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Abstract
Intent-based networking (IBN) abstracts network configura-
tion complexity from network operators by focusing on what
operators want the network to do rather than how such con-
figuration should be implemented. While such abstraction
eases network management challenges, little attention to date
has focused on IBN’s new security concerns that adversely
impact an entire network’s correct operation. To motivate the
prevalence of such security concerns, we systematize IBN’s
security challenges by studying existing bug reports from a
representative IBN implementation within the ONOS network
operating system. We find that 61% of IBN-related bugs are
semantic bugs that are challenging, if not impossible, to detect
efficiently by state-of-the-art vulnerability discovery tools.

To tackle existing limitations, we present INTENDER, the
first semantically-aware fuzzing framework for IBN. IN-
TENDER leverages network topology information and intent-
operation dependencies (IOD) to efficiently generate testing
inputs. INTENDER introduces a new feedback mechanism,
intent-state transition guidance (ISTG), which traces the his-
tory of transitions in intent states. We evaluate INTENDER us-
ing ONOS and find 12 bugs, 11 of which were CVE-assigned
security-critical vulnerabilities affecting network-wide con-
trol plane integrity and availability. Compared to state-of-the-
art fuzzing tools AFL, Jazzer, Zest, and PAZZ, INTENDER
generates up to 78.7× more valid fuzzing input, achieves up
to 2.2× better coverage, and detects up to 82.6×more unique
errors. INTENDER with IOD reduces 73.02% of redundant
operations and spends 10.74% more time on valid operations.
INTENDER with ISTG leads to 1.8× more intent-state transi-
tions compared to code-coverage guidance.

1 Introduction

Modern network paradigms, such as software-defined net-
working (SDN), purport to solve the complexity of network
management by opening up a network’s control and data
planes through programmable interfaces. While this flexibil-
ity has revolutionized tailored capabilities in domains ranging

from telecommunication to cloud providers (among others),
the same flexibility still requires network operators to under-
stand their networks’ low-level protocols and policy rules—
but now with increasing complexity costs. Moreover, such
complexity introduces additional barriers towards mapping
higher-level objectives (e.g., business requirements, organi-
zational security policies) to what the network is doing and
how such configuration is implemented.

Intent-based networking (IBN) reduces the semantic gap
between high-level objectives and network implementation,
while taming complexity costs through additional abstrac-
tion [19, 41]. IBN allows network operators to manage the
network without needing to understand the implementation
details of the network’s device interfaces, protocols, or topol-
ogy. Unlike traditional network management that requires
static configuration, IBN operators declaratively specify their
intent about what they want the network to do within a set of
constraints (e.g., reachability between nodes). The network’s
intent system compiles such intents into a low-level configu-
ration of how to achieve the intents based on the underlying
network’s implementation.

Although the burgeoning IBN paradigm has moved towards
standardization [9,19,41], open source projects [3,5,7], indus-
try [1,2,23], and academic works [20,58], very little attention
has been paid towards the security of IBN itself [19].

In this paper, we start with investigating the security per-
spective of current IBN implementations. In particular, we per-
form a case study analysis on the IBN implementation of the
enterprise-grade ONOS network operating system [13], which
is the basis for proprietary network operating systems used in
production environments [29]. Our findings are twofold. First,
among 2,233 bugs reported about ONOS, 186 of all bugs
(8%) are related to IBN. Second, among all 186 IBN-related
bugs, 114 of such bugs (61%) are semantic bugs. Unlike syn-
tactic bugs that usually lead to memory corruption, semantic
bugs require domain knowledge and often do not cause pro-
gram crashes. Thus, semantic bugs cannot be easily detected
by off-the-shelf vulnerability discovery tools. Our experiment
with AFL shows that only 0.14% of error cases are related to



semantic bugs.
To tackle this challenge, we present INTENDER, the first

semantically-aware black-box fuzzing framework for IBN.
Unlike the state-of-the-art fuzzing tools that leverage code
coverage for feedback, we introduce intent-state transition
guidance (ISTG) as a new feedback mechanism. ISTG does
not require source-level or binary-level instrumentation (as
code coverage does), and it captures the unique character-
istics of IBN implementations through historical tracing of
transitions among intent states. To generate fuzzing input effi-
ciently, INTENDER applies a topology-aware input generation
that understands the constraints imposed by the current net-
work topology to increase the validity of each fuzzing input.
Furthermore, INTENDER utilizes intent-operation dependency
analysis to reduce redundant operations during fuzzing.

We evaluate the efficacy of INTENDER on ONOS, which
provides a complex and representative IBN implementation
that has seen real-world adoption by telecommunications
providers such as Comcast [29]. We discovered 12 bugs,
11 of which were security-critical vulnerabilities assigned
with 11 CVEs affecting network-wide control plane integrity
and availability. Compared with state-of-the-art fuzzing tools
AFL, Jazzer, Zest, and PAZZ, INTENDER generates up to
121.3× more valid fuzzing input, achieves up to 2.2× better
coverage, and detects up to 82.6× more unique errors. Com-
pared to baselines, INTENDER with IOD reduces 73.02% of
redundant operations and spends 10.74% more time on valid
operations. INTENDER with ISTG leads to 1.8× more intent-
state transitions compared to code-coverage guidance (CCG).

In summary, our contributions are as follows:
• We conduct a systematization of existing IBN bugs

within ONOS to understand the representative scope of
IBN vulnerabilities, and we find that 61% of IBN-related
bugs are semantic bugs that existing state-of-the-art vul-
nerability tools fall short in discovering.

• We present a black-box fuzzing technique that detects
IBN semantic bugs, which combines topology-aware
input generation, intent-operation dependency analysis,
and an intent-state transition guidance mechanism.

• We design and implement the INTENDER framework,
which includes a black-box IBN fuzzer architecture. We
further adopt 4 state-of-the-art fuzzing techniques within
the INTENDER framework: AFL, Jazzer, Zest, and PAZZ.

• We apply INTENDER to the ONOS IBN implementation
and find 12 previously-unknown bugs with 11 CVEs
assigned. Compared to the state-of-the-art fuzzing tools,
INTENDER generates up to 121.3× more valid fuzzing
input, achieves up to 2.2× better coverage, and detects
up to 82.6× more unique errors.

2 Background

As network management becomes more complex, IBN offers
human-centric and workflow-centric abstractions to ease the
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implementation burden. IBN enables practitioners to manage
the network by defining what goals should be achieved, in-
stead of unnecessarily focusing on how to implement such
goals. Figure 1 shows the overall view of IBN. Practitioners
declaratively specify their goals through intents, which de-
tail any path reachability that must be met (e.g., host-based
or point-based). Intents are compiled into implementation-
specific forwarding rules, device interfaces, and network
topologies. IBN stands at the forefront of next-generation
networks that incorporate machine learning (ML) and natu-
ral language processing (NLP) techniques into closed-loop
autonomous networks [11, 14, 31].

IBN has been realized through standardization activities
by the Open Networking Foundation (ONF) [41], the Internet
Research Task Force (IRTF) [19], and the 3rd Generation Part-
nership Project (3GPP) [9], among others [44]. Among open-
source network operating systems and network orchestration
tools, OpenDayLight (ODL) [39], Open Networking Oper-
ating System (ONOS) [13], and Open Network Automation
Platform (ONAP) [25] all implement IBN [3, 5, 7]. Although
differences occur among projects (e.g., natural language or
declarative-based input), all of the projects have a common
reference model of IBN that translates and activates high-level
intents into the network.

Each intent in IBN includes an intent lifecycle that is man-
aged by a centralized intent controller.1 A practitioner submits
their intent to the controller, which is then validated, trans-
lated, compiled, and installed into the network. The controller
continuously observes any events that change the network
configuration (e.g., topology change) and re-verifies that ex-

1In programmable networks, the intent controller may be realized as
a subsystem of a network operating system (NOS) or a software-defined
networking (SDN) controller.
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isting intents’ specifications are still satisfied. As a result, an
intent exists in a specific lifecycle stage at any given time. We
refer to each stage as an intent state and the set of all possible
states and transitions as the intent state machine.

Figure 2 shows a representative intent state machine im-
plemented by ONOS [13]. We use ONOS as a representative
example because it is based on a well-developed technical
recommendation from ONF [41], but we note that the concep-
tual model generalizes to any IBN implementation, such as
ODL [3].

