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Abstract
In this paper, we introduce SparsePIR, a single-server
keyword private information retrieval (PIR) construction
that enables querying over sparse databases. At its core,
SparsePIR is based on a novel encoding algorithm that
encodes sparse database entries as linear combinations
while being compatible with important PIR optimizations
including recursion. SparsePIR achieves response over-
head that is half of state-of-the art keyword PIR schemes
without requiring long-term client storage of linear-sized
mappings. We also introduce two variants, SparsePIRg

and SparsePIRc, that further reduces the size of the serv-
ing database at the cost of increased encoding time and
small additional client storage, respectively. Our frame-
works enable performing keyword PIR with, essentially,
the same costs as standard PIR. Finally, we also show that
SparsePIR may be used to build batch keyword PIR with
halved response overhead without any client mappings.

1 Introduction

Private information retrieval (PIR) [21] is an important
cryptographic primitive that allows a client to retrieve en-
tries from a public database without revealing the client’s
entry of interest. Due to its strong privacy guarantees, PIR
is a critical building block for many practical applications
including advertisements [36], anonymous communica-
tion [7, 10, 46, 52], contact discovery [12, 27], device
enrollment [4], media consumption [38], password leak
checks [8] and route navigation [65].

PIR has been studied in two settings with a single
server [17, 25, 34, 37, 45, 47, 55, 56, 63] or multiple, non-
colluding servers [13, 21, 29, 30, 35]. PIR schemes in the
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multi-server setting are, typically, more efficient. How-
ever, they rely on stronger trust assumptions between
different organizations that may be difficult to material-
ize. In our work, we will focus on single-server PIR.

The standard PIR problem considers databases that
are n-entry arrays. The client’s goal is to retrieve the
i-th entry in the array without revealing index i to the
server holding the public database. Unfortunately, in most
practical applications, databases more closely resemble
key-value pairs where users want to retrieve the value
associated to a certain key. For example, we can think
of data sets like contact lists, videos, websites, etc. To
address this, keyword PIR [20] was introduced where
databases consist of key-value pairs and a client wishes
to retrieve the value associated with a certain key.

A naive solution for keyword PIR is to replicate map-
pings from keys to array indices that need to be stored
by all clients. To query, a client uses the mapping to de-
termine the array index storing the entry associated to
the query key and uses a standard PIR scheme. Unfor-
tunately, this requires the client to store mappings that
are linear in the database size. Chor et al. [20] presented
a multiple round solution introducing additional over-
head. Another solution to keyword PIR utilizes cuckoo
hashing [8] in a single round, but results in 2x response
overhead compared to standard PIR. A recent work [50]
builds one-round keyword PIR using constant-weight
equality operators. However, this scheme requires signif-
icantly more communication and computation than re-
cent PIR schemes. In the current state of affairs, moving
from standard PIR to keyword PIR requires increasing
roundtrips, doubling the response size or large long-term
client storage. None of these choices are appealing. This
paper addresses this inefficiency.

Our Contributions. We present SparsePIR that is a
framework for building keyword PIR from a standard
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Ours: SparsePIRc < 11.2 KB (1.03)n 1x

Figure 1: One-round keyword PIR comparison. Response
overhead is compared to state-of-the-art standard PIR,
Spiral [51], that query over dense n-entry arrays.

PIR. The core technique behind SparsePIR is the usage
of encoding algorithms that aim to encode key-value
pairs as a function of multiple database entries as op-
posed to allocating each key-value pair into a single entry
as done by prior hashing schemes.
SparsePIR ensures that request and response sizes are

identical to the underlying standard PIR schemes with-
out any additional client storage. As a result, SparsePIR
halves the response size compared to the cuckoo hashing
keyword PIR approach [8]. The only slight drawback
of SparsePIR is a small increase in the server compu-
tation costs. For databases with one million 256-byte
entries, SparsePIR built on Spiral [51] halves response
sizes from 42 KB to 21 KB compared to the cuckoo hash-
ing approach [8] using Spiral. In exchange, SparsePIR
uses only 2% more server computation. We also show
that SparsePIR uses 2-12x smaller communication and
at least 10x less computation than constant-weight key-
word PIR [50]. We also introduce SparsePIRg that has
identical request and response overhead as SparsePIR.
The main benefit of SparsePIRg is that we can further
decrease the encoding size and, thus, computation time
by up to 20% in exchange for more time to encode the
database. Finally, we introduce SparsePIRc that achieves
near optimal encoding size with small additional client
storage of < 11.2 KB. In summary, we show that key-
word PIR requires no additional communication and a
very slight increase in computation compared to standard
PIR. Furthermore, we believe any future improvements
to standard lattice-based PIR should also enable faster
keyword PIR schemes using our frameworks. Figure 1
presents a comparison of keyword PIRs. Finally, we show
that we can build batch keyword PIR schemes using any
of our SparsePIR algorithms with small response sizes.

2 Preliminaries

We denote vectors v as column vectors and v⊺ as row vec-
tors. We denote the i-th entry of v by v[i]. For two vectors

a and b in {0,1}n, we denote the dot product operator
as a ·b = ∑

n
i=1 a[i] ·b[i]. For a matrix M = [M1 . . . Mm],

we denote the dot product a ·M = [a ·M1 . . . a ·Mn].
For any database consisting of key-value pairs D =
{(k1,v1), . . . ,(kn,vn)}, we denote D[k] to be the standard
operation to access the value associated with k in the
database D. If k = ki for some i ∈ [n], then D[k] = vi. If
k ̸= ki for all i ∈ [n], then D[k] = ⊥.

Next, we present definitions of PIR and batch PIR.
Formal definitions may be found in the full version.

PIR. We will restrict ourselves to single-server, one-
round schemes. A keyword PIR scheme consists of algo-
rithms Π = (Init,Encode,Query,Answer,Decrypt). Init
initializes all crypto keys and Encode enables prepar-
ing a database for queries. The client runs Query and
Decrypt to create a request and compute an answer from
the server’s response. The server runs Answer to create a
response from the client’s request. For correctness, the
client should retrieve the correct value associated with
the queried key. In terms of privacy, the server should not
learn information about the client’s queried key.

Batch PIR. In this setting, clients query a batch of
ℓ ≥ 1 query keys to retrieve all ℓ associated values.
A batch keyword PIR consists of the same four algo-
rithms Π = (Init,Encode,Query,Answer,Decrypt). For
correctness, the scheme should return all ℓ associated
values correctly. In terms of privacy, the server should
not learn any information about the client’s set of queried
keys.

3 Keyword PIR over Sparse Databases

3.1 State-of-the-Art PIR Schemes
We start by revisiting the current state-of-the-art PIR
schemes [6–9, 33, 51, 54, 57] that utilize leveled fully ho-
momorphic encryption (FHE) built on the Ring Learning
with Errors (RLWE) assumption [49].

Fully Homomorphic Encryption. Most leveled FHE
schemes relying on RLWE (such as [15, 16, 31]) share
similar mathematical structures. These FHE schemes are
based on a cyclotomic ring R = Z[x]/(xN +1) where N
is the degree of the polynomials. N is also commonly
referred to as the ring dimension. Plaintext values are
encoded as polynomials in the ring Rα = R/αR where
the integer α is referred to as the plaintext modulus.
Ciphertexts consist of two polynomials from the ring
Rβ = R/βR for some integer β. The secret key s in these
FHE schemes will be polynomials in R with very small
coefficients. An encryption of a plaintext polynomial pt
will look like (r,r · s+ e+ pt) where r is a uniformly



random element from Rβ, s is the secret key and e is
the noise polynomial where each coefficient is typically
small and drawn from a truncated Gaussian distribu-
tion. To decrypt a ciphertext (ct1,ct2), one will compute
ct2−(ct1 ·s) = e+pt. As long as the noise polynomial e
remains small, the plaintext pt can be retrieved by round-
ing to remove e.

