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Abstract
The building blocks for secure messaging apps, such as

Signal’s X3DH and Double Ratchet (DR) protocols, have
received a lot of attention from the research community. They
have notably been proved to meet strong security properties
even in the case of compromise such as Forward Secrecy (FS)
and Post-Compromise Security (PCS). However, there is a
lack of formal study of these properties at the application level.
Whereas the research works have studied such properties
in the context of a single ratcheting chain, a conversation
between two persons in a messaging application can in fact
be the result of merging multiple ratcheting chains.

In this work, we initiate the formal analysis of secure mes-
saging taking the session-handling layer into account, and
apply our approach to Sesame, Signal’s session management.
We first experimentally show practical scenarios in which
PCS can be violated in Signal by a clone attacker, despite its
use of the Double Ratchet. We identify how this is enabled
by Signal’s session-handling layer. We then design a formal
model of the session-handling layer of Signal that is tractable
for automated verification with the Tamarin prover, and use
this model to rediscover the PCS violation and propose two
provably secure mechanisms to offer stronger guarantees.

1 Introduction

Modern secure messaging apps use intricate cryptographic
building blocks to achieve stronger security guarantees. For
instance, the Double Ratchet (DR) protocol is a core com-
ponent of the Signal protocol library, and is used by many
secure messaging apps including WhatsApp, the Signal App,
and Facebook Secret Conversations.

There is a rich line of research formally analyzing and
proving the strong security properties of the Double Ratchet
and its variants, e.g., [1, 2, 4, 10–12, 20, 26]. This includes,

∗This work received funding from the France 2030 program managed by
the French National Research Agency under grant agreement No. ANR-22-
PECY-0006.

for example, proving that the DR achieves Forward Secrecy
(FS) and modern properties like Post-Compromise Security
(PCS): even after a full compromise of a party’s device state,
attackers are locked out of the conversation again if the victim
can exchange a few messages with their partner without the
attacker interfering [13]. Over time, these models have been
improved in terms of precision, granularity, and threat models,
getting closer to real-world DR implementations.

While these are important results, they focus on a spe-
cific building block only, and not on the security guarantees
that users actually get when using a messaging app. In par-
ticular, while the Extended Triple-Diffie-Hellman (X3DH)
handshake and the Double Ratchet (DR) have been exten-
sively formally studied, there has been no formal analysis that
includes other layers, such as the session-handling. In fact,
several application-level behaviors of messaging apps were
discovered that seem to offer to their end users lower security
guarantees compared to what might be expected from using
X3DH and DR protocols, such as [14, 32].

We initiate the formal study of the session-handling layer
of secure messaging apps, picking Signal’s Sesame proto-
col as a first case study. This is technically challenging, as
we would ideally like to model the entirety of the session-
handling layer with a detailed model of the X3DH and DR
protocols. However, the fact is that state-of-the-art formal ap-
proaches struggle to deal with X3DH and DR accurately even
without any additional mechanisms. To make any analysis
tractable, we have to devise a reasonable abstraction of the
session-handling layer and its underlying building blocks.

We motivate our work by experimentally showing two sce-
narios in which Signal Android app v5.40.4 (May 2022) does
not achieve PCS despite using the DR protocol. Our core
observation that we strive to formalize is that while a single
DR session preserves PCS, this does not propagate to the
higher level of the conversation between two end users as con-
versations are invisibly constructed from possibly multiple
concurrent sessions that have their own ratcheting chains.

Interestingly, our experiments show that PCS is broken
even though our attacker is more restricted in capabilities than



the classical active attacker from the literature AIdeal. How-
ever, our attacker model for the experiments, AExperiment that
can compromise at some point the user phone but otherwise
follows the protocol, is stronger than the passive threat model
of PCS from Signal’s specification ASignal. Following this, we
systematize different threat models for PCS based on attacker
capabilities and level of compromise. In particular, we con-
sider two meaningful weakened versions of the literature: a)
AExperiment, from our experiments, and b) AFormal, which is
the standard model used in state-of-the-art verification tools.
It is on AFormal that we perform our security analysis of the
session-handling layer and of some proposed improvements.

Thus, our work ranges from the applied (real-world experi-
ments on the current Signal app with a clone attacker) to the
foundational (first formal modeling of session-handling layer
for secure messaging, and automated analysis).

Contributions Our main contributions are the following:
• We first show the real-world impact of the session-

handling layer: we showcase two practical scenarios
in which the current Signal app does not achieve PCS,
despite using the DR protocol, against a clone attacker.
Our experiments show how guarantees proven for the
underlying building blocks (e.g., in [1, 10, 25]) do not
transfer to the application level. We analyze the root
causes and determine they derive from design decisions
in Signal’s session-handling layer: the Sesame protocol.

• We initiate the formal study of security properties of
secure messaging that take the session-handling layer
into account. We create the first formal model of Sig-
nal that includes an abstraction of its session-handling
layer Sesame and the ratcheting mechanisms. Notably,
we introduce the notion of conversation-based Post-
Compromise Security (PCS), which lifts the classical
PCS property to the conversation level. Automated anal-
ysis of this model using the TAMARIN prover automati-
cally discovers the scenario in which PCS is violated at
the session-handling layer despite using the DR protocol.

• We show that protection against a clone attacker at Sig-
nal’s session-handling layer can be improved by a simple
fix, and use our model to formally prove that the fix re-
stores conversation-based PCS. We also propose a clone
detection mechanism for Signal that supports the first fix
and which we prove sound in our models.

We provide our models publicly for inspection and reproduc-
tion [15]: they are notably intended for developing refined
Sesame models or as a starting point to model the session-
handling of other apps.

Outline We introduce the required background on Signal
and its core mechanisms in Section 2. We then detail two
scenarios in which PCS is violated, and their experimental
set-up in Section 3. We follow up by proposing our mecha-
nisms in Section 4. In Section 5 we develop our formal model

of Signal’s session-handling layer. We then use this model
to automatically detect property violations, and to prove that
our PCS fix and clone detection mechanism indeed work.
In Section 6 we discuss the practicalities of implementing our
proposed solutions. We finally summarize our findings and
provide an outlook in Section 7. In addition, we provide a
third scenario that violates PCS in Appendix A.1 (indepen-
dently reported in [19]), and discuss some additional security
parameters of the implementation in Appendix A.2.

Related work The notion of PCS was introduced and for-
malized in [13]. Since then, the Double Ratchet (DR) and Ex-
tended Triple Diffie-Hellman (X3DH) protocols have received
multiple increasingly fine-grained analyses [1,2,4,10,12,20],
and are still subject to active study. In particular, recent studies
have proposed post-quantum secure versions of the X3DH key
exchange protocol [7,8,17,23]. Similar to our approach, some
of the previous analysis relied on formal analysis tools [3,26].
However, these focused on the two underlying DR and X3DH
protocols, not Sesame. To the best of our knowledge, we are
the first to formally analyze the final security provided by the
combination of Sesame and the underlying layers.

In [32], the authors show an attack on Sesame that allows
the registration of an attacker’s device capable of sending and
receiving messages. In another work [9] is proposed an alter-
native to Sesame that opens only a single channel between
two users, while hiding the number of partner’s devices. From
the experimental point of view, the concrete security of Sig-
nal under cloning was studied in [14]. In contrast, we show
that compared to their experiment on Signal Android v4.47.7
(August 2019), some security guarantees of Signal were lost
compared to v5.40.4 (May 2022). Previous work on clone
detection propose mechanisms that use third-parties [33] or
counters, hashing, and commitments [30] to flag the attacker.

A related work is [19] that proposes a new mechanism
to improve Signal’s PCS guarantees. They consider a PCS
property against a fully active attacker while our attacker is
inactive during the small healing time-frame and otherwise
active. More importantly, they also only consider a single
DR session, while we put the focus on multiple parallel DR
sessions and lift security to conversations. The two core PCS
violations we uncover are due to parallel sessions and are out
of scope of [19]. During our experiments, we also indepen-
dently rediscovered one of their PCS violations, but since this
is orthogonal to our main points, we only describe it in Ap-
pendix A.1. A related work [5] classifies attacker models for
PCS and provide PCS variants that depend on the speed of the
recovery. Compared to us, they do not consider out-of-order
messages in their properties nor multiple parallel sessions;
this leads them to theoretically claim several variants for PCS
for Signal (see [5, Fig 2, Local Active attacker]) which we
illustrate do not hold in practice for users. It is however nat-
ural to link their threat models to ours. They consider three
dimensions for the attacker model, the Reach dimension to



specify which sort of keys the attacker can compromise, the
Power dimension for whether the attacker is active or passive,
and the Access dimension, for whether the attacker sits on
the network or is even on the server side. Looking forward
to Fig. 4, we also consider the Power dimension, but in a more
fine-grained way, as well as the Reach dimension. We do not
however consider the Access dimension.

2 Background

2.1 Security properties of messaging protocols
In the following, we give an overview of two security proper-
ties achieved by the core Signal protocol DR, namely forward
secrecy and post-compromise security. While both capture
session security guarantees with respect to a compromise,
the former talks about previous sessions and the latter about
future ones, as shown in Fig. 1.

