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Abstract
We present BalanceProofs, the first vector commitment that
is maintainable (i.e., supporting sublinear updates) while also
enjoying fast proof aggregation and verification. The basic
version of BalanceProofs has O(

√
n logn) update time and

O(
√

n) query time and its constant-size aggregated proofs can
be produced and verified in milliseconds. In particular, Bal-
anceProofs improves the aggregation time and aggregation
verification time of the only known maintainable and aggre-
gatable vector commitment scheme, Hyperproofs (USENIX
SECURITY 2022), by up to 1000× and up to 100× respec-
tively. Fast verification of aggregated proofs is particularly
useful for applications such as stateless cryptocurrencies (and
was a major bottleneck for Hyperproofs), where an aggregated
proof of balances is produced once but must be verified mul-
tiple times and by a large number of nodes. As a limitation,
the updating time in BalanceProofs compared to Hyperproofs
is roughly 6× slower, but always stays in the range from 10
to 18 milliseconds. We finally study useful tradeoffs in Bal-
anceProofs between (aggregate) proof size, update time and
(aggregate) proof computation and verification, by introduc-
ing a bucketing technique, and present an extensive evaluation
as well as a comparison to Hyperproofs.

1 Introduction

Vector commitments (VC) is a cryptographic primitive re-
cently proposed as a powerful alternative to traditional Merkle
trees [24], due to their additional attractive properties, such as
compact, even constant-size proofs, efficient and homomor-
phic updates as well as the ability to aggregate proofs into a
single object. Catalano and Fiore [12] were the first to formal-
ize the notion of VCs. In a VC scheme, a prover computes a
succinct commitment C of a vector m = [m0, . . . ,mn−1] and
proofs π0, . . . ,πn−1 for each position. A verifier who has the
commitment C can later verify a proof πi attesting that mi
is the correct value at position i. As with other commitment
schemes, VCs maintain the binding property that ensures that

an adversary cannot forge a commitment or a proof and con-
vince the verifier of false information (e.g., that the value
of index i is m′i, instead of mi). Inspired by applications of
VCs, such as stateless cryptocurrencies and proof-of-space
protocols (e.g., [1, 2, 6, 11, 13, 21, 22, 25, 31, 33, 35, 37, 42]), in
this paper we are interested in two features of VCs, maintain-
ability and aggregatability, which were recently explored by
Srinivasan et al. in their Hyperproofs work [33].

A VC scheme is maintainable, if the commitment C and
all proofs can be updated efficiently (in sublinear time) af-
ter receiving an update to one position of the original vector
(Typically the sublinear time is achieved by maintaining a
data structure that efficiently stores overlapping parts of the
proofs, e.g., [33].) A VC scheme is aggregatable, if, given an
index set I, the prover can take several individual proofs πi for
i ∈ I and aggregate them into a single, succinct proof πI effi-
ciently. There are several VC schemes that are maintainable
but not aggregatable [24, 28, 30, 36, 38]. For example, Merkle
trees [24] or the vector commitment by Tomescu [36] are such
schemes: While one can update proofs in O(logn) time, no
algorithms are known for proof aggregation. Similarly, there
are VC schemes that are aggregatable but not maintainable.
For example, the vector commitment scheme by Tomescu et
al. [37] (referred to as aSVC for the rest of the paper), based
on the KZG polynomial commitment [19] as well as the re-
cently proposed Pointproofs [15] support proof aggregation
but their updates take linear time.

Naturally, there is a fundamental question as to whether we
can build a vector commitment that is both maintainable and
aggregatable. To the best of our knowledge, Hyperproofs [33]
is the only work to satisfy both properties. In Hyperproofs,
aggregation and verification times both take sublinear time.
However, the practical aggregation and verification costs of
Hyperproofs are very large (e.g., about 100× to 1000× larger
than aggregation using other VCs such as aSVC [37]). This
could limit the applicability of Hyperproofs in cryptocurren-
cies where the aggregated proof computed by the miner that
finds the next block must be verified by all the nodes in the
distributed blockchain. The main reason for the increased



aggregation and verification cost is the almost black-box use
of an inner-product argument [8] used to produce the aggre-
gate proof. In this paper we are therefore interested in the
following question:

Can we build a vector commitment scheme that is both
maintainable and naturally aggregatable?

(Here, by “natural aggregation” we refer to the goal of avoid-
ing the use of any black-box arguments in implementing the
aggregation—this can lead to significant practical improve-
ments in the aggregation and verification time.) Our work
answers the above question in the affirmative. Our detailed
contributions are as follows.
First contribution: Our BalanceProofs compiler. Our first
contribution is BalanceProofs (see Section 3), a compiler
that takes as input any naturally aggregatable vector com-
mitment that is not maintainable, such as aSVC [37] and
Pointproofs [15], and produces another naturally-aggregatable
and maintainable vector commitment—in particular one with
O(
√

n logn) update-all time (In our evaluation, we instantiate
BalanceProofs with the aSVC vector commitment.) For the
compilation to work, the input vector commitment must sup-
port opening all proofs in O(n logn) time (as is the case with
aSVC [37] and Pointproofs [15]). Of course, this transforma-
tion introduces a trade-off: The query time for a single proof
of the output vector commitment increases to O(

√
n) (which

is O(1) in both aSVC and Pointproofs)—however this is still
sub-linear, and as we will see, a cost worth paying to support
much faster aggregation.

The main idea of our compiler is simple: Suppose we have
an aSVC vector commitment for a vector m = [m0, . . . ,mn−1]
and that we have computed initial aSVC proofs π0, . . . ,πn−1
for every position of the vector. Whenever there is an update
(i,δ) (change mi to mi +δ) to the vector, aSVC would apply
(i,δ) to all proofs π0, . . . ,πn−1, leading to Ω(n) time. Instead
of doing this expensive operation, we just store the update
(i,δ) in a log. Of course this is problematic. Whenever we
want to query a proof π j for an index j in the future, we need
to first apply all updates in the log on proof π j. However,
given that updating a single aSVC proof π j is cheap (constant
time), we can fetch the updated proof π j after t updates in
time O(t) by applying all t updates one-by-one on π j. We
make sure that t is kept below

√
n, by recomputing all proofs

from scratch after
√

n updates. Clearly, since recomputing
all aSVC proofs from scratch takes time O(n logn) (which
is a requirement for our compiler), the amortized time for
our update algorithm is O(

√
n logn). We finally show how to

deamortize this algorithm in practice, leading to O(
√

n logn)
worst-case update time.
Second contribution: Bucketing BalanceProofs. Unfortu-
nately, the O(

√
n logn) update operation of the above basic

version of BalanceProofs is quite slow in practice. For exam-
ple, we found it takes around 130 seconds to perform a single

update for a vector of 230 positions—this is approximately
1000× slower than Hyperproofs, the only maintainable and
aggregatable vector commitment and hence our baseline for
comparison. To address this problem, we propose a bucketing
technique: The main idea is to split the vector in p buckets
P0, . . . ,Pp−1 of n/p indices each. Then we apply aSVC over
the buckets P0, . . . ,Pp−1 (namely over sets of indices instead
of single indices) and our BalanceProofs compiler within each
bucket Pi. While this might sound like a trivial approach, it is
not: For efficiency reasons, we have to use a 2-variate poly-
nomial for the commitment (see “space-efficient" bucketing
in Section 4.2) so that the size of public parameters stays lin-
ear. Our bucketing data structure maintains two components,
bucket proofs and individual proofs.

A bucket proof Πi is a batch proof over the indices of Pi,
with respect to commitment C of the whole vector. Proofs Πi
are always updated immediately during an update, leading
to O(p) update time. An individual evaluation proof πi, j is a
proof for the value of index j with respect to commitment Ci
of bucket Pi. Since BalanceProofs is used within each bucket,
updating these proofs takes O(

√
n/p log(n/p)) time. There-

fore for p = n1/3, our update time becomes n1/3 +n1/3 logn.
The above bucketing technique increases the size of indi-

vidual proofs by one group element. However, the size of the
aggregate proof is not constant anymore: To support aggrega-
tion of an arbitrary set of indices I, one might need to touch
more than one buckets, for example, up to p = n1/3 buckets.
Therefore the aggregated proof size becomes n1/3. However,
as we will see in the experimental section, this compares very
favorably in practice to Hyperproofs (Recall Hyperproofs is
using a black-box argument system [8] to aggregate proofs
and this leads to increased aggregate proof size.)

To further decrease update time, we also propose to split
each bucket into smaller buckets (see “two-layer bucketing”
in Section 4.3)—technically this is done by using a 3-variate
polynomial for the commitment. In particular, we split the
vector into p big buckets, and then each big bucket into t
small buckets, leading to p · t small buckets. Using our com-
piler within a small bucket, updating individual proofs takes
O(
√

n/pt log(n/pt)) time. If we pick p = t = n1/4, our up-
date time becomes n1/4 +n1/4 +n1/4 logn. Similarly, individ-
ual proofs are now three group elements and aggregate proof
size will increase to at most O(n1/4 ·n1/4) = O(n1/2).

Limitations. When we are using two-layer bucketing, the
aggregate proof size increases to

√
n. While not an issue in

practice, it is an open problem to construct a maintainable and
naturally-aggregatable vector commitment that has constant-
size aggregate proof, yet O(n1/4) update time. See Table 1 for
an asymptotic comparison with Hyperproofs.

Evaluation. Our evaluation (Sec. 5) has three components.

Microbenchmarks. We observe that the basic BalanceProofs
version has aggregation and aggregate verification that is in
the order of milliseconds (for aggregating 1024 individual



Scheme |πi| |πI | Aggregate UpdAllProofs Query πi Verify πi Verify πI Gen |pp|

Hyperproofs [33] logn log(k logn) k logn logn logn logn k logn n n

BalanceProofs (Sec. 3) 1 1 k log2 k
√

n logn
√

n 1 k log2 k n logn n

Two-layer bucketing (Sec. 4.3) 1 min{k,
√

n} k log2 k n1/4 logn n1/4 1 k log2 k n logn n

Table 1: Asymptotic comparison with Hyperproofs. Proof sizes are in terms of group elements. n denotes the vector size, πi is
the individual proof for position i, πI is the aggregated proof for an index set I, pp represents public parameters and k = |I|.

proofs), but has costly updates (more than 100 seconds for
performing a single update on a vector of 230 entries). We
show that our two-layer bucketing can improve the update
time to approximately 18 milliseconds, by increasing the ag-
gregate proof size from 48 bytes to 51KB. We believe this
manifests the value of bucketing, and it is a reasonable proof
size that is worth having to enjoy much smaller update time.

