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Abstract
Recently, we have witnessed the success of deep reinforce-

ment learning (DRL) in many security applications, ranging
from malware mutation to selfish blockchain mining. Like
all other machine learning methods, the lack of explainability
has been limiting its broad adoption as users have difficulty
establishing trust in DRL models’ decisions. Over the past
years, different methods have been proposed to explain DRL
models but unfortunately, they are often not suitable for secu-
rity applications, in which explanation fidelity, efficiency, and
the capability of model debugging are largely lacking.

In this work, we propose AIRS, a general framework to
explain deep reinforcement learning-based security applica-
tions. Unlike previous works that pinpoint important features
to the agent’s current action, our explanation is at the step
level. It models the relationship between the final reward
and the key steps that a DRL agent takes, and thus outputs
the steps that are most critical towards the final reward the
agent has gathered. Using four representative security-critical
applications, we evaluate AIRS from the perspectives of ex-
plainability, fidelity, stability, and efficiency. We show that
AIRS could outperform alternative explainable DRL methods.
We also showcase AIRS’s utility, demonstrating that our ex-
planation could facilitate the DRL model’s failure offset, help
users establish trust in a model decision, and even assist the
identification of inappropriate reward designs.

1 Introduction

Deep reinforcement learning (DRL) has shown great success
in a range of applications such as playing GO [61, 62] and
complex video games [48,72]. The core idea is to train a deep
neural network agent that makes a sequence of decisions to
achieve its goals based on its observation of the environment;
meanwhile, the decisions/actions from the agent will also
dynamically affect the environment. Recently, researchers
start to apply DRL in security- and safety-critical applications
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Figure 1: Example—Two types of explanations for malware
mutation using DRL on a call graph. Feature-level explanation (left)
identifies important features for the agent’s decision at a given mo-
ment. Step-level explanation (right) identifies the most critical step(s)
that lead to final evasion results.

by formulating them as a sequential decision-making prob-
lem [1,5,16,27,29,44,45,80]. Examples of such applications
include malware mutation [9, 44, 78, 79, 82], network lateral
movement attack and defense [45], blockchain mining [13],
and autonomous driving [37].

While the performance of DRL is promising, it is often
difficult for humans to understand the agent’s decisions com-
puted by a deep policy network. The absence of explanations
of DRL models creates a key barrier to establishing trust in the
DRL agents’ decisions. Furthermore, without an explanation
mechanism, it is difficult to incorporate the black-box DRL
model with expert knowledge to enable policy debugging or
security analysis for security- and safety-critical applications.

Recent works have proposed explanation methods for DRL
agents, but they suffer from three main limitations when ap-
plied to security applications. First, most existing methods
focus on the feature-level explanation [7, 11, 39, 40, 43, 71]
to explain an agent’s action at a given step. However, such
explanations provide little insight into why the agent would
eventually succeed/fail in the overall task. For example, Fig-
ure 1 illustrates an example of DRL-based malware muta-
tion [83]. The DRL agent takes the call graph of a malware
sample as the input and takes a series of actions to mutate the
call graph step by step to generate a sample that can evade
detection (see more details in Section 5). Feature-level expla-
nation methods (left) aim to identify a small set of features
(i.e., a sub-graph) in the current call graph to explain the DRL
agent’s manipulation decision at this step. While this expla-
nation helps to interpret the agent’s action of this specific



step, it is not helpful to understand why the agent would suc-
ceed or fail the evasion in the end. Second, other explanation
methods utilize value functions of the target agent to assess
state importance [4, 31]. As we will show in Section 6, these
methods cannot provide high-fidelity explanations for DRL-
based security applications. Besides, they are not applicable
to cases where value functions are not available. Third, one
recent method focus on the coarse-grained global explana-
tions [22]. The explanation results are too generic to debug
individual runs of the DRL agent. For example, for malware
mutation, the globally-important mutations may not inform
why a specific malware sample’s mutation process succeeded
(or failed). Finally, explanation methods for security applica-
tions have higher expectations not only for the explanation
fidelity but also for explanation stability and efficiency [75],
which are not the main focus of existing works.

In this paper, we propose AIRS: “Approximation-based
Interpreter for Deep Reinforcement Learning in Security Ap-
plications”, which is a general framework to explain the policy
of DRL model. AIRS is a local explanation method for ex-
plaining individual episodes (samples). Instead of focusing on
feature-level explanation, our goal is to provide the step-level
explanation to identify the critical steps that contribute the
most to the final reward in a given run. In the example shown
in Figure 1 (right), the explanation method pinpoints the most
critical steps to the success/failure of the malware mutation.
Once the critical steps are identified, analysts can further in-
spect the actions taken in these steps to debug the DRL agent’s
policy network. Furthermore, to produce high-fidelity, stable
and efficient explanations, we develop a novel architecture
to approximate the final reward for the DRL agent. For this
architecture, we use a recurrent neural network (RNN) to
capture the temporal relationship between states while using
fully-connected deep neural networks to approximate the re-
ward function. The approximation model makes it possible to
obtain the association between each step and the final reward.

We evaluate the performance of AIRS using four differ-
ent security- and safety-critical applications driven by DRL,
namely, autonomous driving [37], malware mutation [83], self-
ish blockchain mining [13], and network lateral movement
optimization [45]. We show that AIRS outperforms existing
(baseline) DRL explanation methods in terms of explana-
tion fidelity, stability, and efficiency. More importantly, we
showcase how developers can utilize AIRS to gain a deeper
understanding of agent behavior, and debug specific DRL
policies and even the application designs.

In particular, using AIRS, we successfully discovered two
bugs in the DRL reward function in the Microsoft Cyber-
BattleSim framework for lateral movement attack and de-
fense [45]. We reported these bugs to Microsoft’s 365 De-
fender Team who later acknowledged our findings. This pro-
vides empirical evidence that AIRS can be used to debug
DRL-based security applications.

In summary, our paper has the following contributions:

• We propose AIRS, a general framework to explain deep
reinforcement learning models in the security domain by
providing the step-level explanation. AIRS is designed for
high explanation fidelity, stability, and efficiency.

• To evaluate AIRS, we implement various baselines (in-
cluding existing DRL explanation methods) and test them
on four different security applications. We confirm AIRS
outperforms existing approaches and baselines.

• We provide case studies to show how to use AIRS to
debug DRL-based security applications. We have found
real-world bugs using AIRS.

2 Background

2.1 Modeling an RL Problem

A sequential decision-making problem can be formalized as
an RL learning task, in which an agent observes the task en-
vironment and takes proper actions to fulfill the task. Take
autonomous driving as an example. The self-driving car (i.e.,
agent) observes the road condition and takes a series of proper
driving actions (e.g., accelerating and turning) to reach a desig-
nated destination. In this process, the agent receives a reward
after taking each action that measures how well it performs at
each time step. The goal of RL is to learn an optimal policy
for the agent. By taking actions given by the policy, the agent
could collect a maximum amount of total reward, indicating
it could fulfill the task in an optimal way. In the above au-
tonomous driving example, this optimal way could refer to
safely reaching the final destination in the shortest time. In
the setting of DRL, the policy network is modeled as a deep
neural network (i.e., a policy network). At each time step, this
policy network takes as input the observation of the environ-
ment (e.g., the current snapshot of the road condition in the
above example) and outputs the corresponding action that the
agent would take. Solving a DRL problem is equivalent to
learning the parameters of this policy network.

To learn the policy network, we first need to model a DRL
problem as a Markov Decision Process (MDP), which is rep-
resented as a 4-tuple < S ,A ,T ,R >. In this tuple, S and A
are the finite state and action sets, in which each state s(t)

and action a(t) represents the state and action of the agent at
time t. T : S ×A → S is the state transition function, where
T a

ss′ = P[s(t+1) = s′|s(t) = s,a(t) = a] denotes the probability
that the agent transits from state s to s′ by taking action a
at time t. R : S ×A → R is the reward function, where Ra

s
represents the reward if the agent takes action a at state s.

