
Three Lessons From Threema: Analysis of a Secure Messenger

Kenneth G. Paterson
Applied Cryptography Group,

ETH Zurich

Matteo Scarlata
Applied Cryptography Group,

ETH Zurich

Kien Tuong Truong
Applied Cryptography Group,

ETH Zurich

Abstract
We provide an extensive cryptographic analysis of Threema, a
Swiss-based encrypted messaging application with more than
10 million users and 7000 corporate customers. We present
seven different attacks against the protocol in three different
threat models. We discuss impact and remediations for our
attacks, which have all been responsibly disclosed to Threema
and patched. Finally, we draw wider lessons for developers
of secure protocols.

1 Introduction

Threema is a Swiss encrypted messaging application. It has
more than 10 million users [32] and more than 7,000 on-
premise customers [35]. It is among the top Android apps in
Switzerland, Germany, Austria, Canada, and Australia in the
“paid for” category [8]. It has undergone independent security
audits [38, 37]. Along with Signal and Telegram, Threema
was widely advertised as a more secure alternative to What-
sApp [56, 24, 57] in the wake of Facebook’s acquisition of the
company [24] and of the January 2021 change in WhatsApp
Terms of Service [31, 61]. Threema is the messaging app of
choice of the Swiss Government and of the Swiss Army [25],
where its use is mandated for all official communications [59].
Threema is also used by German politicians, including the
current Chancellor, Olaf Scholz [52]. The company behind
Threema makes strong claims for its security [34] and adver-
tises its Swiss, non-US jurisdiction as a virtue.1

In general, secure messaging protocols are designed to
provide end-to-end encrypted communication between two
(or more) parties. Modern designs like Signal achieve not only
confidentiality, integrity, origin authentication and verification
of correct ordering of the exchanged messages, but also:

• session key security: compromise of a session key or
ephemeral values in one session should not affect the
security of keys in other, parallel sessions;

1Quoting from [32]: “Threema is 100% Swiss Made, hosts its own servers
in Switzerland, and, unlike US services [. . .] it is fully GDPR-compliant. . .

• fine-grained perfect forward secrecy (PFS): compro-
mise of session keys in an on-going session should not
affect security of earlier keys and exchanged messages
in that session and compromise of long-term keys should
not undermine the security of completed sessions; and

• post-compromise security (PCS): after a compromise
of all key material, it should be possible to regain secu-
rity after a protocol execution, provided the adversary is
passive during that execution.

Such properties have been established for Signal for two-party
messaging [14, 41, 15, 21].

At the same time, the current landscape of messaging apps
includes a wide variety of solutions, with different trade-offs
with respect to centralization and federation, company juris-
diction, ease of use, openness of design and code, and security
guarantees provided by the underlying cryptographic proto-
cols. The absence of a standard for secure messaging means
that many of the contenders feature bespoke cryptographic
protocols with unclear security guarantees [7, 4, 6]. Indeed,
these security guarantees are often much weaker than those
provided by Signal, which can be seen as a providing a “gold
standard” for secure messaging.

1.1 Our Contributions

We provide the first in-depth security analysis of the cryptogra-
phy used in Threema, focussing on its protocols for securing
end-to-end (E2E) and client-to-server (C2S) communications,
for user registration, and for backing up users’ private keys.
We also examine the interactions between these protocols.

Our analysis uncovers seven different attacks against
Threema, in three different threat models (as depicted in Fig-
ure 1). One of the attacks was discovered before us by Krebs,
disclosed to Threema and patched in December 2021 [33].
We include it here for completeness. We produced proof-of-
concept implementations for most of the attacks to verify that
they work. We summarise the threat models and attacks next.

In the “external actor” threat model we consider attacks by
outsiders with no special access to Threema servers or clients.
Here, we found two attacks:

1. An adversary who is able to compromise a single
ephemeral value used by a client in the C2S protocol
is able to permanently impersonate that client to the
server, and through this, access the metadata for all E2E-
protected messages. This strongly violates the expected
security properties of a well-designed protocol.

2. An adversary is able to register the server’s public key as
a user public key and, by tricking the victim into sending
a single carefully crafted message in the E2E protocol,
can obtain a value that enables it to again permanently
impersonate the victim to the server in the C2S protocol.

In the “compromised Threema” threat model we consider
attacks by an adversary who has gained access to Threema
servers. Such access should not enable breaking the end-to-
end security guarantees. Here, we describe three attacks:

3. Due to peculiarities in nonce-handling in the E2E proto-
col, the adversary is able to arbitrarily and undetectably
reorder and/or delete messages sent from any client to
any other client.

4. Again, due to how nonces are handled in the E2E pro-
tocol, Threema clients must keep a local database of all
nonces used in sending and receiving messages. This
database is deleted when a user reinstalls the app or
changes devices. After such an action, the adversary can
replay old messages. Because of poor key separation,
the adversary can also send back to user Alice any old
messages originally sent by Alice.

5. For registration, a client proves possession of its private
key by encrypting a server-chosen message to a server-
chosen public key using the E2E encryption mechanism.
This process is invisible to the user. This allows a mali-
cious server to create “Kompromat”: a potentially incrim-
inating message that can be delivered at any later time
to a target user. This is the attack that we rediscovered.

In the “compelled access” threat model, we consider attacks
by actors with direct access to a user’s device, for example
law enforcement officers or border guards. We present two
attacks in this setting:

6. A trivial attack exploiting a Threema feature allowing
users to easily export a backup of their long-term pri-
vate key protected under a chosen password. Because
of Threema’s design, this key can be used to clone a
Threema account and, through this, silently access all
the user’s future messages. In conjunction with a compro-
mised Threema server, all old messages can be accessed
too. This attack is only possible when the app and mobile
device are both unlocked.

1. External Actor

3. Compelled Access 2. Compromised Threema

Figure 1: In the threat models we consider, the attacker can
have access to network communication (1), the Threema
servers (2) or the victim device itself (3).

7. A more sophisticated attack exploiting one of Threema’s
backup mechanisms; this attack does not (by default)
require an unlocked app (but does need an unlocked
mobile device). It exploits Threema’s use of “compress-
then-encrypt” when creating the backup, in combination
with the ability of the adversary to inject chosen strings
into the backup file through Threema nicknames. By ob-
serving the size of the backup file over many operations
with chosen nicknames, the adversary can recover the
user’s private key, with the same consequences as above.

Attacks 1 and 2 do not, by themselves, leak plaintext, but
they target metadata that, under normal circumstances, only
the server should be able to access. Furthermore, they break
the PFS guarantees of Threema, allowing plaintext to be re-
covered if the long-term key of a user is ever exposed. Attacks
3, 4, and 5 show that the Threema server has the power to
undetectably disrupt conversations, despite the E2E proto-
col (which, however, still guarantees message confidentiality).
This requires users to put excessive trust in the server. Attacks
6 and 7 allow an attacker to obtain future plaintexts, as well
as recover past plaintexts that are not protected by the C2S
layer; however, they do require access to an end device. Our
attacks are not directly caused by Threema’s lack of PFS and
PCS, but they showcase how such a deficiency can amplify
the impact of smaller attacks. The attacks range in practicality.
For example, attack 6 is feasible for an unskilled attacker that
has access to the device for a very short time, while attack 1
is more of theoretical interest. See Table 1 for a summary of
the attacks’ prerequisites and impacts.

In totality, our attacks seriously undermine Threema’s secu-
rity claims. In particular, we show that Threema’s approach to
PFS (i.e. only providing it at the message transport layer) is in-
sufficient even against a network attacker. All the attacks can
be mitigated, but in some cases, a major redesign is needed.
We discuss appropriate mitigations and the remediations un-
dertaken by Threema, after presenting the attacks.

We also draw three wider lessons for developers of secure
protocols: using secure libraries for cryptographic primitives
does not on its own lead to a secure protocol design; beware
of cross-protocol interactions; and adopt a proactive rather
than reactive approach to secure protocol design.

1.2 Related Work

An independent early analysis of the Threema client-to-server
protocol, dating back to the closed-source Threema version
1.3, was carried out by Ahrens [2], and was the basis for
an open-source implementation by Berger [10]. We analyse
the current version (version 4.831) of the Threema Android
application, and base our analysis of the protocol on the 2020
open-source release of the Threema app [29] and the Threema
security whitepaper [30].

Rösler et al. [54] considered the end-to-end security of
group chats in various secure instant messaging services, in-
cluding Threema. They observed the lack of forward secrecy
and post-compromise security for Threema group chats, and
described two attacks: a replay attack on group messages, and
leakage of group membership information to non-members.
Both attacks have since been patched by Threema.

Cremers et al. [18] investigated the security of Threema
(and other apps) in a black-box post-compromise setting, by
cloning a victim device and observing whether the clone re-
tains access to exchanged messages. The authors note that
Threema prevents the clone from accessing messages ex-
changed while the clone is offline. While this result holds in
a black-box setting, the weaknesses we uncover in Threema’s
client-to-server protocol enable even an adversary with lim-
ited technical proficiency to intercept messages if given access
to the full cloned state of the victim.

Threema itself commissioned two security audits [38, 37].
Both audits focused on the Android and iOS apps for Threema,
and do not touch on its cryptographic security beyond con-
firming that the implementation of the protocol matches the
description provided in the Threema whitepaper [30].

Soatok [58] highlighted Threema’s lack of forward secrecy
and transcript consistency in groups as deficiencies of the
app. The lack of transcript consistency is not yet resolved
by Threema, and, as [58] argues, can be combined with the
lack of robustness of the XSalsa20-Poly1305 AEAD cipher
to obtain “Invisible Salamander”-style attacks [19, 3]: an
attacker can send attachments in group chats that decrypt to
different plaintexts for different chat participants.

1.3 Ethical Considerations

We only used the description of Threema in [30] and the client-
side source code to conduct our analysis. We did not attempt
any reverse-engineering of the server behaviour other than
what could be observed passively through normal client in-
teraction. We performed experiments only with test accounts
under our full control; no other user accounts were targeted.
We reduced as much as possible the number of messages
sent to Threema servers, and we avoided sending malformed
messages to servers so as to avoid triggering DoS attacks.

We did purchase a “Threema Gateway” account (with
Threema ID *LYTAAAS) and registered a public key under

that account identical to the Threema server public key (obvi-
ously, without knowing the corresponding private key). This
step was necessary in order to validate one of our attacks
(Section 3.1.2). It did not violate any terms or conditions of
the service, so far as we could determine.

We disclosed the results in this paper to Threema on
03.10.2022, proposing a 90-day disclosure period. They ac-
knowledged receipt also on 03.10.2022. We agreed on the
details of the coordinated disclosure: a first batch of mitiga-
tions would be released in Q4 of 2022, while further mitiga-
tions would be released in Q1 of 2023, along with a post on
Threema’s blog. The first batch of mitigations were included
in Threema 5.0 for both Android and iOS2 on 29.11.2022. To
further remediate the issues we reported, Threema included
their custom protocol, Ibex, in the same release. The new
protocol aims to provide forward secrecy at the E2E layer.3

Threema also updated their whitepaper [30] on 15.12.2022 to
add discussion of the forward security feature. We have not
audited this new protocol. We agreed to publicly disclose our
findings on 09.01.2023. The current publicly released patches
address all of our attacks.