Comparison with Hyperproofs. The main competitor of Bal-
anceProofs is Hyperproofs [33], the only vector commitment
that is both maintainable and aggregatable. Our main findings
from comparing with Hyperproofs are as follows.

First, both aggregation of individual proofs and verification
of aggregate proofs using two-layer bucketing outperform
Hyperproofs by around 1000× and 100× respectively. Again,
this is because BalanceProofs is naturally aggregatable, as
opposed to Hyperproofs that uses the IPA [8] argument system
as a black box. We consider this to be our central contribution.

Second, in terms of proof size, Hyperproofs and two-layer
bucketing have approximately the same performance. Fur-
thermore, we expect that Hyperproofs aggregate proof size
will be larger as k grows since it depends on k, as opposed to
BalanceProofs proof size that is at most

√
n. See Section 5

and Figure 3 for more comparison details.
Finally, Hyperproofs has an advantage over BalanceProofs

in update time. Still BalanceProofs update time is practical:
While update time for Hyperproofs ranges from 2 to 3 ms,
update time for BalanceProofs is at most 18 ms—and could
be improved with a multi-threaded implementation.

Macrobenchmarks. We study the application of Balance-
Proofs in stateless cryptocurrencies. We show that the time
to reach consensus on a new block (that includes block pro-
posal, block validation and proof maintenance) using Balan-
ceProofs is almost 10× faster than the time required when
using Hyperproofs—this is because aggregating transactions
and verifying aggregate proofs is a dominant operation in
such applications.

Related work. Catalano and Fiore [12] were the first to for-
malize the notion of VCs, together with two realizations of
VCs based on the RSA and CDH assumptions. Other construc-
tions based on these assumptions followed [11, 22, 37], but,
just like [12], required O(n) time to maintain all proofs. There-
fore all these constructions are not maintainable. Gorbunov

et al. [15] recently introduced Pointproofs, a VC scheme that
can aggregate proofs across different commitments. However,
Pointproofs are also not maintainable, and can be used as
input to the BalanceProofs compiler. Pointproofs also provide
a design overview on how to use cross-commitment aggrega-
tion to reduce storage requirements for smart contracts.

Boneh et al. [5] propose accumulator proof aggregation in
groups of unknown order. They provide a constant-sized batch
non-membership proof for a large number of elements. These
proofs can be used to build the first positional vector commit-
ment (VC) with constant-sized openings and constant-sized
public parameters. But again, the resulting vector commitment
is not maintainable.

There are maintainable vector commitments, such as sim-
ple Merkle trees [24] (transparent but non-homomorphic),
lattice-based vector commitments [28, 30] (transparent and
homomorphic), and AMT [36] (non-transparent and homo-
morphic). All these use a tree structure which seems to be the
reason for their not supporting efficient proof aggregation.

Hyperproofs [33] is the first scheme to support both main-
tainability and aggregatability. Hyperproofs introduce multi-
linear trees (MLT) on the PST [27] commitment to update all
proofs in O(logn) time. However, they use the IPA [8] proof
system to support aggregatability, leading to large practical
overhead in their proof aggregation.

2 Preliminaries

We use λ to denote the security parameter and negl(·) to de-
note a negligible function. We also use multiplicative notation
for all groups. With ω we denote a primitive n-th root of
unity in Zp [39]. Vectors are in bold, lower-case symbols, for
example m = [m0, . . . ,mn−1].
Lagrange polynomials [3, 10]. For i ∈ [0,n), we denote the
i-th Lagrange polynomial, with roots of unity being used as
indices, as

Li(x) = ∏
j∈[0,n)\i

x−ω j

ωi−ω j .

The Lagrange interpolation of vector m = [m0, . . . ,mn−1] is

φ(x) = ∑
i∈[0,n)

Li(x) ·mi .



It is easy to see that for any i ∈ [0,n), φ(ωi) = mi.
Bilinear pairings [18, 23]. We use (p,G1,G2,GT ,e,g1,g2)
to denote the parameters associated with pairings. In partic-
ular G1,G2 and GT are groups of prime order p, gi is a gen-
erator of Gi and pairing function e : G1×G2→GT is such
that ∀u∈G1,w∈G2 and a,b∈Zp, it is e(ua,wb) = e(u,w)ab.
For simplicity, we use the same group G, with generator g,
for both G1 and G2 when we describe our protocols—our
implementation however uses asymmetric pairings.
Vector commitments. We formalize vector commitments
(VC) below. We provide a generalized version of the defi-
nition that appeared in Hyperproofs [33]. Our generalized
definition uses some auxiliary information aux to represent
the underlying data structure used to maintain the proofs.

Definition 2.1 (VC scheme). A VC scheme is a set of the
following nine PPT algorithms.
(1) Gen(1λ,n)→ pp: Given security parameter λ and vector
size n, it outputs public parameters pp.
(2) Commitpp(m)→ (C,aux): Given vector m, it outputs
commitment C along with auxiliary information aux.
(3) Openpp(i,m,aux)→ πi: Given index i, vector m and aux-
iliary information aux, it outputs a proof πi.
(4) OpenAllpp(m)→ (π0, . . . ,πn−1): Given vector m, it out-
puts all proofs π0, . . . ,πn−1.
(5) Aggpp(I,(πi,mi)i∈I)→ πI : Given proof-value pairs
{(πi,mi)}i∈I , for I ⊆ [0,n), it outputs an aggregate proof πI .
(6) Verifypp(C, I,{mi}i∈I ,πI) := {0,1}: Given commitment
C, values {mi}i∈I , for I ⊆ [0,n), and (aggregate) proof πI , it
outputs either 0 or 1.
(7) UpdCompp(i,δ,C)→ C′: Given index i, value δ, commit-
ment C, it outputs C′ reflecting position i changing by δ.
(8) UpdAllProofspp(i,δ,{π j},aux)→ ({π′j},aux′): Given
index i, difference δ, proofs {π j} j∈[0,n) and auxiliary infor-
mation aux, it outputs updated proofs {π′j} j∈[0,n) and updated
auxiliary information aux′, to reflect position i changing by δ.
(9) UpdProofpp(i,δ, j,π j)→ π′j: Given index i, difference δ,
index j and proof π j, it outputs updated proof π′j to reflect
position i changing by δ.

Definition 2.2 (VC correctness). A VC scheme is correct if
for all λ ∈ N and n = poly(λ), for all pp← Gen(1λ,n), for
all vectors m, for all i ∈ [0,n), if (C,aux) = Commitpp(m)
and πi =Openpp(i,m,aux) (or πi is derived from OpenAllpp),
then, for any polynomial number of updates ( j,δ) resulting
in a new vector m′, if C′ and π′i are obtained via calls to
UpdCompp and UpdProofpp (or UpdAllProofspp with aux re-
placed by aux′ ) respectively, then

1. Pr[1← Verifypp(C
′, i,m′i,π

′
i)] = 1;

2. For all I ⊆ [0,n) it is

Pr[1←Verifypp(C
′, I,(m′i)i∈I ,Aggpp(I,(π′i,m

′
i)i∈I))]= 1.

Definition 2.3 (VC soundness). For all PPT adversaries A ,

Pr


pp← Gen(1λ,n),

(C, I,J,(mi)i∈I ,(m′j) j∈J ,πI ,πJ)← A(1λ,pp) :

1← Verifypp(C, I,(mi)i∈I ,πI) ∧
1← Verifypp(C,J,(m′j) j∈J ,π

′
J) ∧

∃k ∈ I∩ J such that mk ̸= m′k

≤ negl(λ)

aSVC vector commitment. Our construction (compiler) will
be using the aSVC [37] vector commitment (Although other
commitments can be used as input to our compiler, we have
chosen aSVC due to its simplicity and efficiency.) aSVC is
based on KZG polynomial commitments [19]. With linear-
sized public parameters, it can compute all constant-sized
individual proofs in quasilinear time and update a proof in
constant time. Furthermore, it is aggregatable since one can
aggregate proofs for many positions into a constant-sized
batch proof for those positions. Given SDH parameters [4]

(g,gτ, . . . ,gτn−1
) ,

aSVC represents a vector m = [m0, . . . ,mn−1] as the polyno-
mial φ(x) = ∑i∈[0,n) Li(x) ·mi such that φ(ωi) = mi, where ωi

is the i-th n-th root of unity. The commitment to the vector
is then simply the group element gφ(τ) that can be computed
using the public parameters above. Similar to [9], the public
parameters also contain commitments to all Lagrange polyno-
mials gLi(τ), which are used to compute the proofs.

A proof πi that mi is the value of vector m at position i is
simply the commitment to the polynomial

qi(x) =
φ(x)−mi

x−ωi . (1)

Aggregating aSVC proofs. aSVC [37] shows how to ag-
gregate a set of proofs {πi}i∈I for elements mi of m into a
constant-sized batch proof πI for an index set I using partial
fraction decomposition [41] and Drake and Buterin’s obser-
vation [7]. In particular, πI is a commitment to

q(x) =
φ(x)−R(x)

AI(x)
,

where AI(x) = ∏i∈I(x−ωi) and R(x) is such that R(ωi) =

mi, for all i ∈ I. Let A′I(x) = ∑ j∈I
AI(x)
x−ω j be the derivative of

AI(x) [40]. They observe that q(x) can also be written as

q(x) = ∑
i∈I

1
A′I(ωi)

·qi(x) .

Thus we can compute ci = 1/A′I(ω
i) with O(|I| log2 |I|) field

operations [40] and aggregate πI = ∏i∈I π
ci
i with an O(|I|)-

sized multi-exponentiation. We now describe the aSVC algo-
rithms in detail (Note that in the following algorithms aux is
always empty, so we do not include it for convenience.)



(1) Gen(1λ,n)→ pp: Pick τ ∈ Z∗p uniformly at random. Out-
put public parameters

pp=
(
(gτi

)i∈[0,n),(li)i∈[0,n),(ai,ui)i∈[0,n)

)
,

where li = gLi(τ), ai = gA(τ)/(τ−ωi), ui = g
Li(τ)−1

τ−ωi , where A(x)=
∏i∈[0,n)(x−ωi).
(2) Commitpp(m)→ C: Output C= ∏i∈[0,n)(li)mi .