Forward Secrecy (FS) FS is the guarantee that compro-
mise of a session does not impact the security of previous
sessions of the protocol [6]. In other words, despite revealing
the current session’s state (e.g. identity key and session key)
to an attacker, previous message keys cannot be computed.

In reality, there are subtle variants of FS. One main form
relates to the compromise of long-term keys such as identity
keys and an attacker that can at least observe all network traf-
fic. To achieve this variant of FS, parties can use asymmetric
cryptography to derive the session keys from ephemeral asym-
metric keys such that each key is independent of the previous,
while the identity keys are used for authentication. In prac-
tice this is usually realized using ephemeral Diffie-Hellman
keys or KEMs, but needs a back-and-forth roundtrip to offer
protection. In contrast, if keys were decrypted from network
traffic using identity keys, this form of FS would not be met,
as they would for example in basic key transport protocols.

A second form of FS involves attackers that can only reveal
session/message keys, and can be achieved without roundtrips.
This can be achieved by encrypting each with a different
key, i.e., an attacker knowing the key of message i, cannot
compute the previous message keys [0, i−1]. Instead of en-
crypting the messages with the session key, the latter can be
used as an input to a key derivation function KDF (i.e., a
one-way function), which outputs a new message key and
the forwarded session secret. In the literature, FS can also
be achieved using time-based methods [18] or puncturable
encryption [16, 21, 22].

Post-Compromise Security (PCS) PCS is the guarantee a
party A has, that security of their conversation with partner
B can be recovered (healed) after the compromise of the lat-
ter [13]. In other words, leaking the partner’s keys does not
mean that all future communication can be decrypted. To re-
store security, the parties need a healing phase, during which

Figure 1: Forward Secrecy (FS) and Post-Compromise Secu-
rity (PCS).

the attacker does not interfere with the honest communication.
Depending on the type of compromise, a protocol offers two
levels of PCS a) via weak or partial compromise of ephemeral
secrets (session keys) or b) via full compromise of the state
(both long-term and session keys).

Weak-PCS is achieved when the attacker leaks session-
specific keys, but has only temporary access to the long-term
secrets e.g., if the identity keys are stored encrypted in an
external device. This means that the protocol can use the long-
term secret (or a token derived from it) to evolve old corrupted
session keys and lock the attacker out. More specifically, the
parties can compute the session key sk for run i of the protocol
as ski = KDF(ski−1, token). If the session key is forwarded
this way, the attacker cannot compute future keys without
knowing the token, hence security is restored.

In the full compromise case, the attacker knows all the
keys at the time of compromise, therefore the parties need
to incorporate new ephemeral secrets in the derivation of
the session key. This can be done using asymmetric cryp-
tography [20, 24, 25], such that enough entropy is introduced
in the session key during the healing phase, e.g., using the
Diffie-Hellman output as the token. Having been passive in
the healing phase, the attacker cannot compute the new key.

2.2 Double Ratchet
Signal’s Double Ratchet (DR) is a widely used protocol to
exchange messages between two parties which guarantees
strong security properties such as forward secrecy and post-
compromise security. The protocol is constructed by two parts:
a symmetric and an asymmetric ratchet, the latter also referred
as the Diffie-Hellman (DH) ratchet. As a prerequisite, DR
expects the parties to authenticate one another and establish a
shared key before the start of the protocol, e.g., Signal uses
the Extended Triple Diffie-Hellman (X3DH) protocol [27].

DR is constructed from a hierarchy of three types of keys:
a root key which is the shared key between the parties at the
start of the protocol, chain keys derived from the root key,
and message keys derived from the chain keys. When the
parties switch their roles, say from sender to receiver they
perform the asymmetric step, and when they maintain the
same role they perform the symmetric step. We will shortly
summarize both ratchets below, and refer the reader to the
documentation [31] for more details.



Asymmetric Ratchet The core idea of this step is to intro-
duce ephemeral DH keys into the root key, thus achieving
PCS. Consider a party A switching roles, say from receiver to
sender. They generate a DH key pair (a,ga), and get their part-
ners public key gb. Then, A computes the current root key rki
and sending chain key ck0 using a KDF with input the old key
and the DH output, i.e., rki,ck0 = KDF(rki−1,gab). The initial
sending chain ck0 serves as input for the symmetric ratchet
to derive the actual message keys. A will keep performing
the symmetric ratchet, i.e., send messages sequentially, until
interrupted by an incoming message, signaling role switch
with the partner.

Symmetric Ratchet The symmetric step forwards the chain
key, using a KDF function, to derive new keys for each mes-
sage, thus providing forward secrecy, Resuming the previous
example, A can now compute any message key mki from the
chain key, specifically, cki,mki = KDF(cki−1). Then, A uses
mki to encrypt a message and along with the ciphertext sends
their public DH key ga. Upon receiving this message, the
partner will compute the same steps and be able to decrypt.

2.3 Sesame: Signal’s session management
Sesame is a session management protocol responsible for
managing sessions and multiple devices for the libsignal li-
brary. The protocol enables a user to link several devices to
their account and handles the synchronization of messages
sent and received with the devices of their partners. The core
idea is to create a session between the sending device and
every other device of both parties, i.e., a message sent from
user A to B is encrypted for every device of B and all other
linked devices of A. This means that Sesame has to manage a
local database containing the records of each partner’s device
and their respective open sessions. To maintain the device
list, Sesame depends on the Signal server to inform it of any
new or removed devices. In addition, Sesame uses a mailbox
server to store the messages sent to devices until they can
retrieve them, enabling asynchronous communication.

Sesame is also designed to handle multiple sessions be-
tween two devices. According to the specification, this is
done to ease the convergence to a single session in cases
where two devices are desynchronized. These cases include:
a) parties starting a session simultaneously and hence result-
ing in different derived keys, b) one of the parties restoring an
old backup, or c) losing their local state. Sesame keeps a list
of multiple sessions per device, and upon receiving a message
encrypted from any of them, promotes it as the new active
session, thus making both parties agree on the current state.

Initialize Session Sesame uses a key agreement protocol
(i.e., X3DH in Signal) to initialize the sessions between the
sending device and all receiving devices. For this, X3DH
needs at least two types of keys: an identity key and an

ephemeral key, called a pre-key bundle. The idea is to use the
keys of both parties in an intricate key derivation algorithm,
in which only the two involved participants can derive a com-
mon secret [27]. In Sesame’s implementation, the identity
key pair is assigned per user account, and the ephemeral keys
are generated per device and signed by the identity key. This
allows for user authentication and uniqueness of session keys
among the devices of the same account. When a device wants
to start a new conversation, they retrieve from the server they
prekey bundle and compute a shared key that serves as the
initial root key to the DR algorithm described in Section 2.2.

Multiple Devices End users in Signal can have multiple
devices linked to their accounts. The devices share the user’s
identity key but have per-device prekey bundles. The latter
is then used during the X3DH agreement to set up pairwise
Signal sessions between them. For example, assume A has
m devices and wants to send a message to their partner B’s n
devices. A device of A will start independent sessions with the
n recipient devices of B and their own m−1 linked devices
and encrypt the payload using the state of each session. The
states are then stored locally on the device, indexed by the
user and device identifiers for which they should be used. To
maintain an updated device list, the users depend on the server
to inform them of new and deleted devices of their partner.

Multiple Sessions In reality, between two devices there are
multiple sessions, which are managed by the Sesame algo-
rithm. From these sessions, one is the current active session
used to encrypt messages and the others are stale sessions
kept for synchronization or out-of-order messages. However,
Sesame allows the older sessions to be promoted to active
ones. In a nutshell the mechanisms states that, any session
which can decrypt an incoming message becomes the current
active session between the two devices. The mechanism of
reactivating older sessions, enables a) the decryption of mes-
sages without loss, and b) agreement on a common session
even when the parties are momentarily desynchronized.

Retry Message Another feature of Sesame is to keep a
record of sent messages until the sender receives a valid re-
ceipt message. This means that if the partner cannot decrypt
any message, they can send an unencrypted retry request in-
dexed by the message identifier. Upon receiving the request,
the sender encrypts the message with a new key derived from
either: a) the current active session (in case it is different
from the one used to encrypt the message previously), or b)
establish a new session with the device.

Session Reset and Expiration Sesame also suggests a ses-
sion expiration policy, however the implemented mechanism
differs from the specification. In the design of Sesame, it is
suggested to delete old sessions depending on their creation



timestamp. In practice the app limits the of number sessions
(40 sessions) that are maintained at any time in a FIFO fash-
ion, i.e., anytime it creates a new session it removes the last
one in the pile from the list. In addition, previous versions
of the Signal app used to offer a session reset which is not
included in the specification. The idea is that the users can
trigger the creation of new sessions themselves directly from
the user interface. However, this was deprecated in Signalapp
version v5.25.01. Instead, the conversation is automatically
reset every one hour when the two parties need to establish
a new session. This means the keys used in the conversation
are replaced every hour by freshly computed ones. In theory
this could yield increased security for the protocol, however
as we will see later, this is not the case in practice.