FHE schemes allow homomorphic operations over ci-
phertexts. PIR schemes generally rely upon three core
operations: ciphertext-ciphertext addition, ciphertext-
plaintext multiplication and ciphertext-ciphertext multi-
plication. The costs and noise growth of these operations
are quite different. Typically, ciphertext-ciphertext addi-
tion is the most efficient, ciphertext-plaintext multipli-
cation is a bit more expensive and ciphertext-ciphertext
multiplication is the worst of the three.

Query-Independent PIR Parameters. Following prior
works [8, 9, 51, 54], we will consider the model where
the client uploads query-independent parameters to the
server. These parameters will be used by the server to
process all future requests sent by the client. At a high
level, these public parameters enable the server to op-
erate over FHE ciphertexts efficiently. We assume that
these parameters are sent by the client to the server in an
“offline” phase before any queries are performed.

Recursion. A common technique in standard PIR is to
utilize recursion introduced in [45] that represents the
n-entry array database as a hypercube of dimensions
d1× d2× . . .× dz where the product of the dimensions
is at least n, d1 · · ·dz ≥ n. To query an entry, the client
will generate z indicator vectors v1 ∈ {0,1}d1 , . . . ,vz ∈
{0,1}dz where each vi has zeroes everywhere except for
a one indicating the location of the entry with respect
to the dimension di. The benefit of this representation
is that querying for an entry only requires uploading
an encrypted bit vector of length d1 + . . .+ dz that can
be substantially smaller than n. For example, if we set
d1 =

√
n and d2 =

√
n, the total bit length 2

√
n. An unfor-

tunate side note is that recursion introduces the need for
ciphertext-ciphertext multiplication. The majority of PIR
works aim to achieve recursion while obtaining better
trade-offs between communication and computation. In
our work, we will present keyword PIR schemes whose
constructions will utilize recursion to reduce communi-
cation. We note there are other important PIR techniques
such as compression and oblivious expansion (see the full
version). However, unlike recursion, they end up being
easier to fit into our framework.

Building on a PIR Scheme. Our constructions will
be frameworks that can be built upon FHE based PIR
schemes, which are the most common ones today. In

other words, one can view our constructions as trans-
forming standard PIR schemes into keyword PIRs that
can handle sparse databases. We will assume a standard
PIR scheme ΠPIR = (Init,Query,Answer,Decrypt) with
the following properties:

• The underlying PIR scheme will represent any m-
element database as a hypercube with dimensions
d1× . . .× dz. Our framework will be parameterized
by the dimensions (d1, . . . ,dz) that may depend on n.

• The ΠPIR.Init algorithm produces client key ck and
server key sk (i.e., query-independent parameters).

• The ΠPIR.Query algorithm receives z vectors of length
d1, . . . ,dz that it will homomorphically encrypt and up-
load to the server. For standard PIR, these z vectors are
indicator vectors representing the query index in each
dimension. As compression and oblivious expansion
can handle arbitrary Hamming weight vectors (see the
full version for more details), we assume that ΠPIR can
receive arbitrary vectors for the first d1-length vector.

• The ΠPIR.Answer algorithm receives an encoding E,
a two-dimensional matrix of size d1 × ⌈m/d1⌉, and
homomorphic encryptions of vectors v1, . . . ,vz. The
ΠPIR.Answer algorithm will perform the standard PIR
algorithm of applying v1 to E to obtain a ⌈m/d1⌉ vec-
tor, arrange the vector into a d2×⌈m/(d1d2)⌉ matrix
and apply v2 to obtain a vector of size ⌈m/(d1d2)⌉, and
repeat this process for all z dimensions.

• The ΠPIR.Decrypt algorithm receives the server’s re-
sponse and produces a decrypted answer. We will as-
sume that the answer was already decoded from the
decrypted plaintext polynomial into a string.

3.2 Warm-Up: Keyword PIR without Re-
cursion

To start, we consider a simplified setting where we will
utilize an underlying PIR scheme ΠPIR that does not use
recursion. In other words, we will represent the encoded
database E as a vector of length d1 = m. For this setting,
we do not care if the query vector can be represented
succinctly and we will be content with uploading an en-
crypted version of a linear number of values. In future
sections, we will fix this issue to enable recursion. How-
ever, we choose to start from this simplified setting as
it illuminates some of the ideas that we will use in our
more efficient constructions.

Representing Key-Value Pairs. For any pair (k,v) of a
key and a value, we will represent them in the following
way. For some hash key K, we denote rep(K,k,v) as
the hash evaluation of k concatenated with v. In more



detail, rep(K,k,v) = F(K,k) || v where we denote || as
concatenation. We assume the representation length is
fixed for all (k,v). For convenience, we will assume that
rep(K,k,v) is small enough to be uniquely represented in
Zα where α is the plaintext modulus and each rep(K,k,v)
will be stored into one ciphertext. We will discuss later
how to handle the setting when larger values and packing
multiple values into a ciphertext.

Using our representation, we note that one can distin-
guish representations of different key-value pairs. For
different keys k1 ̸= k2, the resulting representations will
be different rep(K,k1,v) ̸= rep(K,k2,v) except with neg-
ligible probability as the representations are the same
only when F(K,k1) = F(K,k2). If the hash output is suf-
ficiently long, these collisions do not occur in practice.
Encoding the Database. Let Kr be the hash key used to
generate representations of key-value pairs. Throughout
this section, we will assume that all operations are done
in Zα where α is the plaintext modulus. We will asso-
ciate each key k ∈ K with a uniformly random subset
of Sk ⊆ [m] that will be randomly generated. The goal
is to arrange the encoding E such that for any database
D = {(k1,v1), . . . ,(kn,vn)} and for any integer i ∈ [n],

∑
x∈Ski

E[x] = rep(Kr,ki,vi)

where Ski is the random subset associated with key ki.
For convenience, we can denote the set Sk using a vector
vk such that vk[x] = 1 only when x ∈ Sk. We can re-write
the above equation as the dot product:

vki ·E = ∑
x∈Ski

E[x] = rep(Kr,ki,vi).

To construct the encoded database E, we note that the
above represents n systems of equations that need to be
satisfied. We can view each v⊺ki

to be the i-th row of a
n×m matrix M. We also denote the vector y such that the
i-th entry is the i-th value, y[i] = rep(Kr,ki,vi). Therefore,
we must find a vector E ∈ Fm satisfying:

v⊺k1
v⊺k2
. . .
v⊺kn

 ·E = M ·E = y =


rep(Kr,k1,v1)
rep(Kr,k2,v2)

. . .
rep(Kr,kn,vn)

 .

In other words, we can generate a correct encoding E of
the database D = {(k1,v1), . . . ,(kn,vn)} as long M ·E =
y has a solution, i.e. M has full row rank. Intuitively,
increasing the number of columns in M, denoted by m,
will also increase the probability that it has full row rank.
However, this has the affect of also increasing the size

of the encoded database E ∈ Fm. Therefore, we would
like to pick m in such a way that M has full row rank
with high probability while minimizing the size of the
encoding.

Decoding an Entry. From the above encoding scheme,
we note that decoding an entry is pretty straightforward.
For any query key k, the client will randomly generate
the vector vk. The client also computes the hash evalua-
tion F(Kr,k). Using our PIR scheme without recursion,
the client uploads an encrypted version of vk. The PIR
scheme continues without change and the client will even-
tually receive the dot product vk ·E in plaintext. The client
will parse this result as a || b. If a = F(Kr,k), then the
client returns b as the retrieved value. Otherwise, when
a ̸= F(Kr,k), then the client returns ⊥.