Figure 3 shows how the operations map to a series of
state transitions within the state machine: A user can add a
new intent or modify an existing intent by requesting submit
(INSTALL_REQ). The controller attempts to translate and com-
pile the intent into an installable intent (COMPILING). After
compilation, the controller attempts to install the intents into
network devices (INSTALLING). Upon success, the intent is
considered installed (INSTALLED). If failures occur at any
point, the intent is considered failed (FAILED). A user can
withdraw an active intent that has either been installed or
has failed (WITHDRAW_REQ). Once completed, the intent is
considered withdrawn (WITHDRAWN). A user can also remove
an intent completely from the controller (PURGE_REQ). If the
network topology changes, any active intents will return to re-
compilation (INSTALL_REQ, INSTALLING, and INSTALLED).

3 Security Vulnerabilities in IBN

IBN’s abstraction features enable practitioners to efficiently
reason about network activities without having to worry about
the underlying protocol, interface, or forwarding rule imple-
mentation. At the same time, though, this abstraction creates
new security challenges that affect the overall security posture
of IBN.

We explore the space of security vulnerabilities of IBN
through an extensive case study analysis of nearly 400 exist-
ing bugs that have been reported about the ONOS IBN im-
plementation. We systematize those vulnerabilities according
to impact, and we find that most are logic (or semantic) bugs
specific to the IBN domain, which complicate their discovery
(§ 3.1). We demonstrate the severity of such vulnerabilities
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Figure 3: Operations (left side) and their respective intent-
state transitions in the ONOS intent state machine. Such tran-
sitions are possible paths in the intent state machine.

through a representative example (CVE-2022-24109), along
with the limitations of existing fuzzing tools used for dis-
covery (§ 3.2). We outline the limitations and challenges of
automated, efficient discovery, which underlie our motivation
for creating INTENDER (§ 3.3).

3.1 Systematization of IBN Bugs
As a starting point for uncovering new IBN-related bugs,
we first explore previously reported IBN bugs. For our data
set, we looked at the 2,233 publicly-available bug reports
that have been submitted regarding ONOS [8]. We searched
for all reports that mentioned “intent” and found 394 bug
reports (17% of total ONOS bug reports). We excluded 119
bug reports that involved issues caused by other system parts
(e.g., GUI interface), 70 bug reports that involved auxiliary
functionalities (e.g., cluster synchronization, debugging, and
testing), and 19 bug reports that were duplicates or not bugs.
After filtering, we studied the remaining 186 bug reports (47%
of “intent” bug reports; 8% of total ONOS bug reports).
Approach. We classify the 186 bugs into 12 categories ac-
cording to their impact on the controller, as shown in Table
1. We define syntactic bugs as bugs that are caused by syn-
tactically invalid inputs or bugs that cause obvious undesired
behavior (e.g., controller shutdown). We define semantic bugs
as those that are syntactically valid but whose behaviors de-
pend on the logic and semantics of the IBN domain.

For syntactic bugs, the controller does not handle inputs
correctly when bugs occur. The controller can respond with
an internal server error, or deny correct input due to unimple-
mented features (SYN1). An intent can disappear from the
controller due to the internal error (SYN2), can have data dif-
ferent from what a user requests (SYN3), or can be corrupted
leading to a CORRUPT state (SYN4). IBN bugs can result in
other failures that can happen in any program. The controller
can crash (SYN5), or CPU or memory resources can be ex-
hausted (SYN6). Within the network, the topology can be
disbanded (SYN7) or the throughput can decrease (SYN8).

2Among 186 bugs, 8 bugs have multiple outcomes at the same time. For
example in ONOS-1409, when hosts are reconnected, the relevant intent
remains in the INSTALLED state. Also, the connectivity of two hosts fails
with PathNotFoundException in the controller [4].



Table 1: Bug analysis of the ONOS intent subsystem.

Type Code Impact Detection Mechanism # Bugs Based on Intent Operation of Root Cause

submit withdraw purge topo-change Total

Intent syntactic bug

SYN1 Denied intent request Input validation 2 - - - 2
SYN2 Not found Input validation 9 - - - 9
SYN3 Wrong intent data Input validation 3 - - - 3
SYN4 Corrupt intent Input validation 1 - - - 1

Other syntactic bug

SYN5 Controller shutdown Application agent 1 - - - 1
SYN6 Resource exhaustion Resource agent 1 2 - - 3
SYN7 Topology disband Application agent 2 1 - - 3
SYN8 Throughput drop Performance test 15 - - 1 16
SYN9 Exceptions Log detection 29 6 2 5 42

Intent semantic bug

SEM1 Inconsistent intent state Control-Plane (CP) test 17 10 7 16 50
SEM2 Failure in connectivity Data-Plane (DP) test 29 2 - 14 45
SEM3 Impact on existing intent CP/DP tests 6 2 - - 8
SEM4 Garbage flow rules Flow-Intent mapping 6 4 - 1 11

Total 121 27 9 37 194 (1862)

Program exceptions can also occur (SYN9). These syntactic
bugs are easily found by existing tools or verifying other re-
sources (e.g., CPU and memory utilization) because incorrect
behavior is not dependent on program logic.

For semantic bugs, the intent violates the underlying net-
work’s integrity, although there may be no immediate error in
the controller. For example, when these bugs occur, the intent
state can be inconsistent with the network topology, process-
ing time,3 and operations4 (SEM1). Even if the intent state is
correct relative to the topology, the connectivity for the intent
can show as failed (SEM2). Installing or deleting an intent
can affect the existing intents by disturbing the connectivity
(SEM3). Bugs can generate unnecessary flow rules or leave
behind flow rules after removing intents (SEM4). We catego-
rize these bugs as semantic bugs, as these bugs’ impacts are
harder to recognize without considering IBN semantics.
Results. Overall, we found that a majority (61%) of bugs are
semantic bugs. Given the difficulty of efficiently and auto-
matically finding semantic bugs with off-the-shelf software
bug and vulnerability discovery tools, we argue in favor of
a tool that is tailored to the IBN domain’s semantics and we
motivate the need for designing such a tool.

We also note that the detection mechanisms in Table 1
show that semantic bugs require domain-specific verification:
control plane and data plane verification. The lack of both
mechanisms in off-the-shelf software bug-finding tools moti-
vates our interest in a comprehensive vulnerability discovery
framework that incorporates the network.

3.2 Motivating Attack Example
Our systematization from Section 3.1 demonstrates the need
for a semantically-aware vulnerability discovery tool for IBN.

3The intent can persist in any transitional state, such as INSTALLING and
WITHDRAWING.

4For example in ONOS-381, when removing an installed intent, the intent
is stuck in the INSTALLED state [6].
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To motivate the broad-reaching security impacts of IBN on
network functionality and to show why the understanding of
IBN’s security posture is crucial, we now demonstrate the
severe consequences that can be exploited from intent seman-
tic bugs by attackers. We use a representative semantic vul-
nerability that we discovered (CVE-2022-24109).5 We also
outline the limitations of existing state-of-the-art approaches
that would have made discovery difficult or impossible.
Attack scenario. Figure 4 shows the exploit workflow. An
attacker in the control plane (e.g., an application or a REST
client) accesses the internal intent framework. When a normal
application submits an intent to provide connectivity between
Host A and Host B 1 , the attacker can read the installed
intent 2 and submit a new equivalent intent with the same

5We discuss the responsible disclosure process in Section 7.1.



priority but a different key 3 . In this step, while the intent
framework has two equivalent intents, there is only one set of
flow rules, since flow rules of the normal intent are overwrit-
ten by those of the attacker’s intent. Thus, the attacker can
eliminate these flow rules by deleting the second intent 4 .
Even though the intent submitted by the normal application
remains in the system, all related flow rules are removed.

As shown in this example, IBN introduces new security
challenges compared to traditional networking. When new
intents are translated into flow rules in the network, existing
flow rules can be overwritten or disturbed by others. Adver-
saries can exploit the vulnerabilities with intents to affect
or even manipulate the network traffic within the system. In
addition, new components for IBN, such as the intent store
and the intent state machine, inevitably introduce a new attack
surface for adversaries.