(3) Openpp(i,m)→ πi: Output πi = gqi(τ), where qi(x) is de-
fined in Equation 1.
(4) OpenAllpp(m)→ (π0, . . . ,πn−1): Output all proofs for m.

(5) Aggpp(I,(πi,mi)i∈I)→ πI : Compute AI(x) = ∏i∈I(x−
ωi) and ci = (A′I(ω

i))−1. Output πI = ∏i∈I π
ci
i .

(6) Verifypp(C, I,(mi)i∈I ,πI) := {0,1}: Output 1 iff

e(C/gRI(τ),g) = e(πI ,gAI(τ)) ,

where AI(x) = ∏i∈I(x−ωi) and RI(x) such that RI(ω
i) = mi

for all i ∈ I.
(7) UpdCompp(i,δ,C)→ C′: Output C′ = C · (li)δ.

(8) UpdAllProofspp(i,δ,π0, . . . ,πn−1)→ (π′0,π
′
1, . . . ,π

′
n−1):

Call VC.UpdProofpp (see next) for every individual proof.
(9) UpdProofpp(i,δ, j,π j)→ π′j: If i = j, output π′i = πi ·

(ui)
δ . If i ̸= j, compute wi, j = a1/(ωi−ω j)

i · a1/(ω j−ωi)
j and

ui, j = w1/A′(ωi)
i, j , and return π′j = π j · (ui, j)

δ.
Complexities of aSVC. aSVC needs O(n) size public param-
eters, O(n logn) time to open all single proofs, O(n) time to
update all the individual proofs and O(|I| log2 |I|) to aggregate
or verify aggregated proof with index set I. Both individual
and aggregated proofs in aSVC have constant proof size.

3 Our BalanceProofs compiler

In this section, we introduce BalanceProofs, which can be
viewed as a compiler that takes as input a vector commitment
VC that is not maintainable and outputs a maintainable vector
commitment VC′. Let T be the time of OpenAll and P be the
time of UpdProof, of the input vector commitment. The input
vector commitment VC must satisfy certain requirements for
our compilation to produce a maintainable vector commitment
VC′. We list them here.

• The time complexity T of OpenAll should be o(n
√

n).

• The time complexity P of UpdProof should be o(
√

n).

• The vector commitment VC must have an efficient aggre-
gation algorithm Aggpp(I,(πi,mi)i∈I) (For concrete effi-
ciency, we stress that the aggregation algorithm should
be natural, i.e., it should not use zk-SNARKs as a black-
box, for example. Therefore vector commitments like
Hyperproofs [33] are not good inputs to our compiler.)

Note that both aSVC [37] and Pointproofs [15] can be used
as input to our compiler as they satisfy all above properties.
However, as we mentioned before, due to its conceptual sim-
plicity, our implementation is using aSVC. Let now VC be the
input non-maintainable vector commitment with algorithms

VC.Gen,VC.Commit,VC.Open,VC.OpenAll,VC.Agg . . .

that satisfy the properties above, and let VC′ be the output
vector commitment with algorithms

VC′.Gen,VC′.Commit,VC′.Open,VC′.OpenAll,VC′.Agg . . .

We first note that our compilation does not change the com-
mitment expression and the (aggregate) proof expression. In
particular, for the case of aSVC as the input VC, the commit-
ment of VC′ will still be gφ(τ), where φ(x) = ∑i∈[0,n) Li(x) ·mi
and the same holds for the proofs.

The main difference between the input and output vec-
tor commitment lies in how the output VC′ is handling up-
dates: Whenever an update (i,δ) appears, we do not use the
VC.UpdAllProofs algorithm since this would incur Ω(n) cost
(For example, for aSVC, UpdAllProofs iterates through all n
proofs one by one.) What we do is append the update (i,δ) in
a list L of size

√
n, which takes just constant time. The list L

serves as the auxiliary information aux. When the list L be-
comes full, our compiler calls VC.OpenAll to compute fresh
proofs (π0, . . . ,πn−1) for all positions. After that, our compiler
empties the list L. If a query for an individual proof comes
before computing fresh proofs (i.e., before the list reaches√

n elements), then all updates are applied to the proof that is
requested and an updated fresh individual proof is returned.

Since VC.OpenAll runs T = o(n
√

n) time, our compiler
needs amortized

O

(
∑

√
n−1

i=1 1+T√
n

)
= O(T/

√
n) = o(n)

time to update the proofs, as required. Also note that since the
maximum size of the list L is

√
n and algorithm VC.UpdProof

runs in o(
√

n), returning a fresh proof takes at most P
√

n =
o(n) time. It is easy to see that for the case of aSVC, the above
complexities become O(

√
n logn) and O(

√
n) respectively.

3.1 Compiling VC into VC′

We now provide the detailed algorithms for VC′:
(1) VC′.Gen(1λ,n)→ pp:

Return VC.Gen(1λ,n).
(2) VC′.Commitpp(m)→ (C,aux):

Let VC.Commitpp(m)→ (C,aux0). Let π0, . . . ,πn−1 out-
put by VC.OpenAllpp(m). Initialize empty list L of size

√
n.

Return (C, [L;π0, . . . ,πn−1]).
(3) VC′.Openpp(i,m,aux)→ πi:



Let aux= [L;π0, . . . ,πn−1]. If L = /0, output πi. Otherwise
call VC.UpdProofpp( j,δ j, i,πi) for each update ( j,δ j) in L
and return the latest proof π′i.
(4) VC′.OpenAllpp(m)→ (π0,π1, . . . ,πn−1):

Return VC.OpenAllpp(m)→ (π0,π1, . . . ,πn−1) .

(5) VC′.Aggpp(I,(πi,mi)i∈I)→ πI :
Return VC.Aggpp(I,(πi,mi)i∈I)→ πI .

(6) VC′.Verifypp(C, I,(mi)i∈I ,πI) := {0,1}:
Return VC.Verifypp(C, I,(mi)i∈I ,πI)→ b .

(7) VC′.UpdCompp(i,δ,C)→ C′:
Return VC.UpdCompp(i,δ,C)→ C′ .

(8) VC′.UpdAllProofspp(i,δ,aux)→ aux′:
Parse aux as [L;π0, . . . ,πn−1]. If |L| <

√
n, append

(i,δ) to L and return [L ∪ (i,δ);π0, . . . ,πn−1]; Otherwise
call VC.OpenAllpp(m) to compute π′0, . . . ,π

′
n−1 and return

[ /0;π′0, . . . ,π
′
n−1].

(9) VC′.UpdProofpp(i,δ, j,π j)→ π′j:
Call VC.UpdProofpp(i,δ, j,π j)→ π′j and return π′j.

3.2 Deamortizing UpdAllProofs

Note that the output algorithm VC′.UpdAllProofs must call
VC.OpenAll every

√
n updates—this leads to large worst-

case update time Ω(n). Here we show how to deamortize
VC′.UpdAllProofs and achieve sublinear worst-case update
time. The crucial observation for the deamortization is the
fact that VC.OpenAll (whose time complexity is T ), just like
any sequential algorithm, can be written down as

√
n sequen-

tial procedures/code blocks T1, . . . ,T√n each one running in
T/
√

n time. Then the deamortized VC′.UpdAllProofs works
as follows.

1. First, it maintains a list L of size 2
√

n, not
√

n.

2. For the first
√

n updates u1 . . . ,u√n, it behaves exactly
the same way as the amortized VC.UpdAllProofs, i.e.,
it just appends update ui in L and answers queries by
processing all the updates so far. Let m be the vector with
the first

√
n updates applied to it. Note that at this point

there are no fresh proofs for m (These will be computed
gradually in the next step.)

3. Every update u j, j =
√

n+ 1 . . . ,2
√

n, will first be ap-
pended in L. Then the procedure Tj−

√
n is executed on

vector m. By the end of update u2
√

n, all proofs for m
have been computed and the first

√
n entries of L are

discarded. Then the algorithm returns to the previous
step and repeats the same process.

Clearly every step of the above algorithm takes worst-case
time T/

√
n = o(n), as required. And again, for the case of

aSVC, this technique provides an algorithm with O(
√

n logn)
update time in the worst case. We now have the following
theorem.

Theorem 3.1. (Compiler) Let VC be a vector commitment
scheme that is correct (per Definition 2.2) and sound (per
Definition 2.3). Then (1) the output VC′ is also correct and
sound; (2) VC′.UpdAllProofs takes at most T/

√
n = o(n)

time (T is the time of VC.OpenAll) and VC′.Open takes at
most P

√
n = o(n) time (P is the time of VC.UpdProof); (3)

other complexities of VC′ are the same as VC.

Proof. The proof of correctness follows by inspection. For
soundness, note that the commitment, final proofs, and verifi-
cation algorithm are all the same in both VC and VC′. If an ad-
versary finds commitment and proofs that break the soundness
of VC′, then an adversary can use the same objects to break
the soundness of VC. Complexities of VC′.UpdAllProofs and
VC′.Open were analyzed previously in this section.

4 Bucketing BalanceProofs

In the previous section we showed how one can compile a
vector commitment that is not maintainable to one that is. The
output vector commitment has a trade-off between updating
all proofs and querying single proofs. In this section we will
be using our compiler to explore a different trade-off, that of
update complexities and proof size: We will be aiming for an
n1/k update time, for some k > 2, and a sublinear-size proof.

The basic version uses bucketing to conceptually separate
the original vector into p parts (Yet the commitment expres-
sion is just a single group element, as before, and not p group
elements.) Then we can perform updates and aggregation
inside each part and therefore updates are cheaper but batch
proofs can span multiple buckets and therefore their size is
O(p). In practice we can choose p = n1/3 or p = n1/4 to get
best performance. It is not useful to choose too small p, e.g.,
p = logn, since that would make little change on the complex-
ities of updating and querying, or too large p, e.g., p = n

logn ,
since the resulting batch proof size will be too large. In the fol-
lowing we present our main bucketing idea and then continue
with a more space-efficient bucketing scheme. We conclude
with our most performant two-layer bucketing scheme—the
one that we will be evaluating.

4.1 Basic bucketing

We present our bucketing technique using the aSVC [37]
vector commitment as our basis. The public parameters of our
bucketing scheme are therefore the same with aSVC, i.e.,

g,gτ, . . . ,gτn−1
.