As is mentioned above, the goal of DRL is to train a policy
network π(a|s) for the agent that maximizes the agent’s total
reward. Formally, the total reward can be represented by the
state-value function Vπ(s) defined as

Vπ(s) = ∑
a∈A

π(a|s)(Ra
s + γ ∑

s′∈S
T a

ss′Vπ(s′)) , (1)



or the action-value function Qπ(s,a) defined as

Qπ(s,a) = Ra
s + γ ∑

s′∈S
T a

ss′ ∑
a′∈A

π(a′|s′)Qπ(s′,a′) , (2)

where γ ∈ [0,1] is a discount factor that controls the agent’s
focus on immediate rewards or long-term rewards. The state-
value function Vπ(s) is the expected total reward of an agent
starting from state s. Slightly different from Vπ(s), the action-
value function Qπ(s,a) is the expected total reward of the
agent starting by taking action a at s. The value of both func-
tions measures the quality of the agent’s policy π. An optimal
policy could be obtained by maximizing either function, en-
suring that the agent receives the maximum rewards from the
environment.

2.2 Learning a DRL Policy
Recent works have proposed many algorithms to solve the
optimal policy, among which the most widely used ones are
DQN [48] and PPO [57]. As mentioned above, these two
algorithms are also widely adopted in DRL-based security
applications. Below, we briefly introduce these algorithms.
Deep Q-learning (DQN). Deep Q-learning does not explic-
itly learn a policy network. Instead, it uses a deep neural
network to approximate the action-value function introduced
above, which takes as input state s and action a and outputs
the estimated Q value. With this approximation, the agent
follows a policy that suggests the action with the highest Q-
value at each time step. As is shown in recent research, such
a method demonstrates a great success in many applications
with a discrete action space, such as Atari games [47] and
the security applications of selfish mining, and the network
lateral movement used later in our evaluation.
Proximal Policy Optimization (PPO). Different from DQN,
PPO directly parameterizes the policy network as πθ(s,a) =
P(a|s,θ). At time t, this function takes as input state s(t) and
outputs the corresponding action a(t). To learn this policy net-
work, PPO proposes an objective function, which combines
the state-value function in Equation (1) with the difference
between an updated and an old policy. By maximizing this
objective function, PPO could obtain a policy that collects
the maximum amount of rewards. In addition, this objective
function could enable the PPO to monotonically improve
the agent’s total reward during the training phase. With this
property, the training process convergences faster and is more
stable than previous training algorithms that learn policy net-
works directly. PPO is the state-of-art algorithm for DRL
tasks with a continuous action space, such as the safe driving
application introduced in Section 5.

3 DRL Explanation Methods and Limitations

Existing research on explaining DRL mainly focused on
feature-level explanation. Technically speaking, these meth-

ods can be categorized into post-explainable methods and
self-explainable techniques. Post-training explanation meth-
ods are originally designed to identify input features most
critical to a DNN’s prediction (e.g., white-box gradient-
based methods [14,42], black-box approximation-based meth-
ods [20, 21]). As introduced in Section 2, a policy network
is also a DNN taking the current observation as input and
outputting the corresponding action. As such, researchers
extended post-training methods to explain policy network
(e.g., [11, 18, 35, 40, 41, 43, 53, 60, 67, 69]), identifying fea-
tures in observation most important to an agent’s action. Un-
like post-training explanation methods, self-explainable tech-
niques replace the non-explainable policy network with a
self-explainable model. The self-explainable model unveils
the association between observation and an agent’s action
and thus explains which features contribute the most to the
agent’s action (e.g., [32, 49, 50, 66, 81]). As discussed in Sec-
tion 1, these methods cannot provide step-level explanations
that draw insights into the final result of the agent.

To the best of our knowledge, only a few explanation meth-
ods [4,22,31] could provide step-level explanations. However,
they are not suitable for explaining DRL-based security appli-
cations due to the following limitations. First, value function-
based methods [4, 31] utilize the value function to assess
state importance. As mentioned in Section 2, value function
captures the relationship between states and the agent’s ex-
pected total reward rather than the final rewards in individual
episodes. Due to this misalignment, using value function to
explain individual episodes cannot give a high explanation fi-
delity (cf. Section 6). Besides, in some real-world cases, value
function is not released together with the policy network, since
it does not guide the agent’s action, and value function-based
methods cannot be applied to these cases. Second, a recent
method, EDGE [22], focuses on providing coarse-grained
global insights within a set of collected episodes. More specif-
ically, EDGE [22] utilizes an interpretable model to predict
the final reward of the collected episodes and thus capture
the global importance of actions/states to a game’s final re-
sult. As is discussed in Section 1, many security applications
need explanations that go beyond global insights. They need
to identify the important actions/states of each individual
episode. With this ability, as is showcased in Section 7, se-
curity developers could utilize such explanations to improve
their DRL-driven security applications. Third, some methods
(e.g. EDGE) employ a relatively sophisticated model, intro-
ducing complicated computation and optimization. When
porting it to security applications, the complexity of the appli-
cations introduces even more challenging engineering tasks to
these methods. To this end, we introduce a novel DRL explain-
able framework to derive an explanation for each individual
episode without introducing overly sophisticated computation
and optimization.



4 Proposed Technique

In this section, we first describe the research problem we
aim to address and the assumptions we make. Then, we dis-
cuss the technical challenges confronted when addressing the
problem (i.e., explaining deep reinforcement learning). After
that, we present how we handle the challenges and design our
explanation method, followed by an overall algorithm.

4.1 Research Problem & Assumptions
Many security applications learn a deep policy by using DRL
algorithms (e.g., Q-learning [26, 28, 47, 70, 74] or policy gra-
dient [23, 46, 56, 57]). Then, they utilize the policy to take a
series of actions and thus generate the desired final reward for
that application. Take malware mutation as an example. To
generate a malware variant that could bypass a target detector,
security researchers recently utilized a DRL algorithm to learn
a deep policy. The policy takes as input a malware sample and
outputs a sequence of actions indicating how to mutate that
malware step by step and thus obtain a valid malware variant.

In this work, our goal is to pinpoint the agent’s actions
most critical to the (un)desired reward in single-agent RL
environments that can be modeled as a Markov Decision Pro-
cess (MDP). As discussed in Section 2 and 5, this is the most
widely adopted RL model in DRL-based security applications.
Take the malware mutation as an example. We aim to identify
the actions that contribute the most to the failure/success of
malware variant generation. As we will showcase in Section 7,
this ability could help security researchers establish trust in
their DRL model, offset unexpected model outcomes, and
even track down the design flaw of the DRL model.

Before discussing our proposed DRL explanation method,
we make the following assumptions. First, we assume that
our explanation method could access the input to the deep
policy network (i.e., the observation of the environment) and
the final reward gained through the policy. Take the malware
mutation as an example. We assume the access to the malware
sample and the reward that the deep policy could obtain from
the sequence of mutation actions. Second, we do not assume
access to the value/Q function or the parameters of the pol-
icy network. This assumption ensures that our explanation
method treats the deep policy network as a black box.

4.2 Basic Idea & Challenges
As is mentioned in Section 2, after taking each action, the
agent turns its current state into a new state. Take the malware
mutation as an example. After taking a mutation action, the
malware sample is converted into a new variant, which will
then be further converted into another new variant after one
utilizes the policy network to take the following mutation
action. As a result, we can treat the DRL explanation as a task
that finds the states most critical towards the final reward.