3 Concrete Signal scenarios violating PCS

In this section, we show two real-world scenarios in which
a clone attacker can violate PCS for Signal, which are con-
sequences of the current design of Signal’s session-handling
layer Sesame. In our scenarios, we consider a so-called clone
attacker. The clone compromises the full state of a party,
including session specific keys and long-term identity keys.
However, it is limited in using the user interface of the app,
instead of performing complex operations with the compro-
mised secrets. In practical terms, this can be an attacker gain-
ing temporary access to a device and duplicating its contents
to run a parallel app instance. Notably, the clone does not need
to have any knowledge of intricate attack vectors or the inner
workings of the protocols. Our experiments were performed
on the Signal Android app version v5.40.4 (May 2022).

Intuitively, we consider the following scenario in attacking
the conversation between A and B: At some point during the
message exchange between the honest parties, we compro-
mise A’s device, effectively cloning it. We then have A and B
continue their conversation without the attacker being online,
i.e., the healing phase. From the analyses of the DR protocol,
we expect that this heals the conversation. We then re-activate
the clone. The expected behavior now is that the clone should
be locked out of the conversation of A and B.

From a high level point of view, we found the following
scenarios that violate this expectation:

1. if an old clone and the honest partner are online, decryp-
tion failures on the clone side trigger retry messages,
resulting in a new session agreement and the honest
partner resending previous messages to the clone (Sec-
tion 3.1), and

2. after a time-triggered reset (creating a new session), a
clone can still re-enable an old session (Section 3.2).

We did find a third scenario in which PCS is violated: old
receiver chains that are still stored can be prolongated by a
clone. We describe this scenario in Appendix A.1, since (a) it

1Signal’s Session Reset Deprecation: link.

exploits the DR implementation, and is not linked to Sesame’s
design, and (b) it was independently reported in [19].

Interestingly, a clone that simply uses the unmodified Sig-
nal app is enough to perform these scenarios. In the following,
we show how we were able to exploit emulated clones to
produce the attacks on the deployed Signal app, and explain
the attacks using Signal’s log as well as the Sesame/Signal
specifications and its open source code.

Experimental setup We conducted a series of experiments
on the Signal application to find potential weaknesses intro-
duced by Sesame. First, we created two legitimate accounts in
the deployed messaging app (version 5.40.4). To register the
users, we modeled two android devices (Android Api 10.0)
using the Genymotion emulator (version 3.2.1). After the two
honest parties started a conversation together, we investigate
the consequences of a compromise. Our threat model allows
for an attacker to fully compromise the state of a party and run
another instance of the app with the cloned state. To mimic
this, we used the cloning feature of the emulator, which al-
lows to fully duplicate an entire virtual machine. We then
explore the behaviors of the multiple parties by exchanging
messages between them, triggering different behaviors (such
as message resend, session reset, etc) potentially leading to
violations of properties such as PCS.

To precisely identify the causes of the observed behaviors
we downloaded the debug logs provided by the app.2 From
these logs, we can extract the following information:

1. Which chain keys are used for encryption (unique public
identifier of the chain key for logging purpose)?

2. When do parties send retry requests?
3. When did the parties initialize a new session?
This allowed us to deduce which actions were triggered

to allow messages to be received without any error in the
user interface, which should have otherwise been protected
by PCS. In addition, since Signal’s library is open source, we
cross-checked with the implementation and pinpointed the
exact parts of the code that enabled the scenarios.

Notation The experiments are conducted between 3 agents:
two honest parties A and B, and A’s clone (Aclone). When a
message is sent from A to B we use the notation A → B and
vice versa. To denote that the parties are exchanging roles
between sending and receiving we use A ↔ B, which means
A → B and B → A. Repetition of the message exchange n
times is expressed as (A ↔ B)n.

3.1 Abusing the Retry feature
In this scenario, we investigate whether a compromised party
can recover the security of the conversation once all chain
keys known by the attacker are deleted from the app’s local

2Logs are found in the user interface under Settings/Help/Debug Log.

https://github.com/signalapp/Signal-Android/commit/13ef53372e01862c0b36645589e3303f6d9932a9


Figure 2: Abusing the retry option upon decryption error on
Signal. After parties A and B exchange messages, A at state
◦A1 is cloned. The clone goes offline (denoted by the dotted
line) and the parties exchange messages to heal their session
to ◦A2. A goes offline, while the clone encrypts a message m
with the old session state ◦A1. B cannot decrypt the message,
so they initiate a new session marked, respectively, as □ B′

1
and □ A′

1. B can decrypt the message received in the last step.

memory. The experiment considers two parties A and B hav-
ing a conversation, until A is cloned (i.e., the attacker has
an identical copy of the messaging app). The honest parties
continue the conversation without interference; in terms of the
underlying DR, this should enable healing. Once the clone’s
machine goes online, they check if the clone receives past
messages or can inject new ones in the conversation.

Concretely, we have A and B exchange more than 5 mes-
sages in the conversation after the clone to represent healing,
and we check if the clone can still inject their own messages
in the conversation. We need 5 or more messages, because, as
shown in Appendix A.1, the conversation does not heal due to
Signal storing at any time the latest 5 receiver chains, which
can be extended by the clone.

In this experiment, we noticed that B was able to receive all
the messages sent from the clone, as long as the two are online
at the same time. This means that PCS is not guaranteed,
since the clone can continue the conversation even after 5
consecutive healings. We will now see how AClone and B
resynchronize, abusing the retry feature of Sesame.

Concrete steps The scenario can be reproduced as follows:
1. A and B exchange 4 messages: (A ↔ B)4.
2. Duplicate A’s machine and send clone offline.
3. A and B exchange 6 more messages: (A ↔ B)6.
4. A goes offline, and clone goes online.
5. Clone sends 4 consecutive messages to B (AClone → B)4

6. B can decrypt the messages sent by the clone.
Fig. 2 illustrates the scenario described above.

Analysis The experiment shows that the clone can insert
their own messages despite the honest parties having deleted
all the compromised chain keys from memory. This is due
to Sesame’s feature of retrying to send a message. Basically,
once B receives the clone’s messages sent in step 5), it realizes

that it cannot decrypt them and sends a retry receipt. Once
the clone processes the message, it will initiate a new X3DH
key exchange with B and re-encrypt the messages using the
new session’s keys. Now, B can derive the new session keys
and decrypt the messages.

We verified with the app’s logs that the clone received the
retry receipt from B, followed by fetching keys from the server
and starting a new session. Also, on the receiver’s side in B’s
logs, we can observe the successful decryption in the newly
created session. The retry mechanism is described in the
Signal documentation3 and implementation4. We thus showed
how the retry option of the session management breaks the
PCS guarantee offered by the underlying protocol DR, by
allowing a clone to continue the conversation with A’s partner
despite the healing phase. In fact, not only can the clone inject
messages, but also have a conversation in parallel to A, as we
will show in the next scenario.

3.2 Abusing session reactivation

As the conversation evolves, Signal automatically resets ses-
sions every hour, i.e., the parties generate new secrets and
deprecate the old ones. One would assume that this increases
the security of the conversation, and potentially prevents the
scenario from Section 3.1. However, Sesame allows for older
sessions to be reinstated as the main sending session, i.e., the
parties will encrypt messages using the latest state of these
sessions. The following example gives an intuition on why
this seemingly small feature can break the PCS security.

Example: Consider the clone of a compromised party as
described in Appendix A.1 and Section 3.1. The two honest
parties resetting the session means that all compromised ses-
sion secrets are replaced by new ones. From the DR design,
this implies that the attacker has no knowledge of the current
session keys and should be locked out of the conversation.
However, due to the time-based reset, once the clone goes
online they will start a new session with the partner as well
and can continue the conversation. In addition, Sesame stores
previous sessions and promotes any old session as the current
active, upon receiving a message from it. Assume now that the
honest party also sends a message from their session. Upon
receiving the message, the partner will switch to the session
that it can be decrypted with and reply to the honest party
using the keys stored there. As a result, the victim can also
continue the conversation, despite the clone doing the same
in parallel in another session.

Concrete steps The steps for this scenario are:
1. A and B exchange 4 messages: (A ↔ B)4.
2. Duplicate A’s machine and send clone offline.
3. Signal resets the session after 1 hour.

3Sesame’s retry option documentation: link.
4Sesame’s retry option implementation: link.

https://signal.org/docs/specifications/sesame/#retry-requests-and-delivery-receipts
https://github.com/signalapp/Signal-Android/blob/f63ed8f2698c05c4bb1465c01e0c79353835f6ac/app/src/main/java/org/thoughtcrime/securesms/messages/MessageContentProcessor.java


Figure 3: Abusing session reactivation, making it possible
for A and its clone to have parallel sessions with B. A and
B exchange messages, until A at state ◦A1 is cloned. The
clone goes offline (denoted by the dotted line) and the parties
exchange messages until session reset at □A′

1. A goes offline,
and when the clone sends a message, the automatic reset
starts a new session △A′′

1 and respectively for △B′′
1 for B.

Now, when A sends a message, B reactivates □B′
1, and △B′′

2
for when the clone does.

