Multiview: Finding Blind Spots in Access-Deny Issues Diagnosis

Bingyu Shen”

Tianyi Shan”

Yuanyuan Zhou

University of California, San Diego

Abstract

Access-deny issues are hard to fix because it implies both
availability and security requirements. On one hand, system
administrators (sysadmins) need to make a change quickly
to enable legitimate access. On the other hand, sysadmins
need to make sure the change does not allow excessive access.
Fulfilling the second requirement on security is especially
challenging because it highly requires the sysadmins’ knowl-
edge of the system environments and security context. Blind
spots in knowledge and system settings may hinder sysadmins
from finding solutions that align with the security context. In-
secure fixes can over-grant permissions, which may only get
noticed after the security vulnerability gets exploited.

This paper aims to help sysadmins reduce blind spots in
diagnosis by providing multiple directions to resolve access-
deny issues. We propose a system, called Multiview, that
automatically mutates the configurations to explore possible
directions to fix the access-deny issue and lets the config-
uration changes in each direction grant as few permissions
as possible. Multiview provides a detailed diagnosis report,
including access-control configurations that are related to the
denial, possible configuration changes in different directions
to allow the request, as well as the impact on the access-
control state of the entire system.

We conducted a user study to evaluate Multiview with 20
participants on five real-world access-deny issues. Multiview
can reduce the percentage of insecure fixes from 44.0% to
2.0% and reduce the diagnosis time by 62.0% on average.
We also evaluated Multiview on 112 real-world failure cases
from eight different systems and server applications, and it
can successfully diagnose 89 of them. Multiview accurately
identifies the failure-causing configurations and provides pos-
sible directions to each access-deny issue within one minute.

1 Introduction
1.1 Motivation

Access control is critical to protect the systems resources and
users’ data from unauthorized access [38,70]. As the business
grows and evolves, the organization’s access-control configu-
rations changes constantly, such as adding new members or

*Co-first authors

performing system upgrades. Sysadmins need to adjust the
access-control configurations to accommodate the dynamic
needs of the systems, as well as fix issues in case of prob-
lems. Access-deny issues, where legitimate users’ access to
data is falsely denied, have become common issues faced by
sysadmins [79].

Inaccurately fixing access-deny issues often results in per-
mission over-grant mistakes. According to a recent study [79]
on how sysadmins resolve access-deny issues in real-world
situations, 38.1% of cases introduced security misconfigura-
tions. Many of the misconfigurations are caused by trial and
error when sysadmins misunderstand the root causes. Many
suggestions on the forum are often ill-advised as they lead
sysadmins to introduce permission over-grant mistakes. In
an Apache server access-deny issue [59], the answer that re-
ceived the most upvotes is to completely disable the access
control of Apache. Sysadmins can easily over grant permis-
sions through trial and error or randomly adopt online advice
when they encounter an access-deny issue.

Permission over-granting mistake is one of the major trig-
gers of security incidents [28,39,45,56,68,69,82]. In general,
users only notify sysadmins when their requests are denied,
and rarely notice or complain about excessive permissions.
Over-granted permissions were only discovered after a secu-
rity incident when the system has been exploited by malicious
attackers [52]. Indeed, many enterprises have suffered from
security incidents caused by permission misconfigurations,
including data breaches, ransomware and system compro-
mises [30, 35, 58, 70]. From 2018 to 2019, the number of
records lost by misconfiguration rose by 80% as did the cost
to the associated companies [30]. In 2021, the non-profit se-
curity community OWASP also chose broken access control
as one of the top 10 vulnerabilities in web applications [47].

Real-world access-deny issues are difficult to get right be-
cause it implies both availability and security requirements.
There are many ways to grant the required permissions. A
good solution, however, should be correct and safe as it not
only solves the access-deny issue but also does not grant
excessive permissions. However, when sysadmins manually
resolve access-deny issues, they may have blind spots because
of misinterpreting the security context, neglecting the security
consequence, or being under time pressure. Sysadmins can

Denied Request

Subj.: apache | Action: read | Object:/home/alice/wsgi/index.py

Root-cause configuration

Directory: /home/alice/wsgi/
Permission: drwxr----- alice alice

Possible Directions

1. Grant Apache’s current role ‘other’ with execute permission

2. Change the directory (/home/alice/wsgi/)’s group to be
apache and grant execute permission.
3. Change the file and directory’s owner to be apache.

Figure 1: A simplified access-deny issue with root cause in the
file permission.

Denied Request
Action: GET | Object:/Application/2021/
Root-cause configuration

<Directory /var/www/html/Application/>
Require group staff
</Directory>

Alice’s group: gradstudent, volunteer

Subj.: Alice

Possible Directions
1. Add Alice to the department staff group
2. Allow Alice current group “gradstudent’ access "/Application/”
3. Allow Alice current group "volunteer' to access "/Application/”
4. Allow Alice to access only the directory "/Application/2021/”

Figure 2: A simplified access-deny issue with root cause in the
Apache server configuration.

misunderstand security context and adopt solutions that may
unknowingly introduce security risks [21,55]. Other times,
sysadmins may neglect the security consequences and not
thoroughly examine the modifications once the denied re-
quest is allowed. Moreover, it takes a large amount of time to
understand and analyze the security context. Sysadmins may
be under significant time pressure, and have to find a quick
workaround to the access-deny issues [29]. These blind spots
lead them to resort to risky solutions.

In a perfect world, sysadmins can always find the solu-
tion that fits the security context. However, this is hard in
real-world scenarios because access-deny issues may have
multiple ways to relax the security configuration to solve the
issue. Following different ways to change the configuration
may lead to different security consequences. Sysadmins with
blind spots may miss the most suitable one. We can look at
two common access-deny issues in the file system and the
server application (Figure 1 and 2).

Figure | shows an example of a web request being denied
due to file system permission [33]. The root-cause is that the
process owner apache lacks execute permission on upper-level
directories. Many real-life cases [33] with similar root causes
often resolve the issues by disabling the protection (chmod
-r 777) recursively from the home directory, as commonly
suggested on online forums [62]. Part of the reason is that
they do not know the directory that lacks permission and the
required permissions. Another common risky suggestion on
the forums [16, 60,61, 66] is to disable all execute protection

(chown +x) on the directory and now anyone can traverse this
directory. One solution is relatively safe by granting apache
execute permission while keeping the original owner Alice’s
permission. While another way is to make apache the owner
of the directory which hurts the availability of Alice. The
changes in different directions can resolve the issue, but they
have different implications which may not fit the security
context.

Figure 2 is adopted from a real-world access-deny is-
sues [59] caused by Apache server configuration. The user
Alice, who is in groups volunteer and gradstudent, cannot
access the directory /Application/2021 because the directory
is only accessible to certain user group staff. She needs
to serve as a volunteer to only access 2021 year’s appli-
cations. One safer way is to build a new directory block
/var/www/html/Application/2021 in the configuration and al-
low Alice to access any data under the directory. However,
it is easier for sysadmins to grant Alice to access all data
under /Application/ because they do not need to configure
a more specific directory block. Moreover, sysadmins may
misunderstand user’s role and simply add Alice to the group
staff which over-grants Alice permissions.

