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Abstract

Although local differential privacy (LDP) protects individual
users’ data from inference by an untrusted data curator, recent
studies show that an attacker can launch a data poisoning
attack from the user side to inject carefully-crafted bogus data
into the LDP protocols in order to maximally skew the final
estimate by the data curator.

In this work, we further advance this knowledge by propos-
ing a new fine-grained attack, which allows the attacker to
fine-tune and simultaneously manipulate mean and variance
estimations that are popular analytical tasks for many real-
world applications. To accomplish this goal, the attack lever-
ages the characteristics of LDP to inject fake data into the
output domain of the local LDP instance. We call our attack
the output poisoning attack (OPA). We observe a security-
privacy consistency where a small privacy loss enhances the
security of LDP, which contradicts the known security-privacy
trade-off from prior work. We further study the consistency
and reveal a more holistic view of the threat landscape of data
poisoning attacks on LDP. We comprehensively evaluate our
attack against a baseline attack that intuitively provides false
input to LDP. The experimental results show that OPA out-
performs the baseline on three real-world datasets. We also
propose a novel defense method that can recover the result
accuracy from polluted data collection and offer insight into
the secure LDP design.

1 Introduction

Local differential privacy (LDP) [7], a variant of differential
privacy [10] in a distributed environment, protects individ-
ual user data against an untrusted data collector regardless
of the adversary’s background knowledge. Numerous LDP
protocols have been proposed for various statistical tasks
such as frequency [11, 42, 43, 44, 45], mean/variance [8, 41]
and distribution [23, 27]. LDP has also been integrated into
many real-world applications as a de facto privacy-preserving
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Figure 1: Illustration of our fine-grained data poisoning at-
tacks on LDP-based mean/variance estimation.

data collection tool. For example, Google deployed LDP in
Chrome browser to collect users’ homepages [11]; Microsoft
implemented LDP in Windows 10 to analyze application us-
age statistics of customers [6].

Recently, Cao et al. [3] and Cheu et al. [5] independently
studied the security of LDP under data poisoning attacks (or
called manipulation attacks in [5]). They found that LDP ran-
domization is very sensitive to data manipulation such that
malicious users could send carefully crafted false data to ef-
fectively skew the collector’s statistical estimate. In particular,
the current attacks aims to “push” the LDP estimate away
from the ground truth as far as possible. In [5], the attacker
can inject false data through a group of compromised users
to degrade the overall LDP performance. The data poisoning
attacks in [3, 47] promote the items of interest (e.g., in a rec-
ommender system) by maximizing the associated statistical
estimates, such as frequency and key-value data.

In this work, we advance the knowledge by considering
an attacker who aims to not only manipulate the statistics
but also set the estimates to an intended value. We call it a
fine-grained data poisoning attack. We focus on mean and
variance estimation because they are crucial to many data
analytical applications in practice. For example, a company
conducts a market survey to identify the target market seg-
ments based on their customers’ income average (the mean)
and inequality (the variance) [36] as shown in Figure 1. From
the survey, the company estimates the mean and variance of



the income so as to make informed decisions on the related
services. In order to encourage participation, LDP can be
adopted to perturb an individual customer’s income value
before being sent to the company. Meanwhile, a rival com-
pany may control a group of fake responders to launch the
fine-grained data poisoning attack by submitting erroneous
information in hopes of bringing the final estimates as close
to their intended values as possible. Consequently, the result
deviates from reality and leads to a deceptive conclusion, e.g.,
the customers in the middle-income quintile are mistakenly
believed to come from a lower quintile [12].

We propose an output poisoning attack (OPA) for the fine-
grained manipulation goal on the local user side against two
state-of-the-art LDP protocols for mean and variance, i.e.,
Stochastic Rounding (SR) [8] and Piecewise Mechanism (PM)
[41]. The attack is illustrated in Figure 1. Consistent with prior
work, we assume that the attacker can control a group of fake
users by purchasing accounts from dark markets [3], and has
access to the LDP implementation details. As a result, the
attacker can bypass the LDP perturbation and generate bogus
values in the output domain of the local LDP instance, which
will be sent to the server for final estimation. To demonstrate
the effectiveness of OPA, we compare it with a baseline attack
— we call it an input poisoning attack (IPA), which represents a
straightforward data manipulation by providing fake input to
the LDP perturbation without leveraging the LDP protocol.

The main challenge for the attacker here is to manipulate
two correlated statistical estimates — mean and variance at
the same time through a single LDP query [23]. To address
this challenge, we formulate the attack as a simultaneous
equation-solving problem and coordinate the generation of
the poisonous data across the controlled users. To control the
LDP estimate at a finer level, the attack also depends on two
observations in reality. First, companies and governments, for
commercial, public interest or as required by regulations, need
to periodically collect user information to learn the status quo
and then publish the related statistical results [11, 17, 26, 38].
Second, those historical results regarding the same entity tend
to be stable over a short period of time [12, 38, 39]. As a
result, the attacker can leverage the data transparency and the
predictable information changes to enable fine-grained data
manipulation. Specifically, we assume that the attacker can
acquire related background information about genuine users
from recent public statistical reports or by compromising a
small number of users (see Threat model in Section 3).

We systematically study the proposed attack both theoret-
ically and empirically. We first analyze the sufficient condi-
tions to launch the attack and further discuss the lower bound
on the required number of fake users given the target mean and
variance. The results show that OPA needs fewer fake users
than the baseline to achieve the same target values. We are
interested in the relationship between various attack parame-
ters and performance, as well as the associated implications.
Thus, we also study the MSE between the target value and

the final estimate. The results show that OPA has a smaller
MSE because direct manipulation of the local LDP output
will ignore the effect of perturbation and give the attacker a
significant advantage in producing an intended result.

In the literature, a security-privacy trade-off for LDP pro-
tocols was revealed: a small € (strong privacy guarantee)
leads to a less secure LDP protocol against prior data poi-
soning attacks [3, 5, 47]. However, we in this work have
an opposite observation that weak privacy protection with a
large € is vulnerable to our fine-grained attack. We call this
security-privacy consistency for LDP protocols. We analyze
the two assertions and show that they surprisingly are both
valid and that they together provide a holistic understanding
of the threat landscape. This conclusion is disturbing since
it complicates the already elusive reasoning and selection
of the privacy budget in LDP and makes designing a secure
LDP more difficult (see Section 6). To mitigate our attack,
we also propose a clustering-based method for bogus data
tolerance and discuss the relevant defenses in Section 8. Our
main contributions are:

* We are the first to study the fine-grained data poisoning
attack against the state-of-the-art LDP protocols for mean
and variance estimation.

* We propose the output poisoning attack to precisely con-
trol the statistical estimates to the intended values. By the
comparison with an LDP-independent baseline attack, i.e.,
input poisoning attack, we show that OPA can achieve better
attack performance by taking advantage of LDP.

* We theoretically analyze the sufficient conditions to launch
the proposed attacks, study the attack errors, and discuss
the factors that impact the attack effectiveness.

* We discover a fundamental security-privacy consistency in
our attacks, which is at odds with the prior finding of the
security-privacy trade-off. We provide an in-depth analysis
and discussions to reveal the cause of the difference.

* We empirically evaluate our attacks on three real-world
datasets. The results show that given the target values, our
attacks can effectively manipulate the mean and variance
with small errors. We also develop and evaluate a defense
method, and provide insights into secure LDP design and
other mitigation methods.

2 Background

2.1 Local Differential Privacy

In the local setting of differential privacy, it is assumed that
there is no trusted third party. In this paper, we consider there
are n users and one remote server. Each user possesses a data
value x € D, and the server wants to estimate the mean and
variance of values from all local users. To protect privacy,
each user randomly perturbs his/her x using an algorithm



Y(x):D— D, where D is the output domain of ¥, and
sends X' = P (x) to the server.

Definition 1 (¢-Local Differential Privacy (e-LDP) [7]). An
algorithm P (-) : D — D satisfies e-LDP (€ > 0) if and only
if for any input x1,x> € D, the following inequality holds:

VT €D, Pr[¥(x))=T]<ePr[¥(xy) =T].

