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Abstract
Fuzzing has been widely adopted for finding vulnerabilities
in programs, especially when source code is not available.
But the effectiveness and efficiency of binary fuzzing are cur-
tailed by the lack of memory (safety) sanitizers. This lack of
binary sanitizers is due to the information loss in compiling
programs and challenges in binary instrumentation.

In this paper, we present a feasible and practical hardware-
assisted memory sanitizer, MTSan, for binary fuzzing. MT-
San can detect both spatial and temporal memory safety vi-
olations at runtime. It adopts a novel progressive object
recovery scheme to recover objects in binaries, and uses
a customized binary rewriting solution to instrument bina-
ries with the memory-tagging-based memory safety sanitiz-
ing policy. Further, MTSan uses a hardware feature, ARM
Memory Tagging Extension (MTE) to significantly reduce
its runtime overhead. We implemented a prototype of MT-
San on AArch64 and systematically evaluated its effective-
ness and performance. Our evaluation results show that MT-
San could detect more memory safety violations than exist-
ing binary sanitizers whiling introducing much lower run-
time and memory overhead.

1 Introduction
Fuzz testing (also known as fuzzing) is a popular solution
for finding bugs and security vulnerabilities in programs.
Fuzzers generate a large number of test cases to test tar-
get programs and catch signals of security policy violations
(such as crashes).

As a signal for bugs or vulnerabilities, crashes are insuf-
ficient. For example, an out-of-bound (OOB) memory write
may not trigger any crashes if it overwrites a previously al-
located memory region. Therefore, security researchers and
“bug hunters” instrument programs with memory error de-
tectors, or commonly referred to as memory sanitizers, be-
fore fuzzing to expose memory safety violations as soon
as possible. Various sanitizers have been proposed, includ-
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ing AddressSanitizer (ASan [1]), ThreadSanitizer [2], UB-
San [3], and MemSan [4], to help discover memory safety
bugs, data race bugs, undefined behavior bugs, and uninitial-
ized variables, respectively. These sanitizers instrument the
source code of target programs with specific security checks
to detect spatial and temporal memory violations at runtime.

While people have used fuzzers to find vulnerabilities in
closed-source programs (which we will refer to as binaries
in the rest of this paper), only a few sanitizers (e.g., Val-
grind [5], ASan-Retrowrite [6], and QASan [7]) support in-
strumenting and detecting memory bugs in binaries. Unfor-
tunately, severe limitations in these binary sanitizers prevent
fuzzers from using them in vulnerability discovery. We de-
tail these limitations below.

First, existing binary sanitizers only support detecting
memory errors in heap and neglect memory errors in stack
and global memory regions. This is because type informa-
tion is lost when compiling the binaries, and as a result, bi-
nary sanitizers cannot recover object boundaries for objects
in stack or global regions.

Second, even if object boundaries for stack and global ob-
jects are made available, existing binary sanitizers (includ-
ing Memcheck in Valgrind, ASan-Retrowrite, and QASan)
cannot instrument binaries with code for detecting memory
errors in stack and global regions. This is because these bi-
nary sanitizers rely on redzone-based memory error detec-
tion schemes, and it is impossible to add redzones for stack
and global objects without recompiling the binary or adjust-
ing memory layouts.

Last but not least, existing binary sanitizers all introduce
prohibitively high runtime and memory overhead. For ex-
ample, due to the use of dynamic binary instrumentation
(DBI), the runtime overhead of Memcheck is about 17.42×,
and the runtime overhead of QASan is about 35.5× (on the
SPEC2017 C benchmark in our experiment). While ASan-
Retrowrite achieves much lower runtime overhead (2.2×
lower runtime overhead than QASan with Qemu in our
fuzzing experiment) by performing static binary instrumen-
tation, it still introduces high memory overhead: Its average



memory overhead is around 6.45×. High runtime and mem-
ory overhead reduces the fuzzing efficiency and limits the
applicability of these binary sanitizers.

In this paper, we propose a hardware-assisted memory
sanitizer for binary programs, MTSan, that addresses all
three limitations. Without accessing the source, MTSan stat-
ically rewrites the target binary and enables the detection
of spatial and temporal memory safety violations for heap,
stack, and global objects, without changing the layout of any
memory regions. Through the use of a new hardware fea-
ture on recent processors, memory tagging [8], MTSan ex-
hibits much better runtime performance than existing binary
sanitizers. These advantages make MTSan an ideal memory
sanitizer for fuzzing binaries.

To overcome the challenge of missing type information
in binaries, we introduce a novel approach, called progres-
sive object recovery, that probabilistically recovers object
boundaries using memory access information available dur-
ing fuzzing. Because the inference of stack and global ob-
ject boundaries is probabilistic, MTSan may incorrectly infer
their boundaries. Such incorrect inferences may lead to false
positive reports in fuzzing. We minimize the impact of incor-
rect inferences by proposing an adaptive sanitization strat-
egy: MTSan intelligently determines the criticality of mem-
ory safety violation alarms and only reports the ones that are
deemed critical. For non-critical reports, MTSan records
them, updates the currently inferred object boundaries, with-
out interrupting the fuzzing process. This way MTSan can
focus on true positives without flooding analysts with false
positive alarms.

Further, MTSan uses a new CPU feature, memory tag-
ging, that is slated to be deployed soon on modern ARM
processors [9], to significantly reduce its runtime overhead.
Memory tagging is available on SPARC [10] processors, will
soon be available on ARM processors via ARM Memory
Tagging Extension (MTE) [11], and a subset of memory tag-
ging (pointer tagging) will be available on Intel CPUs in the
near future [12, 13]. This is the right time to study the use of
memory tagging in binary sanitizers.

We implemented a prototype of MTSan on AArch64 and
systematically evaluated its effectiveness on a set of popu-
lar programs with a total of 27 spatial and temporal mem-
ory errors. MTSan detected most Proof-of-Concept exploits
(PoCs) in 18 vulnerabilities, which outperforms all state-of-
the-art memory safety sanitizers for binaries. We further
evaluated the runtime and memory overhead of MTSan on
SPEC CPU 2017 [14]. The results showed that MTSan in-
troduced average runtime overhead of 1.82× and memory
overhead of 1.58×. Comparing against ASan-Retrowrite,
MTSan introduced 48% lower runtime overhead and 91%
lower memory overhead. Finally, we evaluated the applica-
bility of MTSan as a memory sanitizer for fuzzing binaries.
During our experiments, fuzzing with MTSan consistently
led to the finding of at least three more vulnerabilities than

fuzzing with other sanitizers. The evaluation results with
analog instructions are also promising: MTSan yields most
executions, and improves fuzzing performance by 58% when
comparing to AFL++’s qemu mode. This demonstrated that
MTSan can effectively detect memory vulnerabilities during
fuzzing.

Contributions. In summary, we make the following contri-
butions:

• We propose a novel progressive object recovery scheme
for probabilistically inferring object boundaries for ob-
jects in heap, stack, and global regions.

• We introduce a novel hardware-assisted memory sani-
tizer, MTSan, to assist with binary fuzzing. MTSan uses
ARM Memory Tagging Extension (MTE) to efficiently
detect temporal and spatial memory errors.

• Because MTE is not currently available in off-the-shelf
ARM processors, researchers must emulate MTE in soft-
ware. To ease this process, we implement a library,
libMTE, that simulates critical features that MTE pro-
vides on non-MTE-equipped processors.

• We implement a prototype of MTSan and systematically
evaluate it regarding security, runtime and memory over-
head, and effectiveness to fuzzing. The results show that
MTSan outperforms state-of-the-art binary sanitizers.

In the spirit of open science, we make our code avaliable at
https://github.com/vul337/mtsan-repo to help future studies.

2 Background
2.1 Memory Sanitizers

Fuzzing has been demonstrated in both academia and indus-
try to exhibit unparalleled power in finding software bugs.
One of the best fuzzing practices is combining a fuzzer with
sanitizers, which find bugs sooner than crashes occur by ob-
serving incorrect behaviors for specific classes of security
violations during fuzzing [17]. This is because not all bugs
or security violations necessarily lead to crashes, and diag-
nosing root causes of crashes is not always straightforward.
For example, a stack-based buffer-overflow may overwrite
adjacent stack variables and alter the execution flow of the
program, without crashing the process.

Most sanitizers focus on finding memory safety viola-
tions [17]. Memory safety violations are memory access er-
rors caused by either dereferencing a pointer pointing outside
the bounds of an intended object in memory (spatial memory
safety violation), or using a pointer that is no longer valid
(temporal memory safety violation).

According to their memory access checking approaches,
memory sanitizers generally fall into one of the following
categories [17]: (1) Location-based sanitizers, which insert
invalid memory regions, e.g., redzones, between objects in
memory and report memory safety violations when any in-
valid memory regions are accessed. (2) Identity-based san-
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Table 1: Anatomy of existing binary sanitizers.

Detectable Violation Types Object Coverage
Binary Sanitizer Bug-finding

Techniques Instrumentation Method Spatial Temporal Other Heap Stack Global
Runtime

Overhead⋆
Memory

Overhead⋆

Undangle [15] 3 DBI ✗ ∗ - ✓ ✗ ✗ >10× >10×
Dr. Memory [16] 1, 2 DBI ✓ ✓ - ✓ ✗ ✗ >10× n/a

Memcheck [5] 1, 2, 4 DBI ✓ ✓ uninit. use ✓ ✗ ✗ >10× 3-10×
QASan [7] 1, 2 DBI ✓ ✓ - ✓ ✗ ✗ >10× 3-10×

ASan-Retrowrite [6] 1, 2 Binary Rewriting ✓ ✓ - ✓ † ✗ 1-3× 3-10×
MTSan 5, 6 Binary Rewriting ✓ ✓ - ✓ ✓ ✓ 1-3× 1-3×

1: Redzone, 2: Reuse-delay of heap obj., 3: Pointer Tracking, 4: Uninit. Value Tracking, 5: Pointer Tagging, 6: Memory Tagging;
∗: Heap Use-after-free. †: OOB access on stack canary. ⋆: Standalone execution, with no optimization applied.

itizers, which maintain metadata for memory objects, and
check the intended referent for every pointer in the program.

Sanitizers for binaries. Traditionally, memory sanitizers
only work on programs with source code because the mem-
ory access checking approaches (as previously mentioned)
require adjusting the memory layout or manipulating pre-
acquired metadata for objects. Because much information,
especially types, is discarded during compiling, sanitizers
cannot easily identify object sizes in a binary program, which
renders the above two approaches infeasible.