These examples show that access-deny issues can have
multiple ways to change the access-control configurations,
each with different security implications. As a result, it is dif-
ficult for sysadmins to manually gather all the possibilities as
well as their impact. Their blind spots can prevent them from
finding the solution that fits the security context. Without
tooling support in the diagnosis process, sysadmins can only
rely on their intuition and experience to compose a solution
and determine whether it fits the security goal.

As such, it is important to relieve sysadmins’ burden of
exploring all the different possible directions and assessing the
security implications to reduce permission misconfigurations
for access-deny issues. Unfortunately, most previous works on
misconfiguration diagnosis [22,26,36,42,43, 83] cannot help
sysadmins find possible directions and explore the impact on
access control state. Some previous works [64, 84] provide
recommendations based on historical resolutions, but many
historical resolutions are not safe. One of their tool-generated
solutions for access-deny issues is to grant full privileges to
every user in the system [64]. Sysadmins might blindly trust
the solution provided by the tool and unknowingly introduce
security risks. We will discuss more related works in §9.

1.2 Our Contributions

Our work focuses on helping sysadmins find possible direc-
tions to fix the access-deny issue and understand the security
impact to reduce their chance of making risky resolutions. To
achieve this goal, we present a new framework, called Mul-
tiview, that utilizes multiple analysis techniques to produce
possible changes in different directions to allow the legitimate
request and evaluate the impact of configuration changes on

Stage 1: Faulty config. localization Stage 2: Delta generation
<Directory /> ...
</Directory> N ;
<Directory /var/wiw> ... Denied rule:
</Directory> Require read
req. Mutation 1:
<Directory Require read/write
:: /va;/v;vjw]/htmb Mutation 2:
::1E 2 $ Require read/execute
</Directory> Mutation 2:
Require
<Directory /usr/cgi/> read/write/exe.
</Directory>
Identify Related Minimize permission
Component Configuration Rule mutation w/ security order

Stage 3: Change Impact Analysis ‘
Subj. |Action|Obj. [Prev [After
:a s1 |read | .. | X
Rule combinators — = Diagnosis
Satisfy All N
M1 AM2AMS ... s Jwite] . [B]X repor
Satisfy Any :)
M1V M2V M3 ... Stage 1
| = Stage 2
:ﬁ I:> o Stage 3
Direction
Combination Analyze directions’ impact

Figure 3: High level workflow of Multiview.

each direction. Multiview’s key insight is that, through the mu-
tations of configuration entries and their combinations, we can
help reveal the possible directions of configuration changes to
address the issue which may fall in the blind spots of sysad-
mins when solving manually. Multiview further compares
and minimizes the security impact with the pre-defined par-
tial security order and only presents the directions of changes
with the least permissions in the security order.

Multiview faces three major challenges in resolving real-
world access-deny issues. (1) How to design a general ap-
proach to find the access-control configurations related to the
denied request? (2) How to find different directions to solve
the access-deny issue and find the minimal permissions to be
granted with the changes in each direction? (3) How to sys-
tematically evaluate the impact on the global access-control
state to help sysadmins find the direction of changes that best
fits the security context?

To address the first challenge, we design a general tech-
nique named toggle analysis to turn on and off access-control
checks at different levels and retry the original request. This
can narrow down the access-control configurations related
to the request. Multiview can help diagnose issues in multi-
ple server applications through customized APIs, which are
implemented by the software developers as a one-time effort.

To address the second challenge, Multiview performs muta-
tions on the identified access-control configurations based on
the category of each access-control rule in the configuration.
This is based on the observation that each rule represents a
restriction on the subject, object and action of the request.
Multiview can systematically mutate and combine the rules
to relax the access control to allow the access. Multiview
then uses a predefined security order to measure and compare
the permissions granted by different configuration changes.
Then Multiview collects all the non-comparable directions of
changes which each contains least permission changes (§4).

To address the third challenge, Multiview needs to compare
the system-level impact of changes in each direction by com-
prehensively evaluating the access-control result before and
after the change. We adopt the approach to replay requests
to see the end-to-end access-control state changes on the sys-
tem. To reduce the number of replayed requests, we develop
a method to synthesize and prune the requests based on the
configuration changes suggested in each direction.

We evaluated Multiview with 112 real-world cases from
eight widely used systems and server applications includ-
ing Apache HTTPD, Nginx, Vsftpd, Proftpd, PostgreSQL,
MySQL, MongoDB, Squid. Multiview can successfully find
the directions to change the configuration on 89 out of 112
cases. To evaluate the effectiveness of Multiview’s diagno-
sis report, we conducted a user study with 20 participants
(11 system professionals and 9 graduate students) with five
real-world access-deny issues. The results of the study show
that our tool can help sysadmins reduce the percentage of
insecure fixes from 44.0% to 2.0%. Moreover, Multiview can
help reduce the diagnosis time by 62.0%.

2 Overview

Multiview Workflow Multiview aims to help sysadmins di-
agnose access-deny issues by providing possible directions
of changes and the security impact of changes in each di-
rection. Multiview’s workflow is shown in Figure 3. First,
Multiview locates the faulty component and access-control
rules through toggle analysis. This narrows down the range
of access-control rules that Multiview needs to mutate to find
possible directions (§3). Second, based on the located rules,
Multiview generates mutations for each individual rule. Multi-
view then uses the security order to minimize the permissions
each mutation grants. Then, Multiview combines the muta-
tions of each rule based on the combinational logic, such as
“Satisfy All” and “Satisfy Any”, available in the access-control
configuration to generate possible directions of changes (§4).

Last, Multiview analyzes the impact on the global access-
control state for the changes in different directions. Multi-
view synthesizes the requests based on the available roles and
resources, then replays the requests to generate the impact.
Multiview may reduce the number of replayed requests by
excluding requests not related to the configuration change of
the direction (§5).

The generated diagnosis report includes the access-deny
related configuration rules, the possible directions of changes
to allow the request along with the impact on the access-
control state of the entire system after applying the changes in
each direction. But still, sysadmins need to determine which
change best fits the security context.

Usage Multiview is designed to be used by sysadmins when
an access-deny issue arises. To start the diagnosis process,

sysadmins need to provide the information of denied request
from the log file, or manually specify such information. Mul-
tiview performs the analysis in a packed virtualized environ-
ment which contains the same settings as in a production
environment (§6.1). The analysis process is automatic and
generates a diagnosis report for the access-deny issue.

To make one piece of software fit into the Multiview frame-
work, we may require a few inputs from the software’s devel-
opers: (1) The configuration parser to parse the configuration
and get the configuration entries; (2) The general APIs pro-
vided by Multiview to manipulate the component, configu-
ration objects and access control rules. Multiview provides
the common combinational logic to combine the mutations
and generate the directions, but the software developers may
provide additional logic to combine the rules.

Multiview may require additional inputs from the sysad-
mins if the software’s setup is different from common settings.
This includes: (1) the software’s configuration file for con-
figuration mutation; (2) the information related to the denied
access; (3) all subjects and objects in the application, for
Multiview to perform the change impact analysis.

3 Faulty Configuration Localization

Multiview first attempts to identify the access-control config-
urations that introduce the access-deny issue. Multiview takes
a black-box approach to mutate the access control configura-
tions by turning on and off the protection at different levels,
to identify the access-control rules associated with the denied
request. We name this approach foggle analysis, as it mimics
how sysadmins narrow down the causes of access-deny issue
in real-world scenarios.