4. A and B exchange 6 more messages: (A ↔ B)6.
5. A goes offline, and clone goes online.
6. Clone sends 4 consecutive messages to B (AClone → B)4

7. B can decrypt the messages sent by the clone and con-
tinue the conversation.

8. Clone goes offline, A online. A encrypts 4 messages to
B (A → B)4.

9. B can decrypt the messages sent by A.
Fig. 3 shows the scenario described above.

Analysis The experiment shows that indeed A and their
clone can have parallel conversations with B, without the
conversation ever healing or any of the agents receiving any
notification or sign of compromise in the user interface. The
parties exchange 6 messages in step 4) in order to delete
any old stored keys. The previous scenario is excluded, since
the time-based reset makes it impossible for the clone to use
the old compromised session. Instead, they are forced by the
app to start a new session with B and encrypt their messages
with correct keys. This means that B has no reason to issue a
retry request. Note that the clone interacts only with the user
interface, therefore it strictly follows the Signal protocol. The
same logic follows for the real A at step 8), where they send
messages with keys B is able to compute, hence no decryption
error is thrown in the app (no need for retry option).

There are two mechanisms intertwined here:
• The reset session between the attacker and A allows for

the compromise to continuity.
• The session switching allows for a compromise and hon-

est session to exist in parallel without any detection.
We could confirm from the logs that a new session was indeed
established between the clone and B at step 6. The logs also
confirmed that when receiving a message from an old session,

B would log that they “decrypted with previous session state”,
which is also visible in the implementation 5. We thus saw the
old session reactivation at step 8). This could go on like this
with B alternating between the compromised and the honest
session, where the latest one used to receive is promoted to
be the current active one 6. The victim can never heal in this
case, since on every automatic reset both of them are forced
by the app to start two new parallel sessions with B.

Existing mitigation There is currently a bound on the num-
ber of sessions stored (40 sessions). We would expect this
bound to lock the attacker out at some point. However, this is
not the case for two reasons.

First, consider the case of a full compromise of both the
identity key and the session states, which corresponds to our
previous experiment. Let us assume that the clone stays offline
for more than 40 hours, which is the lifetime of a session
before it is deleted7. A and B can then delete enough sessions
so that old ones cannot be reactivated. However, because the
clone knows the identity key, it will automatically start a new
session with B when going back online.

Second, consider a weaker threat model where the bound
would intuitively be enough: the case of a partial compromise,
where only one session was compromised and the attacker
cannot initiate new sessions with B. Then, it seems that the
bound would still not be enough, as an attacker could regularly
send messages to B, so that even if no reset goes through, the
compromised session is regularly promoted and stays at the
top of the stored session list, and is thus never dropped. This
could be circumvented if the implementation followed the
session’s expiration policy (see Section 2.3). Note that to
carry out this experiment, we would however deviate from an
attacker that simply uses the official Signal app.

4 Improving Sesame’s PCS guarantees

Experimental summary Currently, Signal’s session-
handling layer allows the following scenarios in which PCS
is violated:

1. After a compromise, the cloned device can initiate new
sessions with the partner. The creation of this new ses-
sion may either follow a session reset from a timeout as
in Section 3.2, or from a retry receipt Section 3.1.

2. When there are both a malicious session and a valid
session running in parallel, the compromise will continue
undetected, as we showed in Section 3.2.

Threat model systematization Our aim is to propose prov-
able fixes in the later sections. We thus need to clarify the set
of relevant threat models, as summarized in Fig. 4.

5Sesame’s Previous Session Decryption: link.
6Sesame’s Session Reactivation: link.
7Number of stored sessions in Signal: link.

https://github.com/signalapp/libsignal/blob/bee544ec732709d4545645447d517180e63b6b4c/rust/protocol/src/session_cipher.rs#L478
https://github.com/signalapp/libsignal/blob/bee544ec732709d4545645447d517180e63b6b4c/rust/protocol/src/session_cipher.rs#L499
https://github.com/signalapp/libsignal/blob/bee544ec732709d4545645447d517180e63b6b4c/rust/protocol/src/consts.rs#L9


The threat model considered in Sesame’s specs, which we
will refer to as threat model ASignal, is defined as a passive
attacker that has fully compromised the device’s state. Its
claims of security against a passive attacker are derived from
the underlying protocols it manages the sessions for, namely
DR and X3DH. A passive attacker is an eavesdropper that
does not interfere with the protocol flow or the agents.

In contrast, in the literature it is shown that DR is resilient
to a stronger adversary that not only has total control over
the network but can drop, inject and manipulate any message
actively. In an ideal world, we would be able to lift the guar-
antees from the literature over the DR to Signal, even in this
stronger active attacker threat model. We will refer to an ac-
tive attacker that can fully compromised the state of an agent
as the threat model AIdeal, the ideal goal. However, Signal has
no mechanism to achieve this, since it would require to refresh
the identity keys of compromised agents, which is currently
treated as a new registered user. Achieving PCS for AIdeal
would require significant new developments of the protocol.

However, there are two interesting weakenings of AIdeal:
1. Our experiment threat model AExperiment: an attacker that

can compromise fully the user, but then strictly follows
the protocol and the features from the app.

2. Our formal analysis threat model AFormal: an active at-
tacker that can however only compromise a single ses-
sion and not the identity keys.

AExperiment has been considered in previous work, which
proved that Signal could achieve PCS for this threat model.
This is not the case anymore we show in Section 3. Further-
more, we also demonstrate in our formal analysis that PCS is
in fact lost due to design choices in Sesame for AFormal. This
in turn makes it impossible to achieve PCS for AIdeal even
with new mechanisms for identity key revocation. Further,
achieving PCS at AIdeal with a key revocation implies to be
able to know when we need to revoke keys: there is the need
for clone detection at the lower levels.

Threat models in real-life The threat models discussed in
this paper can be tied in multiple ways to real life scenarios.
They all rely on the possibility of compromise of some keys,
either long-term or short-term. There are several scenarios in
which this can happen, e.g., malware installed on the phone
may be able to extract the keys from memory, or when a third
person has physical access to a device, such as when crossing
a border control point. It is relevant to distinguish long-term
and short-term keys, as long-term keys can be stored inside a
safer storage, with a TPM or an enclave, whereas short-term
keys are typically easier to compromise. With this is mind,
concrete instantiations of the previous threat models can be:

• ASignal: an attacker that can compromise short-term keys
(long-term keys are irrelevant in the passive case as they
must be used to produce signatures), but can only ob-
serve traffic and not manipulate it, or obtain traffic after
it happened. While it is reasonable to assume that the

Passive
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Clone
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No
Compromise

Session
Compromise

Full
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ASignal AExperiment

AFormal
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Figure 4: Signal’s four threat models categorized by attacker
capabilities and level of compromise, which are: the threat
model from Signal’s specification (ASignal), the DR’s litera-
ture threat model (AIdeal), the experiment model in this work
(AExperiment), and the formal analysis model (AFormal). Full
compromise means session and long-term keys compromise.

attacker cannot interfere with direct traffic between the
phone and the server, it is more surprising to not con-
sider that the attacker can use the compromised keys to
establish its own connections with the server.

• AExperiment: generalizing the previous case, this is the
case where the attacker compromises both short-term
and long-term keys and can use them to create new con-
nections with the server, simply using Signal’s app, but
cannot interfere otherwise with later exchanges between
the server and the honest phone. In practice, this is the
scenario where an attacker can have physical access to
the phone, completely clone it, and then use the clone to
connect to internet. This requires physical access to the
phone, but no particular resources afterwards except an
internet connection.

• AIdeal: here we make the attacker fully active, and it
can now also interfere with the connections between the
honest phone and the server. In addition to the compro-
mise, this may require in practice active surveillance of
the global network, or more simply the deployment of
malicious wifi hotspots.

• AFormal: This is the transposition of AIdeal, where we
assume that long-term keys are stored in a TPM, and
only short term keys can be compromised. This is a
natural model for formal verification tools, with a fully
active attacker and where we can precisely define the
possible compromises. Developments in this model pave
the way for a full model in AIdeal.

An attack in one of these models may in fact require weaker
attacker capabilities, as is the case of our attacks that are in
AExperiment, but do not rely on the long-term keys.

Fixes overview To restore the Sesame PCS in AFormal, our
first fix specifies that an outdated session must only be al-
lowed to receive older messages, and never re-enabled to send



new ones. Moreover, our second fix specifies that receiving
a message on an outdated session should trigger a warning
message, sent to both the current and the outdated session,
thus enabling for clone detection on the other end. Our first
solution is a minimal fix to restore PCS that does not break
the current functionalities and ensures that no messages are
lost. Our second fix requires adding messages to the protocol
flow, and is thus slightly more complex to implement.

In the following, we first precisely describe our fixes, and
then show how we prove their security using the TAMARIN
prover. From a high level point of view, we provide four
distinct security results:

• We prove that when restricted to a single session between
two parties, a model of the Double Ratchet with idealized
cryptography does provide PCS. This also leads to a
clear formalization of the best PCS guarantees that the
Double Ratchet can provide.

• We show that when multiple sessions are allowed in
parallel, our model is expressive enough that the scenario
of Section 3 is automatically found in TAMARIN.

• We prove that when implementing our first fix, we restore
PCS between two parties.

• And finally, we prove that the clone detection fix is sound:
it does not raise false positives and cannot be triggered
without an actual compromise.