Intuitively, an attacker cannot deduce with high confidence
whether the input is x; or x; given the output of an LDP
mechanism. The offered privacy is controlled by ¢, i.e., small
(large) € results in a strong (weak) privacy guarantee and a low
(high) data utility. Since the user only reports the privatized
result P(x) instead of the original value x, even if the server
is malicious, the users’ privacy is protected. In our attack,
the attacker can manipulate a group of fake users in order
to change the estimates of mean/variance on the server (See
Section 3 for the detailed threat model).

2.2 Mean and Variance Estimation with LDP

We introduce two widely-used LDP mechanisms for mean and
variance estimation, Stochastic Rounding (SR) [8] and Piece-
wise Mechanism (PM) [41]. Note that they were originally
developed for mean estimation only and were subsequently
adapted to support variance estimation in [23]. In this work,
we use the adapted version.

2.2.1 SR mechanism

The SR mechanism first uniformly partitions all users into
two groups: group g reports their original values and group
g> submits their squared original values. All the values must
be transformed into [—1, 1] before being used in the LDP.

Perturbation. SR first converts the value into the range
[—1,1]. Suppose that the range of the original input values is

[a, b]. SR calculates transformation coefficients k; = 32 for

grand ky = ﬁ for g, and derives ¥ = —1 +k; (x —a) for

gror¥=—1+ky(x— az) for g». Then SR perturbs values in
a discrete output domain with the probability mass function

(p-g)(1=0) e
o )at iy, ifx=-1
Pr[lPSR(E)(x)x]{qu(Pq)z(lm’ ifx¥=1 "
wherepZ%andqzl_V

Aggregation. It has been proven that E(px—:q) = X. The server
calculates @ (x') = (px%q +1)/k; +a for gy and &, (x') =
(p’%/q +1)/ky + a® for g, and estimates their mean. The pro-

cess provides unbiased estimation of the mean of x and X2,
denoted by E(x) and E(x?) respectively. The variance of x is
estimated as E(x?) — E(x)?.

2.2.2 PM mechanism

PM also uniformly divides users into groups g and g; in
which users report the squared values and original values
respectively.

Perturbation. In PM, the input domain is [—1,1] and the

. 2 ..
output domain is [—s, s], where s = ez;2+l . Similar to SR, PM
et/=—1

first transforms the value into the range [—1, 1] via the same
steps in SR. Then PM perturbs each value in the continuous
range [—s, s] with the probability density function as follows

es/z es/zi . N N
W, ifx’ € [I(%),r(%)]

/21 ’

Pr[Wppe) (F) =] = .
W, otherwise

where —s < I(%) < (%) < 5.1(%) = S50 and r(¥) = SFEL

Aggregation. It has been proven that E(x') = ¥ in PM. The
server re-converts x’ to @;(x') = (X' +1)/k; +a for g; and
to @, (x') = (' + 1) /ka +a® for g5, and then estimates their
mean, from which the server can get the unbiased mean es-
timations E(x) and E(x?). The variance of x is estimated as
E(x?) — E(x)2. The following lemma shows the error of the
SR and PM mechanisms, which is useful for later analysis of
the attack error.

Lemma 1 (Error of SR and PM mechanisms [41]). Assume
there are n users with the values x1,...,x,. Let u be the mean
of those values, and [isg and [ipys be the mean estimated by
the SR and PM respectively. The errors of SR and PM are

1 (n—(p—q)ZXixiz>
i=1

n(p—q)*
e£/2+3 ?:1)52

T 3n(et2—1)2 ' n2(ef2—1)

E [(fisg —)°] =

E [(ftpm — 1)?]

It is also shown in [41] that the PM mechanism has smaller
error than the SR mechanism when ¢ is large.

3 Threat Model

In this section, we present our threat model, including the
attacker’s capabilities and objectives.

3.1 Assumption

Our attacks rely on the following assumptions. First, we as-
sume that the data collector periodically collects user informa-
tion to derive the intended statistical results. For privacy con-
cerns, LDP may be adopted. This periodical data collection is
important and even mandatory in practice for the update on the
status quo in order to make informed decisions for relevant ac-
tivities in the future. For various reasons, such as transparency,
research and regulatory compliance [11, 12, 17, 26, 38], the



results will also be made public, thus accessible to the at-
tacker. Second, if the respective data collections are made
over a short period of time, the trend of those historical results
with respect to the same entity tends to be “stable”, i.e., their
values are close [12, 38, 39]. Therefore, the attacker can use
the statistics from the most recent data report to improve the
attack accuracy. Specifically, our attacker needs to estimate
the number of authentic users 7, the sum of the input values of
genuine users S 1) = Y"; x; and the sum of the squared values
of genuine users §?) = YL, x?. Additionally, we assume that
the attacker can inject m fake users into the LDP protocol that
already contains n genuine users, thus totaling n + m users in
the system. This is consistent with prior work showing that
an attacker can inject a large number of fake accounts/users
into a variety of web services with minimal cost [3, 47]. Next,
we discuss the estimation of the required information.

» Estimating n. Denote 7, as the estimate of n. The attacker
can deduce n, from publicly available and reliable sources,
e.g., service providers often disclose the number of users
under the LDP protection for publicity [11, 26].

« Estimating S(") and S Let S and $?) be the estimate
of S( and @ respectively. We offer two intuitive estimat-
ing methods.

(1) From public historical data. This is the most straight-
forward way. Given the estimated user number 7., the his-
torical mean u, and variance 65, the attacker can derive

Sél) =N X U, ng) = (Gg —l—,ug) X Ne.

(2) Compromising a small number of genuine users. The
attacker can compromise /4 out of n genuine users and obtain
their original input values [cy,...,c;]. This is reasonable
in practice for a small number / and also a prerequisite

for prior work [5]. Thus the attacker can estimate Sg” =

W i cis 59 = e

Since LDP protocols deploy perturbation on the local user
side, we assume that an OPA attacker can gain access to the
LDP implementation details, including related parameters and
the output domain of the LDP protocol in order to generate
and inject bogus data for manipulation. Given a specific LDP
protocol, the OPA attacker also knows the group generation
strategy for g; and g, such that she can 1) determine if the
attack would be successful before launching the attack (see
in Section 5.1), and 2) craft fake values for each group during
the attack (see Section 4.2).

For the baseline attack, we only assume that the attacker
knows the input domain of the local LDP instance by taking
LDP as a black box protocol.

3.2 Attack Objectives

The attacker’s goal is to modify the estimated mean fi, and
variance 67 through LDP to be as close to the target mean g
and variance Gtz as possible. Meanwhile, the attacker wishes

Table 1: Notations.

Notation | Description
n The number of genuine users
Ne The attacker-estimated n
m The number of fake users
B The fraction of fake users m’i m
g1 The group reporting the original values {x;}7_,
2 The group reporting the squared values {xl2 "
2') The attacker-estimated Y7, x;
9 The attacker-estimated Y.} xi2
e The attacker’s target mean
o’ The attacker’s target variance
ky The transformation coefficient for g
ko The transformation coefficient for g,

to simultaneously manipulate i and &7. We adopt the adapted
versions of PM and SR mechanisms to privately estimate the
mean and variance within a single protocol invocation. Note
that our attack objective also implicitly covers the situation of
maximizing (minimizing) the mean and variance by setting a
significantly large (small) target y; and o-. In what follows,
we will elaborate on our attacks. Some important notations
are summarized in Table 1.

4 Attack Details

4.1 Baseline Attack

We first discuss the baseline attack, input poisoning attack
(IPA). An IPA attacker does not need to know any details of
the underlying LDP protocol. It can submit false data as input
to the local LDP instance in order to manipulate the final
estimate on the server. Later, we will introduce our attack,
output poisoning attack, to demonstrate the improved attack
performance with knowledge of the LDP protocol compared
to the baseline.

Specifically, the goal of IPA is to craft the input values for
the controlled fake users in order to alter the mean and vari-
ance estimates to be close to the attacker’s desired mean
and variance 67. We generalize the attack for both SR and
PM mechanisms. Formally, we denote the original input of
n genuine users as [xy, ...,x,] (Vi : x; € [a,b]), and the crafted

input of fake users as [yy,...,ym] (Vi : y; € [a,b]). We formu-

late IPA as finding [y1, ...,y such that % = u; and
GHY o o

# —M; = O;.

To solve [y1,...,ym], the attacker needs to know s =
" xi, S® =¥"  x? and n, which can be estimated from
published information or by compromising a small number
of genuine users as described in Section 3. By substituting

Sm, S and n with their estimates Sgl), ng) and n,, a set of



desired fake values [y, ..., y,;] should satisfy
):y,: ne +m)uy — SV )
S (2)
Zyzz (ne +m)(07 +47) =S¢ 2
i=1

We transform Equations (1) and (2) into the following
optimization problem and solve it to find valid fake values”.