If k = ki for some (ki,vi)∈D, then we know that vk ·E
will be exactly F(Kr,ki) || vi enabling retrieval of vi. On
the other hand, suppose that k /∈ D. Then, we know that
a ̸=F(Kr,k) meaning the client returns the right response
(except with negligible probability of collisions).

Quick Comparison with Prior Approaches. In the
above, we only needed to retrieve a single ciphertext,
which was the dot product response. On the other hand,
cuckoo hashing required retrieving two entries. Further-
more, the above approach ensures that the number of en-
tries is very close to linear. We have also ensured minimal
error growth as no additional homomorphic operations
are performed. This shows us that we are heading in the
right direction, although there are still several problems
that need to be resolved.

Problems with this Approach. While the above ap-
proach is very promising, it has two significant problems
that we outline below and solve in later sections:

1. As discussed earlier, we considered a simplified set-
ting of PIR that does not utilize recursion. Unfortu-
nately, PIR without recursion ends up requiring linear
communication. Most state-of-the-art PIR schemes
utilize recursion to represent the database using a
hypercube with dimensions d1 × . . .× dz such that
d1 · · ·dz ≥ n. In our scheme, we chose each row vector
vk to be uniformly random, which cannot be repre-
sented in any succinct manner using recursion.

2. A second, more subtle, issue is that computing a solu-
tion to the system of linear equations M ·E = y is very
expensive. The best possible algorithm for solving a
general linear system would already be quadratic in
the size of the database n.



3.3 Partition-Based Keyword PIR
At a high level, both problems from the prior construction
resulted from the fact that the random matrix M was very
dense with many non-zero entries. The expected number
of non-zero entries was nm/2, so it is not surprising that
finding a solution would require at least quadratic time.
Furthermore, as each row vector has, on average, m/2
non-zero entries, it is not surprising that any representa-
tion of the row vector must also be large. We present our
construction SparsePIR that deals with the issues from
the previous section to obtain an efficient keyword PIR.

High-Level Idea of Partitioning. To solve this problem
that row vectors have high density, we will use the idea
of partitioning where we aim to break down the problem
into smaller sub-problems. To do this, we will aim to
embed the random vector into only the first dimension
used in recursion. We will assume that the underlying
PIR scheme uses recursion and represents the database
as d1× . . .×dz hypercube.

At a high level, we will create b = (1+ ε)n/d1 par-
titions where each part will be size d1. We will choose
the value of ε later through experimentation. On input
of database D = {(k1,v1), . . . ,(kn,vn)} that we wish to
encode, we will assign the n key-value pairs to the b parti-
tions uniformly at random. Therefore, the expected num-
ber of key-value pairs in each part is n/b = d1/(1+ε)<
d1. As a result, we have now reduced the problem to
efficiently encoding databases of size O(d1).

Within each part Pi, we will essentially repeat the
construction from Section 3.2. Consider the i-th part
Pi = {(k1,v1), . . . ,(k|Pi|,v|Pi|)}. We will generate Mi that
is a |Pi|×d1 matrix where each entry is uniformly cho-
sen from {0,1}. In particular, the i-th row is gener-
ated randomly using K2 and key ki. We compute y⊺i =
[rep(Kr,k1,vi) . . . rep(Kr,k|Pi|,v|Pi|)]. Finally, we solve
the linear system Mi · ei = yi and obtain the encoding ei
for part Pi.

To build the final encoded database E, we put each of
e1, . . . ,eb as column vectors in E to construct a d1× b
matrix. Note, the cost to solve the linear system in each
part is O(d3

1) and the total time across all b = O(n/d1)
parts is O(n · d2

1). For small values of d1, this is much
more efficient than approach in Section 3.2.

To query for a key k, the client will compute i =
F1(K1,k) to determine the partition associated with k.
Next, the client randomly generates the associated ran-
dom vector using hash key K2 and k that we denote v1.
This will be the vector uploaded for the first dimension of
PIR. Suppose that the server applied v1 to the first dimen-
sion of E. Note, the result is [v1 · e1 . . . v1 · eb]. As k is
assigned to the i-th partition, the only entry needed to be

Partition

Encode P1,P2,P3,P4 only P3 shown here

e3 =


F(K2,k4 || 1) . . . F(K2,k4 || 5)
F(K2,k6 || 1) . . . F(K2,k6 || 5)
F(K2,k8 || 1) . . . F(K2,k8 || 5)
F(K2,k9 || 1) . . . F(K2,k9 || 5)


−1

F(Kr,k4) || v4
F(Kr,k6) || v6
F(Kr,k8) || v8
F(Kr,k9) || v9


Final Encoding

E =
[
e1 e2 e3 e4

]
Figure 2: Encoding algorithm for SparsePIR with n= 12,
b = 4 and (d1 = 5,d2 = 2,d3 = 2).

Algorithm 1 SparsePIR.Init algorithm

Input: 1λ: security parameter.
Output: (ck,sk): client and server key.

(ck,sk)←ΠPIR.Init(1λ)
return (ck,sk)

retrieved is v1 · ei. Therefore, this reduces to performing
a standard PIR query over a b-entry array with recursion
dimensions d2× . . .×dz. We formally present the above
ideas in our SparsePIR construction below.

Encoding the Database. The encoding algorithm
SparsePIR is formally presented in Algorithm 2 that uti-
lizes the partitioning ideas that were discussed previously.
Our algorithms are also portrayed pictorially in Fig-
ure 2. Recall that the algorithm receives a database D =
{(k1,v1), . . . ,(kn,vn)} as input and must output parame-
ters for decoding and an encoding of the database. The
encoding is parameterized by ε where b = (1+ε)n/d1 is
the number of parts in the partitioning.

First, the algorithm samples three hash keys: K1, K2
and Kr. The first key K1 will be used to generate the
random partitioning of the database into b bins such that
F1(K1, ·) ∈ {0, . . . ,b− 1}. The second key K2 will be
used to generate the random row vectors within each
partition where F2(K2, ·) ∈ {0,1}. Kr is used to generate
representations rep(Kr,k,v) of key-value pairs (k,v).

For any input database D = {(k1,v1), . . . ,(kn,vn)}, the
next step is to partition the n key-value pairs into the b



Algorithm 2 SparsePIR.Encode algorithm
Input: D = {(k1,v1), . . . ,(kn,vn)}: database
Output: (prms,E): parameters and encoding

Sample hash keys K1,K2 and Kr
b← (1+ ε)n/d1
m← (1+ ε)n
P1← /0, . . . ,Pb← /0

for i = 1, . . . ,n do ▷ Partition database
j← F1(K1,ki)
Pj+1← Pj+1∪{(ki,vi)}

for j = 1, . . . ,b do
ei← GenerateEncode(K2,Kr,Pj)

prms← (K1,K2,Kr)
E← [e1, . . . ,eb]
return (prms,E)

Algorithm 3 RandVector algorithm
Input: (K2,k): the hash key and database key.
Output: vk: a randomly generated vector.

vk← [0]d1

for i = 1, . . . ,d1 do
vk[i]← F2(K2,k || i)

return vk

entries uniformly at random. In particular, the key-value
pair (ki,vi) is placed into the F1(K1,ki)-th partition. Let
P1, . . . ,Pb be the b parts of the partitioning such that each
(ki,vi) is assigned to exactly one part. Each part Pi will
produce an encoding ei and the final encoding E will
combine all of e1, . . . ,eb together.