In one of our attacks, we leveraged a vulnerability in a
library, Zip4j, used by Threema to create backup zip files. We
disclosed our findings to the author of Zip4j on 08.10.2022,
proposing a 60-day disclosure period. A CVE advisory for the
bug (CVE-2023-22899) was published on 10.01.2023 [47]. A
fix was released in version 2.11.3 on 26.01.2023.

1.4 Paper Structure

In Section 2 we introduce the Threema architecture and pro-
vide a description of Threema’s core cryptographic protocols
and subsystems. Section 3 presents our attacks, grouped by
threat model. We propose mitigations in Section 4. We discuss
three wider lessons for secure protocol designers in Section 5.

2 Threema Architecture and Protocols

The design of Threema can be studied as the ensemble of
several interoperable cryptographic protocols, all sharing the
same user state and cryptographic primitives. The functional
core of Threema consists of an end-to-end (E2E) protocol,
which employs the long-term cryptographic secrets of the
users to encrypt messages, and a client-to-server (C2S) pro-
tocol, a secure channel protocol that protects these messages
in flight from clients to the Threema servers. Because of the
composition of these two protocols, each message is wrapped
in two layers of encryption: an inner end-to-end layer, and
an outer client-to-server layer. We depict the composition in
Fig. 2. Also relevant to our analysis and attacks are the regis-
tration protocol, data backup and contact discovery system.

2https://threema.ch/en/whats-new
3https://threema.ch/en/blog/posts/ibex

https://threema.ch/en/whats-new
https://threema.ch/en/blog/posts/ibex

Alice Bob

C2S C2S

Server

E2E

Figure 2: E2E and C2S protocol composition. Clients estab-
lish a secure channel with the server using the C2S protocol
(in yellow) to send and receive E2EE messages from other
users, which are relayed via the server (in green).

We first describe the cryptographic primitives used by
Threema and establish our notation. Then we analyze the
registration protocol, the E2E protocol, and the C2S proto-
col. Finally, we briefly cover the backup mechanisms. For
completeness, we also include a description of the contact
discovery mechanism in Appendix A.

2.1 Cryptographic Primitives and Notation
The protocols used by Threema rely on standard crypto-
graphic primitives. The main tool used is the crypto_box
abstraction provided by the Networking and Cryptography
Library (NaCl) [11] which consists of a Curve25519 Diffie-
Hellman key agreement, followed by encryption with an Au-
thenticated Encryption with Additional Data (AEAD) algo-
rithm. The AEAD algorithm used by NaCl is the nonce-based
XSalsa20-Poly1305. As a convention, long-term keys will be
indicated with the same letter as the symbol for the user, with
the public key in uppercase and the private key in lowercase
(e.g. user A has private key a and public key A). We reserve
(x,X), (y,Y), and (z,Z) for values used as ephemeral keys.

Let X25519(·) denote the NaCl function that takes a private
key and a public key, and outputs a shared secret byte string.
In NaCl, this string results from applying the hsalsa20 key
derivation function to the byte representation of the shared
elliptic curve point and a fixed nonce. Internally, the X25519
algorithm operates on the Curve25519 elliptic curve: the al-
gorithm uses 32-byte scalars as private keys and computes
the scalar multiplication of the chosen base point of the curve
g with the private key to obtain a 32-byte public key. We will
use multiplicative notation for such operations: e.g. secret
key a has a corresponding public key A = ga for some fixed
generator g. We denote by (x,X)←$ KeyGen() the key gener-
ation procedure of Curve25519, which outputs a private key x
and a public key X = gx. Let K be an AEAD key; we denote
by EK(m;n) the encryption of message m under key K using
nonce n, and by DK(m;n) the corresponding decryption op-
eration. If the decryption fails, we assume that the algorithm
returns a special value ⊥. This may happen, for example, if
the ciphertext has been tampered with, or if the wrong key

Client A Client B
(sk,pk) = (a,A = ga) (sk,pk) = (b,B = gb)

KA ,B ← X25519(a,B) KA ,B ← X25519(b,A)
n←$ {0,1}128

noncesA ← noncesA ∪{n}
ctxt← EKA ,B (ptxt;n)

src||dst||. . .||n||ctxt

if n ∈ noncesB : discard
ptxt← DKA ,B (ctxt;n)

noncesB ← noncesB ∪{n}

Figure 3: User A sending ptxt to user B with the E2E protocol.
The set noncesU represents the nonce database of user U.

was used to decrypt.
We denote by k←KDF(K,σ,τ) a Key Derivation Function

taking some key material K, a salt σ, and a label τ as input,
and producing key k as output. Threema uses a KDF based
on the Blake2b hash function [55].

2.2 Registration Protocol

In order to create a new account and register it with the
Threema server, each user generates a Curve25519 key pair
(a,A). The entropy for the generation of the key pair is taken
from system randomness, as well as random user input which
is processed and mixed with the former to obtain the 32-byte
private key a. The client later runs a registration protocol
with the server to prove knowledge of a. This is done via a
challenge-response exchange run over a TLS-protected con-
nection: the client sends A to the server. The server replies
with an ephemeral public key X and a message m. The client
computes K = X25519(a,X) and AEAD-encrypts m using K
and a fixed nonce (“createIdentity response.”) to create
a response. If this response decrypts correctly and yields m as
plaintext, the server accepts the registration and then issues a
new Threema ID, storing it along with the public key of the
user in the Threema database.

2.3 Threema End-to-End Protocol

The Threema E2E protocol, depicted in Figure 3, is con-
cerned with guaranteeing end-to-end security of messages.
Every user Ui of the protocol has an alphanumeric 8-character
identity IDUi (the Threema ID, or simply ID), a private
key ui, and a corresponding public key Ui = gui . Messages
sent from user Ui to user U j are encrypted under KUi,U j =
X25519(ui,U j) = X25519(u j,Ui), a static Diffie-Hellman
key. Note that the same key is derived by user Ui for U j as
the one from user U j for Ui: the key KUi,U j is bidirectional.

A message m is first serialized into a byte string, and pre-
fixed with a byte that indicates the message type. The specific
serialization method depends on the message itself. For in-

src dst msg-id

msg-id

timestamp

timestamp

flags 0x00 metadata-len

src-nick

src-nick metadata

KDF E EK

nonce

nonce

ctxt

ptxt

Figure 4: Structure of an E2E encrypted message. The input to the KDF is the key material K. The salt and label are implicitly
input into the KDF, taking values “mm” and “3ma-csp”, respectively.

stance, a text message would be directly encoded as a byte
string representing the UTF-8 string, and prefixed with 0x01.
A random amount of PKCS7 padding, between 1 and 254
bytes, is appended to the message.The resulting plaintext
ptxt is then encrypted under K using the AEAD algorithm
with a random nonce, nonce, to obtain a ciphertext ctxt.

To create the final message packet, the following informa-
tion is prepended to the ciphertext: the Threema ID of the
sender src, and of the receiver dst, a random 8-byte message
ID msg-id, the timestamp at which the message was sent
timestamp, the nickname of the sender src-nick, the nonce
nonce and an optional metadata value. To construct this
metadata, the app takes the message ID, the nickname of the
sender and the timestamp, concatenates them, and encrypts
the resulting plaintext under KDF(K,“mm”,“3ma-csp”), us-
ing the same nonce value. Since the presence of the metadata
box is optional and it is not cryptographically bound to the
ciphertext, it can always be stripped off and its length set to
0 by an adversary. In Fig. 4 we depict the structure of an
E2E-encrypted packet in Threema.

When sending an E2E message, the associated random
nonce is stored in the device’s local storage in order to avoid
reusing it. If a generated nonce matches a nonce in the local
storage, up to five attempts are made to sample a new nonce.
When receiving a message, the app checks if the correspond-
ing nonce has already been seen: if so, it rejects the mes-
sage.If the nonce is otherwise fresh, the app tries to decrypt
the message, verifying the MAC tag as part of the process.
If successful, the app stores (a hashed representation of) the
nonce. This storage of nonces is aimed at preventing trivial
replay and reflection attacks (which would otherwise be pos-
sible since the key KUi,U j is bidirectional) and hedges against
the possibility of a faulty randomness source.

Remarkably, the E2E protocol does not provide any for-
ward secrecy, since it only uses the long-term keys of the users,
with no ephemeral values being exchanged. This means that
a malicious server could take advantage of its position to exe-
cute a “store now, decrypt later” attack. This has supposedly
been fixed with the introduction of the Ibex protocol.

2.4 Threema Client-to-Server Protocol

The Threema C2S protocol is concerned with establishing
a secure channel between a client and the server to protect
messages in flight, shielding metadata and the non-forward
secret E2E protocol messages from a network adversary. Note
that this protocol is only used for messaging: other function-
alities such as registration, backup, and contact matching are
implemented over TLS.

Threema’s C2S protocol is a novel secure channel protocol,
broadly comparable in function and construction to the TLS
protocol. It assumes a reliable transport, and can be decom-
posed as a handshake subprotocol, in which the server and the
client interact to establish a session key, and a transport sub-
protocol, where the server and the client use the established
session key to exchange messages.

The C2S protocol requires that each user connects to the
server from only one device at any given moment. If two
devices try to connect to the server at the same time, the older
connection is dropped in favour of the newer one. Before
terminating the connection, an error message is sent to the
device, informing it that another device has connected with
the same Threema ID.

2.4.1 Handshake Subprotocol

The handshake subprotocol runs between the server S (with
long-term key pair (s,S = gs)) and a client U (with long-term
key pair (u,U = gu)). Fig. 5 gives a pictorial representation
of the protocol. We refer to the figure for the naming of the
messages below. We can assume that the server and the client
already know each other’s public keys: the client knows the
server’s key as it is pinned in the app and the server receives
the client’s key at registration time.

The client first generates an ephemeral key pair (x,X = gx)
and a 16-byte value c called the client cookie, and sends (X ,c)
to the server (client-hello). After receiving the client’s
ephemeral public key and the client cookie, the server gen-
erates its own ephemeral key pair (y,Y = gy) and a 16-byte
value called the server cookie. It then computes the first shared
symmetric key of the exchange K1 = X25519(s,X), mixing

Client U Server S
(sk,pk) = (u,U = gu) (sk,pk) = (s,S = gs)

(x,X)←$ KGen()
CU ←$ {0,1}128

X , CU

[client-hello] (y,Y)←$ KGen()
CS ←$ {0,1}128

K1← X25519(x,S) K1← X25519(s,X)
ctxt1← EK1 (Y ∥CU)CS ,n,ctxt1

[server-hello]Y ∥C′U ← DK1 (ctxt1)
if C′U ̸=CU : abort
K2← X25519(u,S)
K← X25519(x,Y) K← X25519(y,X)
vouch← EK2 (X)

ctxt2← EK(IDU ∥n′ ∥vouch∥CS)

ctxt2

[login]

IDU ∥n′ ∥vouch∥C′S ← DK(ctxt2)
if CS ̸=C′S : abort

U ←DB[IDU]

K2← X25519(s,U)
X ′← DK2 (vouch)
if X ′ ̸= X : abortEK(0128)

[login-ack]

Figure 5: The Threema C2S Protocol (Handshake Subpro-
tocol). For the sake of brevity, nonces are omitted from this
diagram. The table DB is an abstraction for the database that
maps Threema IDs to public keys. Message names are taken
from the Android code and depicted in square brackets.

the long-term key of the server with the ephemeral key of
the client, and uses it to encrypt its ephemeral public key
concatenated with the client cookie, using a random nonce n.
The server sends the resulting ciphertext, along with its own
cookie (server-hello).