4.1 Description of fixes
PCS fix As we have seen, PCS is lost because healing one
session does not heal others. Subsequently, we should make
sure that after the current active sessions have been healed
from a compromise, older sessions cannot be used again. A
first idea would be to instantly fully deprecate older sessions
and keys whenever we create a new one. However, this re-
sults in messages being lost because the parties are unable to
decrypt out of order messages. Thus, we instead suggest that:

• sessions must never become active again and used to
send messages after they became inactive;

• inactive sessions can still be used to receive messages.
The solution is simple, practical, and preserves the current
level of usability with minimal changes to the code. Notice
that in the case of multiple devices in a conversation, all
pairwise devices will have their own sessions. This means
that our fix does not affect the normal communication when
for example a device is offline and the conversation’s state
has moved forward because either a) the other devices send
the messages using the symmetric ratchet of the same session,
or) start new sessions using a new prekey bundle of the offline
device. In both cases, the offline device can compute the new
secrets and decrypt all messages.

As we will prove later, our fix allows lifting the precise PCS
guarantee provided by a single session to multiple sessions.

With respect to the specification, our fix is obtained by
removing item 4 of section 3.4 from [28]), which says that

upon decryption of a message "if the relevant session is not
active it is activated". This step of the algorithm is responsible
for promoting an old session as the current active one.

The issue of Clone detection With our previous fix imple-
mented, we restore PCS in AFormal, but a clone in AExperiment
may never be detected. Indeed, whenever either the clone or
the honest party go online, they can trigger the creation of a
fresh session and become the current active session with their
partner. This results in the inactive party to simply not receive
any message as long as it does not go online. We thus propose
a mechanism that allows the detection of such behaviors. In
particular, assuming that A is talking to B, and AClone is a
clone of A, we need to detect the following two situations:

• A and B share an active session, and B receives a message
from AClone in a deprecated session.

• AClone and B share an active session, and B receives a
message from A in a deprecated session.

It is impossible for B to distinguish whether the received
message is from a clone or the honest party. However, B can
notify their partner that they received a message from a dep-
recated session and include in this warning message some
information about that session. This way, the responsibility
falls on to the victim A to decide whether this warning mes-
sage implies the existence of a clone or not. To cover the two
previously described situations, we need to make sure that A
receives the warning message in either case, therefore B needs
to encrypt it for both the outdated and the active session.

There is a core difficulty for the clone detection mecha-
nism: the mechanism should not be activated during the nor-
mal operations of the protocol, i.e., only a cloning behavior
should result in a detection. Without this property, an attacker
could trigger false positives, leading to denial of service at-
tacks. This property is called the soundness of clone detection
in [30].

Clone detection mechanism We make three additions to
the current flow. First, we specify that when a new root key rk
is computed, both parties derive a root key identifier pk(rk)
and a warning key wk= KDF("warning", rk) and store them
in memory. Then, when B with a current active session root
key rka receives a message inside an inactive session with
root key rki, B sends to the other party the pair of ciphertexts
(enc(pk(rka),wki),enc(pk(rki),wka)). Finally, whenever a
party receives a warning message that decrypts to pk(rkx), if
this identifier is stored in the memory, the warning is ignored,
and if this identifier corresponds to a root key never computed
by the other party, the compromise error is raised. Notice
that the detection happens at the pairwise communication
level between two devices and uses the causality of starting
a session to detect the clone. This means the mechanism is
unrestricted by the number of devices in the conversation.



Attack examples Going back to the initial example of a
conversation between two honest clients A and B, we as-
sumed that a device of A falls temporarily under the control
of the attacker e.g., at a border control, or from malware. The
attacker that cloned the state of the device can impersonate
A to B. When A goes back online, they are notified by our
clone detection mechanisms that an attacker has reused an old
session key to encrypt messages to B or if they have started a
new session on their behalf, leading the victim to decide on
whether to trigger a healing mechanism (see Section 6).

In the cloning attack from [14], the attacker compromises
the victim’s state, the honest devices exchange 5 messages to
heal their conversation, and then the clone goes back online
and encrypts new messages. In our clone detection mecha-
nism, A needs to go online one more time in order to detect
the clone’s activity. The following two scenarios are possible:

1. The clone started a new session when it was active, so
when A goes online it receives a warning message and
detects the new session started by the clone.

2. The clone used the same session state as the honest
parties. Here the session is healed thanks to the PCS
guarantee and the clone cannot impersonate A, hence
there is no need for detection.

In comparison, the attack found in [5], and rediscovered
during our experiments (see Appendix A.1) considers only
a single session, and differently from our work and [14], the
honest parties do not exchange enough messages to heal the
conversation. The attacker can send new messages using the
stored keys in the compromised state, because of the slow
deletion of keys from state in the implementation. This means
that because of the mismatch between what is considered a
healed session in the specification and the actual implementa-
tion, the parties have not healed and the session does not have
PCS. As a result, we cannot lift the security to conversation-
PCS or clone detection.

5 Formal Analysis of Secure Messaging with
Session-Handling

In this section, we describe our multiple formal models and
give the intuition behind their security proofs. To perform the
analysis we rely on the TAMARIN prover, which we introduce
in the following along with its way to model security proper-
ties. We summarize our security analysis in Table 1 and show
the results obtained using the TAMARIN prover in Table 2. We
only provide here high-level presentations of our models, and
refer the reader to Appendix A.3 and [15] for more details.

5.1 Tamarin
The TAMARIN prover is a tool for formally modeling and
analyzing complex cryptographic protocols [29]. TAMARIN
works within the symbolic model, meaning that messages
are expressed as terms built from variables, constants and

function symbols. Rules allow modeling the possible protocol
steps, or protocol actions, that can be executed by the multiple
parties in parallel, and thus model network inputs, outputs
and computations.

Rules can be labeled with so-called events. The semantics
of the rules together with the labels yield the set of possible
executions, i.e., possible behaviors of the protocol sessions
in the presence of the adversary. The security properties are
then modeled as guarded first-order logic formulas, and can
refer to the events occurring in a specific trace, e.g.,

∀ userId, key, i. ReceivedPayload(userId, key) @i
⇒¬∃ j. K(key) @ j

Here ReceivedPayload is the event raised whenever the
user identified by userId receives a payload encrypted with
key, and K is a builtin TAMARIN event that models that the
attacker knows or can compute the argument. Intuitively, this
property states that if a user has received a payload at some
timepoint i inside a trace, there is no point j in the trace where
the attacker can compute the decryption key. In other terms,
this is the secrecy of the keys.

The tool has a built-in attacker, the so-called Dolev-Yao
attacker, which has control over the network and can inject,
drop and manipulate any traffic. Furthermore, TAMARIN al-
lows the user to add custom equational theories to model
additional attacker capabilities or data structures.

Given a protocol model, a specification of the attacker and
a security property, the tool returns either a proof that the prop-
erty holds for all traces of the protocol, a counterexample, or
it does not terminate (the underlying problem is undecidable).
In case of termination, the user can inspect the proof steps
or the graphical representation of the counterexample in the
interactive mode. Moreover, the user can guide the tool in
proof finding, by writing and proving helper lemmas such as
invariants of the protocol.

5.2 Formal model with Session-Handling
We first systematize here the points that should ideally be
taken into account to perform a formal analysis of Signal, or
any similar application. This corresponds to an ideal goal,
that we found is currently out of reach for existing automated
analysis tools such as Proverif or Tamarin. We thus introduce
several simplifications and abstractions in order to perform
a first formal analysis of the core mechanism that we aim to
improve here, the multiple session management.

Ideal Goal and limitations In an ideal world, to study the
PCS guarantees of Signal a formal model should capture:

• a model of the X3DH and the DR protocols, including
publication of Diffie-Hellman share bundles signed with
identity keys on the server;

• capture the multiple session managements as well as
new device registration;



• allow for compromises of all different materials, chain
keys, root keys and identity keys.

Verifying such a model is currently out of our reach and its
analysis would probably need to rely on modular result. For
instance, the latest Signal analysis using Proverif only con-
siders the X3DH protocol followed by only three message
exchange in the DR [26]. To make this first study of the
multiple session management tractable, we thus performed
several simplifications and abstractions. As we will see when
discussing the proofs, they required significant human inter-
vention, even with the following abstractions. We estimate
the human effort to be in the order of a month.

Atomic operations To tame the complexity, we abstracted
away the initialization of the sessions, replacing the X3DH
protocol by a single step creating a new session between two
given parties. The intuition is that at our higher level, if X3DH
is secure and was successfully completed, then it should be
equivalent to instantiating a fresh shared secret between the
two parties. We also simplified the asymmetric ratchet step of
the double ratchet, by collapsing the sending and the receiv-
ing steps into a single rule, which instantly provide the two
parties with a new shared secret value to rely on. This is in
fact a simplification needed to capture the PCS property: in
our context, healing means that an asymmetric ratchet was
fully completed and that the attacker did not interfere with its
execution. As such, the PCS property considers the asymmet-
ric ratchet, which is the healing step, as an atomic step that
the attacker cannot interfere with. If the attacker can interfere
and for instance block the execution of a healing, PCS cannot
even be expressed in a meaningful fashion. The difficulty of
formally verifying PCS against an active adversary is also
discussed in [19]: instead of seeing the asynchronous ratchet
as an atomic step that the attacker cannot interfere with, they
choose to base their security definition on an additional re-
curring authentication mechanism running in parallel that the
attacker must try to cheat.