3.1 Identify Faulty Component

Real-world systems often have multiple components, and
each component can customize its access-control rules. Mul-
tiview first tries to identify the faulty component that causes
the access-deny issue, as the request may need to pass access-
control checks for multiple components and may fail in any
component. For example in a web application scenario, when
a web request tries to access a file following the URL, the
Apache web server first needs to check the user’s permis-
sion according to the server’s configuration. After passing
the application-level check, the request needs to pass the file
system checks on behalf of the end user to access the file. For
each component, Multiview uses the predefined API to tem-
porarily remove all the access-control checks thus allowing
all users to access all data in the component. If the replayed
original request is still denied after removing access-control
checks, Multiview can exclude the possible error in this com-
ponent. The API should be defined by the software developers
of each component. We will discuss more about the imple-
mentation in §6.

Apache Configuration Example

<Directory /var/www/public/>
Require all granted

</Directory>

<Directory /var/www/admin/>
Require group admin

</Directory>

<Directory /var/www/sales/stats/>
<RequireAll>

<RequireAny>
Require group admin
</RequireAny>
</RequireAll>
Require all denied
</Directory>

Figure 4: A simplified Apache HTTPD configuration example.
A user’s request to URL matches with the configuration block for
/var/www /sales/stats/ and gets denied by the rules in configura-
tion block. The rule marked in green represents the access-control
result for this rule is allowed, while others marked in red are denied.

3.2 Identify Request-related Configurations

3.2.1 Identify Related Objects

Multiview attempts to identify the access-control rules related
to the denied request. Server applications and file system
usually follow a similar mechanism to design their access-
control configuration with the access control list (ACL), where
the object has a list of access-control rules for every user and
role in the system [20]. Therefore, Multiview first identifies
the related objects for which the request was denied, and then
finds the access-control rules associated with the objects.

Multiview first needs to identify which objects the user
needs to access in the denied request, and then proceed to
probe whether the user lacks permissions for each object. A
single request may involve multiple objects in the system. For
example in the file system, when a user wants to read a file,
the user must also have the search permission on upper-level
directories [33]. Thus the file permissions of the upper-level
directories are also identified as relevant objects. Similarly,
the web server configuration is designed to reflect access
control to a directory tree structure, as shown in Figure 4.
An Apache configuration block will be matched for objects
in each directory. Each block represents either file system
objects or URLs and contains a set of access-control rules.
For a SQL request in PostgreSQL database, the request must
pass permission checks at the database, schema, and table
level before retrieving the related data [5].

3.2.2 Identity Related Rules

Multiview continues to examine the access-control rules asso-
ciated with the objects that the user lacks proper permissions
in order to find the rules related to the denial. The access-
control rules are expressed differently for the object in dif-
ferent types of software. Unix file systems use 9 permission
bits to represent access control for owner, group and others;
Web applications use directives which can place a restriction
on end user’s attributes (e.g., IP, method, user/group). The
rules can serve two purposes, allow or deny. The first type is

the rules to allow, which can allow requests if the request’s
attributes match the requirement; The other type is to deny. As
shown in Figure 4, multiple access-control rules exist in the
configuration block, and each rule’s result is either allowed
(marked in green) or denied (marked in red) for each rule. (We
will discuss more about the combination operators in §4.4.)
To find possible problem-solving mutations for the rules,
Multiview should find which rules are causing the denials
by performing toggle analysis at the individual rule level.
First, Multiview examines each individual rule to determine
whether the attribute restricted by the rule is allowed or denied.
Then Multiview conducts toggle analysis at the single rule
level to probe the rules that cause the access-deny issues.

4 Delta Generation
4.1 Delta Generation Overview

Through the toggle analysis at different levels, Multiview lo-
cates objects that the user cannot access and access-control
rules related to the denial. But still, there are many possi-
ble ways for the sysadmins to modify the configuration and
grant permissions. Multiview aims to help sysadmins find as
many directions as possible by systematically relaxing access-
control rules and combining them as possible directions. We
classify the ways to relax the access-control rules into three
categories based on the components of the request: subject,
object and action. Mutations to the access-control rule either
relax the system’s restrictions on the subject, object or action
of the request. Therefore, each possible direction of changes
to resolve the access-deny issue is a combination of those
variations that relax the restrictions of the system in three
different aspects.

To ensure that issues can be carefully addressed with mini-
mum privilege, we developed a new partial order metric called
the security order to measure and compare the permissions
granted by each mutation of access-control rule. Once Multi-
view detects a mutation of configuration that can successfully
permit the request, Multiview collects the mutation for later
combinations to generate final directions of changes. Multi-
view only provides more insights on possible directions to
solve the access-deny issue, not final solutions. To find the
best suitable solution, sysadmins should further confirm and
determine the solution that fits the security context of the
organization.

4.2 Access-Control Rule Mutation

With toggle analysis, Multiview finds objects for which the
user does not have enough permission, and the access-control
rules on each object that deny the request. Multiview further
mutates each rule to lose the restriction on different attributes
of the rejected request respectively to cover all the possible
modifications, then trim the mutations with the help of secu-
rity order (§4.3).

We classify methods of mutating access control into three
categories: relaxing subject, action, and object. We denote
the subject, action and object in the access-denied request as
Sdeny> Adeny and Odeny-

* Relax s4¢,y: Multiview can assign user to different roles
in the access-control configuration or allow user-specific
attributes. By changing sg.,y to a role with more privileges,
Sdeny Can gain access to the denied object.

* Relax ageny: Multiview can grant 54, with more privileges
to perform actions on the same object.

* Relax 0g404y: Multiview can allow sg4.,y to access new ob-
jects (including the denied object). This can be done by
adding new access-control rules for the denied objects
based on the resource type.

Multiview needs to find the possible ways to relax restric-
tions on Sgeny, ddeny ANd Ogepny. From the results of faulty con-
figuration localization, Multiview can identify 04,y as the
objects that users need more privileges to access. The access-
control restrictions on sge,y and age,y are expressed as the
rules associated with the object. Multiview cannot know the
exact mutations of the rules to be able to allow the original
request, such as changing to certain roles or granting specific
permissions. Therefore, Multiview conducts speculative delta
generation of access-control rules.

Multiview aims to mutate the access-control rules based
on the system information and the characteristics of the rules
to generate possible combinations to permit the access-deny
issues. First, Multiview collects all the roles in the system that
are allowed to perform the action ag.,y on the object as S, and
all the roles s4.,y currently in as S;. We denote all the roles
as § = S, USy. Second, Multiview assigns collected possible
roles sp € S tO Sgeny, and then further relax the restriction of
so’s permissions. The relaxation is conducted based on the
specific types of the access-control rule of 04ey,y. If the role sq
is not allowed to access the object, Multiview would try to add
the role to the object’s access-control list with the different
types of privileges.

4.3 Minimize Permissions w. Security Order
Multiview may produce multiple rule mutations to change
the result of a single access-control rule. For example, when
we want to relax the user’s privileges on the object, we can
grant (1) execute, (2) execute and read, or (3) execute, read
and write, which all can allow the request but the amount of
granted permissions are different. Since granting excessive
permissions may introduce security risks, Multiview should
prune these rule mutations to avoid misleading sysadmins.