In order to discover unknown bugs in IBN, we could use
existing tools, such as off-the-shelf fuzzers. However, there
are many limitations in existing techniques that preclude dis-
covery, which we illuminate through the motivating example.
Limitations in existing tools. Existing fuzzing tools input a
random sequence into a target program and check whether
the program behaves incorrectly. Due to the lack of semantic
knowledge about IBN, however, such tools might only find
basic bugs related to input verification. For instance, to re-
produce the motivating example, the vulnerability requires
two constraints: INSTALLED intents and a withdraw opera-
tion. For any intent to be INSTALLED, an input should have
included the existing source and existing destination in the net-
work. However, successfully finding any existing host based
on random values is unlikely and requires a substantial input
space search; such inefficiency wastes valuable testing time.
Without prior knowledge of varying network information such
as device ID, host ID, and location of hosts, it is hard to gen-
erate even one INSTALLED intent. Moreover, we cannot apply
the topology information as a fixed grammar in fuzzing tools,
as the topology differs in every environment.

The intent state that triggers the vulnerability is WITHDRAWN,
which requires that the fuzzer executes the withdraw op-
eration. While existing fuzzing tools can simply request
withdraw with the random intent ID, it might be easily re-
jected by the controller since a random ID is very unlikely to
match one of the existing intents.
Limitation in existing algorithms. To support IBN fuzzing,
existing fuzzing tools can be configured with a post-processor
that uses the underlying network to generate valid intents by
communicating with a controller. Even with a post-processor,
though, such existing tools may have difficulties in discover-
ing unknown bugs because of their limited guidance policies.
Well-known fuzzers, such as AFL [62] and IJON [12], at-
tempt to cover more program code (or states) based on the
state machine of a target program during the execution. If
the code coverage cannot distinguish bug cases from normal
cases, such tools do not aid in the detection of such bugs.

Table 2: Code coverage of the motivating example with no
distinction between normal and error cases.

Package Classes Branch Coverage

Normal Error

Intent

org/onosproject/net/intent/impl/phase 28% 28%
org/onosproject/store/intent/impl 20% 20%
org/onosproject/net/intent/impl 19% 19%
org/onosproject/net/intent/impl/installer 10% 10%
org/onosproject/net/intent/impl/compiler 8% 8%

Network
org/onosproject/net/driver/impl 25% 25%
org/onosproject/net/flow/impl 11% 11%
org/onosproject/net/domain/impl 4% 4%

Controller
org/onosproject/openflow/controller/impl 5% 5%
org/onosproject/openflow/controller/driver 5% 5%
org/onosproject/openflow/controller 3% 3%

Table 2 shows the code coverage of the motivating example
compared to one of a normal case, where the user removes
the existing intent before adding its copy. Given the large
number of classes within ONOS, we select packages related
to intent operations only. From Table 2, it is clear that code
coverage cannot differentiate the error case from the normal
case. Except for the flow rules in the network devices that are
overwritten by the bug case, both the normal and error cases
have the same number of intent operations (two additions and
one deletion) and flow rule operations. Because the controller
does not have any capability to resolve duplicated intents and
flow rules, the covered code will be the same in both cases.

3.3 Challenges of IBN Fuzzing
Based on our bug report analysis and motivating example, we
find that intent semantic bugs are difficult for existing fuzzers
and fuzzing approaches to uncover. We now generalize several
challenges in finding intent semantic bugs, which we use as
the basis for designing a new fuzzer for IBN.
Challenge (C1): Topology awareness. Generation of any in-
stalled intent is complicated without knowing the underlying
network topology information. Existing fuzzers focus on a
program’s code to generate inputs that are likely to cause
a bug. To increase efficiency, such fuzzers utilize the code
coverage metric as feedback or apply a user-defined grammar
to make valid inputs. In IBN, an intent that is specified based
on reachability requires both a source ID and a destination
ID of existing network objects (e.g., host addresses). Given
valid inputs in the grammar of the intent request, an existing
fuzzer is unlikely to generate an installed intent, as any ran-
dom identifier is unlikely to match one of the existing objects
(e.g., host addresses). Thus, an IBN fuzzer needs topology
awareness to efficiently guide the input process.
Challenge (C2): Support for diverse operations. Intent
bugs can occur in any operation, as shown in the right-sided
columns of Table 1. In requesting random intents, an IBN
fuzzer needs to execute other operations on existing intents or
mutate a topology to discover more bugs. Specifically, such
an IBN fuzzer needs to manage a network controlled by the
target controller in order to mutate a topology at a specific



Fuzzing Layer

Interface Layer

Storage Layer

Service Layer

Topology APIIntent API

App
Agent

Intent Store

C
ov

er
ag

e 
Ag

en
t

Controller

APP

Intent System

Core

Intender Architecture

Topology Store

Intent
Operator

Intent
Checker

Network
Manager

Intent Scenario
Fuzzer

Intent Scenario
Processor

APP

Testbed

Host
Agent

Test
Agent

Host
Agent

Host
Agent

Coverage API

seed

Figure 5: Overview of INTENDER framework. New compo-
nents are highlighted in gray.

time.
Challenge (C3): Need for new guidance metric. As shown
in the motivating example (and in particular, Table 2), the tra-
ditional code coverage metric used in existing fuzzers cannot
distinguish errors from normal cases. Installing several intents
that share the underlying path has the same coverage in the
program code regardless of the number of intents. However,
the number of intents is semantically important, since more
intents can be changed while mutating the network topology.
Thus, an IBN fuzzer needs a new guidance metric to generate
diverse and meaningful inputs for IBN.
Challenge (C4): Need for black-box approach. Although
open-source IBN implementations can be studied more easily
with existing code-coverage-based approaches, the utility of
analysis with code coverage is significantly curtailed when
testing proprietary, closed-source IBN implementations. Thus,
an IBN fuzzer should enable a black-box approach whose
metrics are agnostic to the underlying program code.
Challenge (C5): Lack of detection mechanisms. A viola-
tion of intent semantics, which we discovered to be the ma-
jority cause of ONOS intent bugs, is hard to automatically
recognize without additional domain knowledge. An intent’s
state is determined by two factors: network topology and
previous operations. For instance, if an intent is active and
successful, its state will be INSTALLED. When the topology
changes because of a link failure or a link recovery, existing
intents’ states will change accordingly. Although the intent’s
state is correctly represented, the intent’s actual connectivity—
implemented by forwarding rules in the data plane—may not
be satisfied because of unknown errors. To detect an intent
state’s correctness, additional detection mechanisms, such as
the control plane and data plane verification, are necessary.
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Figure 6: INTENDER state machine, which includes all intent
states and transitions.

Table 3: INTENDER operations.

Operation Input State Output State

add-intent - INSTALLED, FAILED, CORRUPT
mod-intent any state except REMOVED INSTALLED, FAILED, CORRUPT
withdraw-intent INSTALLED, FAILED, CORRUPT WITHDRAWN
purge-intent FAILED, CORRUPT, WITHDRAWN REMOVED
topology-change INSTALLED, FAILED INSTALLED, FAILED

4 INTENDER Overview

Based on the aforementioned challenges in Section 3.3, we
present INTENDER, a fuzzing framework for IBN that discov-
ers unknown security vulnerabilities in IBN implementations.
Figure 5 shows the framework overview.

We devise new guidance and input mutation policies for
IBN fuzzing (§ 5.2). INTENDER receives seed scenarios that
consist of a list of diverse operations written by domain ex-
perts (C2). During execution, INTENDER mutates each sce-
nario in the seed corpus by appending or truncating operations.
INTENDER generates a random intent based on the underly-
ing topology (C1), and it uses the concept of intent-operation
dependency to reduce the number of unnecessary operations
in the mutant scenario and to increase efficiency. INTENDER
also collects the history of transitions in intent states from the
controller; if the scenario generates a unique history, it stores
this mutant scenario into the corpus and keeps running until
it is terminated (C3).

We construct the INTENDER architecture to apply our
fuzzing techniques (§ 5.3). INTENDER communicates with
the controller using the controller’s API (C4) to request and
receive topology and intent information. INTENDER uses a
network testbed based on network emulation to mutate the
network topology at specific times (C2), and it provides both
control plane and data plane verification mechanisms (C5).

5 Design

We now present the intent model used by INTENDER (§ 5.1),
the new fuzzing techniques that INTENDER incorporates
(§ 5.2), and the INTENDER architecture (§ 5.3).