The client and server cookies prevent replay attacks and
are used to initialize client and server counters. For each
counter, the most significant 16 bytes of the counter are set to
the respective cookie, while the lower 8 bytes function as a
monotonically increasing value. Subsequent AEAD nonces
for the exchanged messages are drawn from these counters.

When the client receives the message, it recomputes K1 and
checks if the ciphertext decrypts correctly and if the client
cookie in the plaintext corresponds to the one that the client
previously generated. If either check fails, it will abort the
protocol. The client and the server derive two additional keys:
K, obtained by combining the two ephemeral key pairs (x,X)
and (y,Y), and K2, obtained by combining the two long-term
key pairs (u,U) and (s,S). The key K is used in the transport
subprotocol as the session key. The long-term symmetric key
K2 is used by the client to create the so-called vouch box
vouch← EK2(X ;n′) using a random nonce n′. The vouch box
is used by the server to authenticate the client, and to bind the

client’s ephemeral key X to the client’s identity.
The vouch box is concatenated with IDU and the server

cookie CS , and encrypted using the session key K (login).
The server decrypts the message with K and tries to decrypt
the vouch box with K2. If the decryption fails or the value
contained in the vouch box does not correspond to the client’s
ephemeral key, the server will abort the protocol. Otherwise,
the server sends a final confirmation message composed of 16
zero bytes, encrypted with the session key K (login-ack).

Taken as a standalone protocol, the C2S handshake could
be formally analysed using, for example, the extended Canetti-
Krawczyk security model [42] or the MSKE security model
of [26] that was used in [14, 15] to analyse Signal. We will
(informally) use these models when relating the attacks in
Section 3 to the formal security properties they violate.

2.4.2 Transport Subprotocol

In the transport subprotocol, the client and the server exchange
messages, encrypted using the session key K. The client and
server nonces are derived from the same (respective) coun-
ters inherited from the handshake subprotocol, ensuring that
handshake messages cannot be used as transport messages
(and vice versa). If a decryption fails, the entire connection
is dropped. This prevents message reordering and message
deletion by a network adversary, since either attack would
result in a party decrypting with a nonce different from the
correct one, and then the AEAD integrity guarantees would
ensure that an error is generated on decryption.

When the connection is dropped, the client attempts to
reconnect, with up to five reconnection attempts being made.
If these all fail, the app will display an error to the user and
will require a restart to be able to connect to the server. If two
devices are actively trying to connect to the server, they will
keep interfering with each other until one of them relinquishes
the connection. This is relevant for any attacker that wants to
attempt an impersonation attack, since using all five attempts
will alert the user that another device is trying to connect to
the server with the same Threema ID.

While the connection is alive, the server will send messages
that are meant for the user encrypted under the session key K.
The client replies with an ACK in response to each message.
If the client does not send an ACK, the server will try to send
the message again when the client later reconnects.

2.5 Threema Safe
Threema allows a user to activate, at any point in time, the
Threema Safe feature. This allows the user to backup their
long-term private key, their nickname, the list of their contacts
and additional account information on the Threema servers.
Note that the backup does not store any message history.

When the Threema Safe is first set up, the user chooses a
password for their backups. A minimum length of 8 characters

Table 1: Summary of the attacks, listing the prerequisites and their impacts. The last column focuses on the ability of an
attacker to obtain plaintext after executing the attack.

Netw
ork

Atta
ck

er

C2S
Eph

. K
ey

Lea
k

User
Acti

on

Unlo
ck

ed
Pho

ne

No UI Loc
k

No Pass
ph

ras
e

Serv
er

Com
pro

mise

Lea
k in-

meta
da

ta

Lea
k ou

t-m
eta

da
ta

Brea
k of

PFS

C2S
M

itM

Perm
an

en
t C

2S

Im
pe

rso
na

tio
n

Con
ve

rsa
tio

n

Int
eg

rit
y Brea

k

Lon
g-t

erm
ke

y lea
k

Rec
ov

ers
Plai

nte
xt

C2S Key Compromise ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓a ✓ ✓a ✓ ✓ ✗ ✗
Vouch Box Forgery ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✗ ✗

Reordering/Deletion ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ –
Replay/Reflection ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ –

Kompromat ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ –
Threema ID Export ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓

Backup Side-Channel ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓

Prerequisites Impact
a As long as the client keeps using the revealed ephemeral key (i.e. up to one week)

is enforced, and the password is checked against an offline list
of weak passwords. The app derives two 32-byte strings, the
Backup ID BID and the Backup Key BK, using scrypt with
the password as input and the Threema ID of the user as salt.
For every backup, the app creates a JSON payload containing
all the data to be backed up and serializes it into a byte string,
which is then compressed using gzip. Finally, the app encrypts
this compressed JSON string with XSalsa20-Poly1305 under
BK with a random nonce. The resulting ciphertext is sent to
the server over a TLS connection.

The server will store ciphertexts indexed by BID, suppos-
edly without any other information related to the user. In
the Threema whitepaper [30], the developers claim that this
process is designed to make it impossible for the Threema
Safe server to distinguish which backup comes from whom
by looking at the uploaded data. We note, however, that when
a backup is created the app is likely to have an active C2S
protocol session, which reveals the Threema ID of the user.
By linking the two connections coming from the same IP, the
server can learn the identity associated with a given backup.

A backup is scheduled to happen every day or, in case the
previous backup failed to be uploaded, as soon as the app is
restarted. This happens even if access to the app is protected
by a PIN or biometric login.

2.6 Other Backup Methods

Threema provides two additional methods to save personal
data: the first one is called a Threema ID export and the second
one is called a data backup.

The Threema ID export requires that the user provide a
password, which is used to derive a 32-byte symmetric key
by using the PBKDF2 algorithm with a random 8-byte salt.
This key is used to encrypt the ID of the user, as well as their
long-term private key using XSalsa20 with a zero nonce (but
with no integrity protection). The result is base32-encoded
and given to the user in order to be saved outside of the app.

A data backup consists of an encrypted zip containing

various files. The identity file stores the Threema ID and
the long-term key of the user; the contact file stores Threema
IDs, nicknames, and public keys of contacts in CSV form,
and for each chat, a file named with the Threema ID of the
correspondent stores the chat history. The zip is encrypted
following the WinZip AE-2 specification [16].

We note that, because WinZip does not hide the file names,
this encrypted zip leaks information about with whom the
user has been communicating. Due to the length of each file
being known, an attacker may also infer the length of the
conversation from the encrypted zip.

3 Attacks on Threema

We consider three threat models: first, an external actor who
can monitor communications between a device running the
app and the Threema servers; second, an actor that has com-
promised the Threema servers; third, an actor that can take
control of the device for a short period of time.

The first of these models corresponds to the standard adver-
sary for secure network protocols, often called the Dolev-Yao
adversary. We refer to it as the external actor threat model.

Concerning the second model, any reasonable security anal-
ysis must consider the possibility that the messaging server
is malicious: national security agencies and hacking groups
are tasked with penetrating servers like those run by Threema
in order to gain persistent access to concentrated amounts
of sensitive data. It is then reasonable to ask what security
guarantees remain for users in the event of such a breach. This
is especially so for a system that claims to provide end-to-end
security. We refer to this model as the compromised Threema
threat model.

We call the third model the compelled access threat model.
It is relevant, for example, in the case of border searches of
electronic devices, when protesters are detained by police
forces and searched for incriminating evidence, or in the set-
ting of intimate partner violence [27]. We may subdivide this
setting into two sub-cases: one where the app is locked, and

C2S - Ephemeral compromise

Client U Server S
(sk,pk) = (u,U) (sk,pk) = (s,S)

(x,X)←$ KeyGen()

X

(y,Y)←$ KeyGen()

EK1 (Y)

K← X25519(x,Y)
K2← X25519(u,S)

EK(. . . , EK2 (X))

C2S - Impersonation

Attacker E Server S
(sk,pk) = (. . .) (sk,pk) = (s,S)

X

(y′,Y ′)←$ KeyGen()

EK1 (Y
′)

K′← X25519(x,Y ′)

EK′ (. . . , EK2 (X))

Figure 6: Attack 1: two C2S sessions. The attacker compro-
mises an honest session by revealing the ephemeral private
key x, from which they can compute the session key K and
obtain the vouch box EK2(X) (in orange, Left side). The val-
ues are replayed by the attacker in a new session (blue boxes,
Right side). Note the lack of session independence.

the other where it is unlocked (we will always assume the
device itself is unlocked).

We next introduce our attacks, grouped by threat model.
Table 1 summarizes our findings.

3.1 External Actor Threat Model

Our first two attacks allow the attacker to impersonate a vic-
tim in the C2S protocol. The core of both attacks lies in the
structure of the vouch box vouch. This is used in the protocol
to authenticate clients but contains only client-chosen fresh-
ness. By either replaying (Attack 1) or forging (Attack 2) a
user’s vouch box, the attacker can authenticate itself as that
user to the server. These impersonation attacks are permanent,
despite the fact that the attacker never learns the value of the
victim’s long-term key.

Our attacks show that the weak notion of forward secrecy
achieved by Threema is insufficient: by using either of our
attacks, the adversary gains access to E2E-encrypted mes-
sages, which use long-term keys only. The reuse of ephemeral
keys which we describe in the first attack further weakens
the guarantees given by forward secrecy, since an attacker
gains access to messages up to a week in the past. Comparing
this design to Signal’s, we note that in the latter each E2E
message is encrypted with a different key, providing a much
stronger, fine-grained notion of forward secrecy.

3.1.1 Attack 1 (C2S Ephemeral Key Compromise)

Assumptions: We assume that the attacker has discovered
one of the ephemeral keys x used by the client in a C2S
handshake session. This capability is commonly referred
to in formal security models as ephemeral key reveal, and
it can arise in practice from a randomness failure or via a

side-channel attack. We further assume that the attacker has
passively recorded the corresponding C2S session.

Execution: We now show that, with the knowledge of x
and the C2S session transcript, the attacker can create new
sessions with the server in which they impersonate the victim
and can tamper with the flow of messages.

As highlighted in Figure 6, the attacker has all the material
necessary to derive K1 and decrypt the login message from
the recorded C2S protocol run, from which it can recover the
value of vouch. Now the attacker initiates a new run of the
C2S protocol, playing the role of the victim user. In this run
it replays the ephemeral public value X . A new session key
K′ known to the attacker is generated (the server should send
a fresh Y ′ in its server-hello but the attacker still knows
x). The attacker can then reuse vouch (without learning K2)
when constructing its response in the login message, which
makes the handshake complete successfully. We have verified
that the server does not detect such replays.

Impact: Since vouch can be reused repeatedly, this attack
(involving the loss of just a single ephemeral value) allows
the attacker to permanently impersonate the victim user to
the server, enabling the attacker access to all E2E-encrypted
messages meant for the victim. Despite the E2E layer of en-
cryption, this still reveals the metadata information in all com-
munications sent to the victim, allowing the attacker to learn
with whom and when the victim has been communicating.