The vector commitment expression is the same too: If m =
[m0, . . . ,mn−1] is a vector and φ(x) = ∑i∈[0,n) miLi(x) is its
Lagrange interpolation, the commitment for the whole vector
is the KZG commitment C = gφ(τ).



v3v2v1v0

m11m0

π3,11

Indices

m9m2m1 m3 m5m4 m6 m8m7 m10

π0,0 π0,1 π1,3 π1,5

Bucket proofs

Individual proofs π0,2

Π0 Π1 Π2 Π3

π0,{0,1} π1,5

P0 P1 P2 P3

π1,4 π2,6 π2,7 π2,8 π3,9 π3,10

π3,11

m (n = 12,  p = 4)

Figure 1: Aggregate proofs in bucketing. The aggregate proof for index set I = {0,1,5,11} is (Π0,π0,{0,1}), (Π1,π1,5), (Π3,π3,11).

Partitioning, individual proofs and bucket proofs. We nat-
urally partition the index set [0,n) into p parts

Pi =

[
i · n

p
,(i+1) · n

p

)
, ∀i ∈ [0, p) .

Then we can view m as p subvectors v0,v1, . . . ,vp−1 where
each vi contains indices in Pi. Note |vi| = n

p . Similarly, we
can write Lagrange interpolations φi(x) for each vi as

φi(x) = ∑
j∈Pi

Li, j(x) ·m j, where Li, j(x) = ∏
k∈Pi\ j

x−ωk

ω j−ωk .

Now, if we divide φ(x) with ∏ j∈Pi(x−ω j), we can write

φ(x) = φi(x)+qi(x) ∏
j∈Pi

(x−ω
j)

for some polynomial qi(x). In particular, Πi = gqi(τ) is a KZG
batch proof for the index set Pi of vector m. We call Πi a
bucket proof. We can still provide individual proofs for an
index j ∈ Pi inside subvector vi based on the KZG equation

φi(x) = qi, j(x)(x−ω
j)+φi(ω

j) = qi, j(x)(x−ω
j)+φ(ω j) .

We call πi, j = gqi, j(τ) an individual proof for position j of vi.

Evaluation proofs. When we need to compute an evalua-
tion proof for one position j, we should first find i such that
j ∈ Pi, then we provide both the bucket proof Πi for index
set Pi inside vector m and the individual proof πi, j for po-
sition j inside vector vi. Therefore, the resulting evaluation
proof for position j is (Πi,πi, j). A verifier who has the com-
mitment C, the claimed evaluation ( j,φ(ω j) = z) and verifi-
cation key (gτ,(gak(τ))k∈[0,p)), where ak(x) = ∏ j∈Pk

(x−ω j),
can verify one evaluation proof (Πi,πi, j) by checking the
following equation (say j ∈ Pi):

e(C/gz,g) = e
(

Πi,gai(τ)
)
· e
(

πi, j,gτ/gω j
)
.

Although the size of the verification key is O(p), we show
how to reduce it to constant size in the next section.
Batch proofs. By following standard KZG tricks, we can
naturally compute a batch proof for an index set J. We distin-
guish two cases. If J falls within a single Pi, it is enough to
provide an evaluation-batch proof (Πi,πi,J) where Πi is the
same as before and πi,J = gqi,J where

φi(x) = qi,J(x)∏
j∈J

(x−ω
j)+ cJ(x) ,

and cJ(x) is the Lagrange interpolation over J of the claimed
evaluations φ(ω j) for j ∈ J. A verifier who has the commit-
ment C and the claimed evaluations {( j,φ(ω j)} j∈J can com-
pute cJ(x) and verify one evaluation-batch proof (Πi,πi,J) by
checking the following equation

e(C/gcJ(τ),g) = e
(

Πi,gai(τ)
)
· e
(

πi,J ,g∏ j∈J(τ−ω j)
)
.

If J spans multiple partitions Pi (say k), we provide the
respective k evaluation-batch proofs.
Proof aggregation. We can aggregate multiple evaluation
proofs into one batch proof naturally. See the example
in Figure 1. The index set is I = {0,1,5,11} and we are
given four evaluation proofs (Π0,π0,0), (Π0,π0,1), (Π1,π1,5),
(Π3,π3,11). Here we can only aggregate π0,0 and π0,1 to one
batch proof inside v0. We cannot aggregate other proofs fur-
ther. In the general case, the savings due to aggregation de-
pends on whether the indices to be aggregated span multiple
partitions or not.

We now continue with describing how to process updates:
Whenever an update request ( j,δ) is received, both bucket
proofs and individual proofs must be updated.
Updating bucket proofs. Note all p bucket proofs can be
updated in O(p) time after receiving an update request ( j,δ).
To do that, we can update each bucket proof Πi in O(1) time.
We now explain how to do that. We distinguish two cases.
The j ∈ Pi case. Both polynomials φ(x) and φi(x) must be
updated. In particular, φi(x) is updated as φ′i(x) = φi(x) +



δ ·Li, j(x). Consider now the quotient polynomial qi(x) as
defined before. This can be written as

q′i(x) =
φ′(x)−φ′i(x)

∏k∈Pi(x−ωk)
= qi(x)+

δ · (L j(x)−Li, j(x))
∏k∈Pi(x−ωk)

.

Thus we can precompute

r j(x) =
L j(x)−Li, j(x)
∏k∈Pi(x−ωk)

and save update parameters

{gr j(τ)} j∈[0,n)

during the generation algorithm. Then proof Πi can be up-
dated as Π′i = Πi · (gr j(τ))δ.

We note here that r j(x) is indeed a polynomial and can
be computed using the initial public parameters (Therefore
publishing the update parameters does not affect security.) To
see that, we can prove that ∏k∈Pi(x−ωk)|L j(x)−Li, j(x). For
that, we only need to show that ∀k∈Pi, x−ωk|L j(x)−Li, j(x).
If k ∈ Pi and k ̸= j, then then this is trivial from the definition.
For k = j, L j(ω

j)−Li, j(ω
j) = 1−1 = 0, so L j(x)−Li, j(x)

has a factor x−ω j and then x−ω j|L j(x)−Li, j(x).

The j /∈ Pi case. Since j /∈ Pi, there is no change of the poly-
nomial φi(x). Consider the quotient polynomial qi(x), which
can be written as

q′i(x) =
φ′(x)−φi(x)

∏k∈Pi(x−ωk)
=

(φ(x)−φi(x))+δ ·L j(x)
∏k∈Pi(x−ωk)

= qi(x)+
δ ·L j(x)

∏k∈Pi(x−ωk)
.

Similarly, we can just precompute ri, j(x) = L j(x)/∏k∈Pi(x−
ωk) and save update parameters

{gri, j(τ)}i∈[0,p), j∈[0,n)

in the generation algorithm. The proof Πi can be updated as
Π′i = Πi · (gri, j(τ))δ. Note, that as opposed to the j ∈ Pi case,
the number of public parameters for this case is n · p, which is
one of the major drawbacks of this approach, and which we
will address in the next section.

Updating individual proofs. After receiving an update ( j,δ),
assuming j ∈ Pi, we only need to update individual proofs
inside vi since for any k ̸= i, φk(x) does not change at
all. Using our compiler technique from Section 3 (which
involves keeping record lists (Li)i∈[0,p)), the update time
is O(

√
n/p log(n/p)) (Note that in order to balance the

update time, the optimal way to pick p is to make p ≈√
n/p log(n/p), which shows that p≈ n1/3.)

4.2 Space-efficient bucketing
In the previous subsection we presented a method to update
bucket proofs. As we saw, its main limitation is that it requires
public update keys of O(np) size (This is because of the case
j /∈ Pi.) To address this issue, we propose using the same
index set inside each subvector. For the rest of this section,
we set ϕ = ω

n
p and θ = ωp, where ω is an n-th root of unity.

Partitioning, individual proofs and bucket proofs. Same as
before, we can write Lagrange interpolations for each subvec-
tor vi, but at this time we use a different variable y so that we
have the same set of indices inside each vi. In particular, we
view the initial vector as a collection of p vectors vi, and we
refer to the j-th element of vector vi as vi, j = m j+i· np . Note
that j runs from 0 to n/p−1 for all vectors vi. Therefore

φi(y) = ∑
j∈[0,n/p)

L ′j(y) · vi, j, where L ′j(y) = ∏
k∈[0, n

p )\ j

y−θk

θ j−θk .

Then the two-variable polynomial for the whole vector is a
Lagrange interpolation over all φi(y), i.e.,

φ(x,y) = ∑
i∈[0,p)

Li(x)φi(y), where Li(x) = ∏
k∈[0,p)\i

x−ϕk

ϕi−ϕk .

Note that φ(ϕi,θ j) = vi, j for all i ∈ [0, p), j ∈ [0, n
p ). Now can

similarly define bucket proofs using the polynomial qi(x,y)
derived from the division

φ(x,y) = φi(y)+qi(x,y)(x−ϕ
i) .

as well as individual proofs for element vi j by using the poly-
nomial qi, j(y) derived by the division

φi(y) = qi, j(y)(y−θ
j)+φi(θ

j) = qi, j(y)(y−θ
j)+φ(ϕi,θ j) .

Commitments and evaluation proofs. From the equations
above, we can see that in φ(x,y), x has degree at most p and
y has degree at most n/p, which suggests that the public
parameters for our new vector commitment are

(gαiβ j
)i∈[0,p), j∈[0, n

p )
, (2)

where α,β are secret and uniform. Therefore the size of the
public parameters is O(p · n

p ) = O(n). We can also write our

new vector commitment as C = gφ(α,β).
To prove a claimed evaluation vi, j = z, the prover should

compute the bucket proof Πi = gqi(α,β) as well as the indi-
vidual proof πi, j = gqi, j(β), and then provide the evaluation
proof as (Πi,πi, j). The verifier can verify it by checking the
following is true:

e(C/gz,g) = e(Πi,gα−ϕi
) · e(πi, j,gβ−θ j

) .