2
min (Zy, (ne +m)(6? + 1) — ng))
3)

s.t. Zy,: Ne +m)u Sgl),Vii—léyiﬁl

4.2 Output Poisoning Attack

We introduce our output poisoning attack that leverages the
LDP implementation details to craft the output of the local
perturbation in order to set the final estimates to the target
mean g, and variance G-

Let the number of genuine users in g; and g, be n; and

ny, and the number of fake users be m; and m; respectively.

Denote the input of the genuine users in g; as xy (), ..., Xp, (i)
and the input of the fake users in g; as yy (i), -+, Y (i)- Because
of the randomness in the LDP local output, the objective of
OPA is to produce fake values ¥(y;) Vi: 1,...,m such that
the expected mean and variance are the attacker-intended y;
and o7 respectively. However, it is difficult to calculate E[3?]
because E[?] = Var[fy,] + E[fi]* and Var[g,] depends on true
data. To address this problem, we slack the attack goal by
replacing E[#?] with 2. Formally, we intend to achieve the
following attack objective in practice.
) ] =My

Jrzq)l

g

2 N m -
m-+n Jrl;(l)l(‘}’()’z 1 ))] =l (4)
(Z% DL ) ~ Bl =
2 2) 4 fq)z _'u2 p )
m-+n . ;

Since the perturbation ¥() and aggregation &() are different
for SR and PM, the remainder of this subsection will study
how to solve Equations (4) and (5) and generate the fake
values accordingly.

*“In this work, we use the Adam optimizer in PyTorch framework [33] to
solve the problem (3) with the learning rate 0.001 and 10, 000 iterations.

4.2.1 OPA against SR

By substituting 7, S(!) and $@ in Equations (4) and (5) with
their estimates 7., S,gl) and S§2>, we have

m (1)
. Ne+m Se
le(yl}(l)) =({—q) [kl (2.111 T mm) m1‘|
i=1
(6)

(2)
Nne+m S,
lkz ( ¢ > ((5,2 —i—,u,2) — 62 —mzaz) —myp @)

where k; and k, are the transformation coefficients and a
is the lower bound of the input range. In SR, the output is
either —1 or 1. Consequently, the attacker can prepare the fake
values by determining how many “—1” and “1” respectively
to be assigned to the fake users. Suppose in group g; there
are [—1],, fake users with —1 and [1],, fake users with 1. Per
Equations (6) and (7), we have

(e +[=1]g = ’Zl (g, +[~1lg, = 7;12
mgl - [‘”gl = Ellp(yi,(l)) [l]gz - [_l]gz = El‘P(yi,(z))~

Since there are two unknown variables and two equations, the
attacker can solve the above equations to derive the number
of 1 and —1 in each group and then randomly assigns them
to the fake users in g1 and g».

4.2.2 OPA against PM

In PM, the output value is in the range [—s,s]. According
to Equations (4) and (5), the attacker can calculate the fake
values by solving the following equations

w n+m Sgl)
Z‘P@m)):"l( 5 MiT T Tma =

i=1

Y @
: n+m S5

Z\P<ylz7(2)) =k <2(5t2+/~lt) 5 —m2a2> —mp

i=1

Vi: \P()’i,(l))>q’<)’i(2)) € [—s,s].

An intuitive method to solve the above equations is to
divide the right-hand-side by m; or m;. However, because the
fake values generated by this method are equal, the server can
easily detect the fake users because it is statistically unlikely
that many genuine users will send the same perturbed values.
To address this problem, the attacker first solves the equations
using the method described above, and then randomly perturbs
each value while maintaining the sum and keeping the values
in [—s, s]. Finally, the attacker randomly assigns the values to
each fake user in the groups g1 and g».



Why is OPA more effective than IPA? By accessing the
implementation of the underlying LDP protocols, the attacker
can generate and inject poisonous data values that are more
effective in affecting the server’s final estimation. Specifically,
the attacker knows how to solve Equations (4) and (5) by
leveraging the knowledge of the LDP perturbation ¥() and
aggregation ®(). For example, by gaining access to the related
parameters, e.g., p, ¢, ki, ky, m; and m; in () and ®() of
SR, the attacker can solve Equations (6) and (7), producing
and directly injecting fake values into the output domain of
the local LDP instance to launch OPA. As a result, OPA in
general will improve the attack performance since the attacker
effectively circumvents the LDP perturbation for fake users,
thus introducing less noise in the estimation (see the following
error analysis).

5 Theoretical Analysis

In this section, we theoretically study the sufficient condition
to launch the attack and the attack error given the target mean
u; and variance 62. We assume that the user data in g; and g,
have been transformed into [—1,1].

5.1 Sufficient Condition

Sufficient Condition to Launch IPA. The sufficient condi-
tion to launch the baseline attack is that Equations (1) and (2)
are solvable so that the attacker can find a set of fake input
values of the LDP protocol. Specifically, IPA can be launched
if the inequalities hold below.

—m< Y yi= (ne+mu — S <m ®)
i=1

VO <Y 32 = (e +m)(0? +12) — S < H)(9)

where y2(*) and y2(-) are the maximum and minimum
of Y™ ,y? under the constraint Y7, y; = (n, + m)y, — st
Given the input values in the transformed range [—1, 1], (8)
indicates that the sum of all fake values ) ; y; must reside be-
tween —m and m when there are m fake users.It is further
required in (9) that the sum of the squared fake values ¥, y?
be in the range [y*(~),y?(+)].

Here we explain how to obtain the above sufficient con-
dition. Since the input value is in the range [—1,1] and
there are m fake users, Equation (1) is solvable if —m <
Yy = (ne +m)y — s < m holds. We then need to
determine if Equation (2) is solvable under the constraint
Y yi = (ne+m)u — £”. When the range of Y7 | y? under
this constraint covers the target 62, the equation is solvable. To
this end, we solve the following optimization problem to find
the upper and lower bounds of the term Y7 | y?. We first study
the maximum of Y ; y?, i.e., the minimum of — ¥, y?.

Theorem 1. Let A = (n, +m)y — S, when |44 | fake
values are 1, m—1— | 23 | fake values are —1 and one fake
value is A— 25| — (m— 1 — 252 ]), Y1, y? achieves the
maximum.

Proof. See Appendix A. O

Similarly, we can determine the lower bound of Y7, y?
by changing the objective function from — Y7, y? to Y7, y?.
We omit the detailed steps here but share the result: when
all fake values are %, " v achieves the minimum. Given
the maximum and minimum of ¥, y? denoted by y>(*) and
y2(-) respectively, we can get the above sufficient condition
in (8) and (9).

Sufficient Conditions for OPA. Now we discuss the suffi-
cient conditions for our attack, which will be analyzed in the
context of SR and PM respectively.

* SR mechanism. The sufficient conditions to launch OPA
in SR is that Equations (6) and (7) are solvable so that the
attacker can produce viable output for the local LDP instance
in order to manipulate the estimate on the server. In SR, the
output is either —1 or 1. Therefore, Equations (6) and (7) are
solvable if the following hold

(1)
Ne+m Se
—mlﬁ(P—CI)< o M~ 2>§m17 (10)
)
n.+m Se
—mzs(p—q>< 5 <6?+u?)—2>sz. (11)

Inequality (10) indicates that the sum of fake values
Y W(y; 1)) in the output domain should range in [—my, m;]
since there are m| fake users in g;. Inequality (11) shows that
the range of ¥/, ‘P(y%m) should be from —my to my for
my fake users in g;. Bj/ estimating m; and m; to be %, the
attacker obtains the sufficient conditions by determining the
value of m that satisfies (10) and (11).