As a consequence of the two previous simplifications, no-
tice that our model does not need to explicitly capture Diffie-
Hellman exponentiations, as we directly model the resulting
fresh secret. This significantly reduces the complexity of the
symbolic analysis, and may be one of the core points that
makes the analysis tractable.

Multiple devices We considered that device registration is
a separate operation and that it was reasonable to not include
it in the model. With respect to Sesame and our observed PCS
violations, we showed in the experiments that the attacks were
indeed possible even with a single device registered.

Possible compromise scenarios Each possible compromise
adds a layer of complexity to the PCS proof, as it introduces
new cases in which the attacker may break the security. In

our models, we do not capture the fact that the attacker can
compromise the long term identity keys of a party, similarly
to [19]. This is meaningful because long term identity keys
can be stored in a more secure way, and one first needs to
consider PCS against only chain and root key compromise
before hoping to achieve it against stronger attackers.

Our formal model and fixes in fact pave the way to aiming
for PCS against such strongest forms of compromise: if we
have PCS when everything but the long term keys are com-
promised, we force the attacker to use the identity keys to
sign new pre-key bundles in order to maintain the compro-
mise, and simple mechanisms could be set into motion on the
honest devices to detect those malicious bundles.

Final Protocol Model Our formal model allows performing
the following actions in an atomic fashion:

Initialization - Instantiates a new session with a fresh
shared root key between two participants. This corre-
sponds to reaching the final state of the X3DH in a single
step.
Send Message - Symmetric ratchet performed on the
sender side.
Receive Message - Symmetric ratchet on the receiver
side.
Skip Message - Skip a message and ratchet forward to
receive a later one.
Asymmetric Ratchet - In a single step swap sender and
receiver roles, giving them a new fresh shared root key.

Every initialization leads to the creation of a fresh session
between the two parties, each party creating a fresh identi-
fier sidA and sidB to identify this new session. In our core
model, the number of parties, the number of possible ses-
sions between two parties, as well as the number of ratchets
(symmetric and asymmetric) within a given session are all
unbounded. By adding restrictions on how parallel sessions
are managed, this first model can then be used to instantiate
multiple variants of Sesame.

Threat Model The attacker has full control over the net-
work, can manipulate and build new messages, but the cryp-
tography is assumed to be perfect. That is, the attacker can
see the encrypted sent messages, but can only decrypt them if
it knows the secret key.

In addition, we also consider that the attacker can at any
time compromise the currently stored keys of a party, e.g.
learn their sending/receiving keys or root keys. An important
point is that due to skipped messages, a receiving key can be
compromised at any time in the future even after asymmet-
ric ratchets. This corresponds to the behavior of storing old
receiving chain keys.

As a consequence of this threat model, remark that if the
attacker knows the current key, it can then decide to trigger an
asymmetric step either with the receiver or the sender, which
locks out the other party.



Session-based PCS We first define here the classical PCS
property, which considers the security of each session individ-
ually, and thus effectively reasons only about a single ratchet
chain. Intuitively, whenever inside a session there was a heal
and a message sent afterwards, the attacker cannot learn this
message unless it compromises one of the party again. Con-
versely, the only way that the attacker can decrypt a message
is to perform a compromise after the latest heal.

We raise the following events to express the session-based
PCS property:

• the event Sent(sida,A,B,sck) whenever the agent A
over its session sidA sends to agent B a message en-
crypted with the encryption key sck;

• the events Heal(sidA,A,B) and Heal(sidB,B,A) when
the two parties perform an asymmetric ratchet, and thus
heal their session;

• and raise Compromise(A,B) whenever the attacker
chooses to compromise the cryptographic material of
a session of A talking to B.

Capturing this PCS notion formally using TAMARIN’s first-
order logic language, is as follows:

∀ A,B,sidA,sck, i, j,k.
Sent(sidA,A,B,sck)@i & K(sck)@ j &
Heal(sidA,A,B)@k & k < i

⇒
(

∃ l. Compromise(A,B)@l & k < l
∥ ∃ l. Compromise(B,A)@l & k < l

)
This means that if we are in a situation where A sends a mes-

sage to B using sck key, Sent(sidA,A,B,sck)@i, and A healed
before sending this message, Heal(sidA,A,B)@k & k < i, and
the attacker knows the key K(sck)@ j, then the attacker must
have compromised the keys of A talking to B after the heal
Compromise(A,B)@l & k < l, or the keys of B talking to A.

Conversation-based PCS One of the core insights in our
formalization is that the app user does not (cannot) observe
PCS per session: messaging apps invisibly merge different
sessions with the same peer into a single displayed conversa-
tion. This is also ultimately the reason why the PCS properties
proven for the DR do not seem to hold at the session-handling
layer. Instead, at the session-handling layer or higher, we need
to use a different technical definition of PCS that considers
the conversation between two agents instead of sessions. This
effectively encodes that from the user’s point of view, multi-
ple sessions are invisibly merged into a single conversation.
Indeed, in all our experiments, the classical per session PCS
holds, but the intuitive notion of PCS over the full conversa-
tion shown to the user at the higher level does not. To express
this new goal, we drop the session identifier from the send
and heal event. If there is any healing phase during the con-
versation, that is, over any of the involved sessions, then any
message sent afterwards should be secret unless there is a

new compromise. This yields the following instantiation of
conversation-based PCS:

∀ A,B,sck, i, j,k.
Sent(A,B,sck)@i & K(sck)@ j &
Heal(A,B)@k & k < i

⇒
(

∃ l. Compromise(A,B)@l & k < l
∥ ∃ l. Compromise(B,A)@l & k < l

)
While at first glance this property may seem simpler than the
session-based property, its proof obligation is in fact more
complex: because the sending and healing are no longer
bound to the same session, this property depends on the scope
of healing in relation to messages sent in any session of the
sender. As we will see later, our proof of conversation-based
PCS requires us to first prove that session-based PCS holds.

In addition to these two PCS properties, we also model the
forward secrecy (FS) properties, which essentially state that
the attacker can only learn messages after it compromised a
session. FS is in fact often an intermediate step towards prov-
ing PCS. We only discuss the more interesting PCS proofs
in the following discussions but note that we in all cases also
proved the corresponding FS property.

5.3 Single session PCS

We first prove that if we enforce that two parties always use
the same session, PCS is obtained. While this is not a realistic
assumption, this is an intermediate step over which we build
the proofs for the real use cases. In this case, session-based
PCS and conversation-based PCS collapse.

Proof To perform the PCS proof, it is necessary to answer
the question: how could the attacker learn some key sck. From
an intuitive level, the following scenarios are possible:

• the current state of sender or receiver was compromised,
• the sender or the receiver was compromised previously,

but still on the same chain, and the attacker just has to
ratchet forward the key to compute sck,

• the sender or the receiver was compromised even before
the last asymmetric ratchet, the attacker then became
active, performed an asymmetric ratchet with the sender,
and since then the sender is in fact talking to the attacker.

A core difficulty of the proof is that we model an un-
bounded number of asymmetric or symmetric ratchet steps for
each session. An attacker may know a sending key because it
knew a previous sending key, or a previous root key, and so
on. While the PCS property concerns the sent messages and
the sender chain keys, we see here that the property is in fact
interdependent between receiver and sender keys. We must
then consider all the possible keys the attacker can learn or
compute instead of only considering the sender chain key, and
reason by induction. Namely, with respect to PCS, we must
consider that the attacker may know a sending key (case 1), a



Mechanism Source Threat PCS Clone
Model Detection

Double Ratchet [1] AFormal ✓ [1, 4, 10, 12] Implicit
Old Sesame v4.47.0 AExperiment ✓ [14] ✗

ASignal ✓ ✗
v5.40.4 AExperiment ✗ [Section 3, Appendix A.1] ✗Sesame (currently deployed)

AFormal ✗ [Section 5, TAMARIN ] ✗
Sesame with sequential sessions This work AFormal ✓ Implicit
Sesame, sequential sessions + warning message This work AFormal ✓ ✓

Table 1: Security Analysis Summary
Summary of results from our experiments and TAMARIN analysis. Our results cover a single session Double Ratchet, the older
version Sesame studied in a previous work, the currently deployed Sesame mechanism, and our two proposed incremental fixes.

Mechanism Source Property Result Run Helper
Time (s) Lemmas

Double Ratchet (Sesame with single session) [1] PCS ✓ 25 24
Sesame (currently deployed) v5.40.4 PCS ✗ 2 0
Sesame with sequential sessions This work PCS ✓ 36 27
Sesame, sequential sessions + warning message This work Clone Detection ✓ 31 23

Table 2: TAMARIN Formal Analysis Summary
Results obtained with the TAMARIN prover. Our proofs are obtained by using a so-called oracle to guide TAMARIN’s proof
search, as well as some manually stored proof. The run times are given for TAMARIN to find the proof automatically and to
verify the manual proofs for each lemma. When running the models we did not include the supplementary proofs, such as
forward secrecy. The models were run on a Intel(R) Xeon(R) CPU E5-4650L 2.60GHz server with 756GB of RAM, and 4

threads per TAMARIN call. We also provide the number of helper lemmas needed to prove the property.

receiver key (case 2), or a root key (case 3), each of them be-
ing possible either because another case happened previously,
or because there was a compromise.