To do it, one basic idea is to model the relationship between
the sequence of states and the final reward. For example, we
can model the relationship in a linear form:

r =
T

∑
i=0

θi ·gPCA(si)+b (3)

in which r and si are the final reward and the state at the i-th
time step, respectively. gPCA(·) is a dimensionality reduction
function, Principal Component Analysis [15], that converts
the vectorized state si into a singular value so that, through a
linear combination parameterized by θ0,θ1, · · · ,θT , one could
predict the final reward r. Because the linear relationship is
self-explainable, we can treat the states with the parameters in
the highest values as the most critical toward the final reward.

While this method is intuitive, the explanation derived from
this method might not be of high fidelity.

• The state transition sequence s0 · · ·sT in deep reinforce-
ment learning is time-dependent. Without considering
the temporal relationship between states, a simple linear
combination would inevitably introduce modeling errors.

• To learn the parameters of the linear model, we need to
gather many episodes (i.e., state transition sequences and
the corresponding final rewards). However, the parameters
θ0 · · ·θT learned from these episodes do not reflect the
state importance in a single episode but the importance in
all episodes used in the model learning. As a result, given
an individual episode, the method above cannot pinpoint
which state in an individual episode is more critical to the
corresponding final reward.

• PCA conducts a simple linear transformation to reduce
dimensionality. Prior research [2, 17] has demonstrated
that PCA may not be a good option, especially when the
original dimension is high and the converted dimensional-
ity is low. In such cases, PCA cannot preserve the majority
of critical information in original inputs and thus further
impacts model fitting and the explanation fidelity.

4.3 Our Method
To tackle the three challenges above, we improve the intu-
itive method above from three perspectives. To capture the
temporal dependency of the state transition, we first pass the
state sequence to a recurrent neural network. As is depicted
in Figure 2, the recurrent neural network H(·) is a sequence-
to-sequence model. It not only converts state sequence into a
new sequence but, more importantly, ensures that the element
H(si) = xi in the new sequence (x0,x1, · · · ,xT) captures the
time dependency of previous states s0,s1, · · · ,si−1.

While the introduction of a recurrent neural network re-
solves the time-dependency issue, the proposed method still
suffers from the other two challenges above. To address the
two other challenges, as is shown in Figure 2, we first replace
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Figure 2: Approximation Model of AIRS—It takes the state
sequence as input, and predicts the corresponding reward as output.

the PCA with a fully connected deep neural network gDNN(·)
to further process the temporal encoded xi. Unlike PCA that
only capture linear relationships, this deep neural network
could model the complex and non-linear correlations within
in xi. As discussed in existing works [2], DNN is much better
than PCA in preserving critical information when performing
dimensional reduction for high-dimensional inputs.

Finally, to tackle the last challenge (i.e., linear regression
cannot provide an explanation of each individual episode),
we further improve the method above by replacing the linear
regression coefficient θi ∈ {θ0,θ1, · · · ,θT} with a deep neural
network θ(·). As we can see from the equation below:

r = f (x0,x1, · · ·xT) =
T

∑
i=0

θ(xi) ·gDNN(xi)+b (4)

the neural network θ(·) takes xi as input. As is depicted in
Figure 2, for each episode s0,s1, · · · ,sT, it outputs a unique
vector θ(xi). By aggregating the multiplication of θ(xi) and
gDNN(xi), we could obtain the prediction of the final reward
r. Using this design, we address the problem of not being
able to derive an explanation for each individual episode
simply because for each episode, θ(·) outputs a sequence of
distinctive coefficients indicating the importance of the states
towards the final reward.

4.4 Other Critical Design
In this work, we can gather various episodes and utilize these
episodes to learn the parameters in Equation (4). However,
there are still a couple of issues that need to be taken care of.
Handling stability of explainability. Our proposed method
may encounter an instability issue. When an episode is similar
to another, we would like to have an explanation similar to
each other. However, by solving the equation above, we may
not be able to obtain such a property. As a result, we introduce

a constraint below.∥∥∥θ(X(i))−θ(X( j))
∥∥∥< L

∥∥∥X(i)−X( j)
∥∥∥

for every X(i) :
∥∥∥X(i)−X( j)

∥∥∥< δ

(5)

This constraint bounds the variation of explanation when the
episodes X(i) and X( j) are similar. Here,

∥∥∥X(i)−X( j)
∥∥∥ indi-

cate the similarity of two episodes.
∥∥∥θ(X(i))−θ(X( j))

∥∥∥ rep-
resents the similarity of the states’ importance. The constraint
above implies that their corresponding states’ importance
should also be similar if the episodes are similar.

To facilitate the computation when optimizing the param-
eters in our proposed method above, we further transfer the
constraint as a regularization term below.

Lθ( f (X(i))) :=
∥∥∥∇X f (X(i))−θ(X(i))

⊤
Jg

X (X
(i))

∥∥∥≈ 0 (6)

Here, Jg
X is the Jacobian of gDNN. This regularization term

also forces the model to act as a linear model locally [3].
Filtering out commonly non-important states. After we
learn the approximation model by using many episodes Γ

gathered from the target agent, we can then use θ(X(i)) to
derive the explanation for each episode. However, before
choosing the critical states by using θ(X(i)), we further filter
out those states that commonly appear in all episodes. Those
states are non-critical to the final reward. If not filtering out
at this stage, they may introduce noise to our explanation.

To this end, we further introduce a filtering mechanism.
This filtering scheme first computes the correlation between
the final reward and each state as follows

s(t) = corr(si,r), (7)

where r represents the batch of r(k) (k = 1,2, · · · ,N). If the
correlation between the final reward and the state is low, it
indicates that the state commonly appears in most episodes
and has no impact on the final reward. Therefore, we do not
consider those least correlated states in our explanation.

4.5 Proposed Explanation Algorithm

Finally, we show the proposed explanation algorithm. As
shown in Algorithm 1, we first initialize the parameters of
three networks (Line 2). Then, we input the training episodes
to the RNN feature extractor H and obtain a latent represen-
tation X , which captures the temporal dependency between
states (Line 4). With the latent representation, we then feed
it into gDNN and θ to predict the final reward (Line 5). Next,
we compute the training loss, which is composed of the mean
square error of the predicted reward and the stability reg-
ularization in Eqn. (6) (Line 6-7). Finally, we conduct an
end-to-end update of the parameters in the three networks to



Algorithm 1 Explanation model training of AIRS.
1: Input: training episodes Γ = (S,r), training epoch K,

constant λ

2: Initialize H(·),θ(·) and g(·)
3: for k=1,2,...,K do
4: Compute hidden representation X = H(S)
5: Compute the predicted final reward based on Eqn. (4)
6: Compute the mean square error loss Lmse = 1

N e⊤e,
where e = f (X)− r

7: Compute the final loss L = Lmse + λLθ, where
Lθ( f (X)) is the regularization term in Eqn. (6).

8: Update H(·),θ(·) and g(·) to minimize L
9: end for

10: Compute step filter m
11: Output: trained model H(·),θ(·), step filter m

Algorithm 2 Explanation generation of AIRS.

1: Input: Testing episode S(i), H(·),θ(·), and m
2: θ(X(i)) = θ(H(S(i)))
3: for t=1,2,...,T do

4: vt =

{
|θ(X(i))t |, if t ∈ m

0 if t /∈ m
5: end for
6: Output: importance score v = (v1,v2, · · · ,vT )

minimize the training loss with a gradient-based optimiza-
tion method (Line 8). After training the networks, we further
compute the step filter in line 10.

As depicted in Algorithm 2, given a new episode S(i), we
use θ(H(S(i))) to assess its initial time-step importance (Line
2). Then, we filter out the non-important states using the step
filter m (Line 4) and derive the step importance score for this
episode.