Most importantly, this attack leads to a break of the forward
secrecy property that the C2S protocol is intended to provide.
Indeed, the E2E-encrypted messages that the attacker now
sees are encrypted only using long-term keys. Full decryption
of those messages becomes possible if the victim’s long-term
key is later revealed (for example through attacks 6 or 7).

In addition, the attacker gains the opportunity to selectively
drop messages from the conversation by deciding which mes-
sages to ACK to the server. If a message is ACK-ed by the
attacker, it will not be received by the victim when they next
connect to the server, virtually deleting that message from the
conversation on the victim’s end.

We stress that, as long as the attacker and the victim do not
connect to the server at the same time, this attack is not de-
tectable by the victim. If they were to connect at the same time,
the attacker could observe error messages from the server to
learn this. At this point, the attacker can relinquish the con-
nection in order to avoid detection.

This attack shows that, for the C2S protocol, ephemeral
keys are as important to protect as long-term keys. This is a
very strong assumption to have to make in order to guarantee
security for a key exchange protocol.

We note that a similar vulnerability was present in the
Off-The-Record (OTR) protocol [51]. The authors of [51]
highlight the consequent lack of the session independence
property in OTR: “the exposure of ephemeral session-specific
secrets should have no bearing on the security of other ses-

sions”. Threema’s C2S protocol suffers from the same issue.

Non-ephemeral Ephemerals: An additional problem with
the C2S protocol lies in how the ephemeral keys are han-
dled client-side: if the app is never restarted, then the same
ephemeral key is used by the client for up to seven days be-
fore generating a new one. Leaking such a re-used ephemeral
key then allows an attacker to also impersonate the server to
the user by forging a server-hello using the server’s public
key and the compromised ephemeral key (this is known as
an ephemeral Key Compromise Impersonation attack in the
literature). In turn, this implies that the attacker has the power
to also read the outbound E2E-encrypted messages of the
victim that are meant for the real Threema server. This reveals
additional metadata, allows the attacker to drop arbitrary mes-
sages and allows a network adversary to execute attacks that
would otherwise be in the “compromised Threema” threat
model, such as the ones described in Sections 3.2.1 and 3.2.2.
If ephemeral keys were to be freshly generated for each hand-
shake, this problem would be confined to the single compro-
mised session. However, by reusing the same ephemeral key
for a long time, the effect of this attack is heavily amplified.

Finally, there is similar reuse of ephemeral keys on the
server side. We noticed that whenever the same ephemeral
key X is used multiple times by a user within a short span of
time, the server will use the same ephemeral key Y as well. An
attacker is thus able to force the same session key to be used
for a long time by regularly connecting to the server with
the same value X . We note that compromising said server
ephemerals would allow the impersonation of multiple users
to Threema for an indefinite period of time, as long as the
attacker has recorded C2S handshakes involving the revealed
ephemeral keys. In fact, it suffices for the attacker to replay
the client-hello, inducing the server to reuse a previously
revealed key y. As the attacker can compute the session key,
they can create a new login message, which contains an old
vouch box, thus completing the handshake.

In order to test all these weaknesses, we created a Python
script which, given a valid transcript of a C2S handshake and
the client ephemeral key used, can impersonate the user to the
server. The script shows all the metadata of incoming mes-
sages and can drop arbitrary messages from the conversation.

3.1.2 Attack 2 (Vouch Box Forgery)

An alternative route to achieve the same goal as the previous
attack is to forge a new vouch box containing an ephemeral
key X for which the adversary knows the private value x. This
is feasible due to a cross-protocol interaction between the E2E
and the C2S protocols. The consequence is that the attacker
again gains the ability to permanently impersonate the victim.

Assumptions: The attack requires two steps. In the first
step, the attacker E has the victim use the public key S of
the C2S protocol server when communicating with E in the
E2E protocol. In the second step, the attacker, now acting as a

E2E - Vouch Box Forgery

Client U Attacker E
(sk,pk) = (u,U) (sk,pk) = (?,S)

KU,E ← X25519(u,S)

EKU,A (0x01∥σ∥0x01)

= EK2 (Z)

C2S - Impersonation

Attacker E Server S
(sk,pk) = (. . .) (sk,pk) = (s,S)

Z

(y′,Y ′)←$ KeyGen()

EK1 (Y
′)

K′← X25519(z,Y ′)

EK′ (. . . ,EK2 (Z))

Figure 7: Attack 2: a cross-protocol interaction of an E2E and
a C2S session. The attacker claims the public key of the server,
and knows a keypair of the form (z,Z = 0x01 ∥ σ ∥ 0x01).
They convinced the victim U to send σ to them as a E2E
text message (in blue, Left side). The attacker can now start a
session of the C2S protocol (Right side) where they use the
“ephemeral” keypair (z,Z) and the corresponding vouch box
EK2(Z) (in blue) in order to authenticate as U to the server.

Threema user, has the victim user send a specifically crafted
text message to the attacker in the E2E protocol. Under normal
circumstances, these actions should not lead to an attack: if
the victim sends a message encrypted against the server’s
public key, then the attacker should not be able to decrypt it,
nor use it for other purposes. Furthermore, sending an E2E
message should not compromise security of the C2S protocol.

We will show two different methods to implement the first
step of the attack. In the first method, we use part of the
infrastructure of Threema to create a new account which has
the server’s public key S as its own public key. In the second
method, we leverage a vulnerability in a dependent library
used by the Android version of Threema.

Execution: The attacker’s objective is to forge a vouch
box vouch for this key X that would allow the attacker to
authenticate as the victim in the C2S protocol. Let (u,U) be
the long-term key pair of the victim. Assume that the first
step of the attack has already been executed, meaning that,
whenever the victim wants to send a message to the attacker,
they will use their private key u and the server’s public key S to
encrypt their message. Assume also that the attacker manages
to find a private key x such that the corresponding public key
X = gx has the following form: a 0x01 byte, followed by a
string σ composed of 30 printable UTF-8 characters, followed
by another 0x01 byte. If the victim sends σ as a text message
to the attacker in the E2E protocol (for example, via social
engineering, e.g. sending a special code to win a prize), this
would result in the victim deriving a key K∗ = X25519(u,S)
and encrypting the message. Since σ is sent as a text message,
the ciphertext will include 0x01 as the first byte, followed by
the string σ and then PKCS7 padding at the end. The attacker
hopes to obtain a ciphertext c = EK∗(0x01 ∥σ ∥ 0x01;n) =
EK∗(X ;n) (for some nonce n). This has probability 1/254 of
working, since this is the probability of obtaining 0x01 as a

privkey: UErBPgAAAAAAMAAz
bWEtMi0yMjEyMTkt
MDMtMDAyMAA=

pubkey: AXU5ajbfkydqauCk
ltS7Xt+DMdebVzot
zIE73KFSQQE=

Figure 8: Attack 2 in practice: on the left, a suitable keypair
(base64 encoded). The public key bytes 1 to 31, also encoded
in the QR code, all consist of printable UTF-8 characters.
On the right, the *LYTAAAS Threema gateway account (since
revoked), with the hijacked public key of the server. User U
sending the contents of the QR to *LYTAAAS as a message
will allow *LYTAAAS to authenticate to Threema as U.

PKCS7 padding. We note that K∗ here is actually equal to K2,
the key that would be derived by the victim during the C2S
protocol and used in creating a vouch box. Because of this,
by construction, the ciphertext c that was created and sent to
the attacker is thus a valid vouch box vouch for X . Since the
attacker knows the corresponding x, the attacker can now use
(x,X) and vouch to authenticate to the Threema server as the
victim. The attack is depicted in Figure 7.

Finding a good X: Creating a suitable key X is feasible,
simply by randomly sampling x and computing X = gx until
X has the desired form. We have empirically estimated the
probability of each trial being successful in finding a good X
as being ≈ 2−51. Thus, after 251 trials, the success probability
would be 0.63. We implemented this approach, using some
batch inversion optimisations to reduce the cost of coordinate
conversions. We found a key of the correct form after 250.0

trials. In total, this required approximately 8100 core-days
across a variety of computational clusters available to us. The
results are shown in Figure 8. We used this key in our experi-
mental environment to demonstrate that the attack works in
practice. We note that this is a one-time cost: once a suitable
key is found, it can be reused to target any user.

Claiming the server’s public key: We now describe two
methods allowing an attacker to claim S as their long-term
public key, the first step in the attack.

Our first method exploits the fact that Threema provides a
paid API, the “Threema Gateway”, for companies to interface
with the Threema messaging system automatically. When
registering a new account, the user is required to provide a
public key. The gateway, however, does not check (1) if the
user has the corresponding private key and (2) that the key

does not correspond to the server’s public key S.4 This allows
the creation of an account which has the public key of the
server as its own. We created such a Threema account under
the Threema ID “*LYTAAAS”.5

Our second method uses a vulnerability in one of the de-
pendencies that Threema has on the Android version of the
app for creating data backups (described in Section 2.6). The
library used by Threema to create zip files is called Zip4j
[43]. This library possesses a bug where the MAC is not
checked when decrypting the zip file, if certain conditions are
met. This is the case whenever a Threema backup is restored,
meaning that any tampering with the zip would not be de-
tected. In the context of Threema, this allows an attacker that
has write access to the encrypted zip to modify the contacts
file within it, allowing it to overwrite their public key with
the server’s. For example, a user might choose to save their
zip file in shared storage (e.g. a cloud service, or a folder
on a computer which the attacker can access), believing it to
be both encrypted and integrity-protected. While this second
method does not exploit a vulnerability in Threema per se, a
more robust design would have prevented this bug from being
escalated to client impersonation in the C2S protocol.

Impact: This attack yields the same effects as the previ-
ous one. The attacker gains access to messages (still E2E-
encrypted), along with their metadata. This puts the attacker
in a position where they can store messages meant for the
victim and decrypt them at a later point, when the long-term
key of the victim is compromised. The attacker, again, has
the ability to drop arbitrary messages from the conversation.

3.2 Compromised Threema Threat Model
The following attacks assume adversarial server infrastructure.
Attack 5 requires access to the server’s secret cryptographic
material. Attacks 3 and 4 only require being able to “strip
away” the C2S security layer. This is trivial for the Threema
server, but could also be achieved by exploiting C2S protocol
weaknesses, like the one we present in Section 3.1.1.

On forward secrecy: We again stress that, from the point
of view of an attacker located at the Threema server, the E2E-
encrypted communications have no forward secrecy what-
soever, since it is only provided at the client-to-server level
rather than the end-to-end level. This leaves the user com-
pletely vulnerable in the event of a long-term key compro-
mise in the “compromised Threema” threat model. This is
explicitly acknowledged in the Threema whitepaper [30].

In a messaging app, compromising the server should not
give away significant data to the attacker: the server should

4Note that performing this check properly is non-trivial: we also success-
fully registered keys T ̸= S such that T = S ·P, where P is a Curve25519
point of order 8. When computing a Diffie-Hellman share using the private
key a and the public key T , due to clamping T a = Pa ·Sa = Sa, thus claiming
T is equivalent for our attack to claiming S.

5 “Lose Your Threema Account As A Service”

merely act as a message router, which cannot read messages
and has no gain in storing the messages that it sees, or tam-
pering with them. Due to the lack of forward secrecy on the
E2E level, this expectation is not met by Threema.