For each part i ∈ [b], we will use part Pi to construct
a matrix Mi, a vector yi as well as an encoding ei. We
iterate through the part Pi. For each (k,v)∈ Pi, we append
the bit vector generated by (F2(K2,k || 1), . . . ,F2(K2,k ||
d1)) as a row vector in Mi where each F2(K2,k || ·) ∈
{0,1}. Additionally, we append rep(Kr,k,v) into yi. At
the end, we note that Mi is a vector with |Pi| rows and
d1 columns. Furthermore, yi is a vector with |Pi| entries.
Next, we compute ei that satisfies the following equality
Miei = yi. If a solution doesn’t exist for any of the part
i ∈ [b], the encoding algorithm outputs ⊥ and terminates.

After doing this for all parts i∈ [b], we obtain the b par-
tial encodings e1, . . . ,eb. To obtain the final encoding, we
construct the two-dimensional matrix as E = [e1 . . . eb]
where each ei is a column vector. Note, this matrix
has dimension d1 × b. The output of the encoding is
prms= (K1,K2,Kr) and the matrix E.

Decoding an Entry. Our decoding process of Query,
Answer and Decrypt are outlined in Algorithms 5, 6

Algorithm 4 GenerateEncode algorithm
Input: (K2,Kr,P): hash keys and a part.
Output: e: an encoding of the part.

M← [] as empty array
y← [] as empty array
for (k,v) ∈ P do

Append RandVector(K2,k)⊺ to M as row.
Append rep(Kr,k,v) to y.

e← SolveLinearSystem(M,y)
return e

Algorithm 5 SparsePIR.Query algorithm
Input: (prms,ck,k): parameters and the query key.
Output: (st, req): temporary state and request.

b← (1+ ε)n/d1
Parse prms= (K1,K2,Kr)
v1← RandVector(K2,k)
j← F1(K1,k)
for i = 2, . . . ,z do ▷ Generate encoding of j

ji← ⌊ j/⌈b/di⌉⌋
vi← [0]di

vi[ ji +1]← 1
b← ⌈b/di⌉
j← j mod b

(stPIR, req)←ΠPIR.Query(ck,v1, . . . ,vz)
return ((stPIR,k), req)

and 7. We also present a diagram of the decoding process
in Figure 3. As input, the decoding algorithm will re-
ceive parameters prms= (K1,K2,Kr) as well as a query
key k ∈ K . Recall that the goal is to output z vectors
v1, . . . ,vz such that applying standard PIR with recursion
schemes along with our encoded database E would en-
able decoding the value associated with query key k (if it
exists).

The first step is to compute F1(K1,k) to compute the
partition associated with k. Suppose that k was associated
with the i-th part. The next step is to compute F2(K2,k ||
x) for all x∈ [d1] to obtain the random bit vector of length
d1. The above bit vector will be v1. Next, suppose we
applied the first layer of the server’s response algorithm in
standard PIR schemes that utilize recursion. Note, that the
result is [v1 ·e1 . . . v1 ·eb]. Furthermore, as we know that
k was assigned to the i-th part, we only need to retrieve
the i-th column containing the entry v1 ·ei. In other words,
the rest of the problem becomes a standard PIR query
of retrieving the i-th entry from an array with b entries.
To do this, we encode the index i using the standard PIR
query over a database of dimensions d2× . . .×dz.



Algorithm 6 SparsePIR.Answer algorithm
Input: (prms,sk,E, req): parameters, server key, en-

coded databases and the request.
Output: resp: the response to the request.

resp←ΠPIR.Answer(sk,E, req)
return resp

Algorithm 7 SparsePIR.Decrypt algorithm
Input: (prms,ck,st, resp): parameters, client key, tem-

porary state and response.
Output: v: output value

Parse prms as (K1,K2,Kr)
Parse st as (stPIR,k)
x←ΠPIR.Decrypt(ck,stPIR, resp)
Parse x as (id,v)
if id= F(Kr,k) then

return v
else

return ⊥

Packing. Throughout this section, we assumed that
rep(Kr,k,v) fit into Zα where α is the plaintext mod-
ulus and each representation was stored in a single ci-
phertext. We show how to handle arbitrary length val-
ues and efficiency improvements using packing. We
will represent rep(K,k,v) as a base-α string with L =
⌈logα(|rep(K,k,v)|)⌉ characters in Zα. We repeat the
above encoding algorithm for each part Pi to obtain L
encodings e1

i , . . . ,eL
i using the same matrix Mi. The re-

sulting encoding is: E = [e1
1 . . . eL

1 . . . e1
b . . . eL

b ].
If L > N, we encode each row of E using b · ⌈L/N⌉

plaintext polynomials where each tuple (e1
i , . . . ,eL

i ) uses
⌈L/N⌉ polynomials. When L≤N, we can encode ⌊N/L⌋
values into a single polynomial meaning each row of E
is encoded using ⌈b/⌊N/L⌋⌉ polynomials.

Re-Sampling and Optimizations. The encoding algo-
rithm of SparsePIR fails (outputs ⊥) when any of the
smaller linear systems doesn’t have a solution. In prac-
tice, rather than terminating, the encoding would simply
re-sample new hash keys K1 and K2 and try to encode
the database again. In our implementation, this will also
be the case. However, we show that one may optimize
the re-sampling step. The naive approach would be to
re-sample both K1 and K2, which is unnecessary.

Recall that K1 partitions the n key-value pairs into
b parts. If any single part Pi receives too many items,
the associated linear system Mi · ei = yi will not have a
solution. In this case, we do not need to even generate
Mi. Therefore, we try to sample K1 until the resulting
partition does not over-assign items to any part. Once a

Query for k6

vk6 =

F(K2,k6 || 1)
. . .

F(K2,k6 || 5)

 ,

[
0
1

]
,

[
1
0

]

First Level of Recursion for d1 = 5

vk6 ·E→
[
vk6 · e1 . . . vk6 · e4

]
Second Level of Recursion for d2 = 2[

0
1

]
·
[

vk6 · e1 vk6 · e2
vk6 · e3 vk6 · e4

]
→

[
vk6 · e3 vk6 · e4

]
Third Level of Recursion for d3 = 2[

1
0

]
·
[

vk6 · e3
vk6 · e4

]
→ vk6 · e3 = F(K2,k6) || v6

Figure 3: Decoding algorithm for SparsePIR with n =
12, b = 4 and dimensions (d1 = 5,d2 = 2,d3 = 2). The
server application is presented in plaintext for clarity, but
the real construction would perform these operations over
FHE ciphertexts homomorphically.

good K1 is found, we fix it. Afterwards, we only keep re-
sampling K2 until all randomly generated matrices have
full row rank.
Handing Database Updates. In most applications, the
database D will periodically change. Our encoding algo-
rithm does not enable incremental updates to add/remove
entries. If the database changes, the encoding must be
run again. To handle database updates, new encoded
databases may be generated. As we will show in Sec-
tion 7, the encoding is concretely efficient to enable cre-
ating encoded databases every few minutes.

3.4 Efficiently Solvable Matrices
For SparsePIR, we have been generating random matri-
ces such that each entry is chosen to be uniformly random
from {0,1}. The state-of-the-art algorithm for solving
general linear systems for practical sizes of n require at
least quadratic (and, typically, near-cubic) time. This is
unsurprising as the expected number of non-zero entries
in these matrices is n2/2.

To circumvent this issue, SparsePIR utilized partition-
ing to guarantee that the generated linear systems were
very small in size. Recall that each of the O(n/d1) parts
involves solving a linear system of size O(d2

1), which
takes O(d3

1) time using Gaussian elimination algorithm.
As long as we chose d1 to be small, then the overall
encoding algorithm required O(n ·d2

1) time that was rel-



Algorithm 8 RandVector algorithm
Input: (K2,k): the hash key and database key.
Output: vk: a randomly generated vector.