5 Representative Applications

In recent years, we have witnessed applications of deep re-
inforcement learning (DRL) in various security-sensitive do-
mains. Below, we introduce a set of representative tasks. Then,
in the next section, we assess the performance of our proposed
explanation method in such tasks.
Autonomous Driving. We first consider the application of
DRL in improving driving safety (e.g., [36, 38, 51, 52, 73]).
We use the state-of-the-art autonomous driving framework
MetaDrive [37] as a concrete example. It simulates a driving
environment where a DRL algorithm learns a deep policy
network to navigate a vehicle to a destination in a safe and
fast manner. Specifically, MetaDrive converts the Birds Eye
View (BEV) of the road condition (as illustrated in Figure 3)
as well as the driving vehicle’s surrounding information into
a vector representation, which encodes the vehicle’s current

Figure 3: BEV of Safe Driving—The green rectangle represents
the car controlled by the DRL agent. Its goal is to drive along the
road and avoid road barriers indicated by red squares.

state, including its steering, direction, velocity, and relative
distance to traffic lanes. The policy network takes as input
this state vector and outputs the driving action (i.e., the ve-
hicle’s acceleration, brake, and steering). MetaDrive designs
a set of reward functions. For example, when the driving
agent has a collision with obstacles or violates traffic rules,
MetaDrive assigns a penalty to the policy; on the contrary,
the agent receives a reward when the vehicle arrives at the
destination without any penalty. To prevent the vehicle from
moving slowly or driving in a zig-zag way, MetaDrive also
designs rewards to encourage the vehicle to move forward
and maintain a reasonable speed.
Malware Mutation. In both academia and industry, deep
learning has been widely adopted to detect Android mal-
ware [9, 44, 78, 79, 82]. To evade such detection, recent re-
search has proposed HRAT, a DRL-based malware mutation
method [83]. Unlike the conventional methods that employ
adversarial learning for malware mutation (e.g., [19]), HRAT
relies on a policy network that takes as input the call graph
of the target malware and outputs the corresponding action to
guide the malware manipulation.

Specifically, the action space of HRAT includes “adding
function call”, “rewiring function call”, “inserting methods”
and “deleting methods”. As these actions do not vary the
semantics of the malware, each mutation action generates
a new valid malware variant. Based on whether the variant
circumvents the target malware detector, HRAT assigns a
reward or a penalty to the policy network and updates its
parameters accordingly.
Selfish Mining in Blockchain. Selfish mining [13] is a de-
ceptive cryptocurrency mining practice in which an unlaw-
ful miner withholds its newly mined blocks from the pub-
lic blockchain. This action creates a fork, which is mined
ahead of the public blockchain. The unlawful miner can then
introduce this fork to the network, overwrite the original
blockchain, and steal cryptocurrency from other users.

However, the strategy of determining whether and when to
reveal the fork may significantly influence the reward that the
unlawful miner eventually receives. For example, when an
unlawful miner withholds many newly mined blocks, but the
fork is only slightly ahead of the public chain, the decision
to continue withholding mined blocks for a more extended



period or reveal the fork to the network immediately would
significantly impact the miner’s reward.

To find the best strategy that maximizes a selfish miner’s
reward, recent research [29] has proposed using DRL to learn
a mining policy. The policy network takes the length of the
current public chain and the fork as input and outputs the ac-
tion that an unlawful miner should take. In [55], four unique
actions are defined for an unlawful miner, which include “wait-
ing”, “overriding”, “matching”, and “adopting” (their concrete
meanings deferred to Appendix A). Leveraging this policy
network, the unlawful miner is able to gain a higher mining
reward than following a naive selfish mining strategy.

Network Lateral Movement. Network lateral movement
[8,12,68] describes the process in which an attacker breaches
an enterprise network by exploiting the vulnerabilities to
move from one network node to another. For example, an
attacker often does not have all of an organization’s sensitive
data accessible from their machine; thus, the attacker needs
to move to other machines to access the sensitive data. Previ-
ous works [10, 24, 45, 58] studying lateral movement usually
simulate an enterprise network as a set of network nodes con-
nected in a particular topology (pre-defined by the simulation
user). Besides, they also pre-define a set of vulnerabilities that
the attacker may exploit to move from one node to another.
Meanwhile, a defender monitors the network activity to de-
tect the attacker’s presence and further prevent the attack. The
attacker’s goal is to take ownership of the enterprise network
without being caught by the defender.

To study how efficiently the attacker is able to achieve
this goal, recent research has proposed using DRL to learn a
policy network to represent the optimal attack strategy [45].
Starting from one infected node, the attacker consults with
the policy network to determine the next target node and the
vulnerability to exploit; after breaching the next node, the
attacker repeats this procedure until partially or fully taking
control of the network. To train the policy network, a reward is
assigned after each successful breach. The reward is a floating
number representing the intrinsic value of the breached node
(e.g., a SQL server has a greater value than a test machine).
In addition, taking ownership of the whole network can bring
a huge positive reward.

Figure 4 illustrates the procedure above. Given a compro-
mised Windows 7 node under the attacker’s control, the policy
network takes as input the partially observable network (i.e.,
the nodes directly connected to the compromised node) and
outputs an action the attacker is suggested to take on the com-
promised node (e.g., exploiting the vulnerability in the SMB
file-sharing protocol). After taking the action, the attacker
successfully moves on to a Windows 8 node. From there the
attacker further follows the suggested action of using cached
credentials to sign in to another Windows 7 machine and
exploits the IIS remote vulnerability to own the IIS server.

Windows 7
Initial agent node

Windows 8 Windows 

IIS server

SQL DB

SMB

HTTP

SQL

SMB hack

RDP using 
credentials

IIS vul-
nerability

SQL using 
leaked 
connection 

Transitions taken by
the agent

Static edge (given by
the environment)

Figure 4: Network Lateral Movement—Example of lateral
movement in a network.

6 Experiments

In this section, we conduct an empirical evaluation of AIRS
in the four representative tasks: selfish mining [29,55], lateral
movement, autonomous driving, and malware mutation. We
begin by introducing the experimental setting. We choose the
CyberBattleSim [45] released by Microsoft to simulate the
lateral movement environment and pick two environments
with different topologies: chain-graph and random-graph.

6.1 Experimental Setting

6.1.1 Baseline Methods

Recall that our goal is to derive explanations that connect
individual steps and the final reward (cf. Section 3). To this
end, with episodes sampled from the agent, we may train
an explainable approximation model to predict the reward
and derive explanations from this model (like AIRS). For this
approach, we choose to append a self-explainable attention
module [6] or a linear regression (LR) module to the RNN fea-
ture extractor as our baselines.1 After we train the explainable
model on the collected episodes, we directly derive expla-
nations from it. Comparing AIRS with these two methods
evaluates the effectiveness of our explanation model design.
Alternatively, we may use a non-explainable approximation
model to fit the episodes and combine it with a post-training
method to obtain the explanations. Here, we use a typical
RNN model to fit the episodes and select three widely used
post-training gradient-based methods, Vanilla gradient [63],
Integrated gradient [65], and Smooth gradient [64], to explain
the trained RNN model. In addition, when value functions are
available, one could also use the state/action value function
to determine the state importance. As such, we also include
two value function-based explanation methods, Highlights [4],
and Trust [31] as our baseline approaches. Due to the space
limit, we put some experimental details in Appendix B.

1Note that LR gives the global explanation and we apply the same expla-
nation for all traces.