* PM mechanism. The analysis of PM is similar to that of SR.
Equations (6) and (7) are solvable if the following inequalities
hold. We also estimate 7, and my to be %

ne+m

—sxmy < ut—S§1>§sxm1 (12)

Ne +m
(o7 +u

—sxmy < )—SP <sxm  (13)
Since the output of PM is within [—s, s], the corresponding
upper and lower bounds in (12) and (13) are multiplied by s.
Number of Fake Users m. The sufficient condition reveals
the relationship between the target values and the needed
fake user number m, based on which we can further derive
the minimum m required to satisfy the sufficient condition
given the target mean g, and variance 62. Unfortunately, it is
challenging to provide the definite mathematical expression of
the minimum m because the inequality signs in the condition



Table 2: Comparison of attack error between baseline and our attack against SR and PM. For a concise comparison, we generate
some intermediate notations (e.g., P, Q, T SR , etc.) and show their concrete calculation in Table 5 in Appendix.

Baseline (IPA) OPA
. (2n—2(p—q)2S<2)) s
Err(f;) in SR P+ FM)(F e Q <m+n)2§p(z)q)2 A (m+n)2 +®
A2 2 - IPA 2n—2(p—q)~S' S OPA
Err(6;) in SR = ) (p—q)? <m+n>2 + o +1 = mn)? (p g7 " (nin? Tz ()*1
. 2(¢43) 2n(ef/2+3) (1+¢/2)sC
Em(#;) in PM 3(rtm) (= 1) +(1:+ Q+ E/2 1 P+ S @1 T e
&2 2(¢243) 259+9Y) W) | e 2n(e*2+3) (14¢*/2)s® OPA
EIT( t) inPM | < 3(ntm)(e¥/2—1)2 " (ntm)2(ef/2-1) (m+n)? + TM th) = 3(m+n)2(e82-1)2 + (m+n)2(e8/2—1) + {ZI)M +1

are uncertain without knowing the values of 7., Sé” and ng) .
On the other hand, since there are only linear and quadratic
terms of m in the inequalities, once #,, Sél), ng) , 4 and Gf
are given, it is not difficult to get the lower bound on m using
the quadratic formula. We empirically study the required
minimum number of fake users in Section 7.2.4. The results
show that a larger m allows the attacker to set the target values
farther from the ground truth. In other words, OPA attacker can
control fewer fake users but achieve the same attack efficacy
as the baseline.

5.2 Error Analysis

In this section, we analyze and compare the attack error of
our attack with the baseline attack against SR and PM mecha-
nisms. For ease of analysis, we adopt the widely-used mean
squared error (MSE) as the error metric. Specifically, let the
estimated mean and variance after the attack be fi; and 62.
Denote Err(fi,) and Err(67) as the MSE E[(f, — u;)?] and
E[(67? — o,)?] between the target and attack result. Our goal
is to study Err(&) and Err(67).

We summarize the attack error in Table 2 and leave the
detailed error analysis with SR to Appendices B and C. We
refer readers to the full version [22] for the relevant discussion
of PM due to the page limit. Note that it is challenging to solve
the exact attack error for the variance because the variance
estimation depends on the square of a random variable (i.e.,
the estimated mean). To address this problem, we consider
deriving the upper bound of the attack error for variance.

SR vs. PM We first compare the attack error under different
LDP protocols (i.e., SR and PM). We find that the errors are
related to the ground truth data due to the terms S (1>, @) and
S@). By subtracting the error of SR from the error of PM,
we find regardless of IPA or OPA, when € is small, the error
under the SR mechanism is smaller than adopting the PM
mechanism given a target mean; when € is large, the attack
against PM performs better because PM introduces less LDP
error (see Lemma 1). For a target variance, we cannot draw
a similar theoretical conclusion because the analysis only
provides the upper bound of the error. But our empirical study
in Section 7 shows that as € grows, the error in PM is smaller
than in SR due to less LDP noise introduced.

OPA vs. Baseline Now we compare the attack error between

OPA and the baseline attack IPA. Theorem 2 shows that re-
gardless of the underlying LDP protocols, OPA outperforms
the baseline with less introduced attack error given a target
mean; OPA also has a tighter error upper bound with respect
to a target variance.

Theorem 2. The error Err(fy) of OPA is smaller than the
error Err(fy,) of IPA, and the upper bound of Err(6?) of OPA
is smaller than that of IPA.

Proof. See Appendix D. O

The intuition is that the submitted fake values in IPA will
be perturbed by the LDP, which further contributes to the
attack errors. However, OPA is able to bypass the perturbation
and directly submit fake values to the server. Therefore, LDP
noise does not affect the error calculation. However, Theorem
2 only states that OPA has a smaller upper bound of error given
a target variance. For completeness, we also empirically study
the error. The experimental results show that OPA outperforms
the baseline for both target mean and variance.

6 Consistency of Security and Privacy

There is a known security-privacy trade-off in prior research
[3, 5], which indicates the incompatible security goal with
the privacy requirement of LDP. In other words, prior attacks
perform better when € is set small for higher privacy require-
ments. However, we do not observe such a trade-off in our
proposed data poisoning attack. The security and privacy
goals of LDP here are consistent, i.e., enhanced privacy also
provides improved protection against our data poisoning at-
tack. In this section, we study this consistency for both OPA
and IPA, and provide insights into the cause of the difference.

6.1 Security-privacy Consistency in OPA

We analyze the relationship between the attack performance
measured by attack error and the privacy level measured by €
and show the result in Theorem 3

Theorem 3. For OPA against SR and PM mechanisms, when
the privacy budget € is larger, the error on mean and the upper
bound of the error on variance become smaller.

Proof. See Appendix E. O



Theorem 3 only proves that the security-privacy consis-
tency holds for the mean under OPA. The change of the upper
bound of the error on variance cannot affirm such consistency
result for variance theoretically. Therefore, we also empiri-
cally study it and confirm it by our experiments, showing the
weakened LDP security as its privacy guarantee deteriorates
(see Section 7).

6.2 Which is True: Consistency or Trade-off?

At first glance, the observed security-privacy consistency is
at odds with the known result that we have to trade LDP pri-
vacy for improved security against unauthorized data injection
[3, 5, 47]. Through the foregoing analysis and intuitive reason-
ing, we discover that the two seemingly conflicting findings
actually complement each other. They collectively reveal a
more holistic view of the threat landscape in the context of
data poisoning attacks. We provide the intuition below.

In general, the relationship between LDP security and its
privacy depends on the underlying attack objective. In [5],
the goal of the attacker is to impair LDP’s overall utility. A
small € facilitates the attack by adding more noise to reduce
the accuracy of the result. The constructed false values are
independent of the privacy budget for the proposed attack in
[3], which aims to maximize the frequency of target items. A
small € allows the fake users to contribute more to the esti-
mated item frequencies, resulting in a higher attack gain. In
[47] the security-privacy trade-off remains for the frequency
gains of the attack against key-value data [14] since the attack
goal is still to maximize the frequency. However, such a trade-
off does not necessarily hold when maliciously maximizing
the mean. This is because they approximate the mean gain
by Taylor expansion in order to perform the attack, which
introduces errors into the computation.

Our proposed data poisoning attack has a different goal, i.e.,
the attacker aims to control the final estimate at a finer level
and make the result as close to the target value as possible.
Since the attacker can bypass the perturbation and directly
inject fake values into the output domain of the local LDP
instance, there are two types of errors that impact the result
of OPA: the error introduced from the estimation of relevant
statistics by the attacker and the error due to the LDP noise
from genuine users’ input. The former is independent of the
LDP privacy implication. For the latter, a small € incurs large
LDP noise such that it is challenging for our attack to precisely
manipulate the LDP estimate towards some target value.

s p

The fact that the consistency and trade-off are both
valid is disturbing since it complicates the already
elusive reasoning and selection of the privacy budget
in LDP and makes the design of a secure LDP proto-
col even more challenging in the presence of different
types of data poisoning attacks.

Table 3: Dataset information. The numbers in the parentheses
are derived from the original user values before being trans-
formed into [—1,1].

Dataset #Sample n u o’ sM 5@
Taxi [31] 83,130 _8'(2);)2 (5(?'93342) (21E]34)t (21§é35692)
Income [35] | 2,390,203 (5?,?733) (2.'3279) _(253271115 )4 2(’1]. ;2?2)9
Retirement [32] | 97,220 (4:2519) (;) .'222) Eizgo;; (57 %ﬁ)

We will discuss the mitigation in Section 8 and the ap-
plicability of our attack to other estimations in Section 10.