/* F3 outputs elements in {0, . . . ,d−w}. */
p← F3(K2,k || “position”)
vk← [0]d1

for i = 1, . . . ,w do
vk[p+ i+1]← F2(K2,k || i)

return vk

atively efficient. For example, if d1 = O(logn), then the
overall encoding algorithm would take only O(n log2 n)
which seems reasonable. However, we critically require
that d1 must be small as the encoding time would grow
otherwise.

Taking a closer look, SparsePIR never required that the
random matrices were generated such that each entry was
chosen uniformly at random from {0,1}. In fact, it only
required the linear system associated with the generated
random matrix to have a solution with high probability.
We show that there are ways to generate such random
matrices that admit efficiently solvable linear systems.
Sparse Random Matrices. It turns out that core algo-
rithmic problem of generating random matrices such that
the associated linear system can be solved efficiently is a
well-studied area (see [22, 53, 60, 61, 64] and references
therein as some examples). For our work, we will utilize
the random band matrix constructions of Dietzfelbinger
and Walzer [28] that satisfy the requirements needed by
our keyword PIR schemes.

Random band matrices are constructed such that each
row vector will consist of a short band of length w. The
short band will be a uniformly random w-bit vector. All
entries outside of the band will be zero. The location
of the short band is chosen uniformly at random. Diet-
zfelbinger and Walzer [28] showed that for matrices of
dimension (1− γ)n×n for some constant 0 < γ < 1, if
the band parameter is chosen as w = O(logn/γ), then
the resulting random matrix has full row rank with high
probability. To solve the associated linear system, one
will first sort the rows by the starting location of the non-
zero band of length w. Next, one can employ Gaussian
elimination in a very efficient manner. At a high level,
Gaussian elimination only needs to consider columns
within the w-length band for each row. Therefore, Gaus-
sian elimination requires only O(n/γ2) time. In Figure 4,
we present a diagram depicting random band matrices
and the Gaussian elimination algorithm.
Encoding the Database. We modify our construction
SparsePIR to utilize random band matrices to improve

Algorithm 9 SolveLinearSystem algorithm
Input: (M,y): band matrix and values to solve for.
Output: e: solution to the linear system M · e = y.

Sort rows of M and y according to first non-zero entry
of M
Execute Gaussian elimination to get e
return e

the efficiency of our encoding algorithm for larger val-
ues of d1. In particular, we only need to modify the
RandVector and SolveLinearSystem sub-routines. The
new sub-routines may be found in Algorithm 8 and 9.
The rest of the encoding algorithm remains unchanged.
Decoding an Entry. We note that the decoding algo-
rithm remains identical except that we utilize the new
RandVector algorithm.
Encoding Running Time Analysis. Finally, we show
that the usage of random band matrices improves the run-
ning time of the encoding algorithm and enables using
large values of d1. Previously, solving a linear system
for each of the O(n/d1) parts took O(d3

1) using Gaus-
sian elimination. Utilizing the random band matrix con-
structions, we can reduce this down to O(d1) (ignoring
constant factors of ε for now), which makes the total en-
coding time only O(n). As a result, we can now consider
arbitrary values of d1 as the encoding algorithm will not
grow significantly as d1 increases in size.

4 Extending Partition Based Keyword PIR

In the partition based keyword PIR, each of the n key-
words was randomly assigned to one of b = (1+ ε)n/d1
partitions of size d1. This allowed us to treat each par-
tition as a small independent linear system and solve it
separately, making the scheme highly efficient.

However, partition based keyword PIR suffers from
a major problem: at most d1 keywords can be assigned
to a single partition. This means that ε has to be big
enough for this to happen with high probability. Section 7
shows that for n = 220 and d1 = 128, ε has to be at least
0.38. Throughout the rest of this section and the next one,
we will consider the example of d1 = 128 as all prior
concretely efficient PIR schemes (including [8,9,51,54])
use d1 ≥ 128. It turns out that smaller values of d1 are
more difficult (see Section 7). Therefore, considering
d1 = 128 is effectively the most difficult setting.

Looking back, the two motivations behind the partition
based keyword PIR were the inefficiency of solving a
large random linear system and recursion incompatibility
of the generated random vectors. The first issue can be



Figure 4: The left matrix is a random band matrix with 4 rows and band width w = 5. The middle matrix is the
intermediate step of the Gaussian elimination that sorts rows by band location. The final matrix shows that Gaussian
elimination only considers a small subset of entries.

Figure 5: A two dimensional representation of a database
of 9 elements and an example LHS of the combined linear
system. Each column of the database corresponds to a
partition. The gray bands all lie strictly inside a partition
and are recursion compatible, while the red band spans
partition 1 and partition 2 and is recursion incompatible.

solved by utilizing the random band matrix constructions
of Dietzfelbinger and Walzer [28], which allow us to con-
struct large linear systems that can be solved efficiently.
Thus, if we can somehow construct random band ma-
trices that are also recursion compatible, we should be
able to reduce the ε in the partition based keyword PIR
while still keeping the scheme efficient. In this section,
we present our extended construction SparsePIRg that
achieves this goal.
Warmup: Two Dimensional Recursion. To motivate
our construction, we will start off with constructing recur-
sion compatible band matrices for the two dimensional

Figure 6: Modified construction from Figure 5. Vari-
ables in partition 1 are reversed and are colored purple.
The red band in Figure 5 is recursion compatible after
transforming to the green band.

recursion PIR protocol.

Recall that partition based keyword PIR allowed us to
view each partition as an independent linear system. An-
other equivalent way to formulate this is to combine these
independent linear systems and form a single system as
in Figure 5. Pictorially, each partition corresponds to a
contiguous range of d1 variables (and columns in the ma-
trix). In Figure 5, notice that the gray bands all lie strictly
inside a partition and do not span multiple partitions -
this is the crucial property that allowed the row vectors to
be recursion compatible in the partition based keyword
PIR. On the other hand, the red band spans partition 1
and partition 2 and is not recursion compatible. However,
a band spanning multiple partitions is not really funda-
mentally problematic; it is just that such random band is
more likely to be recursion incompatible than not. The
main idea behind the new construction is to artificially
modify these spanning bands to be recursion compatible,
with the hope that the new band matrices remain "random



Figure 7: Modified band constructions for a hypercube
representation of 3×2×2 after permuting the partitions
according to the Gray code of 012, 002, 102, and 112. The
green band is now recursion compatible. Note that we
must reverse the order of the variables in partition 002
(and not in partition 012) as this is now the odd-indexed
partition.

enough" and still has a solution with high probability.

Before proceeding further, we will first permute the
variables in the linear system by reversing the order of the
variables that correspond to odd indexed partitions as in
Figure 6. The motivation behind this change will become
apparent later on. Now, instead of choosing a partition
and sampling the band within the chosen partition, we
instead sample the band across the entire row, allowing
the band to span two partitions (we still keep the band
width w < d1, which means that a band can span at most
two partitions). If this band happens to lie strictly inside
a partition, we are done. On the other hand, suppose that
the band spans two partitions. Denote v1||v2 as the span-
ning band where v1 lies strictly in the first partition and
v2 lies strictly in the second partition. We modify the
band by discarding v2 and appending the reverse of v1:
v1||rev(v1) where rev denotes the reverse function. Ob-
serve that with this transformation, the row vector now
becomes recursion compatible as illustrated by the green
band in Figure 6. To query for the green band, the client
can send vector

[
0 1 0

]
for the first dimension and vector[

0 1 1
]

for the second dimension. The width of the new
band is upper bounded by 2w, so the efficiency of solving
the linear system remains unchanged asymptotically. Fi-
nally, because the new band vector generation algorithm
only depends on the keyword and the database parame-
ters, the client can replicate this procedure to construct
PIR query for an arbitrary keyword.