This is in fact a generic observation relative to Tamarin
proofs. While we want to prove by induction a formula P1 ⇒
Q, we see that we in fact also need to prove P2 ⇒ Q and
P3 ⇒ Q. However, we crucially cannot prove each of those
formulas separately due to their interdependence, and we
must prove instead in one big induction

∧
1≤i≤3(Pi ⇒ Q), or

equivalently (P1 ∨P2 ∨P3)⇒ Q.
In our case, we have to prove the following property, corre-

sponding to a strengthening of the original PCS property:

∀ A,B, rk, rck,sck, i, j,k.
(
(
Sent(A,B,sck)@i & K(sck)@ j &

Heal(A,B)@k & k < i) case1
∨
( Root(A,B, rk)@i & K(rk)@ j &
Heal(A,B)@k & k < i) case2
∨
( Received(A,B, rck)@i & K(rck)@ j &
Heal(A,B)@k & k < i)

)
case3

⇒
(

∃ l. Compromise(A,B)@l & k < l
∨ ∃ l. Compromise(B,A)@l & k < l

)
implied

Proving this strengthened induction proved to be too dif-

ficult for TAMARIN’s current automated heuristics, and we
had to perform it in the interactive mode. However, we relied
on TAMARIN automation to prove many structural properties
over the protocol, without which we would have not been able
to complete the proof. To give an example of such a structural
property, consider the following formula:

∀ A1,B1,A2,B2, rck, i, j,k.
Received(A1,B1, rck)@i & Sent(B2,A2, rck)@ j
⇒ A1 = A2 & B1 = B2

This formula states that if a receiver and a sender are both
agreeing on some secret key rck , then they are necessarily
talking to each other, i.e., A1 = A2 and B1 = B2. This is for
instance needed when trying to prove the previous induction,
in the reasoning how the attacker can obtain the receiving
chain rck (case 3). Proving this lemma helps TAMARIN in
deducing that compromise of any other party, other than A or
B, does not result in knowing rck, since the receiving chain
key is unique per pair of users.

Overall, the proof required 24 such structural helper lem-
mas, which are proved automatically by TAMARIN with an
oracle. The strengthened PCS with 718 proof steps, had to be
selected manually out of the available proof steps.



5.4 Conversation-based PCS

We model the current design of Sesame by allowing in the
previous model any number of sessions between A and B to
run in parallel. In this model, we first describe how TAMARIN
rediscovers the scenario trace corresponding to Section 3.2.
Then, we show how we model our fix and prove it secure.

Conversation-based PCS violation We observe on this
model that if we consider the full conversation between two
parties, then PCS is lost. This suggests that our model is
general enough to capture the experimentally found scenario.
However, we proved previously that for a single session, we
have PCS between two agents. The session-based PCS prop-
erty still holds for this new model with multiple sessions, and
is essentially a proof that multiple sessions of the DR do not
share any cryptographic material and are independent. Inter-
estingly, we could in this setting mostly reuse the proof made
in the single session case to prove the session-based PCS.

Modeling the fix To introduce a notion of active and inac-
tive session, we specify that whenever a new session is created
for a party, all sending actions and asymmetric ratcheting that
would use a previous session are forbidden. To do so, we rely
on so-called restrictions: they are expressed in TAMARIN in
the same language as the security properties, but are used to
forbid certain executions.

For instance, we can model that we have an event
NewSession(A,sid) raised by party A whenever they create
a new session with identifier sid, and that in addition to the
Sent event there is also a SentSID(sid) event raised when-
ever A uses sid to send a message. Then, a core feature of our
fix is modeled by adding the following restriction:

¬(∃ A,sid1,sid2, i, j,k.NewSession(A,sid1)@i &
NewSession(A,sid2)@ j & SentSID(sid1)@k & i < j < k)

This restriction expresses that for any execution, A cannot
send a message from session sid1, once it has created a new
session sid2. This ensures the deprecation of an old session
sid1, once it is replaced by newer one sid2.

Proof To prove the conversation-based PCS between A and
B, we then rely on both the previous per session proof of
PCS and the restrictions modeling our fix. Essentially, if our
fix is correct, the restrictions will forbid all attacks arising
from lifting the per session PCS to the conversation-based
PCS property. We were indeed able to carry out this proof in
TAMARIN. This proof required 4 additional structural helper
lemmas, and the conversation-based PCS took 146 steps by
reusing all the previous proofs.

5.5 Proof for the clone detection mechanism
With the first fix, we restore the conversation PCS against the
AFormal threat model. However, to also add some security in
the case of AExperiment, we also model a clone detection mech-
anism that would detect whenever an attacker is initiating new
sessions with a compromise identity key.

Modeling the mechanism To model clone detection, we
enrich the state of the sessions with the warning and identifier
root keys, as well as the current session identifier, and mod-
ify the receive message action so that whenever a message
is received over a deprecated session, it sends out the two
corresponding root key warnings.

We then added the warning process action to the protocol,
where a party can receive over its current active session a
warning. This rule executed by agent A decrypts a warning
message of the usage of a session with root key identifier pkro
and then raises the event Report(A,pkro). By having each
root key creation also raise the event Rk(A, rk), we express
the actual processing of the report by adding the restriction:

∀ A,rk, i. Report(A,pk(rk))@i
⇒ ¬(∃ j. Rk(A,rk)@ j & j < i)

This enforces the soundness of clone detection: A reports an
error for some root key identifier only if the corresponding
root key was never computed by A.

Proof Our goal is to prove that the attacker cannot trigger
a false positive of our mechanisms, that is, a report can only
be raised if there was a compromise of some agent. An in-
teresting point of the PCS proof is that the attacker is able to
compute a root key of A only if it compromised B or A. So,
any warning message received by A is either:

• from a honest conversation, in which case A will recog-
nize the root key,

• from the attacker, in which case there must have been a
compromise.

This mean that proving the clone detection mechanism
is equivalent to proving the following two cases: a) honest
warning messages do not trigger the error message, and b) the
attacker needs to compromise one of the agent to compute a
valid warning message. The first case is straightforward, and
the second has mostly been done in the previous PCS proofs.

Following this idea, we were able to prove that our pro-
posed mechanism is sound. The proof effort involved the
previous PCS proof, two new helper lemmas proved in 429
steps and 14 steps respectively, and the final proof done in
115 steps.

6 Practicality of fixes

Memory usage A downside of our clone detection mecha-
nism is that it requires devices to store a long list of warning



root keys in order to correctly report compromises without
false positives (soundness of the clone detection). However,
in the full compromise setting, it can be argued that our clone
detection mechanism is stronger than needed: our PCS fix
quickly heals all honestly established sessions, and we may
not care about detecting low impact compromise of those
sessions. If we only care about detecting the case where the
attacker is using the compromised identity key to initiate a
fresh session, our clone detection mechanism can be adapted
so that instead of deriving warning keys from each root key,
we only derive warning keys from the first root key of the
session. This solution would then be such that the memory
usage is strongly reduced and cloned sessions are detected.

Device Reset There are cases where we reset the state of
a device to a clean blank state or to a backup, for instance
after the original device was lost or there was a state loss. In
such cases, our clone detection mechanism could yield false
reports, either after restoring a backup, where the user may
receive a report over a root key computed after the point of
the backup, or after a full reset, where the user may receive a
report over a root key corresponding to the older identity key.

To mitigate those false reports, a simple solution is to spec-
ify that a device that performed a backup restore or a reset
should ignore any clone detection reports it obtains from a
partner that just came online for the first time since the reset.
However, this may lead to an attacker exploiting this small
time-frame to avoid detection, and this mechanism may still
let some false positive report be produced in some edge cases.

Following up on clone detection We do not tackle in our
work what should happen after a clone detection warning.
However, because our clone detection is sound, this only hap-
pens of the attacker compromised a long term identity key. To
restore trust, the user needs to trigger a full reset on the server
side, erasing all identity keys and bundles, and uploading new
identity keys. Since our detection mechanism is sound, i.e.,
lack of false detection, apps can automatically trigger a mech-
anism to refresh the secrets and notify the victim appropriately
or ask for their input in edge cases. Another idea would be to
rely on an Out-Of-Band channel, and leave it to the user to
activate the recovery. However, further security and usability
studies are needed on the best mechanism to ensure a secure
key replacement and clear communication to the end user.

Implementability of our suggestions An open question is
whether our proposed solutions may introduce unexpected be-
haviors that could break the correct execution of Signal. Our
first improvement only restricts the set of possible behaviors
from the protocols. In theory, this could lead to desynchroniza-
tion if the head sessions between two devices do not match.
This would never block communication, but a different ses-
sion would be used for sending and one for receiving, and

each would not be able to ratchet asymmetrically. If such a
situation were to occur, it would be automatically resolved
by the session refresh currently happening every hour. Our
second fix adds new message exchanges to the usual flow.
According to our Tamarin models, the warning can only be
triggered if a compromise did happen, and thus should not
lead to any additional threat, and cannot be used, e.g., to trig-
ger a denial-of-service. Importantly, while our models did not
raise any unexpected behaviors, issues could come from un-
expected places from the complex Signal ecosystem: testing
deployments in real life conditions could help decide this.