As shown in Table 1, researchers have proposed several
binary sanitizers in recent years. However, existing binary
sanitizers suffer from some critical limitations. First, be-
cause existing binary sanitizers are all location-based, they
cannot detect memory safety violations that happen in stack
or global memory regions. Second, these sanitizers (except
for ASan-Retrowrite) all suffer from prohibitively high run-
time overhead due to their dependence on dynamic binary
instrumentation (DBI) techniques. While ASan-Retrowrite
(based on static binary rewriting) has low runtime overhead,
it still introduces high memory overhead. High runtime and
memory overhead slows down fuzzing and makes these sani-
tizers unsuitable for binary fuzzing. Hence, we conclude that
a practical binary sanitizer must (1) be able to detect memory
errors in all locations, and (2) yield low runtime and memory
overhead.

2.2 Memory Tagging

Memory Tagging is a security feature that facilitates the de-
tection of memory access violations by adding unique tags
(in the form of bits) to both pointers and memory space. Dur-
ing runtime, it then checks these tags at every memory access
to ensure that memory space is accessed with its correspond-
ing pointer. Memory tagging can be implemented in soft-
ware (in emulators) or on hardware (in processors), where
the latter adds significantly less overhead. Some architec-
tures, including lowRISC [18], SPARC [10], and ARM [19],
have introduced memory tagging or its equivalent.

Memory Tagging Extension on ARM. ARM first intro-
duced Memory Tagging Extension (MTE) in ARMv8.5-A,
and has started to build MTE into ARMv9-compliant CPUs,
as recently announced [9]. MTE in ARM includes both ad-
dress tagging and memory tagging.

Address Tagging. MTE utilizes the Top Byte Ignore (TBI)
feature that was introduced in ARMv8.1 [20]. TBI allows
ARM processors to ignore the top byte of each pointer;
The ignored byte can then be used to store extra metadata.
MTE uses four bits out of the ignore byte as the address (or
pointer) tag. These tags are propagated by ARM processors
with zero runtime overhead.

Memory Tagging. Like address tags, each memory tag
also consists of four bits. A memory tag associates with an
aligned 16-byte chunk of memory space. Memory tags are
stored separately from the physical memory.

Tag Manipulation. MTE introduces additional instruc-
tions to manipulate the pointer and memory tags: The in-
struction IRG tags a register with a random 4-bit pointer tag.
Instructions LDG and STG will get or set memory tags. All
memory accesses to tagged memory chunks must be done
via pointers with matching tags. Since each tag has four bits,
there can be at most 16 unique tags. Therefore, collision may
arise: A tagged pointer pointing to a different memory chunk
may match a tagged memory chunk by coincidence.

3 Overview
In this section, we discussed the typical workflow of MT-
San (Section 3.1). We also explained how MTSan helps
find a real-world vulnerability CVE-2017-0947 in a popular
project, libxml2, at Section A.1 for a better understanding.

3.1 Workflow

As shown in Figure 1, MTSan has three main components:
Binary Analyzer, Binary Rewriter, and MTSan Runtime Li-
brary. Binary Analyzer identifies pointers to objects, gen-
erates initial object metadata and instructions for tagging
memory and pointers. Then Binary Rewriter statically in-
struments the target binary with instructions generated, to-
gether with the MTSan Runtime Library. MTSan Runtime
Library is the core, which not only maintains an up-to-date
status of object recovered, but also classifies memory viola-
tions and handles them with specific strategies.

The typical workflow of MTSan is as follows. At the
beginning of a fuzzing campaign, MTSan enters the object
boundary inference mode, where it performs progressive ob-
ject recovery and waits for conflicts in inferred object bound-
aries or mismatched memory accesses to arise. In either case,
MTSan discovers a potential memory safety violation, en-
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Figure 1: Overview of the MTSan pipeline.

ters adaptive sanitization, and determines its severity by cat-
egorizing it into two severity levels. If the memory safety
violation is deemed critical (i.e., we are certain that a true-
positive memory safety bug is found), MTSan will immedi-
ately report an error and terminates the execution of the cur-
rent process (but not the entire fuzzing run). If the violation
is deemed non-critical, MTSan will record the violation and
the violating input, resume fuzzing, and perform a regression
fuzzing of the recorded input at a later time. We refer to it as
a Record-Resume-Regression (RRR) scheme.

4 Progressive Object Recovery
To detect spatial and temporal memory safety violations in
binaries, a fundamental challenge that MTSan must address
is the recovery of object properties: Boundaries and life-
time of objects. While type inference in binaries remains
an open research problem, MTSan only requires inferring
object sizes instead of accurately inferring variable types.

Inspired by pioneering research [21, 22] that uses runtime
data for variable type inference, we design progressive object
recovery for MTSan. During runtime, MTSan first identifies
all pointers pointing to objects in heap, stack, and global re-
gions (Section 4.1). Then MTSan infers the boundary and
lifetime for each object during individual executions (Sec-
tion 4.2). Because fuzzing involves a huge number of execu-
tions, MTSan further unifies inference results from different
executions during fuzzing and progressively refines all in-
ferred object properties (Section 4.3).

4.1 Object Pointer Identification

Because heap objects are always explicitly allocated and
deallocated (e.g., allocated by calling malloc), identifying
heap object pointers is trivial. We focus on identifying point-
ers pointing to objects in stack and global regions. MTSan
captures (1) raw object pointers, including values from stack
pointer register (SP), values directly derived out of SP, and
memory addresses in global memory regions, and (2) point-
ers that are derived from raw object pointers via pointer arith-
metic.

MTSan also captures allocation and deallocation sites for

each pointer. For a stack object, its allocation site is the in-
struction that allocates the stack frame, and its deallocation
site is the instruction that releases the stack frame. For a
global object, we regard the process initialization as its allo-
cation site.

4.2 Object Property Inference

MTSan infers object properties, i.e., the boundary and life-
time of an object, by tracking how its pointers are used at
runtime. We briefly discuss how MTSan infers boundaries
and lifetime of objects during a single execution.
Inferring object boundaries. Boundaries of heap objects
can be determined by observing the size argument of al-
locators. Thus, our discussion focuses on stack and global
variables. We assume all objects must be accessed either
via its raw pointer (which points to the beginning of the ob-
ject) or a derived pointer of the raw pointer (which points
to inside the object). To ease explanations in the rest of
this paper, we define an operator deref(addr, size) to de-
scribe “loading size bytes from address addr.” For exam-
ple, suppose an address A points to the beginning of an object
alpha, then the operations deref(A, 8) and deref(A+24,
8) mean that the memory space from A to A+32 (including
the gap) belongs to alpha. MTSan uses intra-procedural
value-set analysis (VSA) to statically recover the range of
each object. This allows MTSan to initialize as many meta-
data slots (of objects) as possible, which reduces the number
of metadata updates at runtime.

Note that the assumption that all accesses to an object
must be derived out of the same pointer is too strict and does
not always hold for stack or global objects. We will discuss
how MTSan handles such cases in Section 5.2.
Determining object lifetime. The lifetime of the heap ob-
ject starts when it is allocated and terminates when it is deal-
located. The lifetime of a global object starts and ends with
the process. Finally, the lifetime of a stack object starts when
its corresponding stack frame is allocated and ends when the
frame is deallocated.

Object properties may be either deterministic or presump-
tive. Deterministic properties are always correct once they
are inferred by MTSan, while presumptive properties can be
incorrectly inferred. For example, lifetime of an object is de-
terministic because it is solely determined by the allocation
and deallocation sites of the object. Likewise, the bound-
ary of a heap object is deterministic because it is determined
during allocation. The boundaries for most stack and global
objects are presumptive: For example, we cannot infer the
real size of a 24-byte char array if only the first 10 bytes
are ever used during runtime. In addition to intra-procedural
VSA, MTSan also utilizes known program properties (e.g.,
saved frame pointers, stack canaries, saved return addresses,
and saved function call arguments) to identify as many de-
terministic object boundaries as possible.
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Figure 2: An example of the metadata region and instrumented code
for pointer and memory tagging. Different colors represent memory
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4.3 Progressive Recovery of Object Properties

As fuzzing progresses, more unique executions are found,
which provides an opportunity for MTSan to progressively
refine presumptive object properties. For example, sup-
pose MTSan has inferred the size of object alpha as 4 ×
sizeof(int) during one execution, then it observes a mem-
ory access deref(A+7×sizeof(int),sizeof(int)) dur-
ing another execution. MTSan will update the upper bound
of alpha from A+4×sizeof(int) to A+8×sizeof(int)
by updating the metadata. A conflict is created if the new up-
per bound overlaps with an existing object, which is a sign
of potential memory safety violations. We will discuss how
to handle conflicts in Sections 5.1 and 5.2.2.

5 Adaptive Sanitization
With inferred object properties, MTSan rewrites the binary,
injects memory sanitization logic, and sends it to a fuzzer.
Due to the existence of presumptive object boundaries, some
memory errors that MTSan reports are inevitably false pos-
itives. We deem binary rewriting as an engineering chal-
lenge and will discuss it in Section 6. In this section, we
will present our sanitization method and conflict-resolving
strategies with a focus on reducing false positive alarms.

5.1 Sanitization Approach

Hardware-assisted memory tagging allows MTSan to de-
tect spatial and temporal memory access violations with ex-
tremely low overhead: A pointer access is only valid if the
pointer and the memory location it points to have the same
tag. When a tagged pointer is used to access a memory
location with a different (unmatched) tag, ARM MTE will
generate a segmentation fault signal. Key steps include tag
generation, tag assignment, and dealing with memory safety
violation reports.

5.1.1 Tag Generation

MTSan assigns every object in the target binary a random
tag, which will be used to tag its corresponding pointers
and the memory space. MTSan ensures that adjacent ob-
jects have different tags: When assigning a tag to an object,
MTSan generates a tag that differs from the tags of its neigh-

boring objects. For heap objects, MTSan does not store tags
anywhere in memory because they are directly used in the
generated instrumentation code for tag assignment.

Unlike tags for heap objects, stack and global object tags
must be stored in an allocated memory region, which we will
refer to as the metadata region. This is because MTSan will
update the metadata and generate new tags when it discov-
ers new objects during progressive object recovery. Figure 2
shows an example of the metadata region. To minimize run-
time overhead, each function and each global object in the
target binary has a unique slot at fixed offsets in the meta-
data region. During tag generation, tags for stack and global
objects will be stored in the metadata region.
Compound objects. MTE supports tagging memory at a
granularity of 16 bytes. MTSan stays consistent with this
granularity, which means it can only describe objects whose
sizes are greater than or equal to 16 bytes. To address this
challenge, we introduced the compound object, which bun-
dles adjacent small objects into one to create objects that are
large enough. Overflows between sub-objects within a com-
pound object cannot be detected by MTSan and are an un-
solved problem. They are a source of false negatives, and we
will discuss them in Section 8.