Extending to Higher Dimensions We will start by fo-
cusing on hypercube representation in the form d1 ×
d×·· ·×d︸ ︷︷ ︸

z

, i.e. all subsequent dimensions after the first

are equal.
In the context of PIR, one useful way of visualizing

a hypercube of this form is as a d1× dz matrix, where
each column corresponds to a first dimension slice (of
size d1) and the column indices correspond to base d
representations of the "coordinates" of the first dimen-
sion slices in the dz space. In the context of partition
based keyword PIR, each column can be viewed as a par-
tition (numbered from 0 to dz−1). Selecting partition i
is equivalent to transforming i to its base d representation
and naturally mapping the jth digit to the corresponding
indicator vector for the j+1th dimension.

In the two dimensional recursion case, for bands that
spanned two partitions, we had to construct the second di-
mension vector to indicate that we wanted to select those
two partitions. This could be done in a straightforward
manner by turning on bits at positions corresponding to
the partition numbers in the query vector.

However, such naive approach no longer works if we
move on to higher dimensions. For example, suppose we
embed the database in Figure 5 and Figure 6 on to a hyper-
cube of dimensions 3×2×2. The partitions (columns)
are numbered 002, 012, 102, 112 in base two (the last
partition will correspond to empty entries in this case).
The green band spans partition 012 and partition 102, but
we can no longer construct recursion compatible query
vectors (unlike the two dimensional case).

To get around this, we make the following observation:
we can construct recursion compatible query vectors for
selecting two partitions as long as the Hamming distance
between the base d representation of the two partition
numbers is 1. Indeed, we can observe that there is no
problem of selecting partition 002 and 012 - simply send
vector

[
1 0

]
for the second dimension and

[
1 1

]
for the

third dimension. Similarly, if we want to select partition
102 and 112, we can send vector

[
0 1

]
for the second

dimension and
[

1 1
]

for the third dimension.
In fact, we can see that this observation is applicable to

an arbitrary hypercube structure of dimensions d1×d2×
·· ·×dz. If we represent the partition numbers in mixed
bases (d2, · · · ,dz), then we can select the two partitions as
long as the Hamming distance between the two partition
numbers is 1.

This motivates the following construction: in the lin-
ear system, permute the order of the variables in such
a way that adjacent partition numbers have Hamming
distances 1. This way, all bands that span two adjacent



partitions in the linear system will be recursion compati-
ble. In particular, we can use mixed-radix Gray code [43]
to construct this permutation. After permuting the vari-
ables according to the Gray code, we have to reverse the
order of odd indexed partition variables as in the two di-
mensional case to ensure that the first dimension remains
recursion compatible. Figure 7 shows an example con-
struction. Note that the last partition 112 can be ignored
while solving the linear system, and will correspond to
empty entries in the database. We point out that this com-
position of permutations does not require extra storage
on the client side, as computing the nth Gray code can be
done efficiently on the fly without requiring extra space.

Our experimental evaluation shows that SparsePIRg is
able to reduce ε and is practically efficient. For example,
for n = 220 and d1 = 128, SparsePIRg is able to reduce
ε from 0.38 to 0.1, a significant improvement over naive
partition based keyword PIR.

5 Keyword PIR with Client Storage

In SparsePIR, if d1+1 items were assigned to any single
part then the associated linear system would not have
a solution. In practice, we needed slightly less than d1
items to make sure the solution exists with high proba-
bility thus not requiring too much resampling. We would
have exact partitioning if all the parts have slightly less
than d1 items. We present SparsePIRc, an enhancement
of SparsePIR with client-side storage, achieving exact
partitioning and thus minimal encoded database size at
the cost of storing moderate amounts of extra information
in the decoding parameter. We provide more detailed al-
gorithms and justification for the choice of client storage
in the full version of this paper.
Explicit Exact Partitioning. One very expensive way
of exactly partitioning is for the client to receive and
explicitly store the assignment of n items to the n/d1 parts
requiring n log(n/d1) bits. When n = 220 and d1 = 128,
this would require 1.6 MB, which is quite large.
Exact Partitioning via Boundaries. Our main idea is to
first sort the hashed outputs of the n keywords and then
evenly split them into n/d1 parts. The client stores the
n/d1 partition boundary values that separate the parts,
B0,B1, . . . ,Bn/d1 ,Bn/d1+1. All items in the i-th part are
contained in the interval [Bi−1,Bi). For convenience, we
will assume B0 to be the smallest possible hash output and
Bn/d1+1 to be the largest hash output. The list B becomes
part of prms at setup time. During query time, the client
hashes the key k and finds the interval [Bi−1,Bi) contain-
ing the hash output. Then, the client determines key k
belongs to the i-th part. This only requires O(n/d1 logU)

bits where U is range of F(Kr,ki). For n = 220, d1 = 128,
|U |= 264, then this requires 64 KB.
Truncation of Boundaries. For our next improvement,
we note that it is not necessary to store the full boundary
value. Instead, we can set most of the least significant
bits of boundary values to zero and truncate them since
we need Bi only to be precise enough to distinguish it
from the neighboring keyword hash value to maintain
exact partitioning. This can reduce the logU bits used to
represent each boundary. For example, when n = 220 and
d1 = 128, we see that approximately 25 bits are necessary
through experimentation (see the full version for more
details). For the concrete example of n = 220 and d1 =
128, this reduces client storage by 60% to 25 KB.
Compression for Persistent Storage. Furthermore, we
show that one can further compress the boundary values
when storing in persistent storage. In particular, we can
store the differences between boundaries as opposed to
the boundaries themselves. Additionally, we can apply
standard compression techniques for variable length en-
codings. This can reduce the client storage to less than
11.2 KB for n = 220 and d1 = 128. However, we note that
this compression must be decompressed to be able to han-
dle queries (so the client must use 25 KB of temporary
storage when performing queries).
Discussion about Client Storage Size. While the client
storage of SparsePIRc consists of O(n/d1) boundary val-
ues, the practical client storage is very small. In the con-
crete example above of n = 220 and d1 = 128, the result-
ing client storage is ≈ 11 KB. If we consider a practical
database size used in prior works (such as [8–10]) of
n = 220 256-byte entries, we note that the client storage
is equivalent to 0.004% of the total database size (or 43
entries). Furthermore, the client storage is independent of
the size of each entry. For larger entries, the client storage
is an even smaller percentage of the database. Further-
more, the client storage is smaller for larger values of d1.
For example, n = 220 and d1 = 1024 requires only 1.8
KB of client storage amounting to 0.0006% of the total
database (or 7 entries).
Comparison with SparsePIRg and SparsePIR. We note
that SparsePIRc and SparsePIRg obtain near-optimal
database sizes in different ways. SparsePIRg requires
large encoding times to create the database. In contrast,
SparsePIRc requires long-term client storage. If large en-
coding times are tolerable (i.e., databases may be created
in the background before serving), one should choose
SparsePIRg. If long-term client storage is reasonable,
then one can choose SparsePIRc. If neither slow encod-
ing times or long-term client storage are acceptable, one
can simply use SparsePIR instead. See Section 7 for



experimental comparisons between the three options.

6 Batch Keyword PIR

In this section, we show that our techniques can be ex-
tended to batch settings where a client wishes to query
a batch of ℓ ≥ 1 queries at one time. Clearly, there is a
trivial approach of performing ℓ independent PIR queries,
but this ends up being very inefficient. The goal in the
batch setting is to design techniques that enable perform-
ing batch queries more efficiently.

Revisiting State-of-the-Art Batch PIR. To date, the
most practically efficient approach to constructing batch
PIR schemes arises from the framework introduced by
Angel et al. [9] that utilizes cuckoo hashing to encode
both the database and queries. We note that the origi-
nal framework was designed for doing batch PIR over
an n-entry array. The framework did not consider batch
keyword PIR over sparse databases. However, we will
present the framework with respect to the keyword set-
ting and point out where the framework is inefficient
when querying sparse databases.