7 Experiments

7.1 Setup

Dataset. We used three real-world datasets below to evaluate
our attack and baseline attack. They all contain numerical
values, which we further converted into [—1, 1]. More infor-
mation about the datasets is summarized in Table 3.

e Taxi [31]: This dataset comes from 2020 December New
York Taxi data, recording the mileage of taxi in a day.

* Income [35]: This dataset contains the income of Americans
from the 2019 American Community Survey.

* Retirement [32]: This dataset contains the salary paid to
retired employees in San Francisco.

Metric. We repeatedly run our attacks N = 100 times for each
evaluation and record the average. We use MSE to measure
the attack performance as this metric is widely used for LDP-
related evaluations. Let y, and 67 be the target mean and
variance, respectively, and the estimated mean and variance
in the i-th run be fI;, and 62_. Formally, we measure

1 N A N2 1 N 2 A2\ 2
MSEyzﬁzi(yt—y,i) , MSE; = Xi(c,—ctl_) )
1= 1=

Larger MSE implies worse attack performance since the re-
sults are farther from the target values. We did not use error
bars because the standard deviation is typically very small
and barely noticeable in the figures.

Parameter Setting. We employ a set of default parameters
for the evaluation. As shown in Table 4, we have a set of target
means U, , Ur,, H; and a set of target variances Gzzl , Gtzz, cstz3 for
each dataset, in which g, and 6,22 are set to be the true mean
and true variance and the rest are randomly produced. We
evaluate two cases: 1) the attacker wants to control mean and
variance simultaneously by choosing non-true-value targets;
2) she only attempts to manipulate one while keeping the
other as is, i.e. the true value.

We choose the default estimated user number 7, based on a
common observation that online reports tend to publish round

numbers instead of precise values [11]. We also use f = nfm




Table 4: Default parameters. Values in parentheses are derived from the original user values before being transformed into [—1, 1].

S

Dataset My My, (true p) U, o} o}, (true 6%) o, *(0) +(2) n
Tuxi 0.06 -0.022 -0.06 0.33 0.34 0.4 -2,326 29,580 80.000
axt (140) (129) (118) (5,793) (5,932) (7,022) (1E7) (1.9E9) ’
I -0.92 -0.93 -0.94 0.005 0.007 0.009 | -2,234,086 | 2,108,453 2 400.000
neome | (65,160) | (51,473) | (48,870) | 3.3E9) | (4.8E9) | (5.9E9) | (12E11) | (El6) | =
Retir ; -0.86 -0.87 -0.88 0.02 0.025 0.03 -85,157 77,032 100.000
CHrement | (s1515) | (46,249) | (44,156) | (2.7E9) | (3.3E9) | (4E9) | (44E9) | (5.3E14) :
0.005 0.005 000 me "® 721 Sufficient Condition for Achieving Target Values
0.305 0.305 0.305
0605 '-' 0605 \ 0505 1 06 We first study the sufficient condition for IPA and OPA to
jzzz :’jz: ‘::Z: o4 achieve the g, and 67 on SR and PM. Specifically, given the
-1.0 -0.7 -0.4 -0.1 0.2 0.5 0.8 -1.0 -0.7 -0.4 -0.1 0.2 0.5 0.8 -1.0-0.7 -04 -0.1 0.2 05 0.8 . attaCker-eStimated Sgl) ’ ng) and ne, we Study the relationShip
He e . between y; and 67 and the minimum number of fake users
(a) Taxi (b) Income (c) Retirement (measured by = ;=) required to launch the attack. The re-
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Figure 2: The minimum number of fake users needed for IPA
with € = 1 and varying u; and 6?7 independent of SR and PM.
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Figure 3: The minimum number of fake users to launch OPA
on SR with € = 1 varying g, and 7.
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Figure 4: The minimum number of fake users needed for OPA
on PM with € = 1 and varying y; and 6,2.

to denote the ratio of the number of fake users to the number
of total users and set the default f = 0.1. ™M) and §@ can be
estimated by either getting access to recent published histori-
cal data or compromising a small group of users. Without loss
of generality, we randomly select 1,000 users in each dataset
to gain the required information to simulate the public data
source and they remain as genuine users in our experiment.

7.2 Results

Here we report the experimental results of the sufficient con-
dition evaluation and impact of various factors on the attack.

-0.6
@

0.4

0.2

0.0

sults are shown in Figure 2, 3 and Figure 4. Since the baseline
IPA is independent of LDP, the required minimum number
of fake users is the same for both SR and PM. Thus, we use
one plot for each dataset regardless of the underlying LDP
protocols in Figure 2. OPA leverages the underlying LDP

« Mmechanisms, i.e. SR in Figure 3 and PM in Figure 4. We high-

light the true mean and variance in the encoded range [—1, 1]
with a blue rectangle, and use the darker color to indicate
that fewer fake users are needed for a successful attack. The
light-color parts (B = 1) represent the extreme cases where
the attack is infeasible given a pair of ¢, and 62. We can derive
the following key observations:

* In general, more fake users allows the attacker in both base-
line and our attack to set a target value that deviates farther
from the ground true. B keeps small when y; and 67 grow
simultaneously. This is because when g, and 6,2 grow, both
constraint terms for Y 7" y; and " yi2 (in Equations (1) and
(2)) increase together and thus a small number of large fake
values can satisfy the constraints.

* OPA can reach more darker regions compared to the base-
line attack, which means our attacker has a wider selec-
tion of target mean and variance pairs and can successfully
accomplish the attack given the selected targets. This is
because OPA attacker can inject fake values into the LDP
output domain. Compared with IPA, the constraints of the
fake values are relaxed by the factors in the LDP aggrega-
tion (Section 5.1), thus fewer fake users needed for OPA.

» For OPA, the accessible region of target values in SR is
smaller than in PM. This is because the factors in SR ag-
gregation are smaller than those in PM, leading to a set of
tighter constraints for fake values and thus the target values
spreading over a smaller region.

7.2.2 Impact of Target Values

Figure 5 and 6 depict the attack performance against SR and
PM with varying target mean and variance. We observe that
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Figure 5: Attack error in SR, varying y; and 62. Set € = I,

m=0.1n, Sgl) = SZ(I) and S£2) = Sz(z), Ne =nNj.

* OPA outperforms IPA when attacking the mean, since OPA
circumvents LDP perturbation on the fake user side, result-
ing in less attack error. For example, on Taxi, OPA reduces
MSE of IPA by about 30% on SR and PM respectively.

* OPA also outperforms IPA when attacking the variance with
all three datasets. As the target variance grows, the MSE
of the baseline IPA against both SR and PM increases. This
is because when the target increases, the bias in the attack
error grows in the SR mechanism, and both variance and
bias increase in PM. From Figure 5, we observe a much
reduced MSE with OPA, e.g., at most 50% error reduction
compared to the baseline against SR by controlling the
same number of fake users.

» For some target mean/variance, the default f is inadequate
to launch the baseline attack. Thus, no corresponding MSE
is recorded within the given range in the figures. The result
again exhibits the advantage of OPA over the baseline when
the attacker can only control a limited number of users.

* Given a target u,, the MSE of IPA becomes smaller (larger)
on SR (on PM) as 67 grows. This is because a larger 7
provides a larger } ; yiz, thus leading to small error in SR and
larger error in PM. However, OPA errors are not affected by
Y. y? and are close under different 67.

» The MSE of IPA(c7,) and OPA(c7,) on Taxi reduces first
then increases as u; grows. This is because both MSE of IPA
and OPA are a quadratic function of y; (see error analysis
in Section 5.2). On Income and Retirement, the range of y;
only covers the reduction part of quadratic MSE. Figure 5
and 6 thus do not show a parabola shape.

To have a more intuitive comparison with the target, we
observe that the OPA result deviates from the target mean by
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Figure 6: Attack error in PM, varying u; and 62. Set & = 1,
m=0.1n, S = $;V and s¥ = §;@, n, = n?.

as small as 0.22% in the figures versus 0.58% with IPA and a
maximum error reduction from 17% with IPA to only 3.7%
with OPA given a target variance.

7.2.3 Impact of Attacker’s Estimation

We study how the relevant estimation of the attacker affects
the results next. In general, more accurate estimation pushes
the attack result further to the target.

Impact of Sgl) and S§2>. We discuss the impacts of Sgl) (Fig-

ure 7) and ng) (Figure 8) on attack performance. Note that
the intervals in the x-axis of both figures are different across
the datasets because the respective S (1) and S@ are distinct.
Below are some key observations.