5.1.2 Tag Assignment and Propagation

For heap objects, MTSan will tag their pointers and their
memory spaces with the same tags (as previously generated)
immediately upon the allocation of objects. This is done by
inserting MTE instructions into the binary at allocation sites.
Tagging memory for stack and global objects is more com-
plicated. MTSan inserts at their allocation sites code snippets
that will find object tags in corresponding slots in the meta-
data region, and then tag pointers and memory locations ac-
cordingly. Finally, MTSan retags the memory space that ob-
jects reside at their deallocation sites with a different random
tag to prevent UAF.

Pointers are frequently used in comparisons and subtrac-
tions, which means blindly tagging pointers may break pro-
gram logic. For example, the comparison result of two point-
ers may be used as an exit-loop condition, and tagging these
pointers may incorrectly impact the comparison. To address
this problem, MTSan checks the operands of certain instruc-
tions at runtime and replaces them with top-byte ignoring
instructions (SUBP, SUBPS, and CMPP) when necessary.

Thanks to MTE, during runtime, object tags are propa-
gated with the pointer at no extra cost. When an object is
deallocated, MTSan re-tags its memory location with a dif-
ferent tag, which means the original tagged pointer can no
longer be used (without triggering a segmentation fault).

5.1.3 Memory Safety Violations

Once a tagged pointer is used to access a memory loca-
tion with an unmatched tag, MTE will generate a segmenta-
tion fault signal indicating a memory error. Benefiting from
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MTE, MTSan can also detect memory safety violations that
happen in library code when vulnerable objects are passed
as arguments without having to instrument any library code.
Upon process starting, MTSan Runtime Library registers a
signal handler that catches such signals and performs further
sanitization checks (see Section 5.2).

5.2 Adaptive Sanitization

Object pointer identification may fail due to the complexity
in binary code. Compilers may emit multiple pointers to ac-
cess the same object at different offsets. For example, two
members of a struct on the stack can be directly accessed by
two distinct stack pointers. MTSan may incorrectly recog-
nize them as two raw object pointers that point to two objects
(instead of one), causing false buffer overflow alarms (and
other memory errors). If MTSan raises false alarms at vital
program locations in a binary (e.g., at the beginning of the
main function), simply terminating the process and report-
ing the alarm to fuzzers can completely stall fuzzing. There-
fore, MTSan categorizes memory safety violations into two
severity levels and adopts different strategies for each level.

5.2.1 Severity of Memory Safety Violations

Based on the likelihood of false positives, we categorized
memory safety violations that MTSan reports into two sever-
ity categories. We deem a violation as critical if it only relies
on checks of deterministic properties. All critical violations
are true positive memory errors. Typical examples include:
(1) A pointer is used to access another object with a deter-
ministic boundary (e.g., stack canary), (2) An object pointer
is used after the object’s lifetime ends (e.g., use-after-free of
a heap object), and (3) Any other exceptions or signals that
Linux kernel raises. When a critical violation occurs, MTSan
will terminate the process and notify the fuzzer.

We classify a memory safety violation as non-critical if
it relies on checks of presumptive properties. For example,
a pointer is used to access beyond its object’s presumptive
boundary. It is possible that this non-critical violation is a
false positive caused by incorrectly inferred object proper-
ties. Instead of terminating the process, MTSan will use the
RRR strategy as discussed next.

5.2.2 Record, Resume, and Regression

Non-critical violations, i.e., violations to presumptive
boundaries that were recovered during progressive object re-
covery, are fed into the Record, Resume, and Regression

(RRR) strategy. The intuition behind RRR is that given
enough time, fuzzers will likely expose true positives and
filter away false positives.
Step 1: Record. When a non-critical violation occurs, MT-
San records the input and makes a copy of the metadata re-
gion.
Step 2: Resume. MTSan assumes that the report is a false
positive (due to mistakes in object property inference) and
correspondingly updates presumptive properties (i.e., bound-
aries of stack and global objects) by merging all involved
objects into one (and updating the metadata region). Hence,
future executions will no longer trigger the same violation.
Then MTSan resumes the fuzzing process.
Step 3: Regression (fuzzing). MTSan will put the recorded
input into the fuzzing queue by the time of violation to initi-
ate a regression fuzzing, hoping to trigger a critical violation.
This way, MTSan keeps around test cases that are likely sat-
isfying the constraints of triggering vulnerabilities, even if
these test cases do not increase code coverage. These extra
test cases will increase the likelihood for the fuzzer to gen-
erate input that traverses the vulnerable path, which in turn
increases the chance of exposing critical violations.

6 Implementation
Binary Analyzer. We built the Binary Analyzer compo-
nent on top of angr [23] and IDA Pro [24]. We implemented
object recovery using angr’s forced execution and constant
propagation, and allocation site analysis based on IDA Pro’s
function identification.
Binary Rewriter. We implemented the binary rewriter
using capstone [25] and keystone [26]. Instead of gen-
erating multiple rewritten binaries (e.g., T-Fuzz [27] and
StochFuzz [28]), MTSan statically instruments the target bi-
nary, puts all necessary code snippets in a shared memory
region, and updates instructions at runtime when necessary.
This enables the use of fork-server mode and eliminates per-
formance overhead caused by repeatedly loading binary vari-
ants. For now, our Binary Rewriter only supports dynamic-
linked AArch64 C binaries.
MTSan Runtime Library. MTSan Runtime Library im-
plements progressive object recovery and adaptive sanitiza-
tion. It also maintains and updates the metadata region. This
library is loaded into the target process when it starts.

Fuzzer. We patched the fuzzer (AFL++ [29]) to support
non-critical violations. Our patch records non-critical vio-
lations and adds the input to the queue. The patch can be
easily ported to any greybox fuzzer, which means MTSan
will support other fuzzers with more engineering effort.

6.1 Optimizations

Two-stage fuzzing. High-quality seed input is essential
for fuzzing. By default, MTSan treats non-critical errors that
are triggered by these seeds as benign. Before fuzzing, a
fuzzer usually performs a dry run on all seeds, which MT-



San regards as the first stage and initializes the metadata re-
gion. Trusting input seeds and ignoring non-critical errors
triggered by them allows MTSan to reduce the number of
potential false positive alarms.
Tag reserving. MTSan reserves two tags for known safe
memory areas to reduce the number of metadata look-ups:
Tag 0x0 for unused memory, and tag 0xf for safe objects.
The remaining tags, tag 0x1 to 0xe are used for tagging stack
and global objects.
Safe stack and global objects. MTSan considers stack
objects that are only accessed using constant pointers (SP
+ constant offset) safe, i.e., cannot be vulnerable objects
of spatial or temporal memory safety violations. Similarly,
MTSan deems certain global objects safe. This way MTSan
can reduce the number of instrumented code snippets with-
out compromising its ability of memory error detection.
Trusting accesses before the first read. MTSan treats all
memory accesses as benign before the first read of the pro-
gram, because as a design choice, MTSan only reports mem-
ory safety violations that are exposed by problematic input.

7 Evaluation
7.1 Experimental Setup

7.1.1 Dataset

We built a dataset of vulnerable programs by collecting re-
producible vulnerabilities and projects from recently pub-
lished papers [30–33] as well as the Linuxflaw project [34].
We then selected vulnerabilities that satisfy the following
requirements: (1) The target program must be successfully
compiled on AArch64, (2) The target vulnerability must be
reproducible using at least one public Proof-of-Concept ex-
ploit (PoC), (3) The target program can be harnessed and
fuzzed without excessive human effort, and (4) All binary
sanitizers in our evaluation fully support the target program.
We also ensured that various vulnerability types (spatial and
temporal memory errors in stack, heap, and global memory
regions) are covered. Further, we filtered out null-pointer-
dereference, stack(-recursive)-overflow, divide-by-zero, and
floating-point-exception vulnerabilities because they are out
of scope for MTSan and are detectable without using sanitiz-
ers. Eventually, our dataset comprises 27 vulnerabilities. Ta-
ble A.7 in the appendix details these vulnerabilities and tar-
get programs. We also used the Juliet test suite v1.3 [35]
and evaluated MTSan on CWEs that are related to memory
corruption. Table 2 details these test suites.

7.1.2 Comparison Targets

We carefully chose state-of-the-art binary sanitizers against
which to compare MTSan, including Memcheck (in Val-
grind) [5], QASan [7], and ASan-Retrowrite [6].

While all three sanitizers are available on AArch64, we
had to make minor changes to fix issues in them. Binary san-
itizers may not offer any readily available configurations for

binary fuzzing. For example, ASan-Retrowrite supports cov-
erage instrumentation and sanitization instrumentation on
AArch64 PIE binaries. However, they are not configured
to be enabled at the same time by default. We fixed several
bugs and force-enabled two features simultaneously during
the fuzzing experiments. We will upstream our patches.

7.1.3 Instruction Analogs and libMTE

Although there is growing community interest and support
for ARM MTE, unfortunately, no hardware is available at the
time of writing. Following the evaluation methodology of
HAKC [36] and PARTS [37], we ensure correct functionality
using software emulation and measure runtime and memory
overhead using instruction analogs. We use the same instruc-
tion analogs (See Figure A.9 in the appendix) that HAKC
uses to accurately reflect the runtime overhead of MTSan.

As part of our research, we implemented libMTE, a li-
brary that enables MTSan on commodity hardware without
MTE support. LibMTE maintains a shadow memory for
memory-tagging-enabled pages. libMTE instruments every
memory access and adds an additional check to see if the
pointer tag and the memory tag match. Like in real MTE,
libMTE raises segmentation fault signals upon any failed tag
checks. Together with MTSan, libMTE allows us to evaluate
the performance of MTSan using pure software emulation,
and to perform a large-scale binary fuzzing experiment to
measure the effectiveness and efficiency of MTSan.

7.1.4 Evaluation Environment

We first ensure that MTSan functions correctly using em-
ulation. Luckily, the community offers a well-supported
software stack for AArch64 MTE. For example, Linux ker-
nel has offered official support for MTE since 5.10 [38].
Qemu [39] and ARM’s official emulator, Fixed Virtual Plat-
forms (FVP) [40], both support MTE. For our effectiveness
experiments, we use Qemu 6.0.0 with Linux kernel 5.15.0.

However, neither Qemu nor FVP is cycle-accurate. To
get accurate performance estimates on real hardware, we ran
all other experiments on a PC equipped with two HUAWEI
Kunpeng 920 [41] and 378 GB RAM, running Ubuntu 21.04
and Linux kernel version 5.13.0. We conducted all experi-
ments on the same machine.

7.2 Effectiveness of Memory Safety Violation Detection

7.2.1 Setup

In this experiment, we evaluated MTSan and other binary
sanitizers using (1) the NIST Juliet test suite [35], and (2)
PoCs of the 27 real-world vulnerabilities, to see how effec-
tively these sanitizers can detect memory errors.