To aggregate evaluation proofs, we use the same idea as in
Section 4.1: Just aggregate inside subvectors and combine the
resulting batch proofs.
Updating bucket proofs. Similarly as before, all p bucket
proofs can be updated in O(p) time. Unlike before however,
the size of the public parameters required for this update
is O(n) as we analyze in the following. We now explain
how to update bucket proof Πi: After receiving an update
request ((k, j),δ), we have φ′(x,y) = φ(x,y)+δ ·Lk(x)L ′j(y),
φ′k(y) = φk(y)+δ ·L ′j(y).
The k = i case. When the bucket proof Πi we wish to update
corresponds to the bucket k = i where the actual update is hap-
pening, the new quotient polynomial q′i(x,y) can be written
as

q′i(x,y) =
φ′(x,y)−φ′i(y)

x−ϕi = qi(x,y)+
δ ·L ′j(y)(Li(x)−1)

x−ϕi .

Thus we can precompute ri, j(x,y) = L ′j(y)(Li(x)− 1)/(x−
ϕi) and save update parameters

(gri, j(α,β))i∈[0,p), j∈[0, n
p )

in the generation algorithm. The proof Πi can be updated to
Π′i = Πi · (gri, j(α,β))δ. Note that the update parameters size is
only O(n) in this case.
The k ̸= i case. In this case the new quotient polynomial
q′i(x,y) can be written as

q′i(x,y) =
φ′(x,y)−φi(y)

x−ϕi = qi(x,y)+
δ ·Lk(x)L ′j(y)

x−ϕi

= qi(x,y)+
δ ·∏t∈[0,p)(x−ϕt)L ′j(y)

∏t∈[0,p)\k(ϕk−ϕt)(x−ϕk)(x−ϕi)

= qi(x,y)+
δ ·∏t∈[0,p)(x−ϕt)L ′j(y)

ck(ϕk−ϕi)

(
1

x−ϕk −
1

x−ϕi

)
= qi(x,y)+

δ

ck(ϕk−ϕi)
(sk, j(x,y)− si, j(x,y)) ,

where ck = ∏t∈[0,p)\k(ϕ
k−ϕt) = p ·ϕ−k and

si, j(x,y) = L ′j(y) ∏
k∈[0,p)\i

(x−ϕ
k) .

Thus we can just pre-compute and save update parameters

{gsi, j(α,β)}i∈[0,p), j∈[0, n
p )

in the generation algorithm. The proof Πi can be updated as

Π
′
i = Πi · (gsk, j(α,β)·)uk,i · (gsi, j(α,β)·)−uk,i ,

where uk,i = δ/(ck(ϕ
k−ϕi)).

Updating individual proofs. After receiving an update
((i, j),δ), we need to update individual proofs only inside

vi since any φk(y) for k ̸= i does not change. Again, using our
compiler technique, the update time is O(

√
n/p log(n/p)).

Halving batch proof size technique. Recall that the batch
proof size for a set of indices I is O(p)—see Section 4.1.
Concretely, it is 2 · f group elements ( f bucket proofs and f
individual evaluation proofs), where f ≤ p is the number of
buckets that index set I spans. For example, in Figure 1, we
have f = 3. In this section we propose a simple optimization
that reduces the size of the batch proof from 2 f group ele-
ments to f +1 group elements. The idea is very natural: We
extend previous techniques developed in [37] to define a sin-
gle batch bucket proof. Therefore we do not have to include
every bucket proof.

To understand this better, consider two evaluation proofs
(Πi = gqi(α,β),πi,2 = gqi,2(β)) and (Π j = gq j(α,β),π j,3 =

gq j,3(β)). The first is for index 2 with value z in bucket i (i.e.,
vi,2 = z) and the second is for index 3 with value w in bucket
j (i.e., v j,3 = w). Recall from before that the polynomials
qi(x,y) and q j(x,y) satisfy the following equations

φ(x,y) = qi(x,y)(x−ϕ
i)+φi(y)

and
φ(x,y) = q j(x,y)(x−ϕ

j)+φ j(y)

and therefore, by [37], we can easily define the batch bucket
proof for buckets i and j as Π{i, j} = gq{i, j}(α,β) where
q{i, j}(x,y) satisfies

φ(x,y) = r(x,y)+q{i, j}(x,y)(x−ϕ
i)(x−ϕ

j) . (3)

In the above, r(x,y) is such that r(ϕi,y) = φi(y) and r(ϕ j,y) =
φ j(y), as in [37]. We define our new, optimized batch proof to
simply be (Π{i, j},πi,2,π j,3), down to 3 group elements from
4 group elements. (In general case the reduction is from 2 f
to f +1 since we can batch f bucket proofs to a single one.)

To verify our batch proof (Π{i, j},πi,2,π j,3) for respective
values vi,2 = z and v j,3 = w, we observe that we can write
r(x,y) as

r(x,y) = ℓi, j(x) ·φi(y)+ ℓ j,i ·φ j(y)

= z · ℓi, j(x)+qi,2(y) · (y−θ
2) · ℓi, j(x)

+w · ℓ j,i(x)+q j,3(y) · (y−θ
3) · ℓ j,i(x) , (4)

where ℓi, j(x)= (x−ϕ j)/(ϕi−ϕ j) and since, by KZG, φi(y)=
z+qi,2(y)(y−θ2) and φ j(y) = w+q j,3(y)(y−θ3). Then, on
input (Π{i, j},πi,2,π j,3,z,w) (and by combining Equations 3
and 4), the verification proceeds in two steps. The verifier first
computes R as

e(gzℓi, j(α)+wℓ j,i(α),g)e(πi,2,g(β−θ2)ℓi, j(α))e(π j,3,g(β−θ3)ℓ j,i(α))

and then checks to see if

e(gφ(α,β),g) = R · e(Π{i, j},g(α−ϕi)(α−ϕ j)) .
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Figure 2: 2-layer bucketing. In this example, we set n = 12, p = t = 2.

It is easy to see that the verifier can compute everything
needed for verification by using the public parameters as
defined in Equation 2. We finally note that by [37], Π{i, j} can
be produced from Πi and Π j as

Π
1/h(ϕi)
i ·Π1/h(ϕ j)

j ,

where h(x) = x−ϕi + x−ϕ j.
The above halving approach can be easily generalized for

an arbitrary set of indices I.

4.3 Two-layer bucketing
Our space-efficient construction can be easily extended to
three variables to further reduce update time, at the expense
of increasing proof size by one group element. In particular,
we can introduce an additional t-partition of the n/p-sized
subvectors, leading to p · t subvectors of n/(p · t) size each.

In this new two-layer scheme, when receiving an update
request, we need O(p) time to update all bucket proofs in
the first layer (as before) and O(t) time to update all bucket
proofs in the second layer. As before, we will use our compiler
for each final subvector, meaning we will have to maintain
p · t update lists of size at most

√
n/(p · t) each to handle

the updates within each subvector. Based on our compiler
complexities, we can update individual proofs in the third
layer in O(

√
n/(p · t) log(n/(p · t))) time. See Figure 2.

For optimal performance in practice, we can pick p = t =
n1/4, so that the resulting update time is O(n1/4 logn) and
query time for each proof is O(n1/4). As for proof size, the
individual proof size is three group elements (still O(1)) and
the aggregated proof size is O(

√
n) since there are at most

p · t =
√

n subvectors. Note that the two-layer scheme is what
we evaluate in Section 5 since it is the most performant one.

Obviously, we can add more layers in a similar manner:
For k > 2 layers we achieve O(n1/(k+2) logn) update time and
O(nk/(k+2)) aggregate proof size. To keep proof size small,
we use exactly two layers.

Theorem 4.1. (Two-layer bucketing VC) Our VC based on
two-layer bucketing with p = t = n1/4 is correct (per Def-
inition 2.2) and sound (per Definition 2.3). It also has the
following complexities:

1. O(n) public parameters size;

2. O(1) commitment size;

3. O(p+t+
√

n/(p · t) log(n/(p ·t))) =O(n1/4 logn) time
to update all proofs;

4. O(
√

n/(p · t)) = O(n1/4) time to query a single proof;

5. O(1) individual proof size (consisting of three group
elements) and O(p · t) = O(

√
n) batch proof size;

6. O(|I| log2 |I|) to aggregate proofs corresponding to an
index set I;

7. O(|I| log2 |I|) to verify a batch proof corresponding to
an index set I.

The two-layer bucketing detailed construction and the proof
of the above theorem can be found in Appendix A and C.

5 Evaluation

In this section we measure the performance of BalanceProofs.
We fully implemented two versions of our compiler using
aSVC as the input VC scheme: basic BalanceProofs (Sec-
tion 3), and two-layer bucketing (Section 4.3).

Our implementation is in Golang and available online1. We
use go-kzg [29] as a reference to implement KZG proofs.
We chose BLS12-381 [20], a pairing-friendly elliptic curve,
which is also the elliptic curve used in Hyperproofs and offers
128 bits of security. We run each experiment several times
and report the average.

Hardware. Experiments are executed on an AWS EC2
m5d.4xlarge instance with Intel(R) Xeon(R) Platinum
8259CL CPU with 2.50GHz, 8 cores and 64GB of RAM.
We only utilize a single CPU core in our experiments, but all
of our algorithms are parallelizable.

Deamortizing updates. Our implementation uses a deamor-
tized version of the update algorithm. Here we give some
more details about the implementation of the deamortization.
Recall that in order to deamortize updates, we must separate

1https://github.com/wangnick2017/balanceproofs-go

https://github.com/wangnick2017/balanceproofs-go


the computation in the O(n logn)-time algorithm VC.OpenAll
into
√

n O(
√

n logn)-time sub-steps. We examined VCs that
can serve as input to our compiler, such as [15,37], and found
that their VC.OpenAll can indeed be separated.

We implement this separation as follows. Take aSVC [37]
as an example. The VC.OpenAll algorithm of aSVC runs in
O(n logn) time—it is the technique from FK20 [14]. It con-
tains k = O(1) single loops, each needing at most O(n logn)
operations. We can then separate each loop into

√
n small

loops, each with O(
√

n logn) operations. An alternative ap-
proach is to focus on the operations with the highest cost. This
type of operation could be, for instance, group operations on
elliptic curves. We can use a counter to count how many op-
erations we have done so far. As soon as the counter reaches
some threshold, we save the current configuration, and exit
this part temporarily. In the next round, we can restart from
where we left off. Combining the two methods above, we
can finish the whole algorithm in O(

√
n) rounds where each

round requires almost equal time to complete.

Constant adjustments for bucket sizes. Recall that from
Section 4.3, the time to update bucket proofs is O(n1/4) and
the time to update individual proofs inside subvectors is
O(n1/4 logn). While asymptotically they are close, in practice
the time to update individual proofs might be 100× slower
than the time to update bucket proofs.