We define a partial security order to compare the changes
on different directions. This can be served to early terminate
mutation process — if one mutation of the rule can allow the
access-deny request, there is no need to try mutations with
more permissions. By pruning redundant rule mutations, we
can reduce Multiview’s diagnosis time and avoid including
too permissive mutations.

To formally define the security order, we denote the set
of users, objects and actions in the system as S, O, and A
respectively. Then, one access can be represented as a tuple
(s,a,0) € (S,A,0). Given a configuration ¢, we can then de-
fine the binary function . : (s,a,0) — {0,1}. o (s,a,0) =1
if and only if the access (s,a,0) is allowed by the server with
the configuration c.

Definition 1 (Permissible Access Set) Given a configura-
tion c, define its access status image as R(c) := {(s,a,0) €

(S,A,O)|Occ(s,a,0) = 1}

Definition 2 (Partial Security Order) Given two configura-
tions ¢y, ¢, ¢ = ¢ if and only if R(c1) C R(cp).

Two rule mutations, which lead to configurations cjand
¢y after the changes have been applied, can both solve the
access i.e., Ole, (sde11y7adeny7 Odeny) = U, (Sdenyzadeny; Odeny) =
1. If ¢1 =< ¢, c; will be a more secure solution if we regard
less access as more secure.

Handle incomparable possible rule mutations Note that
the ordering for the access status result of configuration is a
partial order. There are situations where two mutations are not
comparable, i.e., when the symmetric difference of R(c;) and
R(c2) is not empty, we can not determine which one grants
less access based on the partial security order. For example,
Multiview can generate mutations by either assigning the user
to a high privileged role, or granting user’s current role more
permissions to access the object. Both can allow the request,
but because the roles are different, the access result cannot be
subset of each other. Then the two mutations bring different
impact on the access control result. Multiview collects all the
non-comparable rule mutations to generate the final directions
of changes for sysadmins to determine which one to choose
based on the security context.

4.4 Generate Final Directions

Multiple rules may exist in an object’s ACL to represent the
access control policy. When multiple rules associated with
the object may deny the request, Multiview first generates
possible rule mutations to resolve each rule and then combines
the mutations based on the relationship between the rules. For
example, in the web server configuration scenario (Figure 4),
multiple rules are associated with the configuration block to
provide access control on the subject or actions.

The mutations of access-control rules can be combined
together to represent the final access-control result. We define
the set of related access-control rules as P, and each access-
control rule as p; € P. We denote the set of mutations for each
rule p; as C),,. We define the result of each rule p; as r;, where
ri € {True, False}. True represents the represents the access
control is allowed while False represents denied. Based on
the common practice of access-control configurations, we find
that here exists four combination operators for the directive’s
result, Satisfy All(A), Satisfy Any (V), Negate (—) and First

Match (®). The rules’ results can be combined with the
above operators to represents the final access-control result.

1. For Satisfy All(A), the final result is rfijper = Ap;eppi.
Then the final directions of changes to make the request
to be allowed are C = ch €{Cp,Iri=True) Cy, which repre-
sents all the rules needs to be allowed to make one final
direction.

2. For Satisfy Any(V), the final result is 7¢i,q = Vp,eppi.
Then the final directions of changes are to make the
request to be allowed are C = ¢ {Cpylri=True} Cy, which
represents we can select any of the direction to allow
one rule to make one final direction.

3. For Negate(—), the final result is rgjyq = —|(/\pl.€pp,~).
Then the final directions of changes are to make the re-
quest to be allowed are C = XCX €{Cy,Iri=False)} C,, which
represents all the rules needs to be denied to make one
final direction.

4. For First Match(®), the final result is 7 ;s = pe where
Po € P is the first matching rule. Then the final direc-
tions of changes are to make the request to be allowed
are C = {C,_ |ro = True}, which we can select any of
the direction to allow pg,. If no matching rule exists, the
final result is the default value.

The combination orders can be retrieved from the configu-
rations based on keywords. For example in Apache configu-
ration (Figure 4), the keyword RequireAll represents Satisfy
All, and the keyword RequireAny represents Satisfy Any [41].
Multiview requires the annotation for such keywords for the
software’s configuration to reason about the access-control
result. In some common system components like file system,
the combination operator is implicitly implied as Satisfy All,
as the request needs to pass the access-control checks on all
the upper directories on the requested file.

5 Change Impact Analysis

Multiview further inspects the impact of each configuration
change on the global access-control state. Some configura-
tion changes that can resolve the access-deny issue may also
change the access-control status of other resources in the
system. Sysadmins need to be aware of the access-control
result changes to judge whether these changes are intended
based on the organization’s security context. Therefore, Mul-
tiview applies change impact analysis to analyze the impact
of configuration changes on the global access control state.
Furthermore, sysadmins can compare the changes from dif-
ferent directions suggested by Multiview by examining the
access-control state changes, which Multiview can not directly
compare with the security order.

Previously we denote a configuration as ¢ and the access
control state as R(c). After applying one possible change on
the original configuration c,iginar » Multiview gets a new con-
figuration cyey. Given two configuration settings coiginas and

Component Subject Object Action

File System OS users Files Read/Write/Execute
Apache Webserver users Web pages GET/PUT/POST

DB DB users Table SELECT/INSERT/DELETE

Table 1: The example subject, object and action in differ-
ent software systems.

Cnew, the impact of a configuration change can be represented
as a set of tuples (s,a,0,r,7') where r = 0, .., (5,@,0) and
¥ =0, (s,a,0) and r # r'. The subject, object, action could
be different in various software to represent the end-to-end
access control state as shown in Table 1.

Comprehensive requests generation To characterize the
global access-control state comprehensively, the impact ana-
lyzer needs to collect all the subjects, objects, and actions. For
example in the file system, the impact analyzer may collect all
the users in the OS as subjects, and walk through the directo-
ries to collect files as objects. And the actions would include
read, write and execute. Sysadmins may also customize the
scope to limit generated requests only for the objects of inter-
est. For example, sysadmins may limit the objects only in a
certain file directory.

Requests reduction In a production system, the number of
subjects and objects in the system could be large and a large
number of requests are generated, which results in a long
analysis time for one configuration change. To overcome this
challenge, we leverage the characteristics of rule changes to
reduce the number of related subjects and objects. We will
discuss more about the implementation in §6.4.

6 Implementation

This section describes the general implementation methodol-
ogy for all applications. First, we discuss the general consid-
erations for implementing Multiview framework, including
configuration parsing and safe replay. Second, we discuss the
detailed implementation for all three stages, including toggle
analysis, delta generation and change impact analysis.

6.1 General Considerations

Configuration Modeling The configurations format and
semantics are vastly different among different applications.
They can be generally classified into two types (1) configu-
ration in text files and (2) configuration in software-specific
settings. Multiview designs a unified nested JSON format to
provide APIs mutation. This requires developers to parse the
configuration into Multiview provided format, as well as the
API to transform JSON to the software-specific configuration
format. Note that the configuration parsing is a one-time ef-
fort as the configuration format changes much less frequently
than software features or other functionalities.
Configuration in text files are represented as simple key-
value pairs, while in complex configurations are represented in
XML or similar format. This kind of configuration is usually

loaded during starting up in most applications. To process this
type of configuration into unified JSON format, developers
either utilize existing configuration parsers [13, 14], or design
a parser for the configuration format if no such parser exists.