3.2.1 Attack 3 (Message Reordering and Deletion)

The lack of an ordering mechanism in the E2E protocol com-
bined with the lack of authentication of the metadata in that
protocol allows the server to carry out trivial reordering at-
tacks on E2E messages. This means that the server can change
the order in which the messages are delivered to the receiver,
thereby potentially changing the semantics of the conversa-
tion. Furthermore, the server can withhold messages for as
long as it pleases and send them at a later time with an updated
timestamp, in order to evade detection.

In addition to the above, we noticed that incoming mes-
sages are shown in the order in which they are received by
the Threema app, rather than being ordered by timestamp.

3.2.2 Attack 4 (Message Replay and Reflection)

In Section 2.3 we explained how Threema tries to prevent
replay and reflection attacks on the E2E protocol by storing
nonces of both outgoing and incoming messages. Fundamen-
tally, this requires that the nonce database is always kept
updated and is never deleted in the client app. Unfortunately,
this cannot be guaranteed whenever the app is reinstalled
or when the user changes device: in either case6, the nonce
database is reset and a compromised Threema server can re-
play messages that were received by the victim in the past or
reflect messages that the victim has sent.

To make this attack more effective, we note that the
Threema server can easily tell when a victim is likely to have
reset their nonce database, as long as the victim has decided
to use Threema Safe as their backup option. (A reasonable
assumption, since the user is strongly encouraged at registra-
tion time to use it.) Whenever a user restores a backup from
Threema Safe, it will connect to the server with the C2S pro-
tocol shortly after, most likely with the same IP address. Thus,
not only can the server learn the identity associated with a
given backup, but it will also know that, with high probability,
the user’s nonce database has been deleted, making that user
a target for the aforementioned attacks.

To test Attacks 3 and 4, we created a simulated Threema
server in Python to which clients can connect. The server
provides control over the order of the messages and their
inclusion in the conversation, and allows the attacker to save
the messages in order to be later replayed or reflected. We
experimentally verified all the behaviours observed above.

6Note that on iOS, migrating the app to a new device using Quick Start
would preserve the database.

3.2.3 Attack 5 (Kompromat)

This attack provides another example of a dangerous cross-
protocol interaction, in this case between the registration pro-
tocol and the E2E protocol.

Execution: Recall from Section 2.2 that, when a user A reg-
isters to Threema, they must prove ownership of its public key
to the server by use of a challenge-response protocol: the user
combines their private key a with a public key provided by the
server X = gx and encrypts a message m chosen by the server.
When the contact discovery protocol is run (see Appendix A),
the same challenge-response protocol is executed to prevent
an excessive number of queries. The encryption method used
is identical to that in the E2E protocol. In this protocol, the
server does not necessarily have to own the private key x cor-
responding to the provided ephemeral public key, and they
can present the long-term public key of any other Threema
user B instead. Thus, A will be encrypting the challenge with
the same key that they would use to communicate with B in
the E2E protocol. Hence, the resulting ciphertext is a valid
E2E message that can be sent to either A or B (and which
can be made to appear to come from the other party).

Impact: This attacks targets the integrity of the E2E pro-
tocol in Threema. In the unpatched protocol, every time the
contact discovery protocol is run (usually once per day) the
server is able to forge a valid ciphertext. Each ciphertext can
only be sent once per user due to the replay reflection pro-
vided by the nonces. This flaw was already fixed when we
re-discovered it. The app now requires that the message m
provided by the server has a type byte equal to 0xff, which
does not correspond to any valid message type, thus prevent-
ing it from being accepted as a valid message. While this
does effectively prevent the attack, it does not tackle the other
cross-protocol attacks that we present. In Section 4 we discuss
mitigations that offer full protection.

3.3 Compelled Access Threat Model

The following attacks are in the strongest threat model of com-
pelled access, which grants the attacker access to an unlocked
device. These attacks allow the recovery of the long-term key
of the victim. Due to the lack of forward secrecy and post-
compromise security, this irreversibly forfeits all security. For
instance, considering a combined attack setting of compelled
access and a compromised Threema server, we can obtain an
attack that can decrypt all past and future communications.

3.3.1 Attack 6 (Cloning via Threema ID Export)

Assumptions: Access to an unlocked phone, with no
Threema App UI lock.

Execution: Among the backup methods provided, Threema
allows the user to export the Threema ID (as explained in

Figure 9: The distribution of the number of compression side-
channel oracle queries in our successful key-recovery experi-
ments. Each “query” is a backup attempt by the Threema app.

Section 2.6). However, this method directly exposes the long-
term secret key of the user, and does not by default require any
form of authentication, allowing a compelled access attacker
to backup the private key with a password of their choice and
later decrypt it on their own device.

This is an intentional feature in Threema, but one which we
deem to be a grave security danger: all security in Threema
relies on maintaining the secrecy of long-term private keys,
and this attack allows an adversary to recover such keys by
having access to the phone and app for a few seconds.

Impact: While similar mechanisms are present in other
messengers, their security impacts are much smaller. For in-
stance, Signal allows users to transfer their accounts to a new
device, but it requires physical proximity of the new and the
old devices, and disables the old device permanently after
such a transfer is completed. This is in contrast to Threema,
where a Threema ID export is undetectable on the victim
device after it happened. Such a scenario is particularly im-
pactful in the context of intimate partner violence [27] and due
to the usage of Threema by high-ranking officials [52, 25].

The Threema app does provide some optional locking
mechanisms. For example, the app can be locked with a PIN, a
passphrase or by using biometrics, thus preventing this attack.

3.3.2 Attack 7 (Compression Side-Channel)

While the app locking mechanism does prevent a compelled
access attacker from accessing the user’s data via the user
interface, it does not prevent background processes from being
executed. In particular, the app will attempt to make a new
Threema Safe backup whenever the application is launched if
the last successful backup is more than one day old. Moreover,
incoming messages will be processed and may affect the
contents of the backup. We exploit these facts in our final
attack to recover a victim user’s private key.

Assumptions: Access to an unlocked phone, ability to ob-
serve the network.

Execution: Recall that a Threema Safe backup contains
the private key of the user, and a list of the user’s contacts.

Before being sent to the server for storage, the backup is
compressed and then encrypted. It is well-known that this
combination of processing steps can be vulnerable to attack,
especially if the attacker can control part of the plaintext
before compression [40, 53]. Specifically, the length of the
ciphertext may leak information about how much plaintext
compression has been achieved, and this in turn can leak
information about the degree of overlap between the attacker-
controlled and the unknown parts of the plaintext. In Threema
Safe, the XSalsa20 stream cipher is used for encryption, so a
ciphertext leaks the exact length of the plaintext. Furthermore,
usernames are handled locally in Threema. This means that
if a user U sends a message to victim V , then U’s Threema
ID and chosen nickname are updated in the local contact list
of V on receipt of the message. This happens even if V ’s
app is locked. This provides a means for an attacker to inject
chosen plaintext into the backup of a victim. In this way, the
conditions needed to build a compression-based side-channel
attack are fulfilled. We provide a more detailed description of
the attack in Appendix B.

Proof-of-Concept: We created a custom Threema server
and instrumented the client code in order to redirect requests
to our server rather than the actual Threema Safe server. This
allows us to both see the length of the backups and to make
backups fail by returning an HTTP error code. To automati-
cally induce a new backup, we use Android debugging tools
which can force an app to stop and restart. In order to measure
the number of queries needed to complete the attack at scale,
we also reimplemented the client backup mechanism, and
simulated the attack locally. Figure 9 summarizes our experi-
mental results. We successfully recovered the user’s private
key in 4.7k out of 10k experiments; in these successful runs,
we required a median of 19.4k backup attempts (mean 23.4k).
In our PoC, each attempt requires around 2s, implying a total
running time of around 11 hours for the attack.

The backup is normally transmitted to the server on a TLS
connection, but with modern cipher suites (AES-GCM or
ChaCha20-Poly1305), TLS does not hide the length of its
payloads. So we consider the attack to remain viable even
if the attacker can only see TLS-protected traffic as in our
compelled access threat model.

Impact: Recovering the private key leads to a complete loss
of security: after doing so the attacker can impersonate the
user in any action and decrypt E2E protocol message.

4 Mitigations

We describe the mitigations we proposed to Threema, along
with the ones that Threema employed in practice, and com-
ment on what our attacks mean in practice for Threema users.

Forward Secrecy at the E2E level: We identify the lack of
forward secrecy as one of the main weaknesses of Threema,
since it accentuates the severity of many of our attacks. There

is no simple fix: a protocol redesign supporting the use of
ephemeral keys is necessary. We recommend that Threema
adopt the Signal protocol, whose cryptographic API is avail-
able through the libsignal library [44]. The Signal protocol
has received extensive security analysis [28, 14, 41, 15] and
provides forward secrecy and post-compromise security at
the end-to-end layer. We note that Whatsapp has transitioned
towards using the Signal protocol in the past [45], showing
that such a change is feasible even for a messaging app with
a huge user base.

Following the disclosure, Threema released Ibex, an addi-
tional protocol developed independently of our work. Ibex is
layered on top of the E2E protocol, and aims to provide for-
ward secrecy via an asynchronous, ephemeral key exchange.
The keys derived from this exchange are used to instanti-
ate a symmetric ratchet analogous to Signal’s. The lack of
an asymmetric ratchet means that Threema still lacks post-
compromise security. Ibex remains opt-in at the time of writ-
ing. PFS of past conversations remains forsaken.

Strengthening the C2S Protocol: The least invasive modi-
fication to the C2S protocol that directly prevents our attack
of Section 3.1.2 would be to include the server cookie inside
the vouch box. This ensures that, as long as the server picks
a fresh cookie every time the protocol is run, the vouch box
cannot be trivially replayed. We recommend that Threema
replaces its bespoke C2S protocol with the IK protocol of the
Noise Protocol Framework [49], which allows for 0-RTT en-
crypted communications between the client and the server and
provides authentication and forward secrecy. Furthermore, it
prevents the attack of Section 3.1.1 (Impersonation by Ran-
domness Failure). The Noise protocols have been analyzed
and proven secure [22, 23], and Noise protocols have seen
practical deployment in Wireguard [20] and Whatsapp [50].

Threema fixed attacks 1 and 2 via key separation using
an additional KDF step with distinct labels, as well as by
including the server cookie in the vouch box. Caching of
ephemeral keys has been removed on the client and server. We
do not believe these attacks affected Threema users at large,
since we are not aware of practical mechanisms to recover
ephemeral keys for (attack 1), and Threema reported that no
Threema Gateway account was registered with the public key
of their server in the past (attack 2).

Preventing Cross-Protocol Attacks: The attacks in Sec-
tions 3.1.2 (Vouch Box Forgery) and 3.2.3 (Kompromat
Forgery) exploit the fact that the same “X25519-then-Encrypt”
paradigm is used multiple times for different purposes but
with the same keys. By using payloads created in one protocol
in another, the adversary gains capabilities that they would not
have when viewing the protocols separately. A secure applica-
tion should cryptographically compartmentalise its protocols,
taking a very conservative approach when using the same
cryptographic material in different protocols (if doing so at
all). A common way to prevent this class of attack is to use

proper key separation: the X25519 key material will then only
be used to derive context-dependent keys using a KDF with
proper labels. We stress that key material that is used to derive
other keys should not be used itself for other purposes, since
it is important to ensure that leaking one of the keys during
its usage does not affect any other key, i.e. the keys should
remain effectively independent of each other.