At a high level, the servers utilizes t random
hash functions H1, . . . ,Ht to encode a database D =
{(k1,v1), . . . ,(kn,vn)}. We assume that the t hash func-
tions are shared between all clients and the server. The
server will replicate each entry in the database t times and
assign them into bCH buckets as follows. For each (ki,vi),
the server assigns the (ki,vi) to the t buckets according
to the t hash function evaluations H1(ki), . . . ,Ht(ki). The
resulting encoding consists of a total t ·n key-value pairs
across bCH buckets.

For the query algorithm, suppose the client receives
a batch of ℓ ≥ 1 queries (q1, . . . ,qℓ) ∈ K ℓ. For conve-
nience, it is typically assumed that ℓ queries are distinct.
If not, the client may de-duplicate locally, perform a
batch PIR query for a distinct set of keys and then repli-
cate the blocks as needed to produce the correct answer.
The client uses the t hash functions, H1, . . . ,Ht , to per-
form cuckoo hashing that allocates each qi into exactly
one of the bCH buckets specified by the t hash functions
H1(qi), . . . ,Ht(qi). Cuckoo hashing guarantees that each
of the bCH buckets is assigned at most one of {q1, . . . ,qℓ}.
Finally, the client performs bCH keyword PIR queries into
each of the bCH buckets to retrieve the assigned query
key (or an arbitrary index if no query key was assigned).
We further discuss the necessity of keyword PIR later.

The last step is to pick concrete parameters of the
cuckoo hashing scheme: t and bCH. This is an impor-
tant step as bad parameters can cause a large portion of
queries to fail. Note, if a set of ℓ query keys {q1, . . . ,qℓ}

cannot be allocated according to cuckoo hashing, then the
client’s query will fail. Angel et al. [9] suggested picking
t = 3 and bCH = 1.5ℓ using the experimental evaluation
of prior works [19, 59] showing that the concrete failure
probability is very small.

This approach achieves much better computational ef-
ficiency compared to the trivial approach of performing
ℓ keyword PIR queries. The trivial approach would re-
quire performing O(n · ℓ) overhead as each keyword PIR
query would require linear overhead. On the other hand,
this framework requires only O(n) server computation
as only one keyword PIR query is performed per bucket
and the total bucket size is 3n.

Prior Approaches to underlying Keyword PIR. The
above framework essentially reduces a batch PIR query
for ℓ keys into 1.5ℓ keyword PIR queries into 1.5ℓ buck-
ets whose total size is 3n. We note that the framework
requires keyword PIR even if database was an array and
the database’s keys were k1 = 1, . . . ,kn = n. Each of the
1.5ℓ buckets is a database whose keys are a subset of [n].
To retrieve the value associated with any key q∈ [n] from
a bucket, one must use keyword PIR.

To perform keyword PIR, Angel et al. [9] proposed
several different options. The simplest approach was for
the client to download a direct mapping from each ar-
ray entry to the physical index within each bucket (or a
compressed version using Bloom filter or similar data
structures). These approaches would require linear stor-
age on the client side that may be expensive. Furthermore,
for databases with small values, these maps may be al-
most as large as the database. Instead, Angel et al. [9]
proposed a very clever trick that enables a client to de-
rive the mapping using the original t hash functions that
are shared between the server and the client. The client
can simply repeat the server’s allocation process to com-
pute the mapping. Therefore, the client can re-create the
mapping without large long-term storage.

Going back to batch keyword PIR, we note that the
above trick of the client repeating the server’s allocation
process cannot be used. The key observation is that, for
standard PIR, the client knows that the database’s keys
are exactly k1 = 1, . . . ,kn = n. Therefore, the client can re-
peat the server’s allocation process identically. When the
database’s keys are from a sparse universe, the client no
longer knows the exact keys that appear in the database.
Therefore, the client cannot compute the mapping with-
out knowing the keys present in the database.

Replacing the Keyword PIR. To construct batch key-
word PIR schemes, it seems like we must use a true key-
word PIR as the trick of succinctly generate client maps
can no longer be used. Prior to our work, previous key-
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Storage

Client
Time

Resp.
Size

Keyword?

3-Way CH [9] O(1) O(n) 1.5ℓ ×
3-Way CH [9] O(n) O(1) 1.5ℓ ✓
3-Way+Batch CH O(1) O(1) 3ℓ ✓

SparseBatchPIR O(1) O(1) 1.5ℓ ✓

Figure 8: Comparison of batch (keyword) PIR schemes.

word PIR schemes incurred significant additional client
storage, doubling response sizes or multiple roundtrips
compared to standard PIR.

We show that our SparsePIR families of keyword PIR
schemes enable significantly more efficient batch key-
word PIR schemes. We obtain SparseBatchPIR by plug-
ging our keyword PIR schemes into the framework of
Angel et al. [9], whose communication is identical to
batch PIR schemes over n-entry arrays. This is a 2x im-
provement over using any prior keyword PIR scheme that
does not require long-term client storage of linear-sized
mappings. We present a comparison of batch (keyword)
PIR schemes in Figure 8. In Section 7, we experimentally
evaluate our new batch keyword PIR schemes showing
significant improvements.

7 Experimental Evaluation

7.1 Implementation
We implemented SparsePIR, SparsePIRg and
SparsePIRc in C++ on top of several open source
PIR schemes: OnionPIR [3] and Spiral [5]. To compare,
we also implement the keyword PIR cuckoo hashing
framework of Ali et al. [8] on top of the same PIR
schemes. We also implement SparseBatchPIR using the
framework of Angel et al. [9]. In total, our implementa-
tions required around 2000 lines of codes. We plan to
open source our implementations in the near future.

FHE Parameter Selection. Our SparsePIR families of
frameworks were constructed carefully to ensure mini-
mal noise growth. As a result, we can directly use the
parameters of the underlying standard PIR scheme. The
only exception to this is the plaintext modulus, which we
round down to the closest prime.

Cuckoo Hashing Optimization. In our cuckoo hash-
ing keyword PIR implementations, we use the optimiza-
tion that empty entries will be skipped. As empty en-
tries are represented using 0, they can be skipped during
server processing. To our knowledge, this optimization
was never presented elsewhere. Without this, SparsePIR
would actually have better computation as cuckoo hash-
ing keyword PIR needs (2+ ε)n entries while our frame-
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Figure 9: Computation time to solve the SparsePIR lin-
ear system vs ε on 220 elements for dimension sizes
d1 = 128,512 and 1024. The graphs suggest that the ε

lower bounds for d1 = 128,512 and 1024 are roughly
0.38, 0.18, and 0.13 respectively. We chose band param-
eter w ∈ [50,60].

works use strictly less than 2n entries.

Experimental Setup. Our experiments are conducted
with machines that are Ubuntu PCs with 12 cores, 3.7
GHz Intel Xeon W-2135 and 64 GB of RAM. We use
the AVX2 and AVX-512 instruction sets with SIMD in-
structions enabled. All our experiments use single-thread
execution. Reported results are the average of at least 10
experimental trials with standard deviation less than 10%
of the means. Monetary costs are computed using Ama-
zon EC2 pricing of t2.2xlarge instances [2] of $0.09 per
GB of outbound traffic and $0.014 per CPU hour at the
time. We do not report client times as they are very small
(see [8, 9, 51]). Following prior works, we define rate as
the ratio of the retrieved record size to the response size.
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Figure 10: Computation time to solve the SparsePIRg

linear system vs ε on 220 elements for dimension sizes
d1 = 128,512 and 1024. We chose band parameter w ∈
[85,120].