The access-control configurations in some applications are
stored in software-specific settings, such as file systems and
databases. (1) For file systems, the permissions are repre-
sented as permission bits associated with the file. (2) For
databases including PostgreSQL, MySQL and MongoDB, the
access-control settings are stored as system privilege tables.
To process this type of configuration, developers need to de-
sign functions to read the permission settings and store them
as key-value pairs in a JSON format.

Safe Replay Multiview needs to apply configuration changes
and replaying requests to analyze the access-control result
in all three stages. This needs to be done in the same envi-
ronment as the production data, to ensure the access-control
results are the same as in production. However, randomly
applying changes and replaying requests directly in the pro-
duction environment may bring side effects on the data and
affect production performance. Besides, it is hard to ensure
the separate environment to be consistent with the production.

Multiview tackles this challenge by (1) replicating the pro-
duction environment with virtualization techniques to ensure
faithful replay results and (2) making safe mutations without
affecting production data. First, Multiview uses virtualiza-
tion techniques to prepare a safe environment separate from
production. Nowadays most cloud systems adopt virtualized
environment (e.g., containers) to deploy services. Multiview
reuses the virtual environment to achieve isolation from the
production. Second, Multiview ensures the access-control
configuration changes and replay do not affect production
data with several techniques. Multiview uses copy-on-write
techniques to share the same copy of data and configurations
as production [40, 50]. When a modification happens, Multi-
view will create a copy of the original data and the modifica-
tion is only applied to the modified version without affecting
other production systems. For replaying the SQL commands
or queries in databases, Multiview utilizes the transactions to
wrap mutation commands in a transaction to safely roll back.

6.2 Toggle Analysis Implementation

Multiview requires some APIs to be implemented by develop-
ers to perform the toggle analysis at different levels, including
components, objects and specific rules. The toggle analysis
builds on the assumption that each unit’s access-control works
independently from others. On the component level, server
software, as we observed in current practice, treats other com-
ponents as black boxes and relies on error codes to communi-
cate. The access-control checks are performed layer by layer
and are therefore independent of each component. On the ob-
ject and rule level, the system checks each object’s permission
respectively to get the final access-control result.

Category | Definition & Example

Def.: Relax access control by assigning users to new roles.

Relax .
Subiect Ex.: Add a user to an existing group or create new groups.
) Ex.: Change the file owner to be the user in file system.
Relax Def.: Grant subjects more privileges on the denied object.
Action Ex.: Allow more HTTP methods such as POST/OPTIONS.
Ex.: Grant users execute permission to the scripts.
Def.: Allow subjects to access previously inaccessible objects.
Relax . .
Obiect Ex.: Add new configuration blocks to allow users access the directory.
) Ex.: Create new resource groups for users to access.

Table 2: Definitions and examples of different types of
modification that can relax the access control and permit
the access-deny issues.

At the component level, Multiview treats each application
as one component. To toggle the component, developers need
to implement the API to disable access-control checks. This
can be done by granting all permissions on the accessed ob-
jects to user (e.g., recursively grant 777 to user in file system;
all privileges in databases); or remove all access-control con-
figurations (e.g., web servers and FTP servers).

At the object level, Multiview performs toggle analysis
in two steps. First, Multiview finds all the relevant objects
based on the characteristics of the denied object. For exam-
ple, the access to table in a database requires privileges at
both table level and database level. The access to file also
requires permission on upper level directories. Second, Mul-
tiview identifies the objects that lack permissions by testing
each object’ access control by granting all the other objects
with all privileges.

At the rule level, Multiview performs toggle analysis on the
rules associated with the objects to evaluate each individual
rule is allowed or denied. Multiview evaluates each rule’s
result by only keeping the rule associated with the object and
replaying to get its result.

6.3 Delta Generation Implementation

Delta generation help sysadmins find possible directions by
(1) relaxing individual access-control rules to generate rule
mutations and (2) combining them with combination opera-
tors to generate possible directions. We classify methods of
mutating access control into three categories: relaxing subject,
action, and object based on the rule type. Developers need to
write the mutation for each rule type as a one-time effort.

For rule mutations, Multiview relaxes the rules based on
the rule type. For subject, Multiview collects all the possible
roles in the system and assign the role to the denied user.
The security order to compare the roles is that, if the role’s
privileges are a subset of another role, Multiview prunes the
role with more privileges. For action, Multiview grants the
denied user more privileges. The security order is that if the
granted permissions of one mutation are a subset of the other,
Multiview removes the one mutation with excessive permis-
sion. For object, Multiview creates more specialized rules for
the denied object in the configuration as an exception, by only
allowing the denied user to access the block.

For rule combinations, Multiview identifies the combina-
tion operators in the configuration with keywords or speci-
fies default combination logic in each application. Multiview
stores the combination operators with the related rules in a
nested JSON format, which can be further translated to the
software-specific configuration format.

6.4 Change Impact Analysis Implementation

Multiview applies change impact analysis to analyze the im-
pact of configuration changes on the global access control
state. Multiview first synthesizes the requests based on the
subjects, actions and objects in the system. Sysadmins need
to provide APIs to collect all possible roles and objects in the
system. The actions on the objects are the predefined privilege
set by the developers.

To reduce the number of requests, Multiview leverages
the characteristics of rule changes to reduce the number of
subjects and objects in the synthesis.

* Reduce requests based on objects: If the rule change is
only related to a specific object (e.g. a file directory), only
the access control states of files under this directory are
affected. Therefore the impact analyzer only needs to walk
through the directory to collect the objects.

* Reduce requests based on subjects: If the rule change only
involves a certain role (e.g., adding a user to a role), only
the users with the specific role are affected. Therefore the
impact analyzer only needs to collect all the users with the
affected role as the subjects.

If the configuration change involves multiple rule changes, the
subjects, actions and objects would be the union from each
rule changes to keep all the possible access-control result
changes [41]. We discuss more details about the implementa-
tion for each application in supplementary materials [15].

7 Evaluation

We evaluate Multiview’s effectiveness and efficiency with
three sets of experiments.

First, we evaluate whether Multiview can effectively di-
agnose real-world access-deny issues. We collected and re-
produced 112 access-deny issues for eight large systems and
server applications. Then we used Multiview to diagnose
these issues to see whether Multiview can generate helpful
directions to resolve the access-deny issues.

Second, we evaluate whether Multiview can help sysadmins
find solutions that fit the security context for access-deny is-
sues. We designed a user study based on real-world issues and
conducted it with 20 system professionals with and without
Multiview’s diagnosis reports.

Third, we evaluate the effort in adopting Multiview and
Multiview’s diagnosis time. We report the effort of customiza-
tion for each server application, and the diagnosis time for the
access-deny issues in a real-world environment.