While we used PoCs to reproduce each vulnerability, the
number of PoCs for each vulnerability is usually limited; in
most cases, only one PoC is available. For a more realis-
tic simulation of the fuzzing process, where vulnerabilities
may be triggered by different input cases, we seeded ASan-



Table 2: Security evaluation results of Juliet test suite. In each test set (of a specific vulnerability type), there are multiple good and bad test
cases, as presented in the Cases column. For MTSan, we calculate FP and FN rates using critical bug reports as the standard for TPs, and
separately list TPs that were additionally detected with non-critical violations (Non-C. Report). To minimize noises caused by random input
sources where certain Juliet test cases read, we take the best result among ten trials.

CWE-ID Description Cases Valgrind QASan ASan-Retrowrite MTSan MTSan-no-rsv MTSan-no-rec

FN FP FN FP FN FP FN FP Non-C. Report FN FP Non-C. Report FN FP

121 Stack-based Buffer Overflow 3100 + 3100 54.29% 0 100.00% 0 90.19% 0 44.65% 0 19.29% 44.65% 0 19.29% 44.65% 0
122 Heap-based Buffer Overflow 3870 + 3870 3.72% 0 8.68% 0 5.25% 0 19.69% 0 0.00% 19.69% 0 0.00% 19.69% 0
124 Buffer Under-write 1168 + 1168 27.31% 0 27.74% 0 26.97% 0 1.46% 0 0.43% 1.46% 0 0.43% 1.46% 0
126 Buffer Over-read 870 + 870 60.69% 0 66.90% 0 66.90% 0 53.10% 0 13.79% 53.10% 0 13.79% 53.10% 0
127 Buffer Under-read 1168 +1168 54.88% 0 38.36% 0 38.36% 0 9.85% 0 0.43% 9.85% 0 0.43% 9.85% 0
415 Double Free 818 + 818 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0.00% 0 0.00% 0.00% 0
416 Use-After-Free 393 + 393 5.09% 0 15.78% 0 29.01% 0 3.05% 0 0.00% 3.05% 0 0.00% 3.05% 0

Total 11387 + 11387 29.29% 0 42.61% 0 39.15% 0 24.17% 0 6.39% 24.17% 0 6.39% 24.17% 0

instrumented programs with the original PoC, and fuzzed
them for one hour under the crash exploration mode of
AFL++ [29] to generate more PoCs. Then we used these
newly generated test cases (many of which will trigger the
intended vulnerabilities), together with benign input cases,
to test the effectiveness of binary sanitizers.

We used GCC-10.3.0 to compile each target program with
both their default compiler flags and -O3. For a fair com-
parison, we disabled memory leak and uninitialized memory
checks, and filtered out any SIGABRT, SIGSEGV, SIGBUS and
SIGTERM signals. Because RRR is only applicable during
fuzzing, we disabled it in this experiment, and other com-
ponents are enabled by default. Meanwhile, to understand
the impact of each component, we also evaluated MTSan
with varying configurations: Disabling object recovery (-no-
rec); disabling the two-stage fuzzing (-no-stg); and no tag-
reserving for special memory areas (-no-rsv).

Note that different PoCs for the same bug may trigger
different types of memory violations. For example, a PoC
for CVE-2017-9047 (see Appendix A.1) may only overwrite
an adjacent object on the stack (which may be non-critical)
while another PoC for the same CVE may overwrite the
stored return address (critical). In our experiment, critical
indicates that MTSan reports at least one critical memory
safety violation for a bug, and non-critical indicates that only
non-critical memory violations are reported for this bug.

7.2.2 Results: Juliet Test Suite

The Juliet test suite provides two variants for each test pro-
gram: A good variant that is not vulnerable, and a bad vari-
ant that exhibits memory corruptions. A false positive (FP)
is when a sanitizer reports a good program as vulnerable, and
a false negative (FN) is when a sanitizer fails to report a bad
program as vulnerable. Table 2 shows the results.
MTSan is more effective than comparison targets in de-
tecting memory corruptions. Overall, MTSan exhibits
an FN rate of 24.17%, which outperforms other sanitizers.
When compared to ASan-Retrowrite, MTSan shows a 38.3%
reduction in FN counts. Table 2 shows that MTSan obtains
the lowest FN rate across five CWEs (121, 124, 126, 127,
and 416). Besides, all sanitizers perform equally well identi-
fying true negatives and have zero false positives.

MTSan is less effective in detecting off-by-one overflows.
In Table 2, MTSan performs the worst among all sanitizers
with the highest FN rate of 19.69% for CWE-122 (Heap-
based Buffer Overflow). We investigated these FNs and
found that they are mostly off-by-one overflows. We will
further explain and discuss the limitations in Section 7.2.4.
Object recovery leads to more detected violations. We
separately counted the cases where the target bug was only
triggered with non-critical violations. These violations ex-
isted only when object recovery was enabled. MTSan de-
tected non-critical violations for several CWEs (121, 124,
126, and 127). This is most eminent for CWE-121 (Stack-
based Buffer Overflow) where 19.29% of TPs were only
found with non-critical violations. Additionally, by com-
paring results between MTSan-no-rsv and MTSan, we con-
clude that reserving tags for special data types has no impact
on the result for the Juliet test suite.

7.2.3 Results: Real-world Vulnerabilities

MTSan is more effective than existing binary sanitizers
in detecting real-world memory bugs. According to
Table 3, MTSan achieved the best results at most vulner-
abilities. MTSan detected most Proof-of-Concept exploits
(PoCs) in 18 vulnerabilities, which outperforms all state-
of-the-art memory safety sanitizers for binaries. For CVE-
2017-9047 (Listing A.1), MTSan reported 40 PoCs as crit-
ical and 449 PoCs as non-critical among 489 PoCs. Mean-
while, Valgrind, ASan-Retrowrite, and QASan failed to de-
tect any of them.
MTSan detected most heap memory violations among all
sanitizers. MTSan detected the highest number of PoCs
among 5 out of 12 heap vulnerabilities, without any false
positives. Valgrind and QASan also achieved high success
rates in detecting heap memory errors, but failed in some
cases (which we will discuss in Section 7.2.4).
MTSan detected most stack and global memory safety vi-
olations with a low false negative rate. Among all stack
and global vulnerabilities, MTSan successfully detected 13
out of 15, while other binary sanitizers did not detect any.
This shows that MTSan has a unique advantage in detecting
memory safety violations that happen at stack and global ob-
jects. Furthermore, among the 12 detected vulnerabilities,



Table 3: Security evaluation results. Numbers indicate the number of PoCs. Yellow cells indicate that MTSan detected more PoCs than
comparison targets, while blue cells indicate that MTSan is worse than at least one comparison target. SOF = stack-buffer-overflow, GOF =
global-buffer-overflow, HOF = heap-buffer-overflow, UAF = heap-use-after-free.

MTSan MTSan-no-rec MTSan-no-rsv MTSan-no-stg
Vulnerability ID Type Total Valgrind QASan ASan-Retro

write Total Critical Non-cri. Critical Non-cri. Critical Non-cri. Critical Non-cri.

CVE-2017-14408 SOF 38 0 0 0 19 19 0 0 0 19 0 19 0
CVE-2017-14409 GOF 114 0 0 0 84 49 35 0 0 49 34 49 22

Bug #2065 GOF 400 0 0 0 400 0 400 0 0 0 400 0 400
CVE-2017-8786 HOF 469 469 469 469 469 469 0 469 0 469 0 469 0
CVE-2017-7245 SOF 646 0 0 0 248 248 0 0 0 248 0 248 0
CVE-2017-7246 SOF 627 0 0 0 262 262 0 0 0 262 0 262 0

Bug #2056 SOF 102 0 0 0 102 0 102 0 0 0 102 0 102
CVE-2017-9047 SOF 489 0 0 0 489 40 449 0 0 40 449 40 449
CVE-2017-8363 HOF 26 26 26 22 26 26 0 26 0 26 0 26 0
CVE-2017-8361 GOF 13 0 0 0 0 0 0 0 0 0 0 0 0
CVE-2017-8365 GOF 2 0 0 0 2 2 0 0 0 2 0 2 0
CVE-2016-10270 HOF 89 89 89 89 89 89 0 89 0 89 0 89 0
CVE-2016-10271 HOF 235 235 231 200 235 235 0 235 0 235 0 235 0
CVE-2009-2285 HOF 32 31 0 0 32 32 0 32 0 32 0 32 0
CVE-2013-4243 HOF 4 4 4 4 4 4 0 4 0 4 0 4 0
CVE-2015-8668 HOF 23 20 23 23 23 23 0 23 0 23 0 23 0
CVE-2017-12858 UAF 35 35 35 35 34 34 0 34 0 34 0 34 0

Ubuntu #1775776 [42, 43] UAF 1 1 1 1 1 1 0 1 0 1 0 1 0
Ubuntu #1775776 [44] HOF 1 0 1 1 1 1 0 1 0 1 0 1 0

CVE-2020-21676 SOF 10 0 0 0 0 0 0 0 0 0 0 0 0
CVE-2020-21675 SOF 20 0 0 0 8 8 0 0 0 8 0 8 0
CVE-2018-17294 SOF 2 0 0 0 2 0 2 0 0 0 2 0 2
CVE-2020-21050 SOF 16 0 0 0 16 10 6 0 0 10 6 10 6

Issue #73 HOF 12 12 12 12 12 12 0 12 0 12 0 12 0
CVE-2018-20004 SOF 10 0 0 0 8 8 0 0 0 8 0 8 0
CVE-2018-20005 UAF 19 19 19 19 19 19 0 19 0 19 0 19 0
CVE-2021-20294 SOF 5 0 0 0 4 4 0 0 0 4 0 4 0

Total 27 3440 941 910 875 2589 1595 994 945 0 1595 993 1595 981

MTSan successfully detected all PoCs for 8 of them. Com-
pared to other binary sanitizers, MTSan has the lowest false
negative rate.
Object recovery is necessary for stack and global BOFs.
Comparing to MTSan-no-rec, MTSan achieved higher de-
tection numbers for PoCs that exploit stack or global buffer
overflow vulnerabilities, which means object recovery is crit-
ical for detecting these types of vulnerabilities. We also no-
tice that without object recovery, MTSan-no-rec detected the
same number of heap-based violations, which is expected.
Performance optimizations do not impact MTSan’s de-
tection capabilities. By comparing with MTSan-no-
rsv and MTSan-no-stg, we conclude that our optimizations
do not negatively impact the detection capability of MT-
San. Moreover, two-stage fuzzing improves MTSan’s de-
tection capability: For example, according to Table A.8 in
Appendix, MTSan-no-stg could not detect any violations for
CVE-2017-8361 in the O3 version of sndfile-convert.
This is because when the target bug was triggered, adjacent
victim objects were never used during the same execution,
thus non-critical violations did not happen.
Compiler optimizations has a limited effect on MTSan’s
effectiveness. As shown in Table 3 and Table A.8 (in Ap-
pendix), MTSan still keeps a good detection capability on
O3 versions of programs. For three vulnerabilities (CVE-
2017-14409, CVE-2017-8361, CVE-2018-17291), the de-
tection result changed under O3. This is because different
optimization levels usually lead to different object layouts

and alignments. For example, MTSan detected fewer non-
critical PoCs for CVE-2017-14409. We manually analyzed
MP3Gain and found that the vulnerable global object, ispow,
has eight more bytes for padding in O3. MTSan cannot de-
tect buffer overflows that only clobber these padding bytes.
Section 7.2.4 will analyze more false negative cases.