In order to balance them and decrease the update time
overall, in our implementation we apply some constant c to
the number of buckets in each layer, so that p = t = c ·n1/4

and each subvector has size
√

n/c2. Then the resulting update
times are O(cn1/4) for bucket proofs and (n1/4/c) logn for
individual proofs. Note that with this constant c, the aggregate
proof size may increase to at most O(c2√n).

Table 2: Single-thread execution for basic BalanceProofs with
aSVC as input. Times with an asterisk (*) are too long (more
than 5 hours).

L = log2 n 20 22 24 26 28 30

Commit (min) 0.47 1.69 6.99 28.4 114.8 *

OpenAll (hrs) 0.86 3.74 * * * *

UpdAllProofs (s) 3.03 6.65 14.3 30.5 64.4 135.7

Query Indiv. (s) 0.02 0.05 0.09 0.18 0.38 0.77

Indiv. Verify (ms) 1.18 1.20 1.19 1.21 1.20 1.21

Aggregate (s) 0.38 0.41 0.35 0.43 0.39 0.41

Agg. Verify (s) 0.43 0.42 0.44 0.42 0.43 0.42

Indiv. proof size 48 bytes

Agg. proof size 48 bytes

Table 3: Single-thread execution for two-layer bucketing.
Times with an asterisk (*) are too long (more than 5 hours).
Proof sizes with halving technique are marked with †.

L = log2 n 20 22 24 26 28 30

Commit (min) 0.47 1.69 6.99 28.5 114.8 *

OpenAll (hrs) 0.58 2.49 * * * *

UpdAllProofs (ms) 4.59 6.08 8.84 10.67 15.51 18.96

Query Indiv. (ms) 3.25 4.06 7.81 9.90 17.89 19.41

Indiv. Verify (ms) 1.56 1.57 1.59 1.55 1.57 1.59

Aggregate (ms) 109 69.1 36.9 23.1 12.6 8.41

Agg. Verify (ms) 209 163 132 117 114 106

Indiv. proof size 144 bytes

Agg. proof size 61KB 62KB 88KB 90KB 98KB 99KB

Agg. proof size† 31KB 32KB 45KB 46KB 50KB 51KB

5.1 Microbenchmarks
We benchmark the performance of basic BalanceProofs in
Table 2 and two-layer bucketing in Table 3.

Committing. We commit to vectors of size n = 2L where L
ranges from 20 to 30. For L = 28 it takes roughly 114 minutes
to compute the commitment. This is typically a one-time
operation in our applications.

Opening all proofs. For BalanceProofs, it takes hour-level
time to open all proofs so we were able to run experiments
only for L < 24. For two-layer bucketing, the time is slightly
smaller, since computing bucketing proofs and then comput-
ing individual proofs has smaller constants.

Updating all proofs. We measure the average time for per-
forming 1024 updates chosen at random. Although basic Bal-
anceProofs requires about 135 seconds to update all proofs for
L = 30, our two-layer bucketing reduces this to millisecond-
level (10 to 20 ms).

Querying individual proofs. The size of the list storing the
updates could be from 0 to

√
n. On average, this is

√
n/2. This

is what we measure, i.e., a query on a list of size O(
√

n/2)
(with constant adjustments). For this list size, querying an
individual proof requires about 0.8 seconds for L = 30 in
basic BalanceProofs, and 20 ms for two-layer bucketing.

Proof size and verification time. BalanceProofs has proofs
that contain one G1 element and can be verified with two
pairings. Our two-layer bucketing scheme has proofs with
three G1 elements, which can be verified with three pairings.

Aggregation. We aggregate 1024 individual proofs in our
experiments, since 1024 is a common average number of
transactions in one block of cryptocurrencies [17, 26]. The
time of aggregation in Table 2 and Table 3 remains almost
unchanged when L ranges from 20 to 30 because the time
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Figure 3: Comparison between BalanceProofs , aSVC and Hyperproofs. Including time to update all proofs (average time of
1024 updates), aggregate proof size (for 1024 individual proofs), time to aggregate 1024 proofs and to verify aggregated proofs.

complexity of aggregation is O(|I| log2 |I|). In the next sub-
section, we will show that our aggregation can be about 100×
to 1000× faster than Hyperproofs.

Size and verification time of batch proofs. The batch
proof size is one G1 element for basic BalanceProofs, and
O(min{n1/4, |I|} + 2min{n1/2, |I|}) G1 elements for two-
layer bucketing. The verifier in BalanceProofs requires
O(|I| log2 |I|) time — while the verifier in two-layer buck-
eting also needs to verify multiple equations.

Comparison with non-maintainable schemes. The main
difference of BalanceProofs with vector commitments that
are non-maintainable, such as aSVC [37], is in proof update
and in querying individual proofs.

In particular, the time to update all proofs in aSVC is O(n),
which is about 90s when L= 20 and over 90000s when L= 30.
Even our basic BalanceProofs scheme is 30× to 700× faster—
see Figure 3(a) for update times comparison. However, query
time of aSVC is O(1) (just a lookup), while BalanceProofs
needs sublinear time ranging from 3ms to 20ms.

5.2 Comparison with Hyperproofs
In Figure 3, we compare BalanceProofs with Hyperproofs on
the same machine. Both implementations are in Golang and
use the BLS12-381 [20] elliptic curve. The code of Hyper-
proofs we used is cloned from GitHub [32].

Opening all proofs. Hyperproofs compute a multilinear tree

(MLT) to open all proofs, which needs O(n logn) time asymp-
totically and about 2.5 hours in practice when L = 24. While
our schemes may require 10+ hours to open all proofs when
L = 24, in practice this is not executed frequently.

Updating all proofs. The time required by Hyperproofs to
update all proofs is relatively small (up to 3ms) since their
proofs are in a tree structure required O(L) group operations
to be updated. Although the time to update all proofs in our
schemes requires more time, the numbers are all reasonable
in practice (up to 18ms for L = 30) for two-layer bucketing.

Querying individual proofs. The query time of Hyperproofs
is O(logn) and ours is O(

√
n). In practice, query time is less

than 1ms for Hyperproofs and 3ms to 20ms for ours.

Aggregation. In the experiments, we show the results for
aggregating 1024 proofs. Due to the black-box use of IPA
argument [8], Hyperproofs needs 90 ∼ 110s to aggregate
1024 proofs and 13 ∼ 17s to verify the aggregated proofs,
when 20 ≤ L ≤ 30. This large cost limits the applicability
of Hyperproofs in cryptocurrencies where the proof must be
computed once and the verification has to be performed by
multiple parties. As a comparison, aggregation in our schemes
takes at most 0.43s and verification is millisecond-level.

Basic BalanceProofs has 1000× smaller batch proof than
Hyperproofs, while two-layer bucketing has almost same-
level batch proof size with Hyperproofs. However, the size of
batch proofs in Hyperproofs depends on the smallest power
of two≥ log(|I| logn) = log |I|+ log logn, which remains the



Scheme Two-layer Hyperproofs Merkle

Block proposal (P) 1.82 sec 2.23 min 81 min

Block validation (V ) 0.19 sec 17.5 sec 0.18 sec

Proof maintenance(M) 38.72 sec 5.14 sec 4.7 sec

Total (P+hV +M) 45 sec 8 min 81 min

Table 4: Stateless cryptocurrency macrobenchmarks.

same when |I| = 1024 and L ranges from 20 to 30. When
L = 32, this power of two will be doubled and the batch proof
size will also be doubled, i.e., 103 KB, while batch proof
size in our two-layer bucketing will almost remain the same
(when using halving technique, around 50 KB for L = 32).
We simulate the case for L = 32 for both schemes in Figure 3.

Parameterization. We stress that BalanceProofs are more
flexible compared to Hyperproofs: Hyperproofs provide just
one option where you can update all proofs quickly but ag-
gregation is costly whereas BalanceProofs offers multiple
tradeoffs between update time, proof size and aggregation
time.

In particular, the BalanceProofs two-layer bucketing tech-
nique should be used for applications where having low com-
putation is more critical than having lower bandwidth, such
as maintaining a stateless blockchain with light clients (as in
proof-of-stake systems). For nodes that can afford more com-
putation (as in proof-of-work), saving on bandwidth might
be more critical. For a more detailed discussion of the con-
crete impact of BalanceProofs in a stateless cryptocurrency
application, in our macrobenchmarks in Section 5.3.

5.3 Macrobenchmarks
In this subsection, we discuss the application of Balance-
Proofs in stateless blockchains. In particular, we will measure
the VC-induced overhead of statelessly reaching consensus
on a new block—we will follow the same framework with
Hyperproofs [33] (see Section 5.3 in Hyperproofs).

Problem background: stateless validation. In an account-
based cryptocurrency, the miners store all the balances of user
accounts, which can be represented as a long vector. However
this state can be too large. In stateless cryptocurrencies, min-
ers just store a constant-size vector commitment of this state
and then access the committed data via vector commitment
proofs: In particular, to propose a new block, a miner verifies
a fixed number of transactions (balances and their proofs),
aggregate those proofs and updates the commitment with re-
spect to the previous transactions. When receiving a block
from others, the block validation requires the miner to verify
the batch proof in the incoming block. Users do not maintain
their balance proofs locally—instead they contact incentivized
proof-serving nodes (PSNs) to have their proofs served. PSNs
are responsible for updating all individual proofs by replaying

all new transactions, so that fresh proofs can be fetched by
users efficiently.

Experimental setting. Assuming L = 30 and blocks of 1024
transactions, we define three measures useful for our mac-
robenchmarks:

• Block proposal time (P): time of a miner to propose
a new block with 1024 transactions, where the miner
needs to verify 1024 proofs, aggregate them and update
the commitment.

• Block validation time (V ): time to verify a block with a
batch proof and its commitment.

• Proof maintenance time (M): time of a proof-serving
node (PSN) to update all proofs from a new block.

Also we denote h = 20 to be an estimate of the network
diameter and estimate the VC overhead as P+hV +M since
h sequential verification must be performed until the block
reaches all nodes in the network.