* Figures 7 and 8 show that OPA outperforms IPA when at-
tacking mean and variance across all datasets.

¢ The more accurate the estimation of Sﬁl) is, the smaller the

attack error is as shown in Figure 7. The MSEs of both
OPA and baseline are approximately symmetrical about the
estimation error S() — Sgl) = 0, because the term (S(l) —
Sﬁl) )2 in the attack error computation increases when Sgl)
moves farther away from S(!) (see Table 2).

* In Figure 8, we observe the similar impact of ng) on vari-

ance. However, the impact on the mean shows a different

trend. With increased S§-2>, the MSE of IPA against SR grows
but reduces against PM. This is reasonable because when
Sﬁz) grows, the sum of the squared fake values Y7 | y? de-
creases, leading to a large error in SR and a small error in
PM (Lemma 1). The MSE of OPA remains almost constant
with varying ng) because the attacker crafts fake values in
g1 to manipulate the mean, which is not affected by S @),
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Figure 7: Attack error in SR and PM, varying S£1>. Target

0)_ g2

values are y;, and (5,2],8: 1, m=0.1n, Se , e =1,

* Due to the constrained sufficient condition for launching

IPA, the default B is insufficient when both sﬁ” and S§2>
are far away from S and @ respectively, thus no corre-
sponding MSE recorded in Figure 7 and 8.

The recovered value on the server gets closer to the target
with a smaller estimation error. In practice, the interpretation
of the attack efficacy is subject to the attacker and may vary
depending on applications. For example, we in the experiment
observe that when an OPA attacker sets the target mean to 0.06
and target variance to 0.33 on 7axi with 18% estimation error

about Sgl), the recovered mean and variance by SR are 0.056
(about 3% from the target) and 0.329 (about 0.9% from the
target) respectively, which may still be considered a success
by the attacker.

Impact of n,. We can derive a similar conclusion regarding
the relationship between estimation error n, —n and attack
error in Figure 9. In general, less estimation error results in
better attack performance. The MSEs of IPA and OPA are
almost symmetric about n, — n. Besides, OPA performs better
in both SR and PM due to more LDP noise introduced in IPA.

Similar to estimating Sgl) as analyzed previously, the at-
tacker may not be able to get an accurate estimate of the user
number in practice, which will cause the recovered statistics
to deviate from the intended values. Again, the interpretation
of the deviation here is subject to the attacker’s objective. Our
experiment reports that given the target mean -0.86, variance
0.02, 10% estimation error of user number (88,000 estimated
vs. 97,220 actual) on Retirement, a server using SR mech-
anism can recover the mean and variance to -0.861 (about
0.36% accuracy loss) and 0.0202 (about 4% accuracy loss)
respectively, under our output poisoning attack.
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Figure 8: Attack error in SR and PM, varying Sg). Target
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7.2.4 Other Factors

We further study the impact of the €, § and time cost for the
attack. The results confirm the better performance of OPA,
the security-privacy consistency and the attack efficiency.

Impact of €. Figure 10 shows how ¢ affects attack perfor-
mance. We empirically confirm the privacy-security consis-
tency with our attacks, which complements theoretical anal-
ysis in Section 6. Overall, the attack performance improves
with large €. For the attack on mean and variance, OPA ex-
ceeds IPA under all selected € since OPA is partially influenced
by LDP obfuscation. As € increases, the attack error in PM
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is smaller than that in SR because PM adds less LDP noise
(see Lemma 1). However, even when € = 0.1, the OPA results
are still close to the targets, i.e. the accuracy loss is less than
2.2% for the target mean and 4% for the target variance on
Retirement.

Impact of B. Figure 11 shows the impact of the number of
fake users. In reality, an appropriate B depends on the ap-
plication and the resources accessible to the attacker. We
varied B from 0.05 to 0.8 to comprehensively evaluate the
attack by covering extreme cases. We observe that the attack
errors of both baseline and OPA on mean and variance re-
duce as B grows. This is because the number of fake users is
in the denominator of the error calculation for both IPA and
OPA. However, OPA performs much better since OPA is only
partially affected by LDP noise. For the default f = 0.1 on
Retirement, the accuracy loss of OPA toward target mean and
variance is only about 0.03% and 0.93% respectively.

Time Efficiency. If the required estimates have been done in
advance, the time cost for the attacks only depends on the cal-
culation of the fake values to be injected. Per our experiment,
performing OPA is faster (i.e. less than 0.2 seconds) than IPA
(about 10 seconds). This is because the OPA can directly pro-
duce fake values given the explicit expression of ¥(y) and
W¥(y?) while the optimization problem in Equation (3) needs
to be solved for IPA. We adopted PyTorch in our experiment.
Other optimizers may lead to different results for IPA.

8 Mitigation

There are two types of methods proposed in prior research to
defend against the data poisoning attack, i.e. normalization
[3] and fake user detection [3, 47]. The idea of normalizing
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the LDP estimates to reduce attack effectiveness is based on
the naive observation of frequency consistency [44], which
is not applicable to mean/variance estimation. Detecting fake
users is possible if the fake values are distinguishable from
normal values. We present a countermeasure that can tolerate
the skewed values and recover the true estimate. Contrary
to prior work that assumes the server knows user values and
the fraction of genuine users as ground truth [47], we con-
sider these conditions are difficult to satisfy in reality and our
defense does not rely on them.

8.1 Clustering-based Defense

We adopt a sampling-then-clustering method to defend against
our output poisoning attack, inspired by [4] in the context
of federated learning. The main idea is to sample multiple
subsets of users and then use a clustering algorithm, such as
k-means, to form two clusters. The cluster that contains more
subsets will be used for estimation, while the other will be
discarded. The intuition is that since the majority of users are
genuine, the mean of most subsets should be similar and close
to the true mean. More precisely, we first define a sampling
rate r (0 < r < 1) and derive all (};!) possible subsets in
g1 and all (r"nzz) possible subsets in g, without replacement,
where 7; is the number of users in g;. Next, we estimate E(x)
and E(x?) for each subset and feed them into k-means for g
and g. By identifying the benign clusters in g1 and g, we use
their respective cluster centers as E(x) or E(x?) for mean and
variance estimation. Our defense could be further optimized
by leveraging advanced fault tolerance results [15, 24], which
will be left as an important future work.

Results. We evaluate the defense performance by measuring
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Figure 12: Defense evaluation results. True y = —0.22 and
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the accuracy gain (AG) after applying our mitigation. AG
measures the estimation error change before and after the
proposed defense as MSEp, tore — MSEqf1er. A positive AG
value indicates the defense helps the LDP regain the data
accuracy after the attack while a negative one represents the
ineffectiveness of the mitigation. Thus, the larger AG is, the
more effective our defense is against the attack. In practice,
the number of subsets ( r"r;l) could be too large for an efficient
response. We observe that further randomly choosing a small
portion (e.g. 5,000 subsets in our experiment) still results in
an effective defense.

We use the dataset Taxi for result demonstration in Fig-
ure 12. It shows that the choice of r will affect the perfor-
mance (the leftmost figures). A small sampling rate will lead
to a small subset, which in turn introduces more bias. On the
other hand, a large r results in fewer subsets, but each subset
may contain more fake users, thus being subject to manipula-
tion. This may explain why negative AG is observed when r
is chosen either too small or large. We empirically find an op-
timal r for the rest of the evaluation. The defense performance
is also related to the ratio 3 (the middle figures). When the
fraction of fake users is small, our defense is very effective.
When the target value is far from the true value, it is easier
to identify the fake values as outliers with increased AG (the
rightmost figures). Therefore, our method is preferred when
the fraction of fake users is small and the attacker wants to
skew the mean and variance substantially, which is reasonable
for most attacking scenarios.