7.2.4 False Negative Analysis

In general, binary sanitizers are not able to detect all mem-
ory violations, which can lead to vulnerabilities spared dur-
ing fuzzing. We analyzed the reasons and will discuss them
regarding both design and implementation. We first discuss
the false negatives of MTSan and then the others.
Low granularity of MTE. MTE provides a memory tag for
every 0x10 aligned bytes. Due to this hardware limitation,
overflows within the MTE’s granularity cannot be detected.
We examined FNs in the Juliet test suite and found that
these overflows are mostly off-by-one vulnerabilities that do
not overflow to the next 0x10-aligned memory address. List-
ing A.3 in the appendix shows such an example in CWE-122.
Compound objects. Compound objects are introduced for
presenting objects which contain multiple neighbouring but
fused objects. Neighbouring objects, of which the bound-
aries are not aligned to 0x10, are merged as compound
objects. However, MTSan cannot detect overflows within
(compound) objects. This is the root cause of five FNs:
CVE-2017-7245, CVE-2017-7246, Bug #2065, CVE-2017-
14408 and CVE-2017-14409. For interested readers, we pro-



Table 4: Average execution per second of each configuration during three fuzzing campaigns. Greater numbers indicate better runtime
performance. We calculate the percentages for the average number of executions of MTSan-no-⋆ by comparing them to MTSan (libMTE)
(marked with ⋆), while calculating other percentages by comparing them to AFL++ Qemu.

Binary AFL++ Qemu QASan ASan-Retrowrite MTSan (analog) MTSan (libMTE) MTSan-no-rec MTSan-no-rrr MTSan-no-stg MTSan-no-rsv

bc 56.3 34.67 115.54 323.8 94.1 80.49 100.31 97.46 83.45
bmp2tiff 8.38 21.5 156.1 245.336 169.6 224.73 164.05 150.94 148.13
fig2dev 213.47 224.51 170.91 183.816 101.76 225.05 134.31 134.9 107.76
gif2tiff 6.71 5.74 222.46 133.76 152.25 331.74 159.2 150.86 149.77

lou_translate 2.27 0.61 1.86 2.864 2.42 2.81 1.88 1.76 1.28
img2sixel 15.3 15.29 34.77 79.12 13.99 31.31 38.26 37.85 30.2

xml_read_memory_fuzzer 183.94 67.18 82.64 225.792 61.25 141.14 95.14 93.93 87.42
ziptool 134.28 61.68 174.14 353.944 111.18 243.98 111.59 124.72 155.67

mp3gain 23.97 9.42 162.41 134.688 80.46 169.5 95.86 95.47 161.75
mxmldoc 222.61 89.87 159.28 301.896 116.79 162.46 100.99 105.45 106.84
testmxml 180.92 151.75 177.47 193.352 115.35 194.91 106.2 106.57 136.34
pcretest 42.31 2.24 70.88 91.192 37.49 88.43 43.61 41.38 38.34
pcre2test 40.78 19.16 64.24 173.072 29.12 62.15 20.82 14.36 15.7
readelf 355.48 181.63 67.2 383.576 80.92 231.32 97.08 95.48 96.76

sndfile-convert 235.61 149.97 185.08 153.888 179.48 150.32 140.91 142.89 142.97
tiff2ps 307.7 15.94 191.48 373.832 214.89 237.65 151.66 126.6 132.46
tiffcp 249.37 38.67 236.66 307.2 214.42 222.49 159.04 164.51 143.1

tiffcrop 231.48 48.65 226.14 307.808 214.01 254.62 218.47 181.47 167.58

Average 139.49 63.25 (-54.66%) 138.85 (-0.46%) 220.50 (+58.07%) 110.53 (-20.77%) 169.73 (+53.56%)⋆ 107.74 (-2.52%)⋆ 103.70 (-6.18%)⋆ 105.86 (-4.22%)⋆

vide a detailed analysis in the appendix (Section A.2).
Other limitations. We detail other limitations of MTSan
in Section 8.

Among the comparison targets, Valgrind, QASan and
ASan-Retrowrite are all location-based sanitizers and share
similar mechanisms and pitfalls. Besides implementation
issues, we summarize other reasons for FNs in three cate-
gories.
Limitation of location-based sanitizing scheme. QASan
and Valgrind cannot insert redzones at stack and global re-
gion. PoCs that triggered memory errors in stack and global
memory regions are all neglected. ASan-Retrowrite utilizes
the stack canary as redzone. However, in our evaluation,
this design did not provide benefits beyond the canary’s own
functionality. As an identity-based sanitizer, MTSan sup-
ports detecting stack and global memory violations, by re-
covering objects and checking accesses to them.
The pitfall of redzones. Redzones are not silver bullets.
An out-of-bound memory access may go beyond the upper
bound of a redzone and access another valid object, without
being caught by the redzone. Besides, to detect UAF viola-
tions, a redzone-based sanitizer usually turns a freed chunk
as a redzone; When this freed chunk is later reallocated, the
sanitizer loses the redzone, which may result in FNs.
Limitation of inspection location. Lack of library sup-
port may bring false negatives to ASan-Retrowrite. For ex-
ample, the PoCs for CVE-2009-2285 trigger memory safety
violations in the library function LZWDecodeCompat. ASan-
Retrowrite failed to detect them as the library code was
not instrumented. However, MTSan benefits from MTE’s
hardware-assisted memory access checking. Objects al-
located from binaries are still being sanitized even when
passed to library functions.

7.3 Performance

We evaluated the runtime and memory overhead of MT-
San on SPEC CPU 2017 [14]. In summary, MTSan has

lower runtime and memory overhead than other sanitizers in
comparison. Specifically, MTSan has 47.8% lower runtime
overhead and 90.8% lower memory overhead than ASan-
Retrowrite. Interested readers can find details and results of
our experiments in the appendix (Section A.3).

7.4 Fuzzing Efficiency

7.4.1 Experiment setup

Environment. To assess the fuzzing efficiency of MTSan,
we ran AFL++ [29] to fuzz the target programs, with existing
binary sanitizers separately enabled. We used AFL++ 3.15a
together with our patch for supporting non-critical reports.
We used libMTE during the fuzzing evaluation, which al-
lowed us to evaluate the complete workflow of MTSan. We
also evaluated the analog mode to provide us with a refer-
ence of the performance of MTSan with hardware support.
We have also implemented an afl-gcc style instrumenta-
tion for MTSan to provide the necessary coverage feedback
support.

Following the common practice of recent fuzzing re-
search, we collected input cases from actively maintained
seed pools [45, 46] as the initial seeds. We also followed
AFL++’s best practice guidance [47] and filtered out seeds
that caused timeouts.
Configuration. We carefully set up comparison targets for
the fuzzing evaluation. For QASan, we used qemuafl [48]
shipped with AFL++ and enabled AFL_USE_QASAN for each
fuzzing campaign. Valgrind is not designed for fuzzing
and lacks the necessary features to work with AFL++ (e.g.,
sending signals when violations are detected). So we did not
use Valgrind in the fuzzing evaluation.

To better understand the contribution of each component,
we conducted an ablation study where we compared the
performance of MTSan under different configurations: Dis-
abling object recovery (-no-rec); disabling two-stage fuzzing
(-no-stg); disabling RRR (-no-rrr); and reserving no tags for



special memory areas (-no-rsv).

7.4.2 Overall Results

Fuzzing speed. We run 3×24-hour trials per benchmark
for each binary sanitizer selected. Table 4 shows the aver-
age number of executions with different sanitizers. MTSan
with analog instructions yields the highest number of execu-
tions, which is 58.07% higher than AFL++ Qemu and ap-
proximately twice as many as MTSan with libMTE. ASan-
Retrowrite also yields good results on fuzzing speed, which
is only 0.46% lower than AFL++ Qemu. QASan has the
worst performance: The average number of executions for
QASan is 54.66% fewer than AFL++ Qemu.

We compare the results of different configurations of MT-
San and draw the following conclusions. First, progressive
object recovery (which is necessary for sanitizing stack and
global objects) adds 53.56% runtime overhead to MTSan.
Second, -no-rsv introduces 4.22% runtime overhead to MT-
San, which means that reserved tag improves the fuzzing per-
formance. Third, since MTSan-no-rrr yields similar execu-
tion numbers to MTSan, RRR only incurs runtime overhead
of less than 3%. However, MTSan with -no-stg exhibits run-
time overhead of 6.18%, which suggests that the more FPs
may increase the runtime overhead that RRR introduces.
Bugs found. The immediate goal of binary fuzzing is to
find bugs. Table 5 shows that MTSan performed the best and
reported 20 bugs during fuzzing. Among the listed vulnera-
bilities, four of them were only detected during fuzzing with
MTSan. Table 5 also shows that 10 vulnerabilities were trig-
gered with at least one non-critical violation. However, due
to the intrinsic randomness in fuzzing, this does not mean
RRR was in effect in these cases. We need more analysis
to show the impact of RRR, which will be detailed in Sec-
tion 7.4.3. Note that the results for both MTSan-no-rsv
and MTSan-no-stg show small decreases in bug counts. This
indicates that our optimizations have positive effects on bug
finding.

7.4.3 Internal Statistics

Finally, we measured the statistics of MTSan to understand
its inner workings during our evaluation.
Progressive object recovery. First, we study the accuracy
of progressive object recovery. We compiled all binaries with
debug information enabled (by specifying -g) and used de-
bug information as the ground truth, which provides variable
boundaries and how each pointer was derived. We classify
all objects that MTSan identified into five categories:

• full-match: An identified object matches both the bound-
ary and all pointers of a ground-truth variable.

• merged-match: an identified object shares boundaries
with at least one adjacent object, and the merged object
matches the boundary and pointers of a merged ground-
truth variable (which is merged from multiple ground-
truth variables).