Findings. Our comparison results are in Table 4: Compared
to Hyperproofs and Merkle trees with SNARKs, for block
proposal (P), our scheme is 60× faster than Hyperproofs and
2000× faster than Merkle trees. For block validation (V ), our
scheme is 90× faster than Hyperproofs and performs similarly
to Merkle trees. For proof maintenance (M), our scheme is
7× slower than Hyperproofs and 9× slower than Merkle trees.
For the total overhead (P+hV +M), BalanceProofs is 10×
faster than Hyperproofs and 100× faster than Merkle trees.

Trade-offs. We note here that two-layer bucketing appears
to be the best point in the design space for this application.
For example, if we use the (1-layer) space-efficient bucketing
technique, the batch proof size is almost halved at the expense
of much worse total time of 73 minutes—this is much worse
than Hyperproofs and a little better than Merkle trees.

6 Conclusion

We presented BalanceProofs, a compiler that produces ef-
ficiently maintainable and aggregatable VC schemes. We
also presented bucketing variants of BalanceProofs which
have a tradeoff between update time, aggregation complexity
and proof size. We showed that two-layer bucketing Balan-
ceProofs has practical update time and around 1000× better
aggregation performance than Hyperproofs.

Future work. In our experiments, we picked aSVC [37] as
the input VC to our compiler. It would be very interesting to
try other VC schemes, such as Pointproofs [15], BBF [5] and
achieve possible improvements. Also, we can try using multi-
linear trees and PST commitments [34,43,44]in the bucketing
technique to explore other improvements. Lastly, the idea of
bookkeeping to balance the time to update and query may be
applicable in other cryptographic building blocks.
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VC scheme. For notation simplicity, we also view m =
[v0,0,v0,1, . . . ,vp−1,t−1] where p, t are the bucket sizes for the
two layers and vi, j = [mi· np+ j· n

pt
, . . . ,mi· np+( j+1)· n

pt−1]. We set

ϕ = ω
n
p , θ = ω

n
t and η = ωpt , where ω is an n-th root of unity.

(1) VC′.Gen(1λ,n, p, t)→ pp:
Pick α,β,γ ∈ Z∗p uniformly at random. Set

pp=
(
(gγk

)k∈[0, n
pt )
,(lk = gLk(γ))k∈[0, n

pt )

)
.

Return

pp′ =
(
pp,(gr′j,k(β,γ),gs′j,k(β,γ)) j∈[0,t),k∈[0, n

pt )
,

(gαiβ jγk
, li, j,k,gri, j,k(α,β,γ),gsi, j,k(α,β,γ))i∈[0,p), j∈[0,t),k∈[0, n

pt )

)
where Li(x) = ∏l∈[0,p)\i

x−ϕl

ϕi−ϕl , L ′j(y) = ∏l∈[0,t)\ j
y−θl

θ j−θl ,

L ′′k (z) = ∏l∈[0, n
pt )\k

z−ηl

ηk−ηl , li, j,k = gLi(α)L ′j(β)L
′′
k (γ), and

ri, j,k(x,y,z) =
(Li(x)−1)L ′j(y)L ′′k (z)

x−ϕi ,

si, j,k(x,y,z) = L ′j(y)L ′′k (z) ∏
l∈[0,p)\i

(x−ϕ
l),

r′j,k(y,z)=
(L ′j(y)−1)L ′′k (z)

y−θ j ,s′j,k(y,z)=L ′′k (z) ∏
l∈[0,t)\ j

y−θ
l .

(2) VC′.Commitpp′(m)→ (C,aux):
Let

C= ∏
i∈[0,p), j∈[0,t),k∈[0, n

pt )

(li, j,k)vi, j,k .

Let Π = (Πi,(Ψi, j,(πi, j,k)k∈[0, n
pt )
) j∈[0,t))i∈[0,p) output by

VC′.OpenAllpp′(m). Initialize empty lists (Li, j)i∈[0,p), j∈[0,t).
Return

(C, [(Li, j)i∈[0,p), j∈[0,t);Π]).

(3) VC′.Openpp′((i, j,k),m,aux)→ (Πi,Ψi, j,πi, j,k):
Parse aux = [(Li, j)i∈[0,p), j∈[0,t);Π]. If Li, j = /0, output

(Πi,Ψi, j,πi, j,k) in Π. Otherwise for each update request (l,δl)
in Li, j call VC.UpdProofpp(l,δl ,k,πi, j,k) in turn and finally
return the correct latest proof (Πi,Ψi, j,πi, j,k).
(4) VC′.OpenAllpp′(m)→Π:

Compute batch proofs (Πi,(Ψi, j) j∈[0,t))i∈[0,p) from m. Call
VC.OpenAllpp(vi, j) → (πi, j,k)k∈[0, n

pt )
for all i ∈ [0, p), j ∈

[0, t) and return

Π = (Πi,(Ψi, j,(πi, j,k)k∈[0, n
pt )
) j∈[0,t))i∈[0,p).

(5) VC′.Aggpp′(I,(vi jk,(Πi,Ψi, j,πi, j,k))(i, j,k)∈I)→ πI :
Denote sets

S = {i|∃ j,k, s.t., (i, j,k) ∈ I},

T = {(i, j)|∃k, s.t., (i, j,k)∈ I}, Ti = { j|∃k, s.t., (i, j,k)∈ I}.

Partition I =
⋃

(i, j)∈T Ki, j. For each (i, j) ∈ T , call

VC.Aggpp(Ki, j,(vi, j,k,πi, j,k)(i, j,k)∈Ki, j)→ πKi, j .

Return
πI := (Πi,Ψi, j,πKi, j)(i, j)∈T .

(6) VC′.Verifypp′(C, I,(vi, j,k)(i, j,k)∈I ,πI) := {0,1}:
If |I|= 1, then parse πI as (Πi,Ψi, j,πi, j,k) and then check

if the following holds:

e(C/gvi, j,k ,g) = e(Πi,gα−ϕi
) · e(Ψi, j,gβ−θ j

) · e(πi, j,k,gγ−ηk
) .

If |I|> 1, then parse πI as form (Πi,Ψi, j,πKi, j)(i, j)∈T where
Ki, j defined on I is the same as in (5). Check the following
(where ci, j(z) is interpolation over (vi, j,k)(i, j,k)∈Ki, j ):

e(C/gci, j(γ),g) = e(Πi,gα−ϕi
) · e(Ψi, j,gβ−θ j

)·

e(πKi, j ,g
∏(i, j,k)∈Ki, j

(γ−ηk)
) .

(7) VC′.UpdCompp′((i, j,k),δ,C)→ C′:

Return C′ = C · (li, j,k)δ.

(8) VC′.UpdAllProofspp′((i, j,k),δ,aux)→ aux′:
Parse aux = [(Li, j)i∈[0,p), j∈[0,t);Π]. Then update Πi′ and

Ψi′, j′ for any i′ ∈ [0, p), j′ ∈ [0, t) as follows:
If i′= i, then Π′i′ =Πi′ ·(gri, j,k(α,β,γ))δ; otherwise, Π′i′ =Πi′ ·

(gsi, j,k(α,β,γ))u · (gsi′, j,k(α,β,γ))−u where u = δ/(p(1−ϕi′−i)).

If i′ = i and j′ = j, then Ψ′i′, j′ = Ψi′, j′ · (g
r′j,k(β,γ))δ; else if

i′ = i, j′ ̸= j, then Ψ′i′, j′ = Ψi′, j′ · (g
s′j,k(β,γ))u′ · (gs′j′,k(β,γ))−u′

where u′ = δ/(t(1−θ j′− j)); otherwise, do nothing to Ψi′, j′ .
Parse m′ = (v′i, j)i∈[0,p), j∈[0,t). Append (k,δ) to Li, j. If

|Li, j| ≥
√

n
pt , then call VC.OpenAllpp(v′i, j) to get all new in-

dividual proofs inside v′i, j: (π′i, j,l)l∈[0, n
pt )

and empty Li, j; oth-
erwise set (π′i, j,l)l∈[0, n

pt )
= (πi, j,l)l∈[0, n

pt )
.

Let aux′ collect all the new lists and proofs. Return aux′.

(9) VC′.UpdProofpp′((i, j,k),δ,(i′, j′,k′),(Πi′ ,Ψi′, j′ ,πi′, j′,k′))

→ (Π′i′ ,Ψ
′
i′, j′ ,π

′
i′, j′,k′):

Use gri, j,k(α,β,γ),gsi, j,k(α,β,γ),gr′j,k(β,γ),gs′j,k(β,γ) to update
(Πi′ ,Ψi′, j′) to (Π′i′ ,Ψ

′
i′, j′). If i = i′ and j = j′, then

call VC.UpdProofpp (k,δ,k′,πi′, j′,k′) → π′i′, j′,k′ and return
(Π′i′ ,Ψ

′
i′, j′ ,π

′
i′, j′,k′); otherwise, return (Π′i′ ,Ψ

′
i′, j′ ,πi′, j′,k′).

B Assumptions

We first present q-SDH assumption [4].



Assumption B.1 (q-Strong Diffie-Hellman (q-SDH)). Let
τ∈R Z∗P. Given as input a (q+1)-tuple (g,gτ, . . . ,gτq

)∈Gq+1,
for any adversary Aq-SDH, we have the following for any a ∈
Zp \{−τ}:

Pr[Aq-SDH(g,gτ, . . . ,gτq
) = (a,g

1
τ+a )]≤ negl(λ)

Next, we show the q-SBDH assumption [16] which will be
used to give soundness proofs for our VC schemes. q-SBDH
assumption is a variant of q-SDH assumption.

Assumption B.2 (q-Strong Bilinear Diffie-Hellman
(q-SBDH)). Let τ ∈R Z∗P. Given as input a (q + 1)-tuple
(g,gτ, . . . ,gτq

) ∈ Gq+1, for any adversary Aq-SBDH, we have
the following for any a ∈ Zp \{−τ}:

Pr[Aq-SBDH(g,gτ, . . . ,gτq
) = (a,e(g,g)

1
τ+a )]≤ negl(λ).

C Security Proofs

In this section, we show the soundness proof of Theorem 4.1
through the following lemmas.

Lemma C.1. Our 2-layer bucketing VC presented in Ap-
pendix A has the complexities mentioned in Theorem 4.1.

Proof. 1. The public parameter size is O(p · t · n
pt ) = O(n).

2. The commitment needs only one group element.

3. Updating the bucket proofs requires O(p + t) time.
For each subvector, it has size n/(pt) and requires
O(
√

n/(pt) log(n/(pt))) time to update all proofs.