6.1.2 Evaluation Criteria

We follow [75] to use three criteria to evaluate AIRS and
baseline methods: fidelity, stability, and efficiency.
Fidelity: Recall that in this work we focus on step-level expla-
nation, which identifies the steps with the greatest influence
on the final reward (i.e., the critical steps). The fidelity of ex-
planation measures the accuracy of the identified critical steps.
In selfish mining and network lateral movement, the episodes
are relatively short. We thus only focus on the most impor-
tant single step, which is computed by the importance score
θ(X) within the selected sub-sequence. In safe driving and
malware mutation, the episodes are fairly long while a single
step does not have an obvious influence on the final reward.
We thus attempt to identify the most critical sub-sequences.
We use a sliding window to step through all the filtered time
steps, and then choose the sub-sequence with the highest av-
erage importance score. The width of the sliding window is
5% of the episode length. After identifying the most impor-
tant step(s), we use the metric of Relative Reward Difference
(RRD) to evaluate the fidelity of the explanations. We replace
the action(s) at the selected time step(s) with random action(s)
and then measure the average reward change. We use Rorigin
and Rselect to denote the reward before and after the action
manipulation. Due to the varying reward design in different
applications, the magnitude of reward change may vary. Thus,
we use random selection to normalize the reward change for
each application: we randomly select the step(s) and perform
the manipulation, with the reward change denoted by Rrandom.
Formally, RRD is defined as:

RRD =
|Rselect −Rorigin|
|Rrandom −Rorigin|

(8)

Here we use the absolute value because we would like to con-
centrate on the time step that makes the greatest contribution
towards the final reward, regardless of positive or negative
contribution. In other words, the critical time step can lead to
a huge reward or incur a great penalty. We test 500 episodes
for each application to calculate the average RRD. We repeat
this experiment 10 runs and compute the mean and standard
deviation of the resulted average RRDs. Note that a greater
difference represents a better explanation. If the reward differ-
ence is similar or even smaller than the difference with respect
to random selection, then the explanation is ineffective.
Stability: In addition to high fidelity, the explanations gen-
erated in security-sensitive applications also need to be sta-
ble. That is, the chosen critical steps should remain the same
across different runs in order to be useful. The possible fluctu-
ations may come from two sources: the randomness of model
initialization and the randomness of explanation calculation.
For the first source, the random parameter initialization of the
underlying deep neural network model may result in differ-
ent explanation results provided by the model. For the sec-
ond source, for example, the Integrated gradient and Smooth

gradient introduce additional randomness by selecting the
noise [64] or baseline [65] randomly during computing the
explanation. Both sources of randomness may influence the
stability of the generated explanations. To measure the inter-
pretation stability, for each interpretation method, we generate
explanations in 10 runs with different random seeds and mea-
sure the average L1 distance of the results between each pair
of runs. For each application, we normalize the distance by
the length of the episode.
Efficiency: An efficient method should take a reasonable
training time and should be able to provide a real-time ex-
planation (during testing time) as the DRL agent is running.
Thus, we evaluate the efficiency from two aspects. First, we
compare the training time of explanation methods that re-
quires to train an approximation model (other than Highlights
and Trust). Then, we measure the time cost of generating ex-
planations for 500 episodes. In both experiments, we measure
the average time cost in 10 runs.

6.2 Experiment Results

Fidelity Evaluation. Figure 5 compares the explanation fi-
delity of AIRS and alternative methods in different applica-
tions. We have the following observations.

First, AIRS achieves the highest RRD in all applications,
showing its superior fidelity. Recall that RRD measures the
reward difference after manipulating the critical time step, the
higher RRD shows the higher importance of selected steps
since replacing them with random actions could bring a great
change in the final reward. This verifies the effectiveness of
our explanation methods.

Second, compared with AIRS, other model-based methods
all have lower fidelity scores, while the gaps vary across differ-
ent applications, showing much larger margins in chain-graph
and safe driving than selfish mining and malware mutation.
This may be explained by the episode lengths in different
applications. Recall that the episode length of selfish mining
is the shortest and the episode lengths of safe driving and
malware mutation are rather long. For long episodes, one
needs to derive importance scores from long outputs of the
RNN model. Simple linear regression or a single attention
module may not work well when the output is long [25], while
gradient-based methods suffer from the saliency vanishing
issue [33, 34] for long outputs. Meanwhile, AIRS uses a deep
neural network θ(·) to process the RNN outputs and is able
to extract the importance score more precisely.

Third, similar to the model-based baseline approaches,
value function-based methods also have lower fidelity scores
than AIRS. As discussed in Section 3, this is because value
functions model the contributions of states to the agent’s ex-
pected total return rather than the associations between states
and the final reward in each episode. As such, they cannot
provide highly faithful explanations to individual episodes.

Finally, we find that although AIRS has the highest RRD



Figure 5: Fidelity Evaluation Results—“Chain-Graph” and “Random-Graph” represent two different topology setups for the lateral
movement application [45]. A higher RRD score indicates better fidelity of the explanation. The horizontal dotted line represents RRD=1. If
the RRD score is lower than 1, the explanation method would fail to pinpoint the critical time step in that application. The error bar in the
figure shows the standard deviation.
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Figure 6: Stability Evaluation Results—We show the average
L1 distance in each pair of run and the standard deviation. LR, as a
global explanation method, has the L1 lowest distance which means
LR is the most stable method, followed by AIRS.

in the Random-Graph application, the gap is relatively small
compared with other applications. We list the RRD and reward
difference in Table 6 for a more detailed comparison. it is
observed that while the advantage ofAIRS in RRD is marginal
over other methods, its reward difference is much higher than
alternative methods, indicating that AIRS is able to identify
the critical steps more precisely.
Stability Evaluation. We show the stability evaluation results
in Figure 6.2 We have the following observations.

First, LR has the highest stability (i.e., the lowest average
pair-wise L1 distance between different runs) among model-
based methods. This is expected because LR offers a global
explanation: if the weights of linear regression across different
runs are similar, the given explanations remain consistent.

Second, AIRS and the attention method share the highest
stability next to LR. This can be explained by that in both
methods, once the approximation model is fit to the collected
data, the explanation is derived by feed forwarding the model.
Thus, the fluctuation is only raised by the randomness of the
model training. We also observe that AIRS is slightly more
stable than the attention method. This is attributed to the

2Note that value function-based methods do not introduce any randomness
and thus always have zero L1 distances. We do not show them in the figure.

stable regularization term described in Equation (6).
Finally, among all the methods, the Integrated gradient and

Smooth gradient show the lowest stability, which is especially
evident in safe driving and malware mutation with a long
episode. This may be explained by that for gradient-based
methods, the instability not only comes from the randomness
during model training but is also raised by the randomness
of computing explanations after model training (e.g., Smooth
gradient needs to randomly add noise while Integrated gra-
dient needs to randomly choose the baseline). Through the
experimental results, we verify that AIRS has high stability.
Efficiency Evaluation. The results of the efficiency evalu-
ation are shown in Table 1. As we can first observe from
the table, AIRS has a comparable training time with other
model-based methods in all applications. This verifies that
our model design does not introduce additional training cost
over existing approximation models. Regarding the genera-
tion cost, as also shown in Table 1, AIRS is much faster than
most baseline methods except Vanilla gradient and Attention.
Specifically, value function-based methods have much higher
generation time cost on most applications. This is because
they need to traverse the entire episode to compute the value
for each state. For games with a long episode, these methods
are expensive. Regarding Integrated gradient and Smooth gra-
dient, they are slow because of the need to perform iterative
expensive back-propagation to calculate the average gradient.
Through the experimental results, we can verify that AIRS
has high training and generation efficiency.

In addition to the above experiments, we also compare
AIRS with a naive solution that exhaustively randomizes the
agent’s action at each state to assess state importance. As
detailed in Appendix C, AIRS significantly outperforms this
method in explanation efficiency.

6.3 Ablation Study

We conduct an ablation study on selfish mining and safe
driving to investigate how the hyperparameters influence the
performance of these explanation methods.