Table 5: Bugs found during the fuzzing evaluation.

Vulnerability ID QASan Asan-
Retro.

MTSan MTSan-
no-rec

MTSan-
no-rrr

MTSan-
no-rsv

MTSan-
no-stgCri. Non-C.

CVE-2017-14408 ✓ ✓ ✓ ✓

CVE-2017-14409 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Bug #2065 [49] ✓ ✓ ✓ ✓ ✓ ✓ ✓

CVE-2017-9047 ✓ ✓

CVE-2017-8361 ✓ ✓

CVE-2016-10270 ✓ ✓ ✓ ✓ ✓ ✓

CVE-2016-10271 ✓ ✓ ✓ ✓ ✓ ✓

CVE-2013-4243 ✓ ✓ ✓ ✓ ✓ ✓ ✓

CVE-2015-8668 ✓ ✓ ✓ ✓ ✓ ✓ ✓

CVE-2017-12858 ✓ ✓ ✓ ✓ ✓

CVE-2020-21675 ✓ ✓ ✓ ✓ ✓ ✓

CVE-2020-21050 ✓ ✓ ✓ ✓ ✓ ✓ ✓

CVE-2018-20005 ✓

CVE-2018-20592⋆ ✓ ✓ ✓ ✓ ✓ ✓

Issue #237 [50]⋆ ✓ ✓ ✓ ✓ ✓ ✓

Issue #5 [51]⋆ ✓ ✓ ✓

CVE-2016-5321⋆ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CVE-2017-7244⋆ ✓ ✓ ✓ ✓ ✓

CVE-2016-5102⋆ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CVE-2020-21533⋆ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CVE-2020-21534⋆ ✓ ✓ ✓ ✓

CVE-2020-21676⋆ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CVE-2017-14410⋆ ✓ ✓ ✓ ✓

Issue #40 [52]⋆ ✓ ✓ ✓ ✓

Total 17 14 20 10 16 16 19 18

⋆: a vulnerability not initially included in our dataset, but triggered
during the fuzzing evaluation.

• weak-match: an identified object only matches all point-
ers (but not the boundary) of a ground-truth variable.

• sub-match: an identified object is a sub-object of a
ground-truth variable.

• bad-match: an identified object does not match any
ground-truth variables.

As shown in Table 6, merged object exists in all programs,
which illustrates the necessity of the design of compound ob-
ject. However, compound objects may cause FNs, and im-
proving the granularity of memory tagging will reduce the
number of FNs. The average percentage of objects with de-
terministic boundaries (see def-bound) is 36.42%, and im-
proved static analyses will increase this percentage. The re-
sult also shows that sub-match, weak-match, and bad-match
objects represent a relatively small percentage of all objects
(5.08% on average). This means that RRR was not fre-
quently invoked during fuzzing.

While MTSan is fault-tolerant (it can detect memory
safety violations even when results from the analysis phases
are not fully accurate), we examined the error cases to bet-
ter understand their causes. Weak-match cases are mainly
caused by pointer arithmetic inaccuracies in VSA. The main
reason behind sub-match and bad-match cases is that MT-
San failed to identify different pointers that are created for
the same object. For example, variable filter in func-
tion is_format_lzma actually consists of two fields, id and
options (See Listing A.4). The compiler created two point-
ers (SP+0x48 and SP+0x50) for these two fields. MTSan rec-
ognized the two fields as two sub-match objects and assigned
two different tags.
Convergence of object recovery and false positives. We
examined (1) updating of object boundaries and (2) merging
of objects (which corresponds to non-critical false positives)



Table 6: Internal statistics on progressive object recovery in MT-
San. The percentages refer to the ratio of all objects of each cate-
gory while absolute numbers indicate the exact amount of objects
in each category.

Binary Total
Objects

Full-
match

Merged-
match

Sub-
match

Weak-
match

Bad-
match

Def-
bound

mp3gain 357 36.41% 53.50% 15 14 7 31.65%
pcre2test 1314 65.45% 26.86% 57 35 9 20.09%
pcretest 1193 29.25% 62.36% 39 40 21 23.97%

libxml2_read 6695 50.31% 48.05% 44 49 17 39.34%
sndfile-convert 2602 42.24% 51.65% 73 67 19 44.16%

tiffcp 1709 45.17% 52.31% 19 21 3 39.26%
tiffcrop 2065 40.87% 55.59% 23 45 6 34.87%
tiff2ps 106 35.85% 64.15% 0 0 0 34.91%
gif2tiff 1605 46.23% 50.78% 20 24 4 39.88%

bmp2tiff 1579 45.92% 51.36% 19 21 3 39.58%
ziptool 864 53.01% 41.20% 24 14 12 40.51%

bc 279 55.56% 41.94% 3 7 3 48.03%
fig2dev 2575 40.43% 49.24% 124 105 37 35.38%

lou_translate 1010 35.05% 61.78% 10 20 5 26.73%
img2sixel 1051 38.25% 46.72% 101 39 18 36.44%
mxmldoc 369 47.15% 48.51% 4 11 1 38.75%
testmxml 172 58.72% 36.63% 4 3 1 49.42%
readelf 2793 39.03% 53.81% 111 46 43 32.55%

Average 1574 44.72% 49.80% 38 31 11 36.42%

to see if they converged over time as more state space of each
program was explored during fuzzing.

Because the initial corpus may affect the convergence pro-
cess, we prepared three types of corpora:

• full: including all test cases initially collected.
• mini: only including test cases shipped by each project 1.
• zero: only including a file with the string “aaaaaaaaaa”.

Interested readers may refer to Figure A.8 in the appendix
for the convergence diagram of each fuzzed program. We
briefly present our findings below. First, vast majority of
merges and updates occur within the first hour, while a few
sporadically happen after. Second, more merges and updates
occur when better test cases are used. Finally, the numbers
of updates and merges increase over time when fuzzing with
the mini and zero corpora, but rarely exceeded the numbers
when full corpora ware used.

We manually analyzed false positive cases and found
that they correspond to sub-match and bad-match objects.
For example, for the code snippet shown in Listing A.4,
MTSan assigned different tags to fields id and options.
As fuzzing proceeded, is_format_lzma invoked function
lzma_properties_decode and passed as an argument the
pointer of filter, which will be used for accessing the
entire object. Then, lzma_properties_decode accessed
options using the pointer that was tagged by id, which
raised a false positive.
The effectiveness of RRR. We evaluated how RRR helped
escalate non-critical violations into critical violations. Time-
to-discovery (TTD) (of bugs) is a metric which directly re-
flects fuzzing effectiveness. To this end, we first recorded
the TTD of vulnerabilities that were triggered during the

1If a project does not provide any test cases, we instead used the smallest
test input in corpus.
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Figure 4: Time-to-Discovery of vulnerabilities (in seconds) de-
tected during the fuzzing evaluation. Vulnerabilities that were never
detected with a non-critical violation are excluded here. The num-
bers on the cutter indicates how many times an RRR case was se-
lected. When a vulnerability was triggered in multiple trials, we
first select non-critical events based on the median of TTD, and
then their related critical events.

fuzzing evaluation, including both non-critical and critical
errors. However, chronological order does not indicate any
causal relationship between events. So we tagged all queued
test cases during RRR and recorded when they were selected
for further mutation. This way we could ensure whether a
critical violation event was related to RRR or not.

Figure 4 shows that RRR escalated seven non-critical vi-
olations to critical violations. Four critical violations were
only derived during RRR, and one critical violation was de-
tected sooner because of RRR. However, in three cases, crit-
ical violations were triggered before non-critical violations,
which means that RRR does not always decrease TTD.

8 Discussions and Limitations
Limited number of tags. MTE allows 4-bit tags to be as-
signed to each memory allocation and address. Due to the
length of the tag, the probability of tag collision is 6.25%.
Although MTSan avoids re-using tags in neighbouring ob-
jects, the possibility of different objects sharing the same tag
still exists. However, as fuzzing is a highly repetitive proce-
dure, a vulnerability is not likely triggered only once during
the fuzzing. Overall, the longer the fuzzing time, the less
likely that a vulnerability missed due to tag collision.
Sub-object overflow. MTSan cannot detect overflows in
sub-objects. However, supporting sub-objects is still an open
research problem for both source-level and binary sanitizers.
Similarly, MTSan does not support detecting memory viola-
tions in objects within a single heap chunk (e.g., an object
array allocated with malloc(N*sizeof(object))).
Coverage limit. Recall that fuzzing is a process of progres-



sive exploration of programs. The coverage limit may cause
an incomplete recovery of objects. However, as fuzzing gets
longer, the coverage limit could be improved.
Custom memory allocators. The prototype of MTSan
hooks malloc, calloc, realloc, reallocarray and mmap.
However, certain programs may use custom memory allo-
cators (CMA), and currently MTSan infers CMA-allocated
objects as belonging to a single heap object. Existing re-
searches [53, 54] about heap abstractions and modeling may
help MTSan to support more binaries.
Padding bytes. Recovering the accurate bounds for ob-
jects remains an open challenge. Currently, MTSan does not
support detecting overflows at padding bytes.

9 Related Work
9.1 Binary Sanitizers

Valgrind [5] is a well-known dynamic binary instrumenta-
tion (DBI) framework that includes a sanitizer called "mem-
check". Memcheck [55] is capable of detecting spatial
and temporal violations for heap object, but does not sup-
port memory violation detection for stack or global objects.
Furthermore, memcheck is costly, costing anywhere from
2× to 300× overhead, rendering it unsuitable for usage
with frequent executions during testing, particularly fuzzing,
where increased throughput directly correlates to higher bug-
finding probability. In addition to memcheck, Undangle [15]
also utilizes DBI architecture to implement a binary sani-
tizer. However, Undangle only targets UAF bugs. Dr. Mem-
ory [16] is a memory monitoring tool capable of identifying
memory-related programming errors, such as double frees,
memory leaks and accesses to invalid memory including un-
addressable or freed memory. However, Dr. Memory also
suffers from a 20.4× of performance overhead. QASan [7]
is another sanitizer that has been proposed recently. It is
solely concerned about memory violations in heap objects,
though. Furthermore, because QASan is designed to work
with Qemu, any execution must account for the performance
overhead of Qemu’s TCG as well as sanitizing. ASan-
Retrowrite [6] is a sanitizing binaries implementation built
on top of Retrowrite, a state-of-the-art static binary rewriter
for COTS binaries. The design goal of ASan-Retrowrite
is to develop a binary version of Address Sanitizer. ASan-
Retrowrite can achieve a better performance through binary
rewriting. However, in order to scale to real-world software,
ASan-Retrowrite sacrifices some precision, resulting in just
a fraction of vulnerability types being sanitized.