7.2 SparsePIR Family Parameters

We choose our parameters to accomodate the recursion
dimensions of prior works. Recall OnionPIR [54] used
d1 = 128 dimensions and Spiral [51] used d1 = 512. Re-
call that our frameworks encode a database of n key-value
pairs into a serving database of size (1+ ε)n.

For SparsePIR and SparsePIRg, see Figure 9 and Fig-
ure 10 for the time to create an encoding of size (1+ ε)n.
For SparsePIR, we choose band parameter w ∈ [50,60]
for all our experiments, which seem to provide good trade-
offs between the computation time and the solvability of
the random band linear systems. Similarly, we choose
band parameter w∈ [85,120] for SparsePIRg. From these
empirical results, we can choose appropriate values of
ε. In Figure 11, we compare SparsePIR, SparsePIRg and
SparsePIRc in terms of the trade offs between ε and the
client storage. For SparsePIRc, we used bzip2 for the
compression algorithm.

d1 SparsePIR SparsePIRg SparsePIRc

128
ε 0.38 0.1 < 0.03
Client Storage 0 B 0 B 11.1 KB
512
ε 0.18 0.06 < 0.03
Client Storage 0 B 0 B 3.4 KB
1024
ε 0.12 0.05 < 0.03
Client Storage 0 B 0 B 1.8 KB

Figure 11: Comparisons of SparsePIR, SparsePIRg and
SparsePIRc of achieveable ε for n = 220 elements.

7.3 Comparisons
Cuckoo Hashing Keyword PIR. Figure 12 compares
the cuckoo hashing [8] and our families of SparsePIR
frameworks applied to various PIR protocols. SparsePIR
exhibits clear advantage over the cuckoo hashing frame-
work on the response size and the rate. This is expected
because cuckoo hashing framework requires the server
to send two ciphertexts, while SparsePIR sends only one
ciphertext. Cuckoo hashing framework has a slight ad-
vantage in computation cost with the optimization of
skipping empty entries. However, the small additional
server computation time is a worthwhile trade-off for
the substantial improvement in the response size as evi-
denced in the reduced server costs. Due to packing, we
obtain smaller ε for smaller entries (e.g. 256 bytes).

We note that both SparsePIRg and SparsePIRc can re-
duce the server computation compared to SparsePIR be-
cause of the small ε both encoding schemes can achieve.

Constant-Weight Keyword PIR. In Figure 13, we com-
pare SparsePIR with keyword PIR using constant-weight
equality operators [50] using their open source imple-
mentation [1]. We observe that SparsePIR framework
instantiated on the Spiral protocol outperforms constant-
weight keyword PIR for both communication and com-
putation, demonstrating the benefits of SparsePIR. Our
experiments use similar settings as [50] with 16-bit key-
word lengths and database sizes of 210,212 and 214.

Batch Keyword PIR. In Figure 14, we present experi-
ments for batch keyword PIR using the batch PIR frame-
work of Angel et al. [9]. As the underlying keyword
PIR, we use the cuckoo hashing framework [8] and our
SparsePIR framework. We use Spiral as the blackbox
PIR protocol for both frameworks. We run our experi-
ments on 220 288-byte entries, which are also used in [9].
We used t = 3 hash functions and the number of buckets
to be 1.5ℓ where ℓ is the batch size. We observe that
SparsePIR halves response size and reduces server costs



Database Onion
CH-PIR

Onion
SparsePIR

Onion
SparsePIRg

Onion
SparsePIRc

Spiral
CH-Pir

Spiral
SparsePir

Spiral
SparsePIRg

Spiral
SparsePIRc

220×256 B
Query Size 63 KB 63 KB 63 KB 63 KB 14 KB 14 KB 14 KB 14 KB
Response Size 254 KB 127 KB 127 KB 127 KB 42 KB 21 KB 21 KB 21 KB
Computation 3.03 s 3.04 s 3.10 s 3.05 1.41 s 1.44 s 1.45 s 1.42 s
Rate 0.001 0.002 0.002 0.002 0.006 0.012 0.012 0.012
Server Cost $0.000034 $0.000027 $0.000029 $0.000028 $0.0000091 $0.0000074 $0.0000074 $0.0000073
217×30 KB
Query Size 63 KB 63 KB 63 KB 63 KB 14 KB 14 KB 14 KB 14 KB
Response Size 254 KB 127 KB 127 KB 127 KB 172 KB 86 KB 86 KB 86 KB
Computation 32.25 s 41.91 s 32.24 s 32.28 s 10.02 s 11.57 s 10.21 s 10.18 s
Rate 0.118 0.236 0.236 0.236 0.174 0.349 0.349 0.349
Server Cost $0.00015 $0.00017 $0.00014 0.00014 $0.000054 $0.000052 $0.000047 $0.000047
214×100 KB
Query Size 63 KB 63 KB 63 KB 63 KB 14 KB 14 KB 14 KB 14 KB
Response Size 1016 KB 508 KB 508 KB 508 KB 484 KB 242 KB 242 KB 242 KB
Computation 14.43 s 17.32 s 15.14 s 15.10 s 4.93 s 5.91 s 5.11 s 5.17 s
Rate 0.098 0.197 0.197 0.197 0.207 0.413 0.413 0.413
Server Cost $0.00014 $0.00011 $0.00010 $0.00010 $0.000061 $0.000044 $0.000041 $0.000041

Figure 12: Comparison of cuckoo hashing (CH) and SparsePIR frameworks for various PIR protocols.

in exchange for small increase in computation.

8 Related Work

Early PIR Schemes. Single-server PIR was introduced
by Kushilevitz and Ostrovsky [45]. Several follow-ups
built PIR using number-theoretic assumptions [25,47,56]
and the phi-hiding assumption [17, 34].
Lattice-based PIR. In recent years, many works stud-
ied practically efficient PIR schemes using lattice-based
homomorphic encryption as first done in [6] with many
follow-ups including [7–10, 33, 51, 54, 57].
Keyword PIR. The notion of keyword PIR was intro-
duced by Chor et al. [20] that required multiple rounds.
Freedman et al. [32] also considered keyword PIR with
database privacy using oblivious PRFs. Ali et al. [8]
presented a keyword PIR using cuckoo hashing. Mah-
davi and Kerschbaum [50] presented a construction from
constant-weight equality operators.
Batch PIR. Several works [11,37,40,42,48] have studied
batch PIR with the goal of efficiently querying multiple
records at once. Recent works [9, 10] introduced proba-
bilistic batch codes that are the most efficient batch PIR
frameworks to date.
Multi-Server PIR. A long line of work has also studied
PIR with multiple, non-colluding servers. Early work
considered information-theoretic security [21, 29, 30].
Recent work showed concretely efficient constructions
using function secret sharing [13, 35, 39].

Other PIR Variants. The notion of PIR with prepro-
cessing was introduced by Beimel et al. [11] where the
server holds a public hint string. This was also studied as
doubly-efficient PIR [14, 18] with sub-linear online time
using strong obfuscation assumptions.

Stateful PIR introduced by Patel et al. [58] allows
clients to compute query-independent hints in an offline
phase to help speed up online queries that was also stud-
ied in [54]. A recent line of work starting with Corrigan-
Gibbs and Kogan [24] presented constructions with sub-
linear online times. Multiple works have further studied
the topic [23, 26, 41, 44, 62, 66].

9 Conclusions

In this paper, we proposed SparsePIR, SparsePIRg and
SparsePIRc, frameworks that build keyword PIR from
lattice-based standard PIR schemes. Our schemes reduce
the response size by at least 2x compared to prior key-
word PIR constructions. In essence, our frameworks show
that keyword PIR may be built with identical communi-
cation and computation costs as standard PIR. We also
show our keyword PIR frameworks may also be used to
also halve the response overhead of batch keyword PIR.
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