5.1 Intent Model
Given that an IBN fuzzer should work across different IBN
implementations (C4), we define the intent model that allows



for generalization and abstraction across implementations.
Figure 6 shows the state machine of intent used in INTEN-
DER. The INTENDER intent state machine contains 7 states:
REQ and WITHDRAWING for waiting states; and INSTALLED,
FAILED, CORRUPT, WITHDRAWN, and REMOVED for final states.
Table 3 shows five operations supported by INTENDER and
state transitions in accordance with each operation.

5.2 New Fuzzing Techniques
In order to discover unknown semantic vulnerabilities in IBN,
we design new fuzzing techniques. Compared to existing
approaches, these generation and guidance policies increase
the efficiency of finding semantic bugs.
Topology-Aware Intent Generation (TAIG). An IBN con-
troller receives an intent as an input, and a fuzzer can generate
random strings or even grammatically correct inputs to find
unknown bugs. Without the consideration of topology, it is
unlikely that the intent can ever reach the INSTALLED state;
that makes it hard to find semantic bugs (C1).

INTENDER checks topology information to create valid
intents. It gathers topology information, builds a topology
graph, and randomly chooses sources and destinations based
on this graph. In addition, INTENDER can generate a sce-
nario with multiple operations at the same time to test diverse
cases. While generating operations, such as intent or topology
operations, INTENDER reads or updates the configurational
topology graph. During the scenario execution, it updates the
operational store by receiving messages from the controller
and verifies each operation.
Multiple-operation scenario mutation. As we have shown
from our case study of existing bugs in Table 1, intent bugs
can happen in any operation (C2). By supporting all intent
operations, fuzzers can find more IBN-related bugs. Although
bugs that occur during installation can be discovered by re-
questing a random string or a topology-aware input, other
operations require existing intents.6 In order to cover these
cases, the random order of operations as well as the random
input is required.

For this purpose, INTENDER considers a set of operations
as an input scenario. Users input well-written scenarios into
INTENDER as seeds. When INTENDER mutates a seed sce-
nario, it appends or truncates random operations at the end of
each scenario; changing an operation in the middle will affect
all other subsequent operations. In addition, since the intent’s
identifier is assigned by the controller, each add-intent op-
eration has an internal intent identifier that is indicated by
subsequent operations.
Intent-Operation Dependency (IOD). According to the
state transitions from INTENDER operations in Table 3, de-
pendencies exist among states. A naive fuzzer that generates

6For instance, withdraw and purge require an existing intent’s identifier
in order to not be simply rejected by the controller. In addition, changing
topology without any existing intent will not invoke any IBN function.

Algorithm 1 The Intent-State Transition Guidance
Input: set of initial scenarios C, topology T
Output: a set of test inputs and failing inputs

1: S←C
2: F ← /0

3: totalCoverage← /0

4: while time period expires do
5: for all scenario ∈ S do
6: mutant← MUTATE(scenario, T )
7: coverage← /0

8: I← /0

9: for all operation ∈ mutant do
10: history,result← RUN(operation, I, T )
11: coverage← coverage∪{history}
12: if result = FALSE then
13: F ← F ∪{mutant}
14: break
15: if coverage 6∈ totalCoverage then
16: S← S∪{mutant}
17: totalCoverage← totalCoverage∪ coverage
18: ROLLBACK(mutant, I, T )
19: return S, F

redundant operations will waste time finding irrelevant sce-
narios. INTENDER considers the intent-operation dependency
(IOD) between intent operations to generate more relevant
test scenarios. During the scenario mutation, it calculates the
expected states of each intent and generates the next operation
among appropriate operations. For practitioners that want to
test exceptional cases, INTENDER provides a knob to adjust
the frequency of exceptional operations.

In addition, topology operations can be dependent on in-
tents. While deleting existing links or hosts highly affects
INSTALLED intents, adding links or hosts randomly will not
likely change FAILED intents, since an intent will shift to the
INSTALLED state when all ends of the intent exist in the topol-
ogy. Therefore, INTENDER can prioritize adding one end of
any FAILED intent as a new link or host to increase efficiency.
Intent-State Transition Guidance (ISTG). Code-coverage
guidance (CCG), which is found in most traditional fuzzers
[15,16,24,43,47,49,62], is significantly limited when guiding
a fuzzer to find unknown IBN semantic bugs (C3). Although
CCG helps find some installation bugs, other bugs (including
the motivating example) may not be distinguished by the code
coverage metric.

For a new metric, we focus on intent-state transitions. When
any operation affects the intent, the controller executes the
operation; the intent’s state will be changed. If the intent state
is not changed, it is likely that the controller does nothing and
the underlying network remains as it is. Therefore, by guiding
INTENDER to find more diverse transitions in intent states, it
will invoke functions that have not been executed before.

With this new metric, we devise a new guidance policy
called intent-state transition guidance (ISTG) as shown in
Algorithm 1. ISTG receives a set of initial scenarios C from



Table 4: INTENDER mutation rules.

Rule Description

R1: Max appending Max number of operations appended to the end
R2: Max truncating Max number of operations truncated at the end
R3: Topology-operation overhead Overhead on topology-change operations
R4: Exceptional operation overhead Overhead on exceptional operations
R5: Velocity Velocity of adding operations in the scenario

a user that is stored in a set S of seed scenarios (line 1). In
each step, ISTG chooses a scenario in S for the mutation
(line 5). ISTG mutates the chosen scenario with the topology
information T (line 6), runs each operation within the mutant
scenario, and receives its result and the history of intent-state
transitions during the operation (line 10). When a new intent
is installed, ISTG records its state. When an intent is modi-
fied, withdrawn, or purged, it records the index and the final
state of the intent. If the topology operation is executed, ISTG
records the indices and the final states of all affected intents.
If an operation fails during the execution, the algorithm stops
running the mutant scenario and stores it into F (line 13).
After executing all operations of the scenario, ISTG checks
whether this history coverage is new or not (line 15). If it intro-
duces new coverage, ISTG stores the mutant into S (line 16)
and updates totalCoverage (line 17). Finally, ISTG rolls back
the topology into the initial state and removes the remaining
intents (line 18). The process continues until a given time
period expires, and ISTG returns the seed corpus S and the
failed inputs F as results (line 19).

ISTG attempts to find additional unique intent-state tran-
sitions.7 Changes in the intent state will bring more diverse
situations, and we show in Section 7.2 that the likelihood of
finding bugs will increase accordingly.
Mutation policy. To allow users more control over INTEN-
DER in their environments, we provide five mutation rules as
shown in Table 4. Users can regulate the number of new opera-
tions by specifying R1 and R2, which are the maximum num-
ber of operations appended or truncated at the end of a previ-
ous scenario. R3 defines the overhead of topology-change
operations compared to other intent operations. As the latency
of topology-change operations may differ among network
environments, users can set a small number for the R3 value.
In addition to overhead, the probability of executing topology-
change operations will increase when the number of existing
intents increases. R4 specifies the overhead of exceptional
operations based on the dependency described in Section 5.2.
Finally, R5 determines the velocity of appending operations.

5.3 INTENDER Architecture

Given the aforementioned intent model and fuzzing tech-
niques, we now present INTENDER’s architecture. In order to

7If the guidance mutates a scenario by only appending add-intent
operations, the length of transitions will increase and every scenario will be
considered unique. To avoid adding operations infinitely, practitioners can
regulate the velocity of appending operations (R5).
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solve the challenges outlined in Section 3.3, we identify a set
of design goals as follows:
Goal (G1): Operation handling. While a random input of
an intent request might cause a bug in IBN, other intent op-
erations or changes in topology can trigger bugs in an intent
controller. The architecture should support the random order-
ing of operations, as well as random values in each operation.
Goal (G2): Detection mechanism. To discover both syntac-
tic and semantic intent bugs, the architecture should have a
new detection mechanism for semantic bugs. The architecture
should recognize intent semantics violations in the control
plane by checking reachability, as well as in the data plane by
sending test packets.
Goal (G3): Abstract design. The new architecture should be
designed with abstraction layers to allow developers to add
their own features as plugins. Such interfaces should support
multiple IBN implementations and new fuzzing techniques.

Figure 5 shows the various components of INTENDER’s
architecture. Developers can supplement components with-
out affecting other components (e.g., support of new IBN
implementations or new fuzzing techniques).