Method
Selfish Mining Chain-Graph Random-Graph Safe Driving Malware Mutation

Train(s) Generate(s) Total(s) Train(s) Generate(s) Total(s) Train(s) Generate(s) Total(s) Train(s) Generate(s) Total(s) Train(s) Generate(s) Total(s)

Vanilla 103.46 32.42 135.88 156.45 34.67 191.12 406.95 35.34 442.29 732.83 42.69 775.52 193.19 40.33 233.52
Integrated 103.46 160.38 263.84 156.45 167.90 324.35 406.95 180.39 587.34 732.83 261.65 994.48 193.19 250.67 443.86
Smooth 103.46 185.25 288.71 156.45 189.45 345.90 406.95 192.32 599.27 732.83 280.37 1013.20 193.19 276.40 469.59

Attention 158.08 24.11 182.19 186.49 22.16 208.65 433.23 23.27 456.50 768.84 26.34 795.18 204.17 24.74 228.91
LR 105.94 - 105.94 155.73 - 155.73 402.54 - 402.54 742.56 - 742.56 196.43 - 196.43

Highlights – 56.98 56.98 – 389.69 389.69 – 798.52 798.52 – 1053.63 1053.63 – 321.59 321.59
Trust – 57.35 57.35 – 385.88 385.88 – 783.75 783.75 – 1059.82 1059.82 – 320.34 320.34

AIRS 125.58 18.36 143.94 173.64 20.43 194.07 423.59 24.76 448.35 764.69 25.94 790.63 200.33 24.87 225.20

Table 1: Efficiency Evaluation Results—We show the average time cost of training approximation models and generating explanations.
Value-based methods do not have the training time cost. Three gradient-based methods share the same approximation model and thus have the
same training cost. LR gives the global explanation and once the regression model is trained it has no time cost to generate explanations.

(a) vary length of filtered subsequence (b) vary number of perturbed steps

Figure 7: Ablation Study Results—In (a), we vary the length of the filtered sub-sequence and record the RRD scores. When the length is
close to 0, most of the states are filtered out and only a few states are left. When the length is approaching 100% of that before filtering, few
states are filtered out. When it is exactly 100%, there is no filter. In (b), we vary the number of selected critical steps and perturb them.

First, we study the relationship between the fidelity and
the length of the filtered sub-sequence. As discussed in Sec-
tion 4.4, we use a step filter to filter out the common non-
important states before identifying the critical steps. Here,
we vary the length of this sub-sequence and record the RRD
scores in Figure 7. For selfish mining, when the length is
in a reasonable range (e.g. between 1/3 and 2/3), the RRD
scores remain high and is not very sensitive to the change
in the length. In this case, the explanation methods perform
well and have high fidelity. However, when the length is ap-
proaching 0, the RRD scores drop quickly below 1. This is
because most of the states are filtered out, including those
important states. It also shows that using correlation alone
cannot capture the critical step well. Finally, we can find
that as the length is increased to 100%, the RRD scores also
drop quickly for all explanation methods. In this condition,
no pre-selection is used and the explanation performance is
degraded. In safe driving, only AIRS shows a similar trend,
whereas other methods have little variations under different
lengths. This indicates they cannot correctly select the critical
steps with or without the step filter.

Second, we would like to analyze the performance when
more steps are identified. For selfish mining, we select the
most important sub-sequence with one to six steps following
the sub-sequence identification for safe driving and malware
mutation. For safe driving, we perturb up to 30% steps. As
we can observe from Figure 7, generally, when the number of
perturbed steps is increasing, RRD scores drop quickly. When

perturbing up to 6 (or 30%) steps, RRD scores of all explana-
tion methods are below 1 for both applications, which means
they are ineffective. Although AIRS remains the highest RRD
score, it also fails in this case. One possible reason is raised
by the sensitivity of such applications. They can not tolerate
random actions in a long sub-sequence, which will lead to
early termination, regardless of whether the sub-sequence is
critical or not. Thus the explanation for those security appli-
cations should focus on the single-step or a short sequence,
which is also helpful for expert analysis.

7 Utility of Interpretation

In this section, we discuss the utility of the interpretation gen-
erated by AIRS. With a series of case studies, we illustrate
how the generated explanation can help with security applica-
tions that depend on deep reinforcement learning (DRL). We
group the case studies into three main utility scenarios:

• Agent Behavior Understanding. The goal is to provide
a deeper understanding of the agent behaviors using the
explanation results. By highlighting the critical steps in a
long sequence of actions, AIRS can help developers to ex-
amine whether the agent behavior follows their intuitions
or design goals.

• Policy Debugging. Through explanation, developers can
debug the errors of the policy network, and potentially
improve the performance of the DRL agent by patching



Episode Reward Cost Success Rate

Before Retrain 278.94 0.1 0.8
After Retrain 298.90 0.0 1.0

Diff. 7.15% ↑ 100% ↓ 25% ↑

Table 2: Retrain Results—Retrain results in safe driving after
interpretation.

problematic states.

• Application Debugging. When the generated explanation
contradicts with human understanding, it may indicate
bugs at the application level (e.g., the design of the DRL
agent). This could be more serious compared with specific
problems in the learned policies.

In the following, we present case studies for different applica-
tions, prioritizing the interesting and unexpected results.

7.1 Agent Behavior Understanding
We use safe driving and network lateral movement to demon-
strate how explanations can help developers better understand
the model behavior. Figure 8 shows two examples. The color
bar indicates the importance score (the importance score in-
creases as the color turns from yellow to red).
Safe Driving. Figure 8(a) shows one example to explain why
a particular driving episode is successful. In this example,
AIRS highlights a few time steps when the vehicle is passing
by traffic barricades and deems them as the most important
steps. This explanation matches with human intuition as the
success of the episode can be attributed to the success of
avoiding collisions when passing by these traffic barricades.
Hypothetically, if the vehicle were to collide with the obsta-
cles, it will not only get the collision penalty, but also lose the
arrival reward even if it can arrive at the destination. Overall,
the explanation shows the expected behaviors of the agent.
Lateral Movement. Figure 8(b) shows an example of the lat-
eral movement against a random-graph. It illustrates how the
agent discovers and connects to the nodes in the network. The
red nodes are controlled by the attacker and the blue nodes are
newly discovered nodes at a given time. The solid arrows rep-
resent existing successful connections and the dashed arrow
represents discovering new nodes. The explanation generated
by AIRS indicates the last two time step is the most critical
steps. Recall that in the reward design, taking ownership of
the whole network can bring a huge positive reward. With
this in mind, this interpretation conforms to the application
design. The DRL agent tries to take ownership of the whole
network to receive this huge reward.

7.2 Policy Debugging.
Next, we present case studies for safe driving and selfish
blockchain mining to perform policy debugging with AIRS.

State ID State Patch Result Positive Impact

1 [2,1,2] +0.187 Yes
2 [3,3,2] -0.443 No
3 [4,3,2] +0.271 Yes
4 [4,3,0] -0.240 No
5 [3,2,2] -0.064 No

Final (Patch states 1 and 3) +0.301 Yes

Table 3: Patch results—Patch results in selfish mining without
retraining. The patch result is the average reward change compared
to the original average reward.

Safe Driving. For safe driving, we try to use AIRS to improve
the learned policies. The high-level idea is to use AIRS to
identify critical time steps and only re-train the model on
these critical time steps. The intuition is that if the agent can
perform better during these critical time steps, they should
have a much better overall performance.