In correspondence, Threema indicated that they will make
extended use of KDFs to ensure key separation.

Protecting Metadata: The simplest way to prevent the
attacks of Sections 3.2.2 (Replay and Reflection Attacks) and
3.2.1 (Message Reordering) is to protect the integrity of the
metadata contained in the E2E packet. This can be simply
achieved by including the metadata in the (authenticated but
not encrypted) “additional data” field of the AEAD scheme.
This modification has zero message overhead and supersedes
the usage of the metadata box, eliminating the need for an
additional ciphertext and tag. Protecting the metadata in this
way would prevent an adversary from swapping the source
and destination of the message and thus prevent reflection
attacks. To prevent message reordering attacks, the app could
use a per-recipient counter for the AEAD nonces in the E2E
protocol. This would also allow the recipient to detect lost
or adversarially deleted messages, but would still leave the
problem of how to avoid nonce repetitions when the Threema
app is reinstalled or when the user changes device. We suggest
that the app should re-run the registration protocol in this
event, establishing a fresh key pair (a,A).

Threema’s introduction of Ibex fixes the reordering and
replay attacks. The metadata box is now mandatory. Attacks
3 and 4 have limited implications if the underlying E2E plain-
text is unknown.

Preventing Cloning via Threema ID Export: The ID ex-
port feature should be protected, possibly by requiring the
user to provide a passphrase chosen at registration time, or
at least by enforcing the use of the phone OS’s authentica-
tion mechanisms such as biometrics and pin codes. It is up
to Threema to strike a fair balance between usability and
security, but we would err on the side of the latter.

The client now keeps track of ephemeral keys used in
the C2S protocol and the user is alerted if an extraneous
ephemeral key has been used in a C2S session. Attack 6 is
the most likely to have been exploited in real world. This
attack did not impact Threema users at large, but left at-risk
individuals vulnerable to targeted attacks.

Mitigating the Compression Side-Channel: Threema
should avoid using compression. To avoid an explosion in
server-side storage requirements, a binary serialization format
such as CBOR [13] could be used instead of JSON.

Threema disabled compression in backups. Attack 7 has
serious implications, since observing the size of past Threema
backups provides side channel information on a user’s secret
key, but does require targeting a specific user.

5 Conclusions

Threema is marketed as a secure app, suitable for both indi-
viduals and companies. It is used by government departments
and high-profile politicians. On the other hand, the seven at-
tacks we have presented highlight fundamental weaknesses
in the design of Threema. Indeed, the Threema protocols lack
basic properties that are nowadays considered de rigueur for a
messenger app to be regarded as secure: forward secrecy with
respect to a malicious server, and protection against replay,
reflection, and reordering attacks. We believe that the crypto-
graphy in Threema has design flaws that need to be addressed
in order to meet the security expectations of its users.

Stepping back from the details of our analysis, we believe
that our work presents (at least) three useful lessons for de-
velopers when deploying complex cryptographic protocols.

First, using modern, secure libraries for cryptographic
primitives does not on its own lead to a secure protocol design:
It is possible to misuse libraries such as NaCl and libsignal
when building a more complex protocol and developers must
be wary not to be lulled into a false sense of security. A per-
tinent example is the C2S protocol in Threema, which has
many issues with ephemeral keys. Another recent example
is Bridgefy’s mis-integration of libsignal [6]. In some cases,
it is the API of the libraries themselves that encourages bad
cryptographic practice. For instance, NaCl’s authenticated
encryption routines do not allow for associated data. This was
the reason for the Threema’s bespoke metadata box construc-
tion. To their credit, Threema’s developers did (largely) avoid
“rolling their own crypto” but this advice should be extended
to “don’t roll your own cryptographic protocol”. Of course
this advice is only useful if good alternatives are available. In
the particular case of the C2S protocol, Threema could have
used the Noise IK protocol or TLS.

Second, beware of cross-protocol interactions: A stan-
dalone protocol may appear to be secure, but cross-protocol
interactions can undermine security guarantees, as we have
shown in Threema with the vouch box and Kompromat at-
tacks. So developers should be careful not to introduce such
vulnerabilities. Every message should be cryptographically
bound to its protocol and thereby rejected whenever it is used
in a different protocol. This can be done by strictly following
the key separation principle – use different keys for different
purposes. Notably, a recent analysis of the secure messaging
protocol Matrix also exploited cross-protocol interaction to
violate the confidentiality of messages [5].

Third, proactive, not reactive security: Our inability to find
an attack on a protocol does not imply it is secure: new attacks
could be found at any moment and known attacks only get
stronger over time. Often, software releases follow a design-
release-break-patch process (a reactive approach [48]).This
can be inconvenient for users and may also lead to the need
to maintain backwards compatibility, opening the way to pos-
sible downgrade attacks [39, 12, 1, 9]. Developers should

adopt a proactive approach, where the protocol is formally
analysed during the design stage. Ideally, different forms of
analysis would be carried out, e.g. using symbolic approaches
or by producing computational security proofs. While this
cannot exclude every attack possibility, it can help improve
confidence in the protocol’s security. Furthermore, protocols
should be designed in such a way that this formal analysis can
be more easily carried out. In the present setting, because the
C2S protocol uses its session key directly in the handshake
(to derive the metadata key), it is impossible to prove session
key security, a standard property targeted in security proofs
for key exchange protocols.

None of these lessons is fundamentally new, but given the
results of our analysis of Threema, and the recent works in
the field of secure protocol analysis [5, 6, 7], they apparently
bear repeating.

References

[1] David Adrian, Karthikeyan Bhargavan, Zakir Du-
rumeric, Pierrick Gaudry, Matthew Green, J. Alex Hal-
derman, Nadia Heninger, Drew Springall, Emmanuel
Thomé, Luke Valenta, Benjamin VanderSloot, Eric Wus-
trow, Santiago Zanella Béguelin, and Paul Zimmermann.
Imperfect forward secrecy: How Diffie-Hellman fails
in practice. In Indrajit Ray, Ninghui Li, and Christo-
pher Kruegel, editors, Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications
Security, Denver, CO, USA, October 12-16, 2015, pages
5–17. ACM, 2015.

[2] Jan Ahrens. Threema protocol analysis.
https://blog.jan-ahrens.eu/files/threema-
protocol-analysis.pdf, March 2014.

[3] Ange Albertini, Thai Duong, Shay Gueron, Stefan Kölbl,
Atul Luykx, and Sophie Schmieg. How to abuse and
fix authenticated encryption without key commitment.
IACR Cryptol. ePrint Arch., page 1456, 2020.

[4] Martin R Albrecht, Jorge Blasco, Rikke Bjerg Jensen,
and Lenka Mareková. Mesh messaging in large-scale
protests: Breaking Bridgefy. In Cryptographers’ Track
at the RSA Conference, pages 375–398. Springer, 2021.

[5] Martin R. Albrecht, Sofía Celi, Benjamin Dowling, and
Daniel Jones. Practically-exploitable cryptographic
vulnerabilities in Matrix. https://nebuchadnezzar-
megolm.github.io, September 2022.

[6] Martin R Albrecht, Raphael Eikenberg, and Kenneth G
Paterson. Breaking Bridgefy, again: Adopting libsig-
nal is not enough. In 31st USENIX Security Sympo-
sium (USENIX Security 22), Boston, MA, August 2022.
USENIX Association.

https://blog.jan-ahrens.eu/files/threema-protocol-analysis.pdf
https://blog.jan-ahrens.eu/files/threema-protocol-analysis.pdf
https://nebuchadnezzar-megolm.github.io
https://nebuchadnezzar-megolm.github.io

[7] Martin R Albrecht, Lenka Mareková, Kenneth G Pater-
son, and Igors Stepanovs. Four attacks and a proof for
Telegram. In 43rd IEEE Symposium on Security and
Privacy (IEEE S&P 2022), 2022.

[8] AppBrain. Threema - Android app on App-
Brain. https://www.appbrain.com/app/threema/
ch.threema.app, October 2022.

[9] Nimrod Aviram, Sebastian Schinzel, Juraj Somorovsky,
Nadia Heninger, Maik Dankel, Jens Steube, Luke
Valenta, David Adrian, J. Alex Halderman, Viktor
Dukhovni, Emilia Käsper, Shaanan Cohney, Susanne
Engels, Christof Paar, and Yuval Shavitt. DROWN:
breaking TLS using sslv2. In Thorsten Holz and Ste-
fan Savage, editors, 25th USENIX Security Symposium,
USENIX Security 16, Austin, TX, USA, August 10-12,
2016, pages 689–706. USENIX Association, 2016.

[10] J. Berger. openMittsu. https://github.com/
blizzard4591/openMittsu, September 2016.

[11] Daniel J Bernstein. Cryptography in NaCl.
https://cr.yp.to/highspeed/naclcrypto-
20090310.pdf, 2009.

[12] Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine
Delignat-Lavaud, Cédric Fournet, Markulf Kohlweiss,
Alfredo Pironti, Pierre-Yves Strub, and Jean Karim
Zinzindohoue. A messy state of the union: Taming the
composite state machines of TLS. In 2015 IEEE Sym-
posium on Security and Privacy, SP 2015, San Jose, CA,
USA, May 17-21, 2015, pages 535–552. IEEE Computer
Society, 2015.

[13] Carsten Bormann and Paul E. Hoffman. Concise Binary
Object Representation (CBOR). RFC 8949, December
2020.

[14] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling,
Luke Garratt, and Douglas Stebila. A formal security
analysis of the Signal messaging protocol. In 2017
IEEE European Symposium on Security and Privacy,
EuroS&P 2017, Paris, France, April 26-28, 2017, pages
451–466. IEEE, 2017.

[15] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling,
Luke Garratt, and Douglas Stebila. A formal security
analysis of the Signal messaging protocol. J. Cryptol.,
33(4):1914–1983, 2020.

[16] WinZip Computing. AES Encryption Information:
Encryption Specification AE-1 and AE-2. https://
www.appbrain.com/app/threema/ch.threema.app,
2009.

[17] Graeme Connell. Technology deep dive: Building a
faster ORAM layer for enclaves. https://signal.
org/blog/building-faster-oram, August 2022.

[18] Cas Cremers, Jaiden Fairoze, Benjamin Kiesl, and Au-
rora Naska. Clone Detection in Secure Messaging: Im-
proving Post-Compromise Security in Practice. In Pro-
ceedings of the 2020 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS ’20, pages
1481–1495, New York, NY, USA, October 2020. Asso-
ciation for Computing Machinery.

[19] Yevgeniy Dodis, Paul Grubbs, Thomas Ristenpart, and
Joanne Woodage. Fast Message Franking: From Invis-
ible Salamanders to Encryptment. In Hovav Shacham
and Alexandra Boldyreva, editors, Advances in Cryp-
tology – CRYPTO 2018, Lecture Notes in Computer
Science, pages 155–186, Cham, 2018. Springer Interna-
tional Publishing.