7 Conclusion

Our experimental result based on multiple PCS violations on
the application level illustrated the need to consider PCS not
at the per-session level but at the conversation level.

We introduced the first formal model that includes the multi-
ple session management layer of a secure messaging protocol,
taking Signal as a first case study. We used this model to
show how at the conversation level PCS is violated by design
choices in Sesame, and use our model to prove the correctness
of our two proposed improvements.

As a future direction w.r.t. Signal, our models could be
more precise, covering more high-level features like the ad-
dition of new devices, or more low level features like a more
precise DR. It is however likely that this can only be achieved
by improving existing verification tools to make such more
detailed models tractable. It would also be valuable to obtain
computational guarantees that do consider the conversation-
based PCS. Furthermore, it would be interesting to apply the
conversation-based PCS approach to other end-to-end mes-
saging apps. The closest one is Whatsapp. It would however
require significant reverse-engineering efforts: it relies on lib-
signal but with code that is not open source, making it difficult
to analyze and notably extract how sessions are managed.

Responsible Disclosure Since Signal’s documentation only
considers an attacker that is passive after a compromise
(which could be satisfied with a much simpler protocol), our
PCS violations are outside of its stated threat model. Never-
theless, we contacted the original author of the Sesame speci-
fication with our observations and fix, and they contacted the
Signal development team.
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A Appendix

A.1 Additional PCS violation

We describe here the PCS violation we found that is indepen-
dent of the multiple sessions layer, and was independently
discovered by [19].

Figure 5: Abusing stored receiver chain keys on Signal. In the
first phase, honest parties A and B exchange messages until A
is cloned. The clone goes offline (denoted by the dotted line)
and the parties exchange messages to heal their session. A
and B go offline, and the clone encrypts a message m with the
old session state A1. When, B goes online they can decrypt
the message by using the old receiver chain stored at state B1.

Concrete steps The attack of Fig. 5 is obtained when:
1. A and B exchange 4 messages: (A ↔ B)4.
2. Duplicate A’s machine and send clone offline.
3. A and B exchange 4 more messages: (A ↔ B)4.
4. A and B go offline, and clone goes online.
5. Clone sends 4 consecutive messages to B (AClone → B)4

6. Clone goes offline, and B online. B can decrypt the mes-
sages sent by the clone.

Analysis The intuition behind the scenario is that B can for-
ward a key from a past state, which they should have deleted.
Notice that the clone follows the protocol acting as an honest
user, therefore using only the local state to compute the next
message key. Moreover, since A and B’s devices are offline
at the time, the clone has no external input on the progress
of the conversation. On the receiver side, the fact that B is
able to compute the session key means they can go back to a
previous receiver chain and compute the next message key.

Checking the debug logs, we found that the chain key being
used to encrypt the clone’s messages was the same as the one
A had used to encrypt their messages at the time of cloning.
In addition, we cross-checked with the implementation of
Signal and found that the scenario is indeed possible. In fact,
Signal allows for the parties to store up to 5 receiver chain
keys at any time 8. In theory, it should be impossible to extend
those receiver chains, as only the skipped messages before the
corresponding asymmetric ratchet should have been stored.
However, the compromised key is still stored in the receiver’s
state, and the clone can extend older chains and use this to
send any number of messages impersonating A. This behav-
ior contradicts PCS, as after the asymmetric ratchet the old
compromised material should be useless except for skipped
messages.

8Signal’s stored receiver chains: link.

https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/doubleratchet/
https://github.com/signalapp/libsignal/blob/6c030d56a563ef00c01dc63c1735693b407a39b2/rust/protocol/src/consts.rs#L8


A.2 Security Parameters in Signal
Signal is deployed with a specific set of parameters that may
directly affect the security of the protocol:

1. 25000 forward jumps - Signal allows for the message
keys to be forwarded 25000 steps ahead and stored lo-
cally. A message with any counter smaller than the pa-
rameter results in the partner storing all keys up to the
message counter. This means that even if the honest
parties heal from the compromise, the attacker can still
encrypt messages using the skipped message keys.

2. Reset every 1 hour - The parties perform a new hand-
shake every one hour.

3. 5 stored chains - The 5 latest receiver and sender chains
are stored. This allows an attacker to extend any of these
chains with an arbitrary number of new messages.

4. 40 sessions stored - Signal stores 40 sessions per device.
A compromise in any of them allows the attacker to
continue undetected the conversation in that session.

A.3 Formal details of the model
We provide here more details on our formal models and refer
to [15] for the actual models. TAMARIN uses multi-set rewrit-
ing rules (MSR) to model protocols. Such rules, given a set
of currently available facts, consume them to produce new
facts. Each fact can be seen as a local state, and the global
state of a protocol can then be modelled through a set of facts.
A protocol step is modelled with one MSR, and TAMARIN
relies on some builtins facts to correctly model protocols:

• the Fr(n) fact must only appear on the left-hand-side of
a MSR, and is used to load a new fresh nonce n;

• the In(x) fact can be used on the left-hand-side to model
an input from the attacker-controlled network;

• the Out(t) fact on the right-hand-side models an output
to the attacker-controlled network.

Our protocol models rely on two main fact, one to model
the state of a current sending chain, and one to model the state
of a receiving chain. The fact SndCK(rk,sidA,A,B,ck) tells
that agent A currently has a session with agent B with a local
thread identifier sidA on A’s side, the current root key is rk
and the chain key is ck. In a correct execution, it is expected
that on B side there is a corresponding receiver chain, stored in
the fact !RcvCK(sidB,rk,B,A,ck). Remark that the receiving
fact is prefixed by the ! symbol: this denotes that this fact is
persistent, and an MSR rule will not consume it.

If two agent identities Id(A) and Id(B) were created in an
initialisation, this rule creates a new session for two users:

[Id(A),Id(B),Fr(rk),Fr(sidA),Fr(sidB)]
−[NewSession(A,sidA),NewSession(B,sidB)]→

[SndCK(rk,sidA,A,B,h(rk)), !RcvCK(sidB,rk,B,A,h(rk))]

Here, the first line is the left-hand-side of the MSR that sam-
ples the fresh values needed to instantiate the session, the

middle parts corresponds to raising the events used in Sec-
tion 5 to specify security properties, and the last line is the
right-hand-side effectively creating the two facts correspond-
ing to the state of A and B. Such a rule is an abstraction of the
full X3DH protocol, where we simply say that two identities
can suddenly share a valid fresh root key.

We then use a rule to model the sending of a message,
which will only rely on a single agent here as the communica-
tion is over the network.

[SndCK(rk,sidA,A,B,ck),Fr(m)]−[Sent(A,B,ck)]→
[SndCK(rk,sidA,A,B,h(ck)),Out(senc(m,ck))]

This rule given the current state of a sending chain sends a
fresh payload m encrypted with the current chain key ck. In
parallel, it raises an event about the sending of the message,
and in addition produce the new state of the chain where the
chain key has been ratcheted forward.

On the receive side, the situation is a bit more complex
due to skipped messages. A rule directly allows the receiver
to move forward in the chain, and another one to receive a
message (this is why we prefix receiving facts with !):

[!RcvCK(sidB,rk,B,A,ck)]→ [!RcvCK(sidB,rk,B,A,h(ck))]

[!RcvCK(sidB,rk,B,A,ck),In(enc(m,ck))]
−[Received(B,A,ck)]→[]

We need to add in our models a restriction forbidding that the
second rule can be triggered twice:

∀ A,B, rck, i, j. Received(A,B, rck)@i
& Received(A,B, rck)@ j ⇒ i = j

Possible compromises must be specified explicitly through a
rule, for instance with:

[SndCK(rk,sidA,A,B,ck)]−[Compromise(A,B)]→[Out(ck)]

A similar rule on the receiver side models its own compro-
mises. The last rule to model a high-level double-ratchet pro-
cess is the asymmetric step. In a single rule, two agents can
perform an asymmetric step and obtain a new fresh root key
nk. The sending and receiver roles are then swapped:

[SndCK(rk,sidA,A,B,ck),Fr(nk), !RcvCK(sidB,rk,B,A,ck)]
−[Heal(A,B,sidA),Heal(B,A,sidB)]→

[SndCK(nk,sidB,B,A,h(nk)), !RcvCK(sidA,nk,A,B,h(nk))]

Together, these rules abstract a double-ratchet with skipped
messages and multiple sessions. This high-level presentation
omits several details of our models, e.g.,:

• many events are added to allow writing helping lemmas;
• bookkeeping facts are also added to ease reasoning;
• more rules are needed to model that an attacker can, e.g.,

perform an asymmetric ratchet with a user if it knows
the corresponding chain-key;

• some additional restrictions to remove undesirable be-
haviors, such as an execution where an agent tries to
initiate a session with themselves.
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