More specifically, we replay the collected episodes and
sample the most important time steps identified by AIRS to
form a dataset for retraining. We test the retrained agent for
500 episodes and show the average result in Table 2. The
average episode reward is the sum of the driving reward, and
the average cost means the driving penalty for collisions and
violations of traffic rules. The success rate is the ratio of
successful runs (where the vehicle arrives at the destination
without collision) out of 500 runs. We observe that before re-
training, the agent has a small probability to receive a driving
penalty and fail to achieve the goal. However, after retraining
on the selected critical time steps, the agent can drive more
safely without collision or traffic rule violation. The success
rate becomes 100% and the mean episode reward is much
higher than before. The result confirms the utility value of
retraining over selected critical time steps.
Selfish Mining. Different from safe driving, we show that we
can utilize the explanation to debug the agent directly without
retraining the model. The high-level idea is to analyze the
critical steps and then introduce hard-coded rules to patch the
errors of the agent. Table 3 lists 5 most frequently selected
states by AIRS, sorted by the frequency (e.g., state [2,1,2] has
the highest frequency). While these states are considered im-
portant, they can either have a positive influence or a negative
influence on the final result. To improve the agent, we first ex-
amine these states one by one to determine the direction of the
influence if we patch it. More specifically, for each state listed
in the table, we run a simple experiment. When the agent sees
this given state, instead of taking the action computed by the
policy network, we let the agent take a random action that
different from the agents original action. When the agent sees
other states, it still takes the actions suggested by the policy
network. We record the average reward and compare it with
the original reward. The reward change is reported in Table 3.
As shown in the table, patching the action for state [2,1,2]
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(a) Safe Driving: the green rectangle represents the car controlled by the DRL agent and the red squares represent the obstacles on the road
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(b) Lateral movement: The attacker starts with one node and makes lateral movements. The red nodes are compromised nodes and the blue nodes
are newly discovered nodes by the attacker. The solid arrow denotes a successful connection and the dashed arrow denotes discovering new nodes.

Figure 8: Example Interpretations—Example interpretations for safe driving and lateral movement. The colored bar under each figure
denotes the importance score of the time step derived by AIRS. The importance score is higher when the color goes from yellow to red.

... ...

(a) Original Episode

... ...

(b) Manipulated Episode

Figure 9: Example Interpretation for One Episode in Lateral Movement—The top figure shows the original episode and the
step framed with a red rectangle is the critical time step identified by AIRS. The bottom figure shows the manipulated episode. We replay the
episode until reaching the state with the blue background and replace the next action with a random action. Then the following actions are still
computed by the policy network.

and [4,3,2] can bring positive reward changes. To this end,
we design the final solution which is to patch both states. This
leads to a higher reward change (+0.301) as shown in the
last row of the table. In this way, we can simply improve the
agent’s performance without retraining. Note that it is possi-
ble to leverage available domain knowledge to guide action
selections and further improve the patching performance.

Compared to the re-training mechanism introduced above,
patching is more lightweight. With limited computational
resources, for tasks with small/discrete action spaces, patching
is an alternative to re-training. However, for policies with
large/continuous action spaces, it is hard to randomly search
for proper patching action without guidance.

7.3 Application Debugging

By analyzing critical time steps, we can obtain a better un-
derstanding of the agent behavior. However, sometimes the
identified time steps are not well aligned with human under-
standing or the application design. Using the case of network
lateral movement, we illustrate how the explanation results

can help to inform and correct application design mistakes.

Lateral Movement. During our analysis, we find the expla-
nations of certain episodes are counter-intuitive. Figure 9(a)
shows one of such examples. For this run, AIRS selects one
intermediate time step as the most important time step. To
confirm this state is indeed critical, we perform the fidelity
evaluation as shown in Figure 9(b). The action in the selected
critical state (with blue background) is replaced with a random
action. After that, the DRL agent continues to take actions
based on the policy network for the following states (yellow
background). Interestingly, after replacing a single action for
the selected state, in the new episode, the agent successfully
took over the entire network and achieved the goal.

If we take a closer look at the original episode in Fig-
ure 9(a), we find that the agent keeps launching attacks against
the already compromised nodes instead of further discover-
ing new nodes, and thus fails to take control of the whole
network. AIRS successfully identifies this “trap” state as the
most important contributor to the final result.

We further analyze this “trap” state, and eventually corre-
late this behavior with two potential bugs in the reward design



Reward Design Chain-Graph Random-Graph

Original 89.3% 80.5%

Patch 1 99.3% 92.1%

Patch 2 99.6% 78.5%

Patch both 99.7% 92.5%

Table 4: Evaluating Different Reward Designs—For the
lateral movement application, Patch 1 represents adding the time cost
for any action. Patch 2 represents canceling the reward for attacks
against already owned nodes. Patch both means the reward design
combining both Patch 1 and Patch 2.

of the application. First, in the original reward design, we find
that the time cost is not added to the total reward. Second, sur-
prisingly, we find that launching attacks between two already
owned nodes can bring in rewards. For these two reasons,
the agent would repeatedly launch remote or local attacks
even when the attack fails or the target node is already owned.
We suspect these bugs were introduced due to developers’
oversight during the reward function design.

We fix these bugs in the reward design and re-run an ex-
periment to evaluate the correctness of our modifications. We
train a DRL agent with the same parameters under the new
reward designs for both the chain-graph and random-graph.
We report the average attack success rate over 500 runs and
the results are shown in Table 4. Although patching the sec-
ond bug leads to a slight drop in the attack success rate in
the random-graph3, by patching both bugs, the attack success
rate is much higher than the original reward design for both
graphs. The result confirms the correctness of the patch.

After discovering these bugs in the reward design, we filed
two bug reports to the development team (the numbers are
omitted for anonymous submission). Microsoft have acknowl-
edged our discoveries and labeled them as the enhancement
to their simulator. This case study demonstrates how AIRS
can help to debug and improve the application designs.

8 Discussion

Robustness of AIRS. To the best of our knowledge, [30] is
the only existing attack against DRL explanation methods. It
targets feature-level explanations and cannot be applied to our
method. Like typical DNNs, AIRS can be vulnerable to data
poisoning attacks. However, it is not clear how to define the
proper threat model since the defender has full control over
the environment and policy. Besides, as discussed in [59], the

3One possible explanation is that, without fixing the first bug (time
penalty), only fixing the second bug (by canceling the reward for attack-
ing already owned nodes) will make the reward much sparser. In other words,
only few actions can receive the non-zero reward from the environment. In
the chain-pattern graph, there are only two types of vulnerabilities. However,
in the random-graph, there are more vulnerability types (i.e., much larger
search space) which leads to degradation of agent performance.

effectiveness of data poisoning attacks is influenced by many
factors. Due to the ambiguities and uncertainties, we believe
it requires non-trivial efforts to design proper data poisoning
attacks against AIRS and leave it as our future work.
Connection to Robust DRL. As shown in Section 7.2, AIRS
could explain and patch policy errors. Similarly, it can also
be used to explain attacks and improve policy robustness. For
example, existing work [77] develops an attack that trains an
adversarial agent to disturb and fail a victim agent. AIRS can
be used to explain why the victim agent fails and patch its
weaknesses against the adversarial agent.
Transferability. AIRS is designed to train one explanation
model for one policy. As such, The transferability of AIRS
depends on the transferability of the policy. With a new en-
vironment, if the policy needed to be retrained, the explainer
also needs to be retrained too. It does not jeopardize our prac-
ticability because the cost of training DNNs is much lower
than training DRL policies.
Generalizability. As is specified in Section 4.1, our problem
scope is DRL tasks that can be modeled as a single-agent
Markov Decision Process (MDP). This could cover most ex-
isting DRL-based security applications. In addition, a few
other security applications involve more than one agent (i.e.,
multi-agent autonomous driving systems [54, 76]). These ap-
plications are beyond our scope. As part of future work, we
will investigate extending AIRS to these multi-agent envi-
ronments. Note that we mainly focus on security applica-
tions in this work. For non-security applications with similar
explanation requirements and RL models, our method may
be applicable. But it cannot be applied to most non-security
tasks with different environment models. For example, the
GO game has a multi-agent extensive-form RL model, which
is fundamentally different from our model. As such, AIRS
cannot be adopted to explain DRL agents in this task (e.g.,
AlphaGo [61, 62]).