9.2 Hardware Expansions

HWAsan [56] tags each pointer with a random value that
is associated with a specific object and stores memory tags
in a shadow memory. MemtagSanitizer [57] uses a similar
technique, but using MTE’s tag storage (shadow). However
they work when the source code is available. NO-FAT [58]
designed a novel architecture that encodes the object size

and the base address in the pointer value itself for spatial
safety while also tagging the upper 16-bits of data point-
ers on 64-bit platforms with a random value for temporal
safety. IN-FAT [59] indexes metadata with a 16-bit pointer
tag and ensures spatial memory safety at the sub-object gran-
ularity. CHERI [60] (Capacity Hardware Enhanced RISC
Instructions) use 128-bit fat pointers/capabilities to restrict
the range of memory that each pointer is permitted to ac-
cess. Work [61] has been proposed recently takes advan-
tage of CHERI’s hardware capability to guarantee total spa-
tial safety. These solutions provide solid security guarantees
as well as excellent performance, however they are not yet
accessible on binaries.

9.3 Variable and Type Recovery

Angr [23] is a state-of-the-art open-source binary analysis
infrastructure, which leverages an advanced concolic exe-
cution engine for variable recovery. IDA Pro [24] is one
of the most widely-used commercial decompilation toolk-
its. Ghidra [62] is another binary decompiler by NSA, which
leverages a register-based data-flow analysis for recovery.
Osprey [63] proposed a novel probabilistic technique for
variable and structure recovery and achieved a precision rate
of 90.18%. However, they all suffer from the issue of ac-
curacy. This not only cause false negatives and false pos-
itives, but also introduce fuzzing-blockers, which prevents
them from being used in binary sanitizing. Rewards [21]
and Howard [22] are based on dynamic analysis. Rewards
employed data flow tracking, and Howard improves rewards
using heuristics to resolve conflicts. But they cannot be di-
rectly used to binary fuzzing since benign and malicious in-
puts are intermingled during fuzzing.

10 Conclusion
Fuzzing is a popular solution for finding vulnerabilities, but
has many limitations on sanitizing binaries. One obvious
reason was the lack of memory sanitizers for binaries. We
present in this paper a novel solution, MTSan, that addresses
these issues. It applies a novel progressive object recov-
ery scheme to infer object properties in binaries, including
stack and global objects, and uses ARM MTE to perform
memory-tagging-based sanitizing and detect spatial and tem-
poral memory safety violations during fuzzing. Our evalua-
tion shows that MTSan is both effective and efficient, and
can greatly improve binary fuzzing.
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A Appendix
A.1 Running Example: CVE-2017-9047

CVE-2017-9047 is a vulnerability located in libxml2, a
popular library for parsing XML input. Listing A.1 shows
the vulnerable function xmlSnprintfElementContent,
which recursively dumps data from content to a char array
buf of length size. Initially, len is set to strlen(buf).
Under certain conditions, content->prefix is appended
to buf (Line 11), and content->name is also appended
to buf (Line 19). However, the check at Line 14
used the initial value of buffer length (len) instead of
the updated buffer length, leading to a buffer overflow.
xmlSnprintfElementContent is invoked at Line 29 which
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Listing A.1: Motivating Example: CVE-2017-9047.
1 void xmlSnprintfElementContent(char *buf, int size,
2 xmlElementContentPtr content, int englob) {
3 /* ... */
4 len = strlen(buf);
5 /* ... */
6 if (content−>prefix != NULL) {
7 if (size− len < xmlStrlen(content−>prefix) + 10) {
8 strcat(buf, " . . . ");
9 return;

10 }
11 strcat(buf, (char *) content−>prefix);
12 strcat(buf, " : ");
13 }
14 if (size− len < xmlStrlen(content−>name) + 10) {
15 strcat(buf, " . . . ");
16 return;
17 }
18 if (content−>name != NULL)
19 strcat(buf, (char *) content−>name);
20 /* ... */
21 }
22 int xmlValidateElementContent(xmlValidCtxtPtr ctxt, xmlNodePtr
23 child, xmlElementPtr elemDecl, int warn, xmlNodePtr parent){
24 /* ... */
25 if (ctxt != NULL) {
26 char expr[5000]; // vulnerable buffer
27 char list[5000]; // victim buffer
28 expr[0] = 0;
29 xmlSnprintfElementContent(&expr[0], 5000, cont, 1);
30 /* ... */
31 }

sets the argument buf to a stack buffer. Existing binary san-
itizers cannot detect stack buffer overflow. Worse, because
the victim buffer list residing after the overflowed buffer is
of length 5000, this buffer overflow does not cause crashes
until it overflows at least 5000 bytes, which can be difficult
to achieve during fuzzing.

When analyzing the binary code of libxml2, the sizes
(or boundaries) for char arrays expr and list are unavail-
able because all type information has been discarded during
compiling. Hence, MTSan must infer object boundaries in
stack and global regions during runtime in a manner that is
similar to existing work about dynamic type inference in bi-
nary code [22]. A unique challenge in MTSan is that dur-
ing fuzzing, benign and bug-triggering input co-exist, which
may cause conflicts in inferred object boundaries. Our in-
sight is that conflicts among inferred object boundaries—
caused by inferencing from both benign and bug-triggering
input—are indicators for memory errors.

We discuss how MTSan resolves conflicts and reports
memory errors in two scenarios: (1) MTSan spots the be-
nign input first during fuzzing, and (2) MTSan spots the bug-
triggering input first during fuzzing.

MTSan spots the benign input first. In this case, some or
all bytes in char arrays expr and list are updated during ex-
ecutions. MTSan infers object boundaries by observing how
expr and list are accessed. Because they are always ac-
cessed via different pointers, MTSan recognizes them as dis-
tinct objects on the stack. Then when an overflow-triggering
input arrives during fuzzing, list will be accessed using a
pointer that is derived from the address of expr. In this case,

stack frame of main

-0x120

canary

lockout

copybuffer

-0x108

-0x8

buffer

buffer
+0x0

Figure A.5: Stack memory layout of CVE-2017-7245. The colors
represent the memory and pointer with different tags.

Listing A.2: Code snippets of CVE-2017-7245 and 7246.
1 int main(int argc, char **argv){
2 /* ... */
3 char copybuffer[256];
4 PCRE_COPY_SUBSTRING(rc, bptr, use_offsets, count, i,
5 copybuffer, sizeof(copybuffer));
6 /* ... */
7 }
8 int pcre32_copy_substring(PCRE_SPTR32 subject, int *ovector,
9 int stringcount, int stringnumber, PCRE_UCHAR32 *buffer,

10 int size){
11 /* ... */
12 yield = ovector[stringnumber+1]− ovector[stringnumber];
13 /* ... */
14 memcpy(buffer, subject + ovector[stringnumber], \
15 IN_UCHARS(yield)); // CVE−2017−7246
16 buffer[yield] = 0; // CVE−2017−7245
17 /* ... */
18 }

MTSan immediately spots a conflict with the previously in-
ferred boundary between expr and list. This conflict indi-
cates a buffer overflow vulnerability.

MTSan spots the bug-triggering input first. In this case,
MTSan will infer boundaries for expr and list like in the
prior case. The overflow-triggering input will cause MTSan
to make an incorrect inference: In MTSan’s eyes, expr is
larger than 5,000 bytes and will overlap with list. This
is temporary, because as soon as MTSan encounters benign
input (that executes the same path), it will infer the boundary
between expr and list once more, at which time a conflict
will arise. Again, this conflict indicates a buffer overflow
vulnerability.

A.2 FN Analysis of CVE-2017-7245 and 7246

We use CVE-2017-7245 and 7246 to further explain
this case. In CVE-2017-7245, the vulnerable object is
copybuffer in the main function. This object occu-
pies SP+0x2448 to SP+0x2548. Its adjacent objects are
lockout and canary. As shown in Figure A.5, lockout,
copybuffer and canary are merged into a compound ob-
ject because of their are not aligned to 0x10. The out-of-
bound (OOB) access happens at pcre32_copy_substring,
line 16 in Listing A.2. When the OOB access happens at
canary, MTSan cannot detect the violation (which will be
later detected by _stack_chk_fail in Glibc). When the
OOB access overwrites a higher address outside the current
stack frame, MTSan will detect this critical violation. CVE-
2017-7246 shares the same vulnerable object with CVE-
2017-7245 and the above analysis still applies.
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Figure A.6: Runtime overhead of MTSan on SPEC CPU 2017 C
benchmarks, compared with ASan-Retrowrite, QASan, and Valgrind.

600.perlbench_s
602.gcc_s

605.mcf_s
619.lbm_s

638.imagick_s
644.nab_s

657.xz_s
Avg.

0

200

400

600

800

1000

1200

M
em

or
y 

ov
er

he
ad

(%
)

Baseline
Valgrind Memcheck
ASan-Retrowrite
MTSan(analog)
MTSan(libmte)
Qemu
QASan

Figure A.7: Memory overhead of MTSan on SPEC CPU 2017 C
benchmarks, compared with ASan-Retrowrite, QASan, and Valgrind.

A.3 Performance Evaluation

Evaluation setup. We used C benchmarks in SPEC CPU
2017 [14] to evaluate the performance overheads of MTSan.
Evaluating performance overhead in the absence of avail-
able hardware is difficult. However, we employed instruc-
tion analog to provide us with a reference for worst-case per-
formance, and implemented libMTE to evaluate the perfor-
mance with pure software simulation.

It is worth noting that we were unable to get every
benchmark program to be executed successfully on all bi-
nary sanitizers even with our best efforts. Valgrind and
ASan-Retrowrite failed to run a complete execution on
625.x264_s. C++ benchmarks are also excluded since
Retrowrite and MTSan do not officially support them. Fi-
nally we selected all C benchmarks (except 625.x264_s) in
SPEC CPU 2017.
Runtime overhead. Figure A.6 shows that the average
runtime overheads for MTSan is 1.82×, which is the low-
est among the binary sanitizers. Among them, Valgrind
and QASan have an average overhead of 17.4× and 35.5×.
ASan-Retrowrite has a runtime overhead of 2.57×. We also
evaluated the runtime overhead of MTSan with libMTE. The
runtime overhead of MTSan (libMTE) is 4.01×, which is
slightly higher than MTSan and ASan-Retrowrite.