Appl. | No | Description of access-deny issues

Config Directions

1 | Apache uses the mod_wsgi module to redirect requests to python scripts.
FS However, Apache cannot access the location of the python scripts. Yes 2
2 | In ashared server, a web service denies all requests because the Apache
process user does not have access to multiple directories for this user. Yes 10
3 | Anonymous requests are blocked because the default configuration of Yes 2
Apache blocks the request method.
Apache - . .
4 | Authenticated users cannot access internal web pages due to improper
implementation of role access-control configuration in Apache. Yes 4
5 | The Nginx configuration blocks a range of IP addresses with an IP
Nginx masking that accidentally included the IP address of the load balancer. Yes 1
Vsfiod 6 | The configuration entry deny_file contains an incorrect settings that
P matches all filenames, causing all FTP commands to be access denied. Yes 1
Proftpd 7 One user could not login b.ecaus§ the.conﬁguratlon only limits login from Yes 3
a user group, and the user is not in this user group.
MySQL 3 One SQL query on Table A involves forelgn. key reference to Table B gets denied, Yes)
because the user only has no references privilege to Table B.
PostgreSQL | 9 One user’s SQL query to run a.functlon in one schema gets denied, Yes ’
because the user lacks permission on the schema.
MongoDB 10 User can not query the stats .of a database Wlth QbStgts command, Yes ’
because the user lacks permission to run administrative commands.
Squid 1 One user’s connections to websites are denied by the Squid configuration, Yes |
d because the user’s IP address matches one subnet IP range block list.

Table 3: Results for 11 representative real-world access-deny issues.

We conducted all Multiview’s analyses on a single ma-
chine with Intel Core 17-7700 CPU (3.6GHz, 8 cores), 16 GB
memory, | TB HDD running a Ubuntu 18.04 distribution.

7.1 Real-world Access-Deny Issues
7.1.1 Methodology

We choose popular open-source applications as our targets
including web servers (Apache, Nginx), FTP servers (Vsftpd,
Proftpd), databases (MySQL, PostgreSQL, MongoDB) and
network proxy server (Squid). We collect a set of access-
deny issues from mailing lists [2, 8, 10, 11] and sysadmin
online forums [1,3,4,6,7,9]. We search for issues related
to applications by tags. Then we filter issues that contain
access-control related keywords such as "permission”, "access
control”, "access denied" or "forbidden". We only select issues
that have comments that are marked as answers. 453 cases are
crawled, and we examine each case and exclude issues not
related to access-deny. In the end, we have 186 access-deny
issues.

Next we try to reproduce these cases based on the descrip-
tion and root causes by recreating their server configuration
files and file system permissions. We have to exclude 74
cases with no concrete causes which we cannot reproduce.
We reproduced 112 cases. Multiview can diagnose 89 cases
of them. We select 11 common cases from all software to
present in Table 3 along with Multiview’s report summary

including related configuration, possible directions of changes
in Appendix.

7.1.2 Results

For each access-deny issue in Table 3, we present the results
of (1) fault localization: whether we can find the specific
component and configurations related to the access-deny issue
and (2) delta generation: whether we can generate multiple
directions of changes that may resolve the access-deny issue.
More details about the results are in Appendix A. For the
change impact analysis, because we do not have the data from
the original issue, we do not have diagnosis results for the
impact analysis. We will discuss more about the usefulness
of impact analysis in the user study (§7.2) and real-world
scenario evaluations(§7.3).

For all the cases that Multiview can successfully locate to
the configuration, Multiview can find the possible directions
based on the combination of mutations of subject, action and
object. Multiview can successfully find 1-10 directions of
changes that can resolve the access-deny issue. Sysadmins
determine the solution based on the access-control context.
Note that the directions found by Multiview also cover orig-
inal post’s solution that is regarded as secure based on the
problem context. We use three case studies to show how Mul-
tiview’s reports can help sysadmins diagnose.

Case 1: File System Figure 5 shows a common file system

Counselor Diagnosis Report for Application — Apache FS

Denied request information Faulty configuration

File: /var/www/scripts/index.py
User: apache
Method: Read

File: /var/www/scripts/
Permission: drwxr----- alice apache
<« group lacks execute perm.

Directions to allow the request

Direction 1: Grant group apache with execute permission on /var/www/scripts/
sudo chmod g+x /var/www/scripts/

Direction 2: Change apache to be owner of the directory
sudo chown apache:apache /var/www/scripts/

Figure 5: Multiview diagnosis report for case 1.

Counselor Diagnosis Report for Application — Apache Configuration

Denied Request Information Faulty configuration

<Directory /var/www/sales/stats/>
<RequireAll>

URL: /var/www/sales/stats/

User: Alice Require method GET POST
Method: GET <RequireAny>
Alice’s groups: sales, sales_manager Require group admin<-not passing
</RequireAny>
</RequireAll>
</Directory>

Directions to allow the request

Direction 1: Add Alice to admin group | Direction 3: Allow Alice’s current role
in the configuration sales to access the block
admin: sysadmin, Alice <RequireAny>
Require group admin
Require group sales
</RequireAny>

Direction 2: Allow Alice’s current role
sales_manager to access the block

Direction 4: Only allow Alice to access
<RequireAny>
Require group admin
Require user Alice
</RequireAny>

<RequireAny>

Require group admin

Require group sales_manager
</RequireAny>

Figure 6: Multiview diagnosis report for case 4.

access-deny issue on forums. Many of the suggested answers
are risky. The denied web request attempts to read the data
under the directory /var/www/scripts/ but lacks execute per-
mission on the directory. Many administrators did not know
that Apache process user not only needs read permission of
the requested file, but also needs to execute permission on
all the upper-level directories. Users sometimes do not know
how to quickly examine the permissions on all the upper
related directories and may try to grant unnecessary privi-
leges for each path. Even if the users know that the directory
/var/www/scripts/ lacks the execute permission, they often
over-grant execute permission to all users instead of to the
group, which is the current role of Apache process user. Be-
sides, Multiview can only grant the group execute permission
to the related directory; Multiview also mutates the configura-
tion to make Apache process user the owner in case this fits
more in the context. Based on the security order, Multiview
does not change the Apache process user to be the role “other”
of the directory since it would be considered more permis-
sive than its current role “group”. Both directions of changes
can resolve the access-deny issues and grant fewer privileges
compared with forums’ answers.

Case 2: Apache Configuration Figure 6 shows an issue
caused by Apache server’s configuration. User Alice is trying
to access the internal web page and she has two roles, sales
and sale manager. However, her access is blocked because

Multiview Diagnosis Report for Application — PostgreSQL

Denied request information Faulty configuration

DB user: joe Database: companydb
SQL query: Schema: marketing «lack USAGE
SELECT * marketing.runStats(); | Function: dailyStats «<lack EXECUTE

Directions to allow the request

Direction 1: Grant USAGE on schema and grant EXECUTE on function to joe
GRANT USAGE ON SCHEMA marketing TO joe;
GRANT EXECUTE ON FUNCTION marketing.runStats TO joe;

Direction 2: Grant the role of schema’s owner to joe
GRANT marketing TO joe;

Figure 7: Multiview diagnosis report for case 9.

current configuration only allows admin to access this page.
To resolve this issue, Multiview first narrows down to the
related configuration sections. Multiview further finds the
possible directions of changes by changing the Alice’s role
to groups that have access to the object, or granting Alice’s
roles to access this directory, or simply making an exception
to only allow Alice to access.