4. Each subvector has list size at most O(
√

n/(pt)).

5. For batch proof size, there are at most pt buckets and
thus O(pt) proof size.

6. Aggregation and its verification time depend on the poly-
nomial calculations (interpolations) over the index set.

Lemma C.2. Our two-layer individual evaluation proofs
(|I| = 1) from Appendix A are sound as per Definition 2.3
under q-SBDH assumption.

Proof. Suppose there exists some adversary A that breaks
Definition 2.3 where I = J and |I|= 1. We show how to break
(n−1)-SBDH assumption by constructing an adversary B .

Suppose B is given (n−1)-SBDH parameters (gαi
)i∈[0,n).

B first guesses the index (i, j,k) that A forged, which he can
do with probability 1

poly(λ) . Second, B “tweaks” the SDH
public parameters into the protocol public parameters, i.e.,
sets β−θ j = r0(α−ϕi) and γ−ηk = r1(α−ϕi), where r0,r1
are randomly chosen. Third, B calls A with the “tweaked”
public parameters as input.

A should output the forged index (i, j,k) together with
C,w0,w′0,w1,w′1,w2,w′2,z,z

′ such that we have the following:

e(C/gz,g) = e
(

w0,gα−ϕi
)
· e
(

w1,gβ−θ j
)
· e
(

w2,gγ−ηk
)

e(C/gz′ ,g) = e
(

w′0,g
α−ϕi

)
· e
(

w′1,g
β−θ j

)
· e
(

w′2,g
γ−ηk

)
Divide the two equations:

e(gz′−z,g) = e
(

w0

w′0
,gα−ϕi

)
·e
(

w1

w′1
,gβ−θ j

)
·e
(

w2

w′2
,gγ−ηk

)
Note that β−θ j = r0(α−ϕi) and γ−ηk = r1(α−ϕi), then

we have

e(g,g)z′−z =

(
e
(

w0

w′0
,g
)

e
(

w1

w′1
,gr0

)
e
(

w2

w′2
,gr1

))α−ϕi

Finally we have

e(g,g)
1

α−ϕi =

(
e
(

w0

w′0
,g
)

e
(

w1

w′1
,gr0

)
e
(

w2

w′2
,gr1

)) 1
z′−z

,

which breaks the (n−1)-SBDH assumption.

Then we present the soundness lemma for batch proofs (we
can even provide the lemma for the version with the halving
technique).

Lemma C.3. Our two-layer batch evaluation proofs (|I|> 1)
from Appendix A with the halving technique are sound as per
Definition 2.3 under q-SBDH assumption.

Proof. First note that with halving technique, the batch bucket
proofs should be (sets like S,T are defined in Appendix A):

ΠI := ∏
i∈S

Π
1/h(ϕi)
i , Ψi,J := ∏

j∈Ti

Ψ
1/hi(θ

j)
i, j ,

where h(x) = ∑i∈S ∏i′∈S\i(x − ϕi′) and ∀i ∈ S, hi(y) =

∑ j∈Ti ∏ j′∈Ti\ j(y− θ j′). To verify these, we check if the fol-
lowing holds:

e(C,g) = e(ΠI ,gA(α)) ·∏
i∈S

(
e
(

Ψi,J ,gAi(α,β)
)
·

∏
j∈Ti

(
e
(

πKi, j ,g
Ai, j(α,β,γ)

)
· e
(

gci, j(γ),gL ′i, j(α,β)
)))

where ci, j(z) is interpolation over (vi, j,k)(i, j,k)∈Ki, j , and

Li(x) = ∏
i′∈S\i

x−ϕi′

ϕi−ϕi′ , L ′i, j(x,y) = Li(x) ∏
j′∈Ti\ j

y−θ j′

θ j−θ j′ ,

A(x) = ∏
i∈S

(x−ϕ
i), Ai(x,y) = Li(x) ∏

j∈Ti

(y−θ
j),



Ai, j(x,y,z) = L ′i, j(x,y) ∏
(i, j,k)∈Ki, j

(z−η
k).

Now suppose there exists some A that breaks Definition 2.3.
We show how to break (n− 1)-SBDH assumption by con-
structing an adversary B . Suppose B is given (n−1)-SBDH
parameters (gαi

)i∈[0,n). B first guesses the index (i, j,k) that
A forged, which he can do with probability 1

poly(λ) . Second,
B “tweaks” the SDH public parameters into protocol public
parameters, i.e., sets β−θj = r0(α−ϕi), γ−ηk = r1(α−ϕi).
Third, B calls A with the “tweaked” public parameters.

A should output C and some I, I′, where (i, j,k) ∈
I ∩ I′ is the position A will forge, together with proof
(ΠI ,(Ψi,J)i∈S,(πKi, j)(i, j)∈T ) for (vi, j,k)(i, j,k)∈I and proof
(ΠI′ ,(Ψ

′
i,J′)i∈S′ ,(π

′
K′i, j

)(i, j)∈T ′) for (v′i, j,k)(i, j,k)∈I′ . These sat-

isfy the following equations (polynomials are derived in the
same way for I, I′, e.g., A(x) for I and A′(x) for I′):

e(C,g) = e(ΠI ,gA(α)) ·∏
i∈S

(
e
(

Ψi,J ,gAi(α,β)
)
·

∏
j∈Ti

(
e
(

πKi, j ,g
Ai, j(α,β,γ)

)
· e
(

gci, j(γ),gL ′i, j(α,β)
)))

e(C,g) = e(Π′I′ ,g
A′(α)) ·∏

i∈S′

(
e
(

Ψ
′
i,J′ ,g

A′i(α,β)
)
·

∏
j∈T ′i

(
e
(

π
′
K′i, j

,gA′i, j(α,β,γ)
)
· e
(

gc′i, j(γ),gL ′′i, j(α,β)
)))

ci, j(z) is the interpolation of claimed values in Ki, j. Let
c0 = ci,j(η

k) = vi,j,k, we can write ci,j(z) = d(z)(z−ηk)+c0
so that ci,j(γ) = r1d(γ)(α−ϕi)+ c0.

Write A(x) = a(x)(x−ϕi) so that A(α) = a(α)(α−ϕi).
Also, if i = i, write Ai(x,y) = b(x,y)(y − θj) so that

Ai(α,β) = r0b(α,β)(α − ϕi). If i ̸= i, write Ai(x,y) =
ai(x,y)(x−ϕi) so that Ai(α,β) = ai(α,β)(α−ϕi).

If i ̸= i, write Ai, j(x,y,z) = ai, j(x,y,z)(x − ϕi) so
that Ai, j(α,β,γ) = ai, j(α,β,γ)(α − ϕi). If i = i, j ̸= j,
write Ai, j(x,y,z) = b j(x,y,z)(y− θj) so that Ai, j(α,β,γ) =
r0b j(α,β,γ)(α − ϕi). If i = i, j = j, write Ai,j(x,y,z) =
f (x,y,z)(z−ηk) so that Ai,j(α,β,γ) = r1 f (α,β,γ)(α−ϕi).

If i ̸= i or j ̸= j, write L ′i, j(x,y) = l1(x,y)(x − ϕi) or
L ′i, j(x,y) = l2(x,y)(y− θj) so that L ′i, j(α,β) = l1(α,β)(α−
ϕi) or L ′i, j(α,β) = r0l2(α,β)(α−ϕi).

Above all, our conclusion here is that we will have the
following form for the first equation above, where “. . .” stands
for some polynomial evaluated on (α,β,γ):

e(C,g) = e
(

gr1d(γ),gL ′i,j(α,β)
)α−ϕi

· e(ΠI ,g···)
α−ϕi
·

∏
i∈S

(
e(Ψi,J ,g···)

α−ϕi
·

(
∏
j∈Ti

e
(
πKi, j ,g

···)α−ϕi
)
·(

∏
j∈Ti,(i, j)̸=(i,j)

e
(

gci, j(γ),g···
)α−ϕi

))
· e
(

gc0 ,gL ′i,j(α,β)
)

Similarly, we do the same things to I′ and its polynomi-
als A′(x),A′i(x,y),A

′
i, j(x,y,z),L ′′i, j(x,y) as above and write a

similar equation. Divide these two equations we have

e(g,g)c0L ′i,j(α,β)−c′0L ′′i,j(α,β) =

(
△′

△

)α−ϕi

,

where△ is as follows and△′ is computed similarly:

△= e
(

ΠI ,ga(α)
)
· ∏

i∈S\i

(
e
(

Ψi,J ,gai(α,β)
)
·

∏
j∈Ti

(
e
(

πKi, j ,g
ai, j(α,β,γ)

)
· e
(

gci, j(γ),gl1(α,β)
)))

·

e
(

Ψi,J ,gr0b(α,β)
)
· ∏

j∈Ti\j

(
e
(

πKi, j ,g
r0b j(α,β,γ)

)
·

e
(

gci, j(γ),gr0l2(α,β)
))
· e
(

πKi,j ,g
r1 f (α,β,γ)

)
·

e
(

gr1d(γ),gL ′i,j(α,β)
)
.

Equivalently, we have

e(g,g)
c0L ′i,j(α,β)−c′0L ′′i,j(α,β)

α−ϕi =
△′

△
.

Recall that β = r0(α−ϕi)+θj. Denote

M(x) = L ′i,j(x,r0(x−ϕ
i)+θ

j),

M′(x) = L ′′i,j(x,r0(x−ϕ
i)+θ

j),

here we have M(α) = L ′i,j(α,β) and M′(α) = L ′′i,j(α,β).
Note that M(ϕi) = M′(ϕi) = 1, then

c0M(ϕi)− c′0M′(ϕi) = c0− c′0 ̸= 0 ,

thus we know c0M(x)− c′0M′(x) is not divisible by x−ϕi.
Then we can compute through polynomial division that

c0M(x)− c′0M′(x) = q(x)(x−ϕ
i)+ r, r ̸= 0 ,

and evaluate this equation on x = α:

c0L ′i,j(α,β)− c′0L ′′i,j(α,β) = q(α)(α−ϕ
i)+ r .

Finally, we have

e(g,g)
q(α)+ r

α−ϕi =
△′

△
,

so we can compute

e(g,g)
1

α−ϕi =

(
△′/△

e(g,gq(α))

)1/r

,

which breaks the (n−1)-SBDH assumption.
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