8.2 Other Defenses

For an attack that aims to falsify the input of a local LDP
instance, such as the baseline IPA, an authenticated data feed

system may assist in reestablishing trust for data sources. The
current solution, however, is limited to well-known entities
[49]. Authenticating data from unidentified sources in a dis-
tributed environment remains an open problem [19, 49]. To
defend against data poisoning attacks for frequency and heavy
hitter estimations, two cryptography-based methods were pro-
posed in [19] and [29] respectively. Kato ez al. [19] utilized
cryptographic randomized response as a building block to
make the LDP protocol for frequency estimation verifiable to
the data curator. In [29], the multi-party computation was also
leveraged to restrict the attacker’s capability to manipulate
the heavy hitter results. These countermeasures could be used
to mitigate the data poisoning attacks in [3, 47], but are not
applicable to our attacks due to the different LDP perturba-
tion mechanisms for mean and variance estimations. Other
potential solutions include adopting hardware-assisted trusted
computing [1, 21] to ensure the authenticity of the LDP pro-
tocol execution and communication with the remote server.
But this may incur additional costs for software-hardware co-
design and security auditing in order to avoid a wide spectrum
of side-channel attacks [13, 28, 37, 40, 46].

9 Related Work

Data Poisoning Attack to LDP Protocols. Recent research
found that LDP is vulnerable to data poisoning attacks. It
was shown that the LDP aggregator is sensitive to distribu-
tion change of perturbed data. Thus, the result accuracy of
non-interactive LDP protocols can be degraded by injecting
false data [5]. It is further demonstrated that the attacker can
maximally deviate the estimate of an item of interest (e.g.
categorical data in [3] and key-value data in [47]) from the
ground truth by formulating the attack as an optimization
problem to maximize the attack gain. The solution is the fake
data that the attacker will send to the data collector.

We consider a fine-grained attack in this paper, where the
attacker aims to control the estimate to some desired values.
In general, the above maximal deviation attacks [3, 47] can
be deemed as the extreme cases of our attack. With this new
capability, the attacker can target more scenarios for precise
result manipulation. In addition, we provide important new
insights into the attack impact on LDP and mitigation design.

Adopting DP/LDP against Poisoning Attacks in ML. A
line of work [2, 25, 30] studied using DP/LDP to improve the
robustness of machine learning models against data poison-
ing attacks, where the attacker prepares a poisoned training
dataset to change the model behavior to some desired one.
In [2], differentially private data augmentation was studied
for attack mitigation. [25] investigated the attacks on the ML
model trained with differentially private algorithms. Other
than central DP, [30] further studied the impact of LDP on
the defense and observed varying levels of protection-utility
trade-offs. Our work has a distinct motivation, i.e., we study



the intrinsic robustness and security of LDP protocols in the
presence of fine-grained data manipulation. The results of our
work may shed light on the related security discussions of us-
ing LDP for defenses. For example, a strong LDP perturbation
may help reinforce the defense effect in [30] while the attack
in a central DP setting [2, 25, 30] is intuitively analogous to
our baseline attack where only input values can be crafted.

10 Discussion

There exist other LDP protocols supporting mean/variance
estimation [9, 23, 42], to which the baseline and our attack are
still applicable. IPA is straightforward since it is independent
of LDP implementation. For OPA, the attacker can craft fake
data in the output domain of the perturbation by leveraging
the LDP knowledge. Note that since the aggregation ®() is
iterative in [23], we cannot derive an explicit mathematical
expression to determine fake values in the same way as in
this work (e.g., Equations (6) and (7)). However, the attacker
may obtain a valid solution by simulating the iteration and
searching the output domain of the perturbation.

Frequency Estimation under Pure LDP [42]: The IPA and
OPA could be adapted to attack the pure LDP protocols for
frequency, such as kRR [7], OUE and OLH [42]. The attacker
needs to estimate the frequencies of items and inject bogus
data as per the the intended frequency of target items. OPA
may leverage the LDP protocols to improve performance.

Distribution Estimation [23]: Distribution estimation can
be considered a frequency oracle in the numerical domain,
to which our attacks may still be applicable. We provide
the attack intuition here. In general, the attacker begins by
estimating the original data distribution. Given this, the attack
may generate fake data points equal to a specific value x to
increase the probability density of x to the target value. To
reduce the probability density, the attacker could provide data
that is not equal to x.
Graph data mining [16, 48]: In graph data mining, LDP
protocols focus on calculating graph statistics, e.g., counting
triangles and k-stars in the graph, the degree and adjacency
bit vector of each node. We assume in this scenario that the
attacker wishes to control the final estimate to some target
value. To launch the attack, the attacker could first use a graph
generation model, such as BTER [34], to estimate the graph
topology. The attacker then could inject bogus nodes and
edges into the graph to exert finer control over its statistics.
For all the discussed query types, the security-privacy con-
sistency may remain, as increased privacy introduces addi-
tional noise and reduces the effectiveness of the manipulation.

11 Conclusion

We conducted a systematic study on data poisoning attacks
against the LDP protocols for mean and variance estimation.
We present an effective attack to craft the output of the LDP

instance and manipulate both mean and variance estimates
according to target values. The analysis reveals a disturbing
fact: the LDP is inherently vulnerable to data poisoning at-
tacks regardless of the privacy budget, i.e., previous attacks
are effective when € is small (high privacy), whereas our at-
tacks perform better when € is large (low privacy). We also
discussed the applicability of our attacks against other query
types and shed light on the promising mitigation development.
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A Proof of Theorem 1

In the optimization problem, the objective function — Y7 y?
is convex, the inequality constraints are continuously differ-
entiable convex functions and the equality constraint is an
affine function. Thus we can prove that the solution is the
maximum by proving the solution satisfies KKT conditions
[18, 20]. We prove a general case where the value is in [a, b],
and Theorem | can be derived by settinga = —1 and b = 1.
Let the function L(yy,...,yn) equal

+Z[

m

—Z%+GZ

(a—y)+B" (yi—b)|,

where A = (n+m)y, — Sgl), and o, Bl(a) and be) are constants.
The solution should satisfy four sets of conditions:

. . ) b
Stationarity: Vi : &% =2y +o—p+p”
Primal feasibility: Y , v, —A=0,Vi:a—y; <0,y;—b <0.
Dual feasibility: For any i, Bl@ , ng) > 0.
Complementary slackness: Vi : BE“) (a—yi) =0, Bl(b) (yi—
b) =0.

Since the partial derivative of L should be zero, we have

(OCB =>ZOCB+B)

2A+z;.11 Bga) 72;11 Bl(b)

m

Thus we can rewrite o and y,- as o = and

i= ,(w [3 +[3 ). Let the domain of y;
be D =D,UDpUDyp s.t., Vyi € Du,yi = a, Vy; € Dp,y;i = b,
and Vy; € Dy, a < y; < b. Given the solution, we have |Dp| =

| 47241, |Dy| =m—1—|Dy| and |Dgp| = 1. For Vy; € Dy, we
have Vi : Bl( ) = 0 due to the complementary slackness, and
1, 24+ymBlY
yi=a= 3 (e )
(a)
2A —1—|Dyp|)B; 2(A —
:>Bl(a): +(m | b|)B1 —261: ( ina)
m ‘Db‘ 1

Since A > ma and |Dj| > 1, we have Ba > 0 for all y; €
D,. Therefore, for Vi : y; € D,, we have B [3 b) > 0 and
[35 )(a—yi) =0duetoy; =a,and Bl- ()’i—b) =0.

For Vy; € Dy, we have Vi : BE”)
tary slackness, and

= 0 due to the complemen-

Yi:b—i( P +B; )
_ (b) _
:>B(b):2b—2A |Db|l31 :2(mb A)
! m m— |Dp|

Since mb > A and |Dy| < m, we have [3 (®) > 0 for all y; €
Dy,. Therefore, for Vi : y; € Dy, we have [3 B b) >0 and

BS“) (a—y;) = 0 due to Bg“) =0, and Bl(h)
to y; = b. For y; € Dy, we have Bl(»a) = ng)
complementary slackness.

(yi—b) =0 due
= 0 due to the
In conclusion, for Vi : y; € D, the partlal derlvatlve a—"

is zero (satisfying Stationarity), the sum Y7, y; = A, and
Vi:a <y; < b (satisfying Primal fe351blllty) the constants
B\ B > 0 for all y; € D (satisfying Dual feasibility), and
Bf“) (a—y;) =0, B,(h) (yi—b) =0 for all y; € D (satisfying

Complementary slackness).