Case 3: PostgreSQL Permission Figure 7 shows an issue
caused by PostgreSQL database permission. User Joe is try-
ing to run a function in the marketing schema to get stats.
However, his access is denied because he lacks permission
on both the schema and function. To resolve this issue, Multi-
view first narrows down to the related objects including the
schema and the function. Multiview further finds the possible
directions of changes: (1) granting the necessary permissions
on each object to allow the access, (2) granting Joe the role of
the object owner which also contains the required privileges.
Sysadmins need to determine which direction is most suitable
based on the scenario with the help of change impact analysis.

Unsuccessful diagnosis cases In total, there are 23 cases
that Multiview cannot provide helpful diagnosis results. We
classify the cases that Multiview is unable to handle into three
categories. First, 13 cases are in the unknown components
which are not covered in Multiview’s current implementation.
12 cases are related to SELinux permissions in Apache, Nginx
and Squid. SELinux has diagnosis tools such as audit2allow.
Multiview can integrate the tool for SELinux in the future
to enable diagnosis for this component. The other case is
related to the connection settings in MySQL configuration file.
Currently Multiview only supports MySQL access-control
rules within the database, not rules in the configuration file
which are read in the start-up stage. Second, six cases are
related to the rules involving third-party modules. Multiview
can narrow down to the rules within the configuration file, but
can not provide meaningful delta generations. Four cases are
related to the mod_security and mod_ssl modules in Apache.
Two cases are related to the third-party authentication module.
All these modules provide access-control functionality with
rules that are not included in software’s configuration, which
Multiview can not access or provide rule mutations. Third,
the remaining four cases are related to syntax errors, which

Name Description
FS-1 Users could not download the shared file because they
are not the correct Unix user group.
FS-2 Users could not access web pages because the server lacks

permission to traverse the file system directory.
Config-1 Users could not access web pages because they are not
in correct user group in server configuration.
Config-2 Users cannot access web pages because the IP address
is wrongfully on the blacklist.
Config-3 Users cannot access a restricted web page because
the current configuration misuses logical operators.

Table 4: Problem descriptions of user study. All the prob-
lems were designed based on real cases. Each question repre-
sents a common category of access-deny issues.

are caused by the syntax change between the versions. With
syntax errors, Multiview cannot correctly parse and locate
the faulty configuration. We include additional discussion on
Multiview’s limitation in §8.

7.2 User Study
7.2.1 Methodology

We conduct a controlled user study to evaluate if Multiview
can help sysadmins diagnose the access-deny issues and fix
them securely based on the security context. We design based
on real-world problems and add security context for each
question which is based on the questions in online forums.
We ensure the security contexts in the scenarios are easy to
understand based on the problem description and environ-
ment settings. Each question is drawn from different types of
access-deny issues, including file system user and group, file
system access methods, application role and identity, IP, and
complex combinational operators, as shown in Table 4. Our
study was approved with an IRB exempt status.

Design Our experimental setup includes one warm-up ques-
tion with five experiment questions. The warm-up question
help them to understand the experiment process, and get famil-
iar with the server’s environment settings, e.g., configuration
location and installation location. Then we randomize the
order of five experiment questions. For each question, we
provide the information related to the denied request. Users
can fix the problem in a virtual machine with access to all
related log messages, data, and configurations. To further sim-
ulate real-world situations, we also allow users to use search
engines to search for log messages or related commands.
For our control and treatment condition, each participant
will have 2-3 questions with the report and 2-3 questions
without the report. We randomly assign the numbers for each
participant. In total, for each problem, we ensure that the
numbers of participants in the group with the diagnosis report
and the group without report are the same. Our diagnosis
report includes four parts: (1) access-control configurations
related to the request §3, (2) the specific rules related to the
denial §3, (3) the possible directions of changes to resolve the

problem §4 and (4) the change impact analysis §5. The user
study materials are available here [12].

During the study, we monitor and record the participants’
attempts for each question. Based on their modification, we
judge whether they resolve the access-deny issues. Then we
recruit a security expert to evaluate whether the modification
might pose a security risk based on the question context. We
also record the time it took them to complete each question,
up to a maximum of 30 minutes. This penalizes the group
with diagnosis report as the total time could be much longer.

To judge whether the participants’ solutions are secure, we
ask a security expert to evaluate each participant’s attempts.
The security expert first receives the same system environment
and problem description. They suggest possible measures to
resolve the issue securely. After that, the expert evaluates
the resolutions from participants and decide whether these
solutions pose a security risk to the system based on the
security context, and if so, what the risk is.

Recruitment We recruited our participants from the server’s
mailing list, reddit and CS graduate student slacks. In total,
we recruited 11 work professionals and 9 graduate students
in total. All the graduate students major in computer science
and they have taken computer system courses and are familiar
with Linux server administration.

Ethical Considerations Even though the study received an
IRB exempt status, we still followed all the requirement and
best practices. (1) All the researchers were trained with ethics
for user research before the study. (2) Before the study, the
participants are provided with consent form approved by the
IRB office, which informs the participants about the purpose,
procedure, risks, benefits and other information. The partic-
ipants are informed that they can withdraw from the study
at any time without penalty or loss of benefits. (3) None of
the graduate students participants are supervised by any re-
searchers involved in the study. (4) No personal identifiable
information is collected. (5) The study is voluntary and no
compensation is made.

Limitation The user study naturally has limitations that may
make it different from real-world measurements. We took
several measures to reduce the bias in the experiment. (1) We
recruited 20 participants with relevant server management
experiences; (2) We shuffled the problem order and randomly
assigned Multiview diagnosis reports for each problem. (3)
We designed warm-up questions to help the participants get
more familiar with the software and environment.

7.2.2 Results

Table 5 shows the percentage of participants who introduced
security issues during user study. Note that even though one
participant may make multiple security mistakes when solving
one problem we only count it as one insecure fix for one
participant in one problem. In total, for each problem we have
10 participants with report and 10 without report. We found

FS-1 FS-2 Config-1 Config-2 Config-3

w/ report 0 0 10% 0 0
w/o report 0 50% 70% 60% 40%

Table 5: The percentage of participants who made secu-
rity mistakes for each problem in user study.

that the percentage of participants in the treatment group
that introduced insecure fixes was lower for each question
compared to the control group.

We find that 70% of the participants (n = 10) in the group
without report made security mistakes in problem Config-2.
This problem describes the scenario that in graduate student
admission, one student volunteer could not access this year’s
application web pages. The root cause is in the server config-
urations, only admission officers are allowed to access this
folder. We find that the participants made security mistakes
in three categories. (1) Wrong component: Two participants
could not figure out the cause of this issue and tried to relax
the folder’s file permissions. (2) Too much permission to the
user: Four participants simply added the denied user to the ad-
mission officer group, while the admission officer can access
sensitive files like financial records in other directories. (3)
Grant access to too many users: Two participants granted all
the students to view the application web page, even though
they are not volunteers of students admission. Note that one
participant in the group with diagnosis report also made a mis-
take that added user to the admission officer. This is because
this participant did not pay enough attention to the diagnosis
report and ignored the impact analysis results.