9 Conclusion

DRL has become a commonly adopted method for many secu-
rity applications. To generate an explanation for DRL-driven
security applications, we propose a new explainable method
that establishes the relationship between the states and the
final reward. We show that the explanation derived from our
proposed approach can be potentially helpful for security pro-
fessionals to understand the DRL model’s behaviors better.
Besides, we show that a high-fidelity explanation could be
used to improve the effectiveness of DRL-driven security
applications. With these observations, we conclude that ex-
plainability establishment could potentially become a driving
force for the extensive adoption of DRL in security. As part
of our future work, we intend to explore the utility of our
proposed method from the user’s perspective. Besides, we
will also extend our method to other applications, exploring
its effectiveness in (non-)security contexts.
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A Additional Descriptions of Security Applica-
tions

Autonomous Driving. This application simulates a road en-
vironment where static and movable obstacles are randomly
placed on the road. The self-driving agent’s goal in this en-
vironment is to arrive at the destination safely. To guide the

agent achieving this goal, the reward is designed as a sum-
mation of two components: (1) A reward that encourages the
agent to drive forward and fast; (2) A reward that penalizes
the agent when it violates traffic rules (i.e., Each time the
agent violates a traffic rule, it receives a reward of −1, and If
the vehicle can arrive at the destination without violation, it
is rewarded by +20).
Malware Mutation. The agent’s goal is to bypass the target
malware detection model f (·) with minimal manipulations
of malware graphs while maintaining the malware’s function-
ality. According to [83], to maintain functionality, only four
actions are allowed: “adding call function call”, “rewiring
function call”, “inserting methods” and “deleting methods”.
To bypass f (·) with minimal manipulations, the reward func-
tion is designed as follows:

R =

{
1 i f bypassing f (·)
− (∆Nedge +∆Nnode) otherwise

(9)

where ∆Nedge and ∆Nnode represent the number of edges and
nodes manipulated. As we can easily tell from the above
equation, to maximize its reward, the agent has to find the
minimal manipulations required to bypass f (·).
Selfish Mining in Blockchain. In this application, the goal
of a selfish miner is to maximize its rewarded blocks (i.e.,
the blocks mined by it and is connected to the longest chain).
To do so, the agent could not only publish its mined blocks,
but also hide them privately and publish them later. More
specifically, the agent’s action is designed as follows:

• Adopting. When the attacker chooses “adopting”, the
blocks in the private chain will be discarded, and the
attacker accepts the public chain. This action is always
feasible.

• Waiting. The “waiting” action is also always feasible
that the attacker does nothing but keeps mining the block.

• Overriding. If a> h, the attacker can override the blocks
in the public chain with his secret blocks.

• Matching. The attacker publishes conflicting blocks of
the same length as that of the public chain. It is not
always feasible. We will discuss the different conditions
for “matching” below.

The state of this environment is the current status of
the blockchain, and it is represented by a 3-element tu-
ple (a,h, f ork). Here, a and h denote the length of the at-
tacker’s chain and the public chain after the latest fork.
The element f ork ∈ {relevant, irrelevant,active} is a ternary
value representing the status of the fork. For example, state
(a,h,relevant) means the newest block was mined by the
honest miner. The previous state is (a,h−1, ·) and if a > h,
the attacker can choose to “match”. Take another example,
the state is (a,h, irrelevant), the previous state is (a−1,h, ·)



Selfish Mining Chain-Graph Radom-Graph Safe Driving Malware Mutation

Agent DQN DQN DQN PPO DQN
θ(·) FC(8,4,1) FC(8,4,1) FC(32,8,1) FC(32,16,8,1) FC(8,1)
h(·) FC(8,4,1) FC(8,4,1) FC(32,8,1) FC(32,16,8,1) FC(8,1)

Epoch 50 100 100 200 100

Table 5: Experimental setups: DRL algorithm, the neural network architecture, and the number of training epochs used for AIRS
approximation model in each application. Note that “Chain-Graph” and “Random-Graph” represent two different topology
setups for the lateral movement application [45].

Explainer Random Vanilla Integrated Smooth Attention LR Highlights Trust AIRS

Reward Difference 1443.98 1395.43 1392.88 1345.50 1487.34 1394.87 1491.11 1421.42 1539.05

RRD 1 0.96637 0.96461 0.93179 1.03003 0.96598 1.03264 0.98438 1.06584

Table 6: Fidelity result for the random-graph network setting for lateral movement.

and the newest block was mined by the attacker. In this case,
“matching” is infeasible since the honest minders have already
received the h-th block. The active status of f ork means that
the attacker has already chosen to do the “matching”.
Network Lateral Movement. This application has two topol-
ogy setups (i.e., environments): “Chain-Graph” and “Random-
Graph”. In the Chain-Graph network, the nodes are connected
in a chain. Each node can only be accessed by the prior node
and only has access to the next node. For each type of node,
the vulnerabilities are also fixed (e.g., the vulnerability of the
Windows node is “ScanExplorerRecentFiles” and the vulner-
ability of the Linux node is “ScanBashHistory”). The reward
for connecting to the new node is also fixed as +100. When
the attacker takes ownership of the whole network, it gains a
great positive reward +5000 for the successful lateral move-
ment. Instead, the Random-Graph network topology is gener-
ated randomly, and vulnerabilities of nodes are also defined
at random. Nodes with the same type do not share the same
vulnerabilities in the Random-Graph network. The values of
each node are also randomly assigned, and thus, the rewards
for connecting the new nodes are also random. They range
from 10 to 100.

B Additional Experimental Setting

For the applications of selfish mining, network lateral move-
ment, autonomous driving, and malware mutation, the default
episode lengths are set as 15, 100, 1000, and 500, respec-
tively, which are chosen according to the average length of
the episodes. For a fair comparison, we apply the same state
filter for all methods. We reserve a continuous sub-sequence
with the highest correlation and filter out other states. The
length of this sub-sequence is 50% of the episode length. We
discussed how the length of this sub-sequence influences the
explanation performance in Section 6.3. The DRL algorithm
with the architectures and number of training epochs used for
AIRS approximation model in each task are summarized in

Table 5, where FC stands for the fully-connected layers. In
all cases, we train the approximation model using the Adam
optimizer with learning rate l = 1e− 3 and the coefficient
λ = 1e− 6 for the regularization term in Section 4.4. All
of our experiments are run on a server with 2 AMD EPYC
7702 64-Core CPU Processors and 4 NVIDIA RTX A6000
GPUs. For reproducibility, we have released our codes at
https://github.com/sherdencooper/AIRS.

C Exhaustive Search

The exhaustive search seems to be a simple method to identify
the critical steps in the episode. However, when doing the ex-
haustive search, the episode needs to be replayed many times
to identify the important step. When the episode length is long,
the time cost is not acceptable to derive nearly real-time expla-
nations. Moreover, when the interaction with the environment
is time-consuming, the exhaustive search is not feasible be-
cause it needs a lot of interactions with the environment to
generate the explanations when the DRL agent is running.
We compare the efficiency between the exhaustive search and
AIRS in Table 7. We can find that even in the selfish mining
application, the time cost is unacceptable. In complex appli-
cations, it takes days to generate the explanation. Also, if the
explainer is asked to identify multiple critical sub-sequences
in the episode, the time cost for exhaustive search is even
larger since it cannot capture the dependency between sub-
sequences. Therefore, we typically do not use the exhaustive
search in the deployment.

Explainer Selfish(s) Chain(s) Random(s) Safe(s) Malware(s)

AIRS 143.94 194.07 448.35 790.63 225.20

Exhaustive Search 1074.72 7690.46 13524.75 512175.64 97106.32

Table 7: Time cost evaluation for generating explanations
for 500 episodes between AIRS and the exhaustive search.
The time cost for AIRS contains both training time cost and
generation time cost.

https://github.com/sherdencooper/AIRS
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