[20] Jason A. Donenfeld. WireGuard: Next generation kernel
network tunnel. In 24th Annual Network and Distributed
System Security Symposium, NDSS 2017, San Diego,
California, USA, February 26 - March 1, 2017. The
Internet Society, 2017.

[21] Benjamin Dowling, Felix Günther, and Alexandre Poir-
rier. Continuous authentication in secure messag-
ing. In Vijayalakshmi Atluri, Roberto Di Pietro, Chris-
tian Damsgaard Jensen, and Weizhi Meng, editors, Com-
puter Security - ESORICS 2022 - 27th European Sym-
posium on Research in Computer Security, Copenhagen,
Denmark, September 26-30, 2022, Proceedings, Part II,
volume 13555 of Lecture Notes in Computer Science,
pages 361–381. Springer, 2022.

[22] Benjamin Dowling and Kenneth G. Paterson. A cryp-
tographic analysis of the WireGuard protocol. In Bart
Preneel and Frederik Vercauteren, editors, Applied Cryp-
tography and Network Security - 16th International Con-
ference, ACNS 2018, Leuven, Belgium, July 2-4, 2018,
Proceedings, volume 10892 of Lecture Notes in Com-
puter Science, pages 3–21. Springer, 2018.

[23] Benjamin Dowling, Paul Rösler, and Jörg Schwenk.
Flexible Authenticated and Confidential Channel Es-
tablishment (fACCE): Analyzing the Noise Protocol
Framework. In Aggelos Kiayias, Markulf Kohlweiss,
Petros Wallden, and Vassilis Zikas, editors, Public-Key
Cryptography - PKC 2020 - 23rd IACR International
Conference on Practice and Theory of Public-Key Cryp-
tography, Edinburgh, UK, May 4-7, 2020, Proceedings,
Part I, volume 12110 of Lecture Notes in Computer
Science, pages 341–373. Springer, 2020.

[24] Kit Eaton. These Apps Promise to Encrypt
Your Smartphone Communications. https:
//www.nytimes.com/2016/03/24/technology/
personaltech/encryption-by-app-adds-
security-to-smartphones.html, March 2016.

https://www.appbrain.com/app/threema/ch.threema.app
https://www.appbrain.com/app/threema/ch.threema.app
https://github.com/blizzard4591/openMittsu
https://github.com/blizzard4591/openMittsu
https://cr.yp.to/highspeed/naclcrypto-20090310.pdf
https://cr.yp.to/highspeed/naclcrypto-20090310.pdf
https://www.appbrain.com/app/threema/ch.threema.app
https://www.appbrain.com/app/threema/ch.threema.app
https://signal.org/blog/building-faster-oram
https://signal.org/blog/building-faster-oram
https://www.nytimes.com/2016/03/24/technology/personaltech/encryption-by-app-adds-security-to-smartphones.html
https://www.nytimes.com/2016/03/24/technology/personaltech/encryption-by-app-adds-security-to-smartphones.html
https://www.nytimes.com/2016/03/24/technology/personaltech/encryption-by-app-adds-security-to-smartphones.html
https://www.nytimes.com/2016/03/24/technology/personaltech/encryption-by-app-adds-security-to-smartphones.html

[25] Corin Faife. Swiss Army drops WhatsApp for
homegrown messaging service, citing privacy con-
cerns. https://www.theverge.com/2022/1/7/
22871881/swiss-army-whatsapp-messaging-
threema-privacy-concerns-us-jurisdiction,
January 2022.

[26] Marc Fischlin and Felix Günther. Multi-stage key ex-
change and the case of Google’s QUIC protocol. In
Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors,
Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, Scottsdale, AZ,
USA, November 3-7, 2014, pages 1193–1204. ACM,
2014.

[27] Diana Freed, Jackeline Palmer, Diana Elizabeth Min-
chala, Karen Levy, Thomas Ristenpart, and Nicola Dell.
“A Stalker’s Paradise”: How intimate partner abusers ex-
ploit technology. In Regan L. Mandryk, Mark Hancock,
Mark Perry, and Anna L. Cox, editors, Proceedings of
the 2018 CHI Conference on Human Factors in Comput-
ing Systems, CHI 2018, Montreal, QC, Canada, April
21-26, 2018, page 667. ACM, 2018.

[28] Tilman Frosch, Christian Mainka, Christoph Bader, Flo-
rian Bergsma, Jörg Schwenk, and Thorsten Holz. How
secure is textsecure? In IEEE European Symposium
on Security and Privacy, EuroS&P 2016, Saarbrücken,
Germany, March 21-24, 2016, pages 457–472. IEEE,
2016.

[29] Threema GmbH. GitHub - threema-ch/threema-android:
Threema App for Android., December 2020.

[30] Threema GmbH. Cryptography whitepa-
per. https://threema.ch/press-files/2_
documentation/cryptography_whitepaper.pdf,
November 2021.

[31] Threema GmbH. Why Threema Instead of What-
sApp? https://threema.ch/en/work/blog/posts/
why-threema-instead-of-whatsapp, May 2021.

[32] Threema GmbH. About – Threema. https://threema.
ch/en/about, 2022.

[33] Threema GmbH. Threema changelog. https://
threema.ch/en/versionhistory, 2022.

[34] Threema GmbH. Threema provides maximum secu-
rity and comprehensive privacy protection. https:
//threema.ch/en/security, 2022.

[35] Threema GmbH. Threema.OnPrem. https://
threema.ch/en/onprem, 2022.

[36] Christoph Hagen, Christian Weinert, Christoph Sendner,
Alexandra Dmitrienko, and Thomas Schneider. All the

numbers are US: large-scale abuse of contact discovery
in mobile messengers. In 28th Annual Network and
Distributed System Security Symposium, NDSS 2021,
virtually, February 21-25, 2021. The Internet Society,
2021.

[37] M. Heiderich, M. Wege, and C. Kean. Pentest-
and audit-report Threema mobile apps. https:
//threema.ch/press-files/2_documentation/
security_audit_report_threema_2020.pdf, Octo-
ber 2020.

[38] Fabian Ising, Damian Poddebniak, and Sebastian
Schinzel. Security audit report Threema 2019. https:
//threema.ch/press-files/2_documentation/
security_audit_report_threema_2019.pdf,
March 2019.

[39] Tibor Jager, Kenneth G. Paterson, and Juraj Somorovsky.
One bad apple: Backwards compatibility attacks on
state-of-the-art cryptography. In 20th Annual Net-
work and Distributed System Security Symposium, NDSS
2013, San Diego, California, USA, February 24-27,
2013. The Internet Society, 2013.

[40] John Kelsey. Compression and information leakage of
plaintext. In Joan Daemen and Vincent Rijmen, editors,
Fast Software Encryption, 9th International Workshop,
FSE 2002, Leuven, Belgium, February 4-6, 2002, Re-
vised Papers, volume 2365 of Lecture Notes in Com-
puter Science, pages 263–276. Springer, 2002.

[41] Nadim Kobeissi, Karthikeyan Bhargavan, and Bruno
Blanchet. Automated verification for secure messaging
protocols and their implementations: A symbolic and
computational approach. In 2017 IEEE European Sym-
posium on Security and Privacy, EuroS&P 2017, Paris,
France, April 26-28, 2017, pages 435–450. IEEE, 2017.

[42] Brian A. LaMacchia, Kristin E. Lauter, and Anton
Mityagin. Stronger security of authenticated key ex-
change. In Willy Susilo, Joseph K. Liu, and Yi Mu,
editors, Provable Security, First International Confer-
ence, ProvSec 2007, Wollongong, Australia, November
1-2, 2007, Proceedings, volume 4784 of Lecture Notes
in Computer Science, pages 1–16. Springer, 2007.

[43] Srikanth Lingala. Zip4j. https://github.com/
srikanth-lingala/zip4j.

[44] Signal Messenger LLC. libsignal. https://github.
com/signalapp/libsignal.

[45] Moxie Marlinspike. WhatsApp’s Signal protocol inte-
gration is now complete. https://signal.org/blog/
whatsapp-complete, April 2016.

https://www.theverge.com/2022/1/7/22871881/swiss-army-whatsapp-messaging-threema-privacy-concerns-us-jurisdiction
https://www.theverge.com/2022/1/7/22871881/swiss-army-whatsapp-messaging-threema-privacy-concerns-us-jurisdiction
https://www.theverge.com/2022/1/7/22871881/swiss-army-whatsapp-messaging-threema-privacy-concerns-us-jurisdiction
https://threema.ch/press-files/2_documentation/cryptography_whitepaper.pdf
https://threema.ch/press-files/2_documentation/cryptography_whitepaper.pdf
https://threema.ch/en/work/blog/posts/why-threema-instead-of-whatsapp
https://threema.ch/en/work/blog/posts/why-threema-instead-of-whatsapp
https://threema.ch/en/about
https://threema.ch/en/about
https://threema.ch/en/versionhistory
https://threema.ch/en/versionhistory
https://threema.ch/en/security
https://threema.ch/en/security
https://threema.ch/en/onprem
https://threema.ch/en/onprem
https://threema.ch/press-files/2_documentation/security_audit_report_threema_2020.pdf
https://threema.ch/press-files/2_documentation/security_audit_report_threema_2020.pdf
https://threema.ch/press-files/2_documentation/security_audit_report_threema_2020.pdf
https://threema.ch/press-files/2_documentation/security_audit_report_threema_2019.pdf
https://threema.ch/press-files/2_documentation/security_audit_report_threema_2019.pdf
https://threema.ch/press-files/2_documentation/security_audit_report_threema_2019.pdf
https://github.com/srikanth-lingala/zip4j
https://github.com/srikanth-lingala/zip4j
https://github.com/signalapp/libsignal
https://github.com/signalapp/libsignal
https://signal.org/blog/whatsapp-complete
https://signal.org/blog/whatsapp-complete

[46] Moxie Marlinspike. Technology preview: Private con-
tact discovery for Signal. https://signal.org/blog/
private-contact-discovery, September 2017.

[47] MITRE. CVE-2023-22899. https://www.cve.org/
CVERecord?id=CVE-2023-22899, January 2023.

[48] Kenneth G. Paterson and Thyla van der Merwe. Reac-
tive and proactive standardisation of TLS. In Lidong
Chen, David A. McGrew, and Chris J. Mitchell, editors,
Security Standardisation Research - Third International
Conference, SSR 2016, Gaithersburg, MD, USA, Decem-
ber 5-6, 2016, Proceedings, volume 10074 of Lecture
Notes in Computer Science, pages 160–186. Springer,
2016.

[49] Trevor Perrin. The Noise Protocol Framework. http:
//www.noiseprotocol.org/noise.html, July 2018.

[50] Meta Platforms. WhatsApp encryption overview.
https://www.whatsapp.com/security/WhatsApp-
Security-Whitepaper.pdf, November 2021.

[51] Mario Di Raimondo, Rosario Gennaro, and Hugo
Krawczyk. Secure off-the-record messaging. In Vi-
jay Atluri, Sabrina De Capitani di Vimercati, and Roger
Dingledine, editors, Proceedings of the 2005 ACM Work-
shop on Privacy in the Electronic Society, WPES 2005,
Alexandria, VA, USA, November 7, 2005, pages 81–89.
ACM, 2005.