In problem FS-2, we find that 50% of participants (n = 10)
in the control group made security mistakes. The root cause
is that the user lacks execute permission on the upper-level
directory in the file system. We observe two categories of inse-
cure fixes. (1) Wrong components. Two participants thought
this was due to configurations and they went through a trial-
and-error approach trying to allow all users in the configura-
tion. (2) Grant too much file permission. Three users granted
too much permission to the files other than the directory
that lacks permission. Note that they made insecure changes
led by suggestions from sysadmin forums. All of the three
participants googled the log message, “access to /* denied
(filesystem path /home/alice/pages/hello.py’) because search
permissions are missing on a component of the path”. This
has been a common issue on sysadmin forums with various
posts [16,60,61,66]. The participants simply copied the com-
mands from the forum which recursively granted execute
permissions to all the related directories and users (all other
users on the Unix system). The security expert rates this to be
unsafe as it allows other users to traverse the directories. This
also shows that even with log messages, sysadmins may still
make insecure fixes.

Notice in FS-1, no users made security mistakes. FS-1 is
a simple issue that requires minimal diagnosis. Multiview

204 [with report
3 without report

151

mins

10 A

54

0

FS-1 FS-2 Config-1 Config-2 Config-3

Figure 8: The average completion time for each user study
problem. The error bar shows the 95% confidence interval.

Application #LOC
Multiview Framework 2035
File system 256
Apache 482
Nginx 364
Vsftpd 280
Proftpd 320
MySQL 292
PostgreSQL 305
MongoDB 248
Squid 186

Table 6: Number of LOC for Multiview implementation.

did not improve the performance of participants because the
problem was already easy to resolve.

Besides the percentage of users who made security mis-
takes during the user study, we find that the average comple-
tion time in the group with Multiview’s diagnosis report are
significantly lower than the group without diagnosis report for
all problems (p<0.005, Mann-Whitney U test). Even though
the participants in the group with Multiview’s diagnosis report
are required to read extra materials in the diagnosis report,
they spent less time in resolving the issues and introduced
fewer security mistakes.

7.3 Performance and Adoption Efforts

Adoption efforts Multiview is implemented in Python3.
Multiview requires some efforts from the software developers
to adopt it in diagnosing access-deny issues for each applica-
tion. The main efforts are spent on parsing the configuration
file and implementing APIs to manipulate configuration files
for toggle analysis and delta generation. The adoption effort
for one application is a one-time effort, but it would greatly
benefit the sysadmins in diagnosing sensitive access-deny
issues as shown in §7.2.

Diagnosis time We calculated the running time of Multiview
diagnosis process the reproduced cases and all cases were
under one minute, which is negligible compared to manu-
ally collecting the system’s information or asking on online
forums. Note that the time does not include change impact
analysis, because we do not have the system’s real resources
for the reproduced cases. The time may vary depending on
the size of the system. Based on the experiment on the data
of user-study cases, Multiview can replay 520 requests per
second on average.

Real-world systems ~ System Type Resources Requests

Department Courses Nginx web server 296,036 5.05B
Research Lab Apache web server 58,436 8.06 M

Table 7: Real-world systems for evaluation. Resources: the total
number of resources (files, directories) in the system; Requests: the
total number of requests to run for every change impact analysis
without reduction.

Real-world systems Total Dir. 1 Dir.2 Dir.3 Time
Department Courses 18,348 17,070 1,266 12 28.8 sec
Research Lab 38,460 7,554 30,900 6 56.9 sec

Table 8: Change impact analysis performance in real-world sys-
tems with request reduction techniques. Total: the total number
of requests replayed to complete the change impact analysis; Dir:
direction in short, the number of requests replayed for each direction;
Time: the total time to finish the change impact analysis.

Change impact analysis time We measured the perfor-
mance of Multiview’s change impact analysis in real-world
systems. We collected configurations and data from two real-
world deployed systems, including all course websites for
a university department, and all research resources for a re-
search lab website, as shown in Table 7. We reproduced two
real-life access-deny issues to show how Multiview’s change
impact analysis can scale in real-world systems.

Case 1: Department Courses We reproduced an access-
deny issue taken from real events. A new USEer Ugepy is denied
to change the course material. The denied request attempts
to modify the object 04.,y under a course directory. Multi-
view detects that even though 1.,y has read access to 0geny,
it does not have write access. To resolve the issue, Multi-
view proposes a total of three directions to grant ug.,, the
proper permission. The basic way to synthesize all possible
requests by emulating the number of resources, users and ac-
cess methods in a large-scale system can result in 5.05 billion
requests for each analysis. After reduction, Multiview gen-
erates 17,070, 1,266, and 12 requests receptively for each
directions, as shown in Table 8. Multiview in total replayed
18,348 requests, finished in 28.8 seconds.

Case 2: Research Lab We reproduced an access-deny is-
sue which denies an authenticated user uge,y> from accessing
the machine reservation log 04eny2. Multiview first locates
the faulty component to be the Apache server. The direc-
tory dgeny2 Which 04.ny2 belongs to is only accessible to the
internal lab students group ginrernal» Which ugeny> does not
belong to. Multiview suggests three directions, and performs
change impact analysis for each direction respectively. If
Multiview replays all possible access, it can reach to at least
8.06 million requests for each analysis. After reduction, Mul-
tiview generates 7,554, 30,900, and 6 requests receptively
for each directions, as shown in Table 8. Multiview in total
replayed 38,460 requests, finished in 56.9 seconds.

8 Limitations and Discussion

Can Multiview completely replace sysadmins in access-deny
issue diagnosis? Multiview’s goal is to help sysadmins collect
the possible directions of changes and evaluate their impact to
understand and fix the access-deny issue correctly. However,
Multiview can not determine which should be taken as solu-
tion based on the security context—sysadmins are the ones
who make decisions, which inevitably may suffer from human
errors. As shown in our user study, while with Multiview’s
diagnosis report, the participants are less likely to give inse-
cure solutions, there is still one participant who made insecure
fixes, because he fixed the issue based on his intuition and
ignored the results of the change impact analysis. Future work
may explore automatic ways to determine the final solution
with proper models of the security properties.

Can Multiview handle all configuration mechanisms? Multi-
view takes a black-box approach in the faulty configuration
localization (§3), in which Multiview mutates the result of ac-
cess control at different levels to identify faulty configurations.
This requires Multiview to know all the related components
and their configurations to start the mutations. However, some
configuration options have default values that are not explic-
itly declared in the configuration file, or the access-control
rules are encoded in the source code. Thus Multiview cur-
rently cannot find such root-cause configurations with a black-
box approach. In the future, Multiview can be combined with
the white-box approaches [17-19, 63] to analyze the implicit
configuration options.

Are the Multiview’s generated directions of changes complete?
Multiview’s mutation policies to generate possible directions
of changes require the software developers to provide the
APIs for mutating each individual access-control rule, as well
as the partial security order. Therefore, the changes identified
by Multiview may not be complete if not all the mutations
are specified. However, the API implementations are mainly
a one-time effort for one application. Developers can focus
on the common rules to provide high coverage of real-world
access-deny issues for the sysadmins.

Can Multiview’s change-impact analysis always faithfully
reproduce access-control results? Multiview synthesizes the
requests based on the subjects, objects and actions in the
system and replay the requests with the reproduced virtual
environment. However, in some non-deterministic scenarios,
access control results may not relate to the attributes of synthe-
sis input, but relate to environment settings such as time [46]
or rate limiting [31]. Multiview currently can not faithfully
replay such cases as these require a complete reproduction
of the environment. To achieve deterministic replay in