [11], the watermark-related weights are first selected
from the target model and then projected to a binary string s′

via the FCN-based extractor during the ownership verification
procedure.

Discussion. Simply replacing the linear transformation ma-
trix in Uchida et al. [11] to a learnable extractor can not com-
pletely eliminate the removal threats from our attack based
on model structural obfuscation. As a result, RIGA has the
similar vulnerability of [11] as their watermark extraction
procedures only differ into the type of extractor, which is also
inexecutable due to the incompatible input dimension of the
trained extractor for RIGA.
Evaluation Results. We follow their evaluation settings to
watermark Inception-V3 trained on CelebA, which achieves
95.90% accuracy and 0% BER [74]. We employ the default
setups that the watermark is embedded into the third convolu-
tional layer of the target model and the extractor is a multiple
layer perceptron with one hidden layer. With our attack frame-
work, we successfully inhibit the ownership verification of
RIGA without any loss to the utility of victim model. Even ap-
plying the error-handling mechanisms, the BER of extracted
message is increased to an unacceptable level. For example,
when we utilize Max-First error-handling to obtain the em-
bedded watermark, the BER is increased to 76.04% when we
inject the dummy neurons generated via NeuronSplit.
Passport-aware Normalization. Zhang et al. [15] propose
another passport-based watermark method without modifying
the target network structure, which would otherwise incur
notable performance drops. They adopt a simple but effec-
tive strategy by training the passport-free and passport-aware
branches in an alternating order and maintaining the statistic
values independently for the passport-aware branch at the
inference stage. Similar to DeepIPR, the authors design the
learnable γ,β to be relevant to the original model for stronger
ownership claim. During the extraction of model watermarks,
the transformation function A first projects the γ by an addi-
tional FCN model to an equal-length vector and then utilizes
the signs of the vector to match the target signature.
Discussion. While this method improves DeepIPR in terms
of model performance by preserving the network structure
and improving transformation function A with linear transfor-
mation and sign function, we discover it is still inexecutable
because of the incompatible dimensions between the extracted
watermark and target one.
Evaluation Results. When we embed the model watermark
into a ResNet18 trained on the CIFAR-100 via passport-aware
normalization [75], we are able to achieve 0% BER, while
preventing the original model utility from unacceptable drops.
Our proposed structural obfuscation attacks demonstrate suf-
ficient effectiveness to remove this white-box watermark and
invalidate the passport-aware branch independently as Fig 5
shows. For example, with the error-handling of Max-First, the
injection of dummy neurons generated by NeuronSplit can
boost the BER to 56.17%.
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