B Error of IPA on SR

We first analyze the error of fi; under the SR mechanism. In
SR, the estimated mean i after the attack is

Il
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m (;qn +Z‘I’l )

Thus we have the expectation of fi,

E(a) = Zq’l )+ Zcbl ]
i=1
D ( D (
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B[N I ] mene (SO =)
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Then we can calculate the error as E[(f&, — u,)?] = Var[fy] +
(E(@) — u;)?. The bias is known due to E(ut) = Wil +

#H(S(l) — X,). Here we study the term Var[f]. We
denote the ®(W()) by M(). Let ¥, ®;(¥(x;())) and
Y (P (y ( 1)) be M(X, gl) and M(Y,, ) respectively. We

also denote ): 1 Xi and y i—1Yi as Xg, and Yy, . Thus, we have
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The variance contains three terms. For the first term,
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The first equality is based on Lemma 1. Since Y7 ,y? =

(ne +m) (1 +0?) — S8, the first term equals
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mimp—a? ° ERTEE
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From the standard analysis on sampling process, the sec-
ne+m 2 .
ond term equals et +) (12 +0?%)+ (min)z (5@ — { >) Since
E[M(Xe,)] = E[Xy, | E[M(Yy, )] = E[Y,,] and E(f) is a con-
stant, we have the third term being zero. Therefore, based on
the above three terms, we have the error
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Then we study the error of 67 under the SR mechanism.
Denote 52, @a(¥(xf, ) and 5% @a(F(r ) by M(Xe)
and M(Yy,), and Y72, x? and Y72, y? by X,, and Y,, respec-
tively. The estimated variance (after attack) can be written as
nfm (M(X,,) +M(Yy,)) — i = 67. Thus we have the expec-
tation of 67

B(6}) = 2 E[M(X,,) + M(Y%,)] ~ B[]
min (2) _ o2
= mj;w%éw% (Var(fu) + E[f]?)

We can calculate the error E[(67 — 67)%] = Var[67] +
(E(6?) —6?)2. The bias is also known since the expectation
[E[67] is known. Next we study the term Var[6?]
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Similar to the analysis of Var[fy] which is Var[ -2~ (M(X,, ) +
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each y} > 0, we have Y, y} > 0. For the term Var[i?] =
E[i}] — E[i?]?, we have E[@?]* > 0 and ji, < b. Thus, it is
bounded by  Var[i?] = E[i}] — E[i]> <E[i}] < 1.

Given Var[i?], Var[min( (Xg,) +M(Yy,))] and E(87),
we have the upper bound of error E[(67 — 62)?].

C Error of OPA on SR

We first analyze the error of {i, under the SR mechanism. The
estimated mean fi, after the attack is

n+m <§¢1 JFZCI)I > :,ﬂ,.

Thus the expectation of fi; is E(f) = 2%y, + L (s(1) —
2”) The error is calculated as E[(& — u;)?] = Var|iy] +
(E(f) — )*. The bias is known due to E(u,) = Wihe, +

(s — V). Here we study the term Varlfy]. We
denote the ®(¥()) by M(), and ¥, ®(¥(x;(1))) and
Y @1 (¥(vi1))) by M(Xg,) and M(Y,,). Let ¥' | x; and

Y yi be Xg, and Y, . We have

Var|fy] = Var { (M(X,,)+M(Yy, ))} .

n—+m

Since the adversary directly crafts the output values, the term
M (Y,,) is a constant, which can be ignored in the variance.
Therefore, the variance

. 4 O
Var(iy] = WE M(Xg,) — Xg, +Xg, — 5

We then calculate the expected value,

2
s
E M(Xgl)fxglJrX’l*T

, s\’
:E[(M(Xgl)*xgl) }*E Xei T

(1)
( ( gl) Xgl) X (Xgl _S2)>] .
It contains three terms. For the first term,
E[(M(Xe) ~Xa )| =E [E[(M(Xe) ~Xq ) [ 1]
_ 1 [ &2 _ (%7@5(2))
_]El(pq)2 (nl ) <,zix">>]_ (p—q?

The second equality is based on Lemma 1. From the standard
analysis on sampling process, the second term is

2
(1) 2
o 152V - Lol -sy] - 3o

Since E[M(X,,)] = E[X,,] and %l) is a constant, the third
term is zero. Therefore, given the above three terms, we have

+2E




the error
o (e20-975®) g
E[(@ — = +
R R A e
ne—n (s —sM) ’
+ m—|—n'u’+ (m+n)
We study the error of 62 in SR. We denote

Z:Z1 @, (T(xi(z))) and Z?"il D, (\P()’i(z))) by M(ng)
and M(Y,, ), and let Y12 x7 and Y¥.1%, y? by X,, and Y,,. The
estimated variance (after the attack) can be written as

2 N N
ntm (M(Xg,) +M(Yy,)) — — iy =67

Thus we have the expectation of 67

2

B(67) = 2 E[M(X,,) + M(%,)] - B[
2)
7m+ne 2 2 (S<2)7Sg )_ N ~ 12
= m+n(yt+61)+ min (Var(fy) +E[i]").

We calculate the error E[(67 — 62)?] = Var[6?] + (E(6?) —
62)2. The bias is known since we know the expectation E[67].
Next we work on the term Var|[67]

Varl6?] = Var |2 (M) + M (1) |+ Vari).

m

Similar to the analysis of Var[f] which is Var[miﬂ

M(Y,,))], we denote ¥, x} as S*) and have

(M(Xg,)+

4Var [M (Xg, )]
Var {m—i—n(M(ng) +M(Yg2))} = 7(’"_’_”)
B 2n—2(p—q)*s¥ N
~ (m+n2(p—q)?  (m+n)?
For the term Var[i?] = E[f}] — E[@?]%, we have E[f2]? >
and fi; < 1. Thus, it is bounded by VarLﬁz] IE[,U“] Eli ] g

E[i] < 1 Given Var[@?], Var [min (M(Xq,) —l—M(Ygz))] and
[E(67), we have the upper bound of error E[(67 — 7)?].

To show and compare the error of IPA and OPA, we replace
some terms with intermediate notations shown in Table 5. The

comparison results are shown in Table 2.

D Proof of Theorem 2

Proof. First we study OPA and IPA in the SR mechanism.

Given the error analysis of SR and PM, we have Errjps (1) —
. . 202y S£2)
Ertopa (i) = Gy — etlto)

(m+n) (r—q)
)(.“z +Gz) ) = 1)’:‘2 < m, we have Errjps (i) —
Ertopa (i) > M >0.

= (m+n)*(p—q)*

. Since (n, +

Table 5: Intermedia for Error Analysis.

Intermedia | Values
P (u 4 0-s) ’
mn Mt (m—+n)
Q (netm) (i +07) | s@—s?
(m-+n)? (m+n)?
s(P) Yo«
[ nElre) o 2
i (n+m+n< S = 57) = Varlfh i) - E[@]?)
7
Ty ( (S ng) Vargi o] — Elfy] 2)
9| (nt (s - 5P) —var PA[,; ~EP)
SR m+n e SR f t
7
'Z;,CK,’[JA ( (S ng )— VarOPA —E|i] 2)
Varden] | Gemip=g2 ~
o 2(e8/243
Varll)?/[q[/’l’] (n+£”)(:/—2)1)2+(e/2 1) +Q
N 2n—2(p—q)25s@ 5@
Vai’g)]sA [/Jt} ( (’in-%—n;(;])—q)z ) (m+n)? .
OPA A 2n(e8/243) (14725
Varew ] | sirrr@ + 2@
Bl | 2o+ (s - s)

For the PM mechanism, since )./ yi2 >0, we have

2m(ef? +3)
Ertypa (i) — E )= — 2
1rrpa () — Erropa (i) 3m+ )2 ()
2( i= 1y1+S( )) i= 1y1+S() (1+€8/2)S(2) >0
(m+m?(e?=1) " (m+n) (mtn(e2—1) =
Then we compare the error on variance. Since

Var§Rh < Var?, we have TM < T84, Besides, we have
2n—2(p—q)2s¥ s 2 _s¥
(m+n)2(p—q)? (m+n)? = (m+n)(p—q)>  (m+n)
out the upper bound of Errpps (67) < Errpa (67) on SR. By
the similar calculation, we have the same conclusion on PM
mechanism.

5, then it turns

O

E Proof of Theorem 3

Proof. According to the attack error, we calculate the deriva-
tive of attack error on mean and the upper bound of the attack
error on variance, and have all derivatives negative for all
€ > 0. In other words, the attack error on mean and the upper
bound of attack error on variance decrease as € grows. [
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