Note that we evaluated all sanitizers using standalone ex-
ecutions of benchmark programs, which means the overhead
of Qemu was included in the overall overhead for QASan.
According to Figure A.6, the runtime overhead of Qemu is
26.7×. This may be unfair to QASan because it was spe-
cially designed to work with AFL’s Qemu-mode. Its run-
time overhead may be amortized from the fork server mech-
anism by sharing the TCG cache across multiple runs. For
a fair comparison, we also evaluated the binary fuzzing per-
formance and report the results in Section 7.4.
Memory overhead. As is shown in Figure A.7, the extra
memory consumption of MTSan is 1.58×, which is signifi-
cantly lower than that of Valgrind (6.45×), QASan (7.67×)
and ASan-Retrowrite (7.30×). The memory overhead of
MTSan (libMTE) is 2.1×, which is slightly higher than MT-
San, but still lower than all comparison targets.
Summary. Overall, MTSan has lower runtime overhead
and memory overhead than the comparison targets. Specif-

ically, MTSan has reduced 47.8% of runtime overhead and
90.8% of memory overhead than ASan-Retrowrite.

Table A.7: Vulnerabilities and programs used in our evaluation.
Vulnerability ID Project Version Harness Program Command

CVE-2017-14408 mp3gain 1.5.2-rc2 mp3gain @@
CVE-2017-14409 mp3gain 1.5.2-rc2 mp3gain @@
Bug #2065 [49] pcre2 10.22 pcre2test -d -i -8 @@
CVE-2017-8786 pcre2 10.22 pcre2test -d -i -32 @@
CVE-2017-7245 pcre 8.40 pcretest -32 -d @@
CVE-2017-7246 pcre 8.40 pcretest -32 -d @@
Bug #2056 [69] pcre 8.40 pcretest -32 -d @@
CVE-2017-9047 libxml2 ec6e3e xml_read_memory_fuzzer @@
CVE-2017-8363 libsndfile c2be6f sndfile-convert @@ $TMP.wav
CVE-2017-8361 libsndfile c2be6f sndfile-convert @@ $TMP.wav
CVE-2017-8365 libsndfile c2be6f sndfile-convert @@ $TMP.wav
CVE-2016-10270 libtiff 4.0.1 tiffcp -i @@ /dev/null
CVE-2016-10271 libtiff 4.0.1 tiffcrop -i @@ /dev/null
CVE-2009-2285 libtiff 3.8.2 tiff2ps @@ -O /dev/null
CVE-2013-4243 libtiff 4.0.1 gif2tiff @@ /dev/null
CVE-2015-8668 libtiff 4.0.1 bmp2tiff @@ /dev/null
CVE-2017-12858 libzip 1.2.0 ziptool @@ cat ./index

Ubuntu #1775776 [42, 43] gnu-bc 1.07.1 bc @@
Ubuntu #1775776 [44] gnu-bc 1.07.1 bc @@

CVE-2020-21676 fig2dev 3.2.7b fig2dev -L pstricks @@
CVE-2020-21675 fig2dev 3.2.7b fig2dev -L ptk @@
CVE-2018-17294 liblouis 81fe3c lou_translate ./zhcn-g2.ctb –
CVE-2020-21050 libsixel 2df643 img2sixel @@ -o /dev/null

Issue #73 [75] libsixel 2df643 img2sixel @@ -o /dev/null
CVE-2018-20004 mxml 2.12 testmxml @@ /dev/null
CVE-2018-20005 mxml 53c75b mxmldoc @@
CVE-2021-20294 binutils c56374 readelf –dyn-syms @@

Table A.8: Security evaluation results of MTSan on O3 version of
programs. Numbers indicate the number of PoCs.

MTSan (O3) MTSan-no-rec (O3) MTSan-no-rsv (O3) MTSan-no-stg (O3)
Vulnerability ID

Total Critical Non-cri. Critical Non-cri. Critical Non-cri. Critical Non-cri.

CVE-2017-14408 19 19 0 0 0 19 0 19 0
CVE-2017-14409 68 49 19 0 0 49 18 49 14

Bug #2065 400 0 400 0 0 0 400 0 400
CVE-2017-8786 469 469 0 469 0 469 0 469 0
CVE-2017-7245 248 248 0 0 0 248 0 248 0
CVE-2017-7246 262 262 0 0 0 262 0 262 0

Bug #2056 102 0 102 0 0 0 102 0 102
CVE-2017-9047 489 40 449 0 0 40 449 40 449
CVE-2017-8363 26 26 0 26 0 26 0 26 0
CVE-2017-8361 13 0 13 0 0 0 13 0 0
CVE-2017-8365 2 2 0 0 0 2 0 2 0
CVE-2016-10270 89 89 0 89 0 89 0 89 0
CVE-2016-10271 235 235 0 235 0 235 0 235 0
CVE-2009-2285 32 32 0 32 0 32 0 32 0
CVE-2013-4243 4 4 0 4 0 4 0 4 0
CVE-2015-8668 23 23 0 23 0 23 0 23 0
CVE-2017-12858 34 34 0 34 0 34 0 34 0
Ubuntu #1775776 1 1 0 1 0 1 0 1 0
Ubuntu #1775776 1 1 0 1 0 1 0 1 0
CVE-2020-21676 0 0 0 0 0 0 0 0 0
CVE-2020-21675 8 8 0 0 0 8 0 8 0
CVE-2018-17294 0 0 0 0 0 0 0 0 0
CVE-2020-21050 16 10 6 0 0 10 6 10 6

Issue #73 12 12 0 12 0 12 0 12 0
CVE-2018-20004 8 8 0 0 0 8 0 8 0
CVE-2018-20005 19 19 0 19 0 19 0 19 0
CVE-2021-20294 4 4 0 0 0 4 0 4 0

Total 2584 1595 989 945 0 1595 988 1595 971



0 5 10 15 20 25
Time

0

1

2

3

4

5

6

C
ou
nt

config/obj
full-merged
mini-merged
zero-merged
full-updated
mini-updated
zero-updated

(a) bc

0 5 10 15 20 25
Time

0

2

4

6

8

10

12

C
ou
nt

config/obj
full-merged
mini-merged
zero-merged
full-updated
mini-updated
zero-updated

(b) bmp2tiff

0 5 10 15 20 25
Time

0

5

10

15

20

25

C
ou
nt

config/obj
full-merged
mini-merged
zero-merged
full-updated
mini-updated
zero-updated

(c) fig2dev

0 5 10 15 20 25
Time

0

2

4

6

8

10

C
ou
nt

config/obj
full-merged
mini-merged
zero-merged
full-updated
mini-updated
zero-updated

(d) gif2tiff

0 5 10 15 20 25
Time

0

2

4

6

8

10

12

14

16

C
ou
nt

config/obj
full-merged
mini-merged
zero-merged
full-updated
mini-updated
zero-updated

(e) lou_translate

0 5 10 15 20 25
Time

0

5

10

15

20

25

C
ou
nt

config/obj
full-merged
mini-merged
zero-merged
full-updated
mini-updated
zero-updated

(f) img2sixel

0 5 10 15 20 25
Time

0

5

10

15

20

25

30

35

40

C
ou
nt

config/obj
full-merged
mini-merged
zero-merged
full-updated
mini-updated
zero-updated

(g) xml_read_memory...

0 5 10 15 20 25
Time

0

2

4

6

8

10

12

14

C
ou
nt

config/obj
full-merged
mini-merged
zero-merged
full-updated
mini-updated
zero-updated

(h) ziptool

0 5 10 15 20 25
Time

0

2

4

6

8

10

C
ou
nt

config/obj
full-merged
mini-merged
zero-merged
full-updated
mini-updated
zero-updated

(i) mp3gain

0 5 10 15 20 25
Time

0

1

2

3

4

5

C
ou
nt

config/obj
full-merged
mini-merged
zero-merged
full-updated
mini-updated
zero-updated

(j) mxmldoc

0 5 10 15 20 25
Time

0

1

2

3

4

5

6

C
ou
nt

config/obj
full-merged
mini-merged
zero-merged
full-updated
mini-updated
zero-updated

(k) testmxml

0 5 10 15 20 25
Time

0

2

4

6

8

10

C
ou
nt

config/obj
full-merged
mini-merged
zero-merged
full-updated
mini-updated
zero-updated

(l) pcretest

0 5 10 15 20 25
Time

0

1

2

3

4

5

6

7

C
ou
nt

config/obj
full-merged
mini-merged
zero-merged
full-updated
mini-updated
zero-updated

(m) pcre2test

0 5 10 15 20 25
Time

0

2

4

6

8

10

12

C
ou
nt

config/obj
full-merged
mini-merged
zero-merged
full-updated
mini-updated
zero-updated

(n) readelf

0 5 10 15 20 25
Time

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

C
ou
nt

config/obj
full-merged
mini-merged
zero-merged
full-updated
mini-updated
zero-updated

(o) sndfile-convert

0 5 10 15 20 25
Time

0.0

0.2

0.4

0.6

0.8

1.0

C
ou
nt

config/obj
full-merged
mini-merged
zero-merged
full-updated
mini-updated
zero-updated

(p) tiff2ps

0 5 10 15 20 25
Time

0

2

4

6

8

10

C
ou
nt

config/obj
full-merged
mini-merged
zero-merged
full-updated
mini-updated
zero-updated

(q) tiffcp

0 5 10 15 20 25
Time

0

5

10

15

20

25

30

C
ou
nt

config/obj
full-merged
mini-merged
zero-merged
full-updated
mini-updated
zero-updated

(r) tiffcrop

Figure A.8: Convergence of object recovery and false positives during fuzzing evaluation. The x-axis shows the time (in
hours) since the fuzzer launched, and the y-axis shows the count.

Listing A.3: A FN case in the Juliet test suite (CWE-122).
1 #define SRC_STRING "AAAAAAAAAA"
2 void
3 CWE122_Heap_Based_Buffer_Overflow__c_CWE193_char_memcpy_15_bad(){
4 char source[10+1] = SRC_STRING;
5 data = (char *)malloc(10*sizeof(char));
6 /* ... */
7 /* POTENTIAL FLAW: no enough space for data to hold source */
8 memcpy(data, source, (strlen(source) + 1) * sizeof(char));
9 printLine(data);

10 free(data);
11 }

1 [stg xT, xN, imm]
2 ldr x16, =TAG_MEM
3 mov x17, xT
4 lsr x17, x17, #49
5 str xT, [x16]

1 [ldg xT, xN]
2 ldr x16, [xN]
3 mov x17, #0xF0
4 lsl x17, x17, #49
5 and xT, x17, x17

Figure A.9: Implementation of MTE instruction analogs.

Listing A.4: Code snippets of is_format_lzma in libxml2.
1 static int is_format_lzma(xz_statep state){
2 /* ... */
3 lzma_filter filter;
4 /* ... */
5 filter.id = LZMA_FILTER_LZMA1;
6 if (lzma_properties_decode(&filter, NULL, state−>in, 5) \
7 != LZMA_OK)
8 return 0;
9 opt = filter.options;

10 /* ... */
11 }
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