In the fuzzing layer, INTENDER receives input seeds from
the user. The intent scenario fuzzer selects a seed scenario
from the scenario seed corpus and mutates it with its own pol-
icy, as shown in Figure 7. Scenario-level fuzzing mutates the
order of operations in the seed scenario. Intent-level fuzzing
uses a topology-aware intent generation policy that randomly
chooses two topology endpoints to generate a random intent.
Users can replace our generator with other fuzzing techniques
that mutate an intent in the intent seed corpus. Topology-
operation fuzzing mutates topology operations by randomly
choosing a valid device, host, or link. For the data plane veri-
fication, packet-operation fuzzing will generate test packets
that represent installed intents or utilize other tools such as
PAZZ [51]. After mutating the seed, the intent scenario pro-
cessor uses new input to return the history of intent-state



transitions and the results of the input scenario to the intent
scenario fuzzer as feedback guidance.

In the service layer, the intent operator adds, modifies, or
deletes a given intent (G1). Since the intent or the request
message could be either syntactically valid or not, the intent
operator directly sends the message as a string through intent
APIs. If the request is handled successfully, the intent operator
stores an intent object with an expected state in the intent store.
The intent checker checks the correctness of the intent state
from the control plane’s perspective and verifies the target in-
tent when it receives the cp-verify-intent operation from
the processor (G2). The network manager acts as a proxy of
the test agent to manage all data-plane operations by handling
topology operations (G1) and the dp-verify-intent oper-
ation (G2). When receiving a topology-change operation,
the network manager requests the operation to the test agent,
receives the corresponding topology update, and confirms that
the update is correct.

In the storage layer, INTENDER stores intents and the cur-
rent topology to verify an intent’s correctness. In addition,
the fuzzing stage uses a configurational store when mutating
scenarios, as the generator cannot actually run operations and
change the topology during this execution.

In the interface layer, INTENDER’s APIs allow developers
to extend and support new IBN implementations and fuzzing
techniques (G3). To use the application API, the application
agent runs alongside the IBN controller. The topology com-
munication actively updates the topology graph with nodes
for devices and hosts and edges for links, whenever it receives
any message from the controller. INTENDER supports a code
coverage API to measure code coverage; that requires a code
coverage agent within the controller.

INTENDER provides a network testbed (G1/G2) to sup-
port data plane verification and topology operations. The test
agent operates and manages an emulated network, though
this does not preclude INTENDER’s use in a real network en-
vironment (G3). The agent can start the network emulation
with a given network topology at the beginning and mutate
the topology during the execution such as adding or deleting
hosts, links, and devices without physical constraints. A host
agent can send or receive test packets to support data plane
verification.

The application agent requests intent operations by receiv-
ing commands from the main architecture. The application
agent can also check for controller or topology availability.

5.3.1 Control plane verification

Given the cp-verify-intent operation, the intent checker
conducts the control plane verification of given intents. Al-
gorithm 2 describes the process of verification in the control
plane. Before getting the result from the controller, it cal-
culates the expected state of intent based on the underlying
topology (line 14). The function EXPECT checks whether any

Algorithm 2 The Intent Checker Algorithm

1: function EXPECT(I, T)
2: s← T.GETNODE(I.src)
3: d← T.GETNODE(I.dst)
4: if T.PATHEXISTS(s,d) == FALSE then
5: return FAILED
6: else if I.isBothWay == TRUE &

T.PATHEXISTS(d,s) == FALSE then
7: return FAILED

8: return INSTALLED

9:
10: procedure MAIN
11: I← the intent
12: T ← the current topology (N: nodes, E: edges)
13: C← the target controller
14: expcState← EXPECT(I,T )
15: while waiting time expires do
16: J← GETINTENT(C, I.key)
17: if J.data = I.data & J.state = expcState then
18: return TRUE

19: WAIT()

20: return FALSE
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Figure 8: Point interleaving switch (SPI) and host (HPI). An
intent controller can only detect grey nodes and edges, and
it recognizes as two ends communicate through grey arrows.
Blue arrows show mirroring paths from and to HPI via SPI .

path between a source and a destination exists or not (lines 1–
8). For a given waiting time, it repeatedly gets the result from
the controller (line 16). If the result of the state and data is the
same as the expected state and the original data, the control
plane verification of the intent succeeds (line 18). Otherwise,
the intent fails in the verification (line 20).

The intent checker can detect any inconsistency in the
reachability intent. We can further extend the intent checker
with the intent composition tools that synthesize diverse types
of intents [10, 46, 54].

5.3.2 Data plane verification

Given the dp-verify-intent operation, the network man-
ager delivers this operation to the test agent and receives the



result of verification of the target intent from the test agent.
We provide two ways for the test agent to execute the data
plane verification: test packets and PAZZ [51].

Intent-based test packet. The test agent requests SNIFF to
the destination and SEND to the source. When the host agent
at the destination receives the correct packets, the host agent
returns the test success message to the test agent, which for-
wards the success response to the network manager. Other-
wise, the test agent sends the timeout response to the network
manager. In the case of intents with bidirectional connectivity,
the host agent in a source can request a PING.

However, the source or destination of the intent can be (1)
empty, (2) one of the ends of the link, or (3) a port connected to
the host. To send a packet from any arbitrary port, we leverage
point-interleaving switches (SPI) and a point-interleaving host
(HPI) in the network testbed, as shown in Figure 8. First, if
the intent has an empty switch port, the test agent adds a
temporary link between the port to HPI . Second, if the intent
has a port within the existing link, test packets should be
injected within the link. For this purpose, there is a point-
interleaving switch (SPI) for each link. Since SPI cannot send
packets, HPI connects all SPIs with multiple data interfaces. If
the source of the intent is one of the ends of the link, HPI sends
test packets to the interface that connects to SPI of the link. If
the destination of the intent is one of the ends of the link, SPI
mirrors test packets forwarded to HPI for SNIFF. Finally, if
the intent has a port connected to the host, the host agent at
the host will send or sniff test packets. After the test, the test
agent removes all temporal links and interfaces.

PAZZ detects any inconsistency between the control plane
and the data plane by comparing information in the controller
with packet metadata that contains the path and flow rule
history. While PAZZ does not need any special node (SPI and
HPI) in the topology, PAZZ requires modified switches to add
a custom L2 VERIFY header as the metadata.

Initially, the network manager requests a PAZZ test to the
test agent that requests a sender to send production traffic
with tcpreplay for performance (e.g., 106 pps). If the initial-
ization succeeds, the network manager learns the sender’s
management IP address to directly request fuzz traffic to the
host agent in the sender. The network manager mutates pack-
ets among the header space uncovered by the given intent.
The receiver samples packets from both production traffic and
fuzz traffic and sends them to the consistency tester. The con-
sistency tester requests the path and rule history of the sample
packet to the network manager since the network manager
can calculate this history with the topology and flow rules
stored in the storage layer. Finally, the consistency tester will
recognize any data-plane fault by comparing the history with
the VERIFY header of the sample. When the network man-
ager tests all possible headers or the time expires, it stops all
processes and clears all resources made during the test.

6 Implementation

We implemented INTENDER in Java and chose ONOS v2.5.1
as our intent controller. Our implementation is available
at https://github.com/purseclab/intender. We wrote
the application agent in Java to request intents to ONOS.
We built the network testbed with network emulation using
Mininet v2.2.2, running Open vSwitch v2.14.0. Within the
testbed, we implemented the test agent and host agents in
Python with the Scapy library to send and sniff packets. To
learn the topology view of the ONOS controller, we execute
a RabbitMQ server that transmits the topology change mes-
sages from the controller to INTENDER.

Our framework easily supports other IBN implementations
by replacing interfaces and relevant components, which we
discuss in Section 8.

Furthermore, we implemented 4 state-of-the-art fuzzers
within INTENDER framework to demonstrate the generaliza-
tion of our framework and compare against them with our
new fuzzing mechanisms. Since existing fuzzers require either
target binaries or unit tests, we ported these fuzzers into IN-
TENDER to execute fuzzing tests on a running IBN controller.
We describe these implementations in detail.
AFL. We leverage JQF [42] framework to support AFL [62]
in Java. As JQF utilizes a proxy program for Java programs
to communicate with AFL, we implemented a proxy for IN-
TENDER. The proxy transfers a new random input from AFL
to INTENDER via inter-process communication (IPC). After
running a test with the input, INTENDER records coverage
and sends it back as feedback to the proxy. The proxy finally
stores the coverage into a shared memory accessible by AFL.
Zest. We also ported Zest [43] algorithm from JQF. Zest lever-
ages a parametric generator from a stream of pseudorandom
numbers and semantic guidance by storing valid inputs into
the seed corpus. Since Zest requires a custom generator to
follow the grammar of the target program (e.g., XmlDocu-
mentGenerator for WebXml), we implemented our custom
generator to map random numbers to inputs that are syntacti-
cally valid in the intent grammar.
Jazzer [30] is another coverage-guided fuzzer for the JVM
platform, integrated into Google’s OSS-Fuzz [50]. Jazzer re-
ceives either test programs or whole binaries as a target, then
fuzzes them using the libFuzzer engine [49]. Instead of port-
ing all codebases of Jazzer to INTENDER, we used another
proxy program to communicate with Jazzer. INTENDER com-
municates random inputs and coverage data with the proxy via
IPC. The proxy leverages TRACE_PC_INDIR to set a bit in the
libFuzzer’s value-profile bitmap. The overhead of IPC used
in both AFL and Jazzer is negligible compared to the over-
head of other heavy operations such as dp-verify-intent
or topology-change.
PAZZ [51] is designed to verify the inconsistency between
the control plane and the data plane in SDN. PAZZ receives
a set of policies from an SDN controller, then combines pro-

https://github.com/purseclab/intender


duction traffic with active probes using abnormal packets for
periodical testing. PAZZ requires modified switches to create
a custom L2 shim header that stores a hash chain of rules
and ports as its path history. By comparing this header of
sample packets with an expected hash chain from the con-
troller, PAZZ can detect data-plane faults in three components:
flow rules, topology, and paths. Unlike AFL, Jazzer, and Zest,
PAZZ mutates a random packet to test the data plane.

7 Evaluation

We evaluated INTENDER with ONOS v2.5.1. We ran all com-
ponents within a single virtual machine, e2-standard-4 in
Google Cloud Platform: 4 vCPUs, 16GB memory, and 60GB
SSD. We ran tests for 24 hours for bug discovery and perfor-
mance comparison. To mitigate the non-deterministic behav-
ior of fuzzing, we repeated experiments 20 times. We show
the 95% confidence interval around the average as the error
bands.

We compare the fuzzing efficiency of INTENDER to
AFL [62], Jazzer [30], Zest [43], and PAZZ [51], in terms
of code coverage and bug detection. We used the Eclemma-
JaCoCo library (v0.8.6) [28] to measure IBN-related code
coverage within ONOS. We extracted relevant methods from
ONOS using Soot (v4.2.1) [57]. We started with 4 intent-
related entry points to track all code paths to find methods
that these entry points pass through. This is because ONOS
contains a huge number of modules such as applications and
drivers. By running the pre-runtime analyzer, we can elimi-
nate those classes irrelevant to the intent processing.
Mutation rules. For the rest of our evaluation, we set the
following default values for all mutation rules in Table 4. We
set R1 and R2 as 3 and 1 to mutate scenarios to have more
random actions. In our test environment, we found that the av-
erage time spent on topology-change is 33.3× longer than
the time spent on add-intent. To generate the appropriate
number of topology-change operations, we derive R3 as 16
to spend approximately 2× more time on topology-change
than add-intent. We set R4 as 4 to generate the exceptional
case every four normal operations. R5 (v) decides whether to
add operations or not ( f ) by calculating the following equa-
tion with the number of scenario seeds (S) and the number of
actions within the previous scenarios (P):

f (S,P) =

{
1, if (|S| �max{|P|− v,0})> 0.
0, otherwise.

We set R5 as 10 to limit the velocity of adding operations
after 10 operations. Users can configure all knobs as needed.

7.1 Discovered Vulnerabilities and Bugs
We notified the ONOS Security Response Team of all of
the vulnerabilities found through INTENDER by following a

responsible disclosure process. The Security Response Team
acknowledged our discoveries.

7.1.1 Security case studies

We introduce two previously unknown IBN vulnerabilities
found by INTENDER to demonstrate their adverse effects in
the correct network operation.
Flow manipulation by crafted intents. The intent can mod-
ify or delete flow rules of existing intents that share the path
(BUG 8; CVE-2021-38364). In the case of a PointToPoint
intent that connects two different points, flow rules installed
by the intent have only an IN_PORT match and an OUTPUT
action. If an attacker installs a new intent with the same as the
existing intent except for the destination, flow rules will be
overwritten to be redirected to the destination. It happens due
to the absence of comparison of flow rules installed by intents.
While INTENDER can find this bug by generating multiple
add-intent operations, other fuzzing tools which request
a single intent for each step cannot detect errors in multiple
intents.
Exceptional operation. Although the purge-intent op-
eration does not have any impact on installed intents, a
PointToPoint intent ignores any relevant topology-change
events after a purge request (BUG 12; CVE-2022-24035).
This bug happens due to the early withdrawal of the manage-
ment of devices. When a user requests purge-intent to an
intent with the INSTALLED state, IntentManager in ONOS
adds this intent into the pending queue and withdraws the
management of devices specified in the intent immediately.
IntentBatchDelegate receives the pending intent and re-
jects purging this intent. Since it already removed the device
information for this intent, the intent will not be recompiled,
even though one of the devices or links on the path is dis-
connected. If an attacker requests purge-intent to any in-
stalled intent, the intent might not be affected at that time, but
its connectivity will be disrupted after changes in topology.
INTENDER can find this bug by generating a scenario with
an exceptional case and topology mutation. However, other
fuzzing tools cannot find it, since they do not support these
operations.

7.1.2 New vulnerabilities and bugs

INTENDER found 12 previously unknown bugs as shown
in Table 5, 11 of which are security-critical vulnerabilities
assigned with 11 CVEs. The unique characteristics of IBN
bring a new attack surface, such as intent-store exhaustion
(BUG 1), mishandling intent-state transitions (BUG 2–4,
BUG 11, BUG 12), violating network invariant (BUG 5), ab-
sence of intent-flow mapping (BUG 6, BUG 9), and flow-rule
conflicts (BUG 7, BUG 8, BUG 10).

Among newly found bugs, AFL, Jazzer, and Zest found
3 syntactic bugs related to the incorrect grammar or invalid



Table 5: List of unknown intent bugs in ONOS discovered by INTENDER.

# CVE ID Type Operation Description

1 CVE-2021-38363 SYN2 add-intent PointToPoint intent with invalid point field causes NullPointerException
2 CVE-2022-29604 SYN4 add-intent PointToPoint intent which has an upper-case letter in a device ID shows CORRUPT
3 CVE-2022-29606 SYN4 add-intent PointToPoint intent which has a large switch port number shows CORRUPT
4 CVE-2022-29609 SEM1 add-intent HostToHost intent with the same source and destination shows INSTALLING
5 CVE-2022-29608 SEM2 add-intent PointToPoint intent installs an invalid flow rule causing network loop
6 CVE-2022-29605 SEM2 add-intent Intent tries to install IPv6 flow rules into OF10 switches
7 CVE-2022-29944 SEM3 add-intent Intent cannot bypass intents with higher priority
8 CVE-2021-38364 SEM3 add-intent Intent can delete or modify flow rules of previous intents which share the path
9 - SEM4 add-intent PointToPoint intent with switch port 0 installs useless flow rules

10 CVE-2022-24109 SEM3 withdraw-intent Deletion of one of the duplicate intents removes all flow rules
11 CVE-2022-29607 SEM1 mod-intent HostToHost intent modified to have same source and destination

shows INSTALLED without any flow rules
12 CVE-2022-24035 SEM1 purge-intent After requesting purge on installed PointToPoint intent,

& topology-change the state of intent does not change to FAILED with link failure

value of intent requests. These bugs can be easily discovered
by checking internal logs. The remaining 9 bugs were found
by our new fuzzing techniques in INTENDER. While 6 of
those bugs occurred when adding an intent, 3 were introduced
during other operations. BUG 12 occurs with multiple op-
erations on the intent. Attackers can exploit these bugs to
cause integrity violations of intents. While AFL, Jazzer, and
Zest may find a few bugs with syntactically-invalid inputs,
our techniques employed in INTENDER focus more on finding
semantic bugs with multiple operations. These methods can
be complementary to each other.

7.2 Performance Comparison

Overall efficiency. We evaluate INTENDER in terms of the
efficiency of bug finding and compare it with AFL, Jazzer,
Zest, and PAZZ. Figure 9 shows the experimental results of
different fuzzing tools. “V/AFL” represents “Vanilla AFL”
without any verification in the control plane (CP) and the data
plane (DP). It treats a random string as an intent and checks for
a program failure with a response code. “AFL”, “Jazzer”, and
“Zest” operate their own mutation and guidance policy within
the INTENDER architecture. “PAZZ” continuously verifies the
consistency of pre-installed intents. For PAZZ experiments,
we replicate the 4-ary fat-tree experimental setting in its paper
by using three installed intents with destination-based routing.
“INTENDER” includes all features proposed in the paper.

Figure 9a and Figure 9b show the proportional number of
operations and intents, respectively. Since PAZZ checks the
inconsistency of IBN with the three pre-installed intents, it
does not generate any additional intent during the test and
stops fuzzing in 4 hours after covering all possible IP ad-
dresses of destinations. We omit PAZZ in the figures ac-
cordingly. Vanilla AFL, AFL, Jazzer, and Zest only request
add-intent with random inputs. Due to their randomness,
91.28%, 99.11%, and 97.07% of intents generated by vanilla
AFL, AFL, and Jazzer are denied by the controller. Zest re-
duces the denial rate of intents to 43.14% with grammatically-

valid inputs. Even though the random intents are accepted,
INSTALLED intents generated by AFL, Jazzer, and Zest ac-
count for only 0.19% 1.16%, and 0.56% (vanilla AFL cannot
distinguish the intent state). On the contrary, INTENDER al-
ways generates valid intents in terms of grammar and topology.
Moreover, INTENDER can generate other intent states such
as WITHDRAWN and REMOVED, since INTENDER executes all
operations, unlike AFL, Jazzer, and Zest. As a result, INTEN-
DER can test the semantics of IBN efficiently with different
operations and states.

Moving forward, we compare INTENDER to other fuzzers
in terms of code coverage and bug finding. For the code cover-
age as shown in Figure 9c, we measure the branch coverage of
relevant classes implementing methods that intent operations
rely on. Vanilla AFL without any verification can only test the
intent API parser resulting in 13.6% coverage. AFL, Jazzer,
and Zest show similar coverage, such as 16.66%, 16.56%, and
17.44%, respectively. Despite only with three installed intents,
PAZZ shows 16.41% coverage, similar to others. Instead, IN-
TENDER outperforms all existing fuzzers with 29.97% branch
coverage. Since INTENDER tests the semantics of IBN with
multiple operations that consist of valid inputs, it shows 2.2×,
1.8×, 1.8×, 1.7×, and 1.8× better coverage than vanilla AFL,
AFL, Jazzer, Zest, and PAZZ, respectively.

Regarding the bug-finding performance, Figure 9d de-
scribes the number of unique errors8 found during fuzzing.
Since bugs discovered by INTENDER mostly do not incur any
crash in the controller, we employ the number of unique errors
to calibrate bug-finding capability, instead of checking stack
backtraces. As a result, INTENDER generates more unique
errors compared to other fuzzers: 82.6×, 56.4×, 52.5×, and
64.3× more than vanilla AFL, AFL, Jazzer, and Zest, respec-
tively. PAZZ cannot find any error or bug, since it focuses
on finding an inconsistency between intents and network by
mutating packets, not intents.

We also measured the number of bugs found by different

8We define an IBN error as an input that has one of the adverse impacts
described in Table 1.
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Figure 9: Performance comparison tests. V/AFL stands for vanilla AFL. In Figure 9f, the rectangular bars are the time-to-find
and the diamond dots are the reliability of each bug in Table 5. The 24-hour tendency for branch coverage (9c) and unique errors
(9d) remains consistent across the codebase criteria, such as relevant packages, classes, and methods.

fuzzers over time, as shown in Figure 9e. Vanilla AFL cannot
detect any bug without any verification. Although the IBN
controller responded with an internal server error for random
inputs generated by vanilla AFL, there was no crash in the
controller. With the help of verification modules, AFL, Jazzer,
and Zest found up to 5 bugs in total. PAZZ, which tests only
one set of intents, did not discover any bug. Instead, INTEN-
DER found 7 bugs within 4 hours. In terms of bug efficiency,
AFL, Jazzer, Zest, and INTENDER can discover 4, 4, 3, and 7
bugs within the first four hours, respectively.

Further, we examine the time-to-find for each bug in Table 5
in Figure 9f, except for BUG 6 which occurs when the version
of the switch mismatches with the intent specification. Since
we do not mutate versions of switches in this experiment,
BUG 6 is not found by any fuzzing tool. The time-to-find is
the average time until a bug is first discovered by a fuzzer.
The reliability shows the success rate of bug finding among
20 trials.

INTENDER focuses on finding semantic bugs, while AFL,
Jazzer, and Zest typically find syntactic bugs, and PAZZ can-
not find any bugs. A pure random string generated by AFL
and Jazzer can be easily denied by the REST parser and leads
to internal server error responses. Although some of the ran-
dom strings might follow the JSON format, they could contain
a new JSON key that is not allowed in the intent system, such
as “de” instead of “device”, which causes an exception within
the intent processor. This kind of input is not found after the
request (BUG 1). In contrast, a syntactically-valid input from
Zest rarely finds BUG 1 with longer time-to-find and lower re-
liability, since inputs always follow the intent grammar. AFL,
Jazzer, and Zest can generate corrupt intents, which occur due

to a wrong upper-case letter in a device ID (BUG 2) or a large
port number (BUG 3).

While AFL, Jazzer, and Zest also find a few semantic bugs,
these are shallow bugs compared to others. BUG 5 found
by these fuzzers and INTENDER is related to a network loop
problem of a single intent that can be easily reproduced by
mutating a port of a normal intent. Also, AFL, Jazzer, and Zest
can detect BUG 9 that creates garbage flow rules by setting a
switch port number as 0, whereas INTENDER cannot generate
a zero-numbered port for any intent, since it depends on the
underlying topology consisting of natural number ports.

Meanwhile, INTENDER finds significantly more seman-
tic bugs than AFL, Jazzer, and Zest. First, INTENDER finds
BUG 4 that is not found in AFL and Jazzer, and is unlikely to
be found in Zest (5% reliability). Since INTENDER refers to
the topology, it can easily detect BUG 4, which requires the
intent with the same source and destination. Similarly, INTEN-
DER can detect BUG 11, which occurs when modifying an
existing intent into an invalid intent with the same source and
destination. Moreover, unlike AFL, Jazzer, and Zest, inputs
from INTENDER are likely to be accepted by the controller.

As a result, INTENDER can find 7 semantic bugs, 5 of which
are not discovered by AFL, Jazzer, and Zest. PAZZ attempts to
discover an inconsistency in the data plane without mutating
intents, thus cannot find any semantic bug. Since INTENDER
generates a list of diverse operations with several states, it can
find more semantic bugs.
Intent validity. To show the efficiency of topology-aware
intent generation (TAIG), we measure the validity of intents
generated by AFL, Jazzer, Zest, and TAIG for 3 hours. We
exclude PAZZ since it does not mutate intents. For this ex-
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Figure 10: Results of intent validity.

periment, TAIG generates only one add-intent operation in
each scenario, as in AFL, Jazzer, and Zest. Figure 10 shows
the experimental result on two different 4-ary fat-tree topolo-
gies: without any link failure (4-ary / 32 Link) and with a few
link failures (4-ary / 24 Link).

The ratio of accepted intents of Zest (50.22%) is much
higher than one of AFL (7.19%) and Jazzer (1.95%) since
the generator in Zest always creates inputs valid in the intent
grammar. INSTALLED intents generated by AFL, Jazzer, and
Zest account for only 1.96%, 0.82%, and 0.77% for the 4-ary
fat-tree topology and 2.55%, 0.63%, and 0.82% for the topol-
ogy with link failures, respectively. While AFL could gener-
ate more INSTALLED intents than Jazzer and Zest, the ratio
of INSTALLED intents generated by AFL decreases to 0.19%
after running 24 hours as shown in Figure 9b. Moreover, AFL,
Jazzer, and Zest generate a small number of INSTALLED in-
tents within a margin of error, regardless of link failures in
the topology.