[52] Johannes Ritter. Was Russland stört, überzeugt Olaf
Scholz. https://m.faz.net/aktuell/wirtschaft/
unternehmen/threema-was-russland-stoert-
ueberzeugt-olaf-scholz-18248712.amp.html,
January 2022.

[53] Juliano Rizzo and Thai Duong. The
CRIME attack. https://docs.google.com/
presentation/d/11eBmGiHbYcHR9gL5nDyZChu_-
lCa2GizeuOfaLU2HOU, 2012.

[54] Paul Rösler, Christian Mainka, and Jörg Schwenk. More
is less: On the end-to-end security of group chats in Sig-
nal, WhatsApp, and Threema. In 2018 IEEE European
Symposium on Security and Privacy, EuroS&P 2018,
London, United Kingdom, April 24-26, 2018, pages 415–
429. IEEE, 2018.

[55] Markku-Juhani O. Saarinen and Jean-Philippe Aumas-
son. The BLAKE2 Cryptographic Hash and Message
Authentication Code (MAC). RFC 7693, November
2015.

[56] Michel Schreiner and Thomas Hess. Examining the role
of privacy in virtual migration: The case of WhatsApp
and Threema. In 21st Americas Conference on Informa-
tion Systems, AMCIS 2015, Puerto Rico, August 13-15,
2015. Association for Information Systems, 2015.

[57] Jochen Siegle. Schutz beim Chatten: Threema wird noch
sicherer. https://www.nzz.ch/digital/whatsapp-
alternative-threema-wird-noch-sicherer-
ld.1498576, July 2019.

[58] Soatok. Threema: Three Strikes, You’re Out.
https://soatok.blog/2021/11/05/threema-
three-strikes-youre-out/, November 2021.

[59] SRF. Threema setzt sich durch - Schweizer Armee
verbietet Whatsapp und Co. https://www.srf.
ch/news/schweiz/threema-setzt-sich-durch-
schweizer-armee-verbietet-whatsapp-und-co,
January 2022.

[60] Paul C. van Oorschot and Michael J. Wiener. Paral-
lel collision search with cryptanalytic applications. J.
Cryptol., 12(1):1–28, 1999.

[61] WhatsApp. WhatsApp Help Center - An-
swering your questions about WhatsApp’s
January 2021 Privacy Policy update. https:
//faq.whatsapp.com/general/security-and-
privacy/answering-your-questions-about-
whatsapps-privacy-policy/?lang=en, January
2021.

A Contact Discovery Protocol

If the user gives permission to do so, Threema can run a
protocol to check which of the people in the user’s phone’s
contact list are using Threema. To do so, it must compare the
user’s contact list with the list of all registered Threema users,
while at the same time preserving both the privacy of the user
and the confidentiality of the list of registered Threema users.

Threema does this by hashing all the contacts of the user
and sending the hashes to the Threema server over TLS. The
server will reply with the hashes that correspond to users
that have previously registered with Threema. The hash algo-
rithm is implemented using HMAC-SHA256 with a fixed key.
This is done to “ensure that hashes generated by Threema
are unique and do not match those of any other app” [30].
This is similar to the process used by apps such as Whatsapp,
Telegram and Signal [36]. Such protocols tend to raise pri-
vacy concerns [36] due to the information leaked to the server,
including information about people who might not even be
aware of the app’s existence. Hashing the information is insuf-
ficient, since, for example, phone numbers carry little entropy
and can be brute-forced. This allows the service provider to
build a partial social graph for an entire population. Signal
tries to provide stronger guarantees by implementing their
contact discovery protocol in an Intel SGX enclave [46], min-
imizing the information leak due to memory access patterns,
and using techniques such as Oblivious RAM to minimize
the information leaked to the server [17].

https://signal.org/blog/private-contact-discovery
https://signal.org/blog/private-contact-discovery
https://www.cve.org/CVERecord?id=CVE-2023-22899
https://www.cve.org/CVERecord?id=CVE-2023-22899
http://www.noiseprotocol.org/noise.html
http://www.noiseprotocol.org/noise.html
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://m.faz.net/aktuell/wirtschaft/unternehmen/threema-was-russland-stoert-ueberzeugt-olaf-scholz-18248712.amp.html
https://m.faz.net/aktuell/wirtschaft/unternehmen/threema-was-russland-stoert-ueberzeugt-olaf-scholz-18248712.amp.html
https://m.faz.net/aktuell/wirtschaft/unternehmen/threema-was-russland-stoert-ueberzeugt-olaf-scholz-18248712.amp.html
https://docs.google.com/presentation/d/11eBmGiHbYcHR9gL5nDyZChu_-lCa2GizeuOfaLU2HOU
https://docs.google.com/presentation/d/11eBmGiHbYcHR9gL5nDyZChu_-lCa2GizeuOfaLU2HOU
https://docs.google.com/presentation/d/11eBmGiHbYcHR9gL5nDyZChu_-lCa2GizeuOfaLU2HOU
https://www.nzz.ch/digital/whatsapp-alternative-threema-wird-noch-sicherer-ld.1498576
https://www.nzz.ch/digital/whatsapp-alternative-threema-wird-noch-sicherer-ld.1498576
https://www.nzz.ch/digital/whatsapp-alternative-threema-wird-noch-sicherer-ld.1498576
https://soatok.blog/2021/11/05/threema-three-strikes-youre-out/
https://soatok.blog/2021/11/05/threema-three-strikes-youre-out/
https://www.srf.ch/news/schweiz/threema-setzt-sich-durch-schweizer-armee-verbietet-whatsapp-und-co
https://www.srf.ch/news/schweiz/threema-setzt-sich-durch-schweizer-armee-verbietet-whatsapp-und-co
https://www.srf.ch/news/schweiz/threema-setzt-sich-durch-schweizer-armee-verbietet-whatsapp-und-co
https://faq.whatsapp.com/general/security-and-privacy/answering-your-questions-about-whatsapps-privacy-policy/?lang=en
https://faq.whatsapp.com/general/security-and-privacy/answering-your-questions-about-whatsapps-privacy-policy/?lang=en
https://faq.whatsapp.com/general/security-and-privacy/answering-your-questions-about-whatsapps-privacy-policy/?lang=en
https://faq.whatsapp.com/general/security-and-privacy/answering-your-questions-about-whatsapps-privacy-policy/?lang=en

{
"info": { ... },
"user": {

"privatekey": <private key>,
"nickname": "user_nickname"

},
"contacts": [

{
"identity": "ABCDEFGH",
"nickname": "other_user_nickname"

}
],
...

}

Figure 10: Example of a backup, with the private key redacted.

To prevent abuse of the system, anyone that wants to run the
contact discovery protocol must first obtain a match token by
authenticating to the Threema server. To obtain one, the client
must pass a challenge-response protocol which is essentially
the same as the one done for the registration process, except
for the fact that the nonce is now randomly chosen by the
client, rather than being fixed.

B Compression Side Channel

From a high-level perspective, the attack leverages the fact
that nicknames are handled client-side: when a message is
received, the nickname contained in the metadata is set as
the current nickname of the sender. Since nicknames are con-
tained in the backup, this gives the attacker partial control
of the plaintext in the victim’s backup. The objective of the
attacker is to leverage this partial control in order to force a
backlink to be created from the attacker’s nickname in the
contacts field to the private key in the user field. We depict
an example of a JSON backup, with only the relevant infor-
mation present, in Fig. 10. If the attacker’s nickname and the
private key are sufficiently close together, they will both fall
within the same sliding window of the compression algorithm.
This ensures that there is the possibility of a backlink being
created. In order to increase the chances of a backlink being
created, we include a string called a canary which we know
is already included in the JSON backup, just before the string
that we want to leak. This tricks the compression algorithm
into finding redundancy between the nickname and the private
key, creating the compression side-channel that we need.

For our experiments, we used “privatekey” as a canary
for the beginning of the private key and “=” for the end of
the private key. The equal sign always appears as the last
base64 character of the key due to padding of the private key
during encoding, since the key is 32 bytes long and must be
padded to a multiple of 6 bits. We noticed that both canary
strings were necessary. The reasons for this are opaque to us.
Between the two canary strings, the attacker needs to place,

in order, its guess for the next character of the key, and the
currently known characters of the key (initially none, thus
an empty string). If the guess is correct, it should result in a
shorter Threema Safe ciphertext. If the shortest ciphertext was
induced by only one character among all guesses, then the
currently known characters of the key are updated to include
the current guess. Otherwise, two-character guesses can be
attempted. This method effectively tries to guess characters
of the base64 encoding of the private key from the last one to
the first one.

In Fig. 9, we show the number of compression side-channel
oracle queries needed to extract 31 characters of the private
key, over 10,000 experiments; of these attempts 4727 were
successful and 5273 failed to recover key material. Over the
successful experiments, the median number of queries needed
was 19,382 and the mean was 23,382. We remark that “failure”
here means that our automated exploit did not successfully
retrieve the key. If a targeted attack were to be run, one could
manually guide the process. In fact, when a failure happens
it is often because the exploit begins revealing characters of
other parts of the backup, which can be easily spotted as the
exploit is running.

To obtain the required queries, it suffices for an attacker
to forcibly close the app and start it again. This induces the
app into retrying to upload the backup. The forced closure
can be done by either using debugging tools or by simulating
user input on the unlocked phone. Then, in the setting of
a compromised Threema Safe server, it is sufficient for the
server to reply with an HTTP error code. Otherwise, a network
attacker can forcibly close the connection, making the upload
fail. Both of these techniques ensure that a new upload will be
attempted at the next restart. At the pace of one restart every
two seconds, an attacker can recover 31 base64 characters
of the private key in a median time of about 11 hours (in a
successful case).

Not all the bytes of the private key have to be recov-
ered, since algorithms such as the van Oorschot-Wiener algo-
rithm [60] can be used to recover the remaining bits. Indeed,
this creates a trade-off between the number of queries and the
amount of offline work required by the attacker. Since the lat-
ter does not require access to the device, it is convenient to exe-
cute just the sufficient number of queries required to make the
offline attack feasible. For example, the van Oorschot-Wiener
algorithm has time complexity O(2n/2), where n is the bit-size
of the set to be searched, and it is parallelisable. Recovering
31 base64 characters via the compression side channel (as
above), leaves 13 characters to be recovered, equivalent to a
search space of size 278 after base64 decoding. This makes
the offline part of the attack perfectly feasible.

	Introduction
	Our Contributions
	Related Work
	Ethical Considerations
	Paper Structure

	Threema Architecture and Protocols
	Cryptographic Primitives and Notation
	Registration Protocol
	Threema End-to-End Protocol
	Threema Client-to-Server Protocol
	Handshake Subprotocol
	Transport Subprotocol

	Threema Safe
	Other Backup Methods

	Attacks on Threema
	External Actor Threat Model
	Attack 1 (C2S Ephemeral Key Compromise)
	Attack 2 (Vouch Box Forgery)

	Compromised Threema Threat Model
	Attack 3 (Message Reordering and Deletion)
	Attack 4 (Message Replay and Reflection)
	Attack 5 (Kompromat)

	Compelled Access Threat Model
	Attack 6 (Cloning via Threema ID Export)
	Attack 7 (Compression Side-Channel)

	Mitigations
	Conclusions
	Contact Discovery Protocol
	Compression Side Channel