Contrary to AFL, Jazzer, and Zest, INSTALLED intents gen-
erated by TAIG account for 96.9% and 82.9% for the topology
without and with link failures, respectively. Since TAIG refers
to the topology, it can generate 9.4×, 10×, and 78.7× more
INSTALLED intents than AFL, Jazzer, and Zest, respectively.
TAIG also shows that the number of INSTALLED and FAILED
intents are dependent on the link failures in the topology.
Since TAIG can generate more topology-relevant intents, it
helps focus on finding semantic bugs instead of shallow ones.
Redundant operations. We measure the number of redun-
dant operations and elapsed time executed by INTENDER
with and without the intent-operation dependency (IOD) for 3
hours. We classify withdraw-intent on WITHDRAWN intents
and purge-intent on INSTALLED intents as redundant op-
erations. As a result, INTENDER with IOD reduces 73.02%
of redundant operations, contrary to INTENDER without IOD.
Since INTENDER without IOD generates more redundant op-
erations, it spends 3.46%, 19.7%, 8.69%, and 17.2% more
time on withdrawal, purge, verification, and cleanup for re-
dundant intents than one with IOD, respectively. INTENDER
with IOD reduces these operations and spends 10.74% more
time on valid operations, especially 15.34% more time on
topology-change operations.

Coverage metric. We evaluate INTENDER with the code-
coverage guidance (CCG) and the intent-state transition guid-
ance (ISTG) for 24 hours. Figure 11 shows the result of the
performance of CCG and ISTG during the first 12 hours. Af-
ter 12 hours, 85% of machines stop running INTENDER due to
a topology inconsistency between the IBN controller and the
network, caused by errors in topology-change operations.
Even though the number of tested machines decreases after
12 hours, causing the error band to become wider, the overall
trend remains unchanged.

Figure 11a shows the branch coverage. We measure the
branch coverage of relevant classes implementing methods
that intent operations rely on. In terms of branch coverage,
the two guidance policies have similar coverage around 30%.
Since we devise ISTG to find more transitions in intent states,
not to cover more code paths, ISTG does not improve the
branch coverage. Both guidance policies comparatively show
a small coverage, since we test IBN with only reachability
intents without diverse match fields and actions, which are one
of the vast parts in the code of IBN. In addition, measuring
the code coverage during the execution of operations excludes
the code used to initialize the controller and synchronize the
cluster.

There are also two reasons why these guidances have the
same coverage. As described in Section 3.2, two different
scenarios with the same number of flow rules and intent op-
erations show the same coverage in relevant methods, even
though there is a difference in the order of operations. Also,
we find that multiple intents that share the path show the same
code coverage regardless of the number of installed intents,
which affects changes in IBN for subsequent topology opera-
tions. Recent work in the literature [17] indicates that a fuzzer
with better coverage may not be best at finding bugs, so the
same coverage in both CCG and ISTG does not imply the
same probability of finding bugs.

Figure 11b shows the number of unique intent-state transi-
tions, which shows that ISTG can guide INTENDER to gen-
erate a larger number of unique intent-state transitions than
CCG. As noted in Section 5.2, ISTG might guide INTENDER
to generate a scenario with numerous add-intent operations.
Since we restrict the number of appended operations to pre-
vent this shortcoming, the maximum number of intent-state
transitions in each scenario is not proportional to the number
of unique transitions, as shown in Figure 11c. Also, even with
the regulation, ISTG shows 1.8× higher in the maximum
number of intent-state transitions than CCG.

Figure 11d shows the ratio of unique errors that are found.
ISTG can find a larger number of unique errors with a higher
ratio than CCG, as ISTG guides INTENDER to find more
intent-state transitions.

As a result, while CCG and ISTG have similar branch
coverage, ISTG has more coverage in intent-state transitions
than CCG. Frequent transitions among states invoke more
changes in flow rules and network topology. ISTG is better
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Figure 11: Performance comparison tests for CCG and ISTG. IST stands for intent-state transitions. The overall trend remains
unchanged for 24 hours.

guidance for IBN because it guides an IBN fuzzer to generate
more diverse situations within the IBN.

8 Discussion

Support for other controllers. While we implement and
evaluate INTENDER on ONOS, INTENDER is not tied to one
IBN controller or implementation. IBN developers and users
can use our framework to test their solutions by modifying
only a few components. Users can write interfaces such as
intent API and topology API to execute fuzzing tests on IBN
controllers with INTENDER. Users can write their own muta-
tion or guidance policies. In addition, ISTG can be applied
to other controllers that use intent-state transitions, such as
ODL [40]. Since ISTG does not require access to the con-
troller code, INTENDER can test closed-source controllers so
long as the topology and intent states can be queried from the
controller’s API.
Physical testbed. We can extend our emulation-based testbed
to a physical testbed with actual devices by deploying host
agents to each machine. INTENDER can also execute remote
commands to physical switches to mutate the topology (e.g.,
link deletion). While mininet has a limit in resources on a
single server, we do not encounter any issues in our test envi-
ronment. In addition, we leave bandwidth-constraint testing
that could depend on computing resources as future work.
Other types of intents. In this paper, we propose our new
fuzzing tool to test reachability intents. INTENDER verifies
intent connectivity by calculating the path and sending a test
packet. In addition to reachability, there are other types of in-
tents, such as waypoint, QoS, stateful, and time-based intents.
We leave supporting these kinds of intents as future work.

9 Related Work

Programmable networking fuzzing. Although our fuzzer is
the first fuzzer designed specifically for IBN, a closely re-
lated area is fuzzing for software-defined networking (SDN).
STS [48] introduces a troubleshooting system for SDN with a
new technique to automatically identify a minimal sequence
of inputs causing a bug. DELTA [37] employs a black-box

fuzzing technique to detect unknown vulnerabilities in the
controller logic. BEADS [32] automatically generates test
cases with respect to the OpenFlow protocol’s semantics.
PAZZ [51] automatically detects data plane faults to recog-
nize inconsistencies in SDN by fuzzing with the coverage of
packet header space. In addition, AIM-SDN [21] and Aud-
iSDN [36] attempt to detect inconsistency in configurational
and operational stores inside SDN controllers.
Programmable networking security analysis. INTENDER
is the first work that systematizes IBN security issues. Most
work in studying the security of programmable networks
has been in the related SDN context. D2C2 [59] introduces
the new data-plane attacks in SDN using data dependency
chaining and defense mechanism for these vulnerabilities.
EventScope [55] investigates semantic vulnerabilities in SDN
through clustering applications. ConGuard [60] discovers
time-of-check-to-time-of-use (TOCTTOU) race conditions in
SDN controllers. ATTAIN [56] proposes the attack injection
framework for SDN with attack analysis.
Network verification. As an orthogonal approach to fuzzing,
several works use static verification to enforce network policy.
These works verify the composition of different kinds of in-
tents, such as reachability and waypoint [46], bandwidth, state-
ful, and temporal policies [10], as well as multi-tenancy [54].
Although these tools can verify multiple intents theoretically,
the IBN implementations can have software bugs, such as
the ones discussed in this paper, that cannot be detected
through verification. To test network policies on the data
plane, other tools can be used instead of our network test
framework [22, 27, 63]. While these approaches can uncover
violations in new policy sets, they cannot find errors during
topology and intent operation changes. Network invariant ver-
ification [33–35, 38] is complementary to INTENDER and can
be used to verify network invariants of given intents.
Fuzzing. Fuzzing is used for automated software testing. To
move further from generating random inputs, many fuzzers
have attempted to cover more code coverage [12, 15, 16, 24,
30, 43, 47, 49, 62], or more paths from the static analysis and
concolic execution [18, 26, 53, 61]. Among them, Jazzer [30]
and JQF [42] support fuzzing tests on Java programs. We
show that existing fuzzers have difficulty discovering seman-
tic bugs in IBN. In addition, fuzzing has been also applied



in the network area to discover unknown bugs [45, 52, 64].
While these works try to cover more protocol states such as
the TCP stack, INTENDER traces the transitions of states of
each intent, not the state of the intent controller.

10 Conclusion

We presented INTENDER, the first IBN fuzzing framework.
We analyzed existing bugs in a popular IBN implementation
to derive a set of challenges faced in discovering semantic vul-
nerabilities. We demonstrated how our intent-state transition
guidance approach can be used to efficiently discover seman-
tic bugs and vulnerabilities. We designed a fuzzer architecture
and demonstrated that INTENDER can find more semantic
bugs as compared to prior methods. INTENDER found 12 un-
known bugs and 11 security vulnerabilities in ONOS, which
demonstrates its practical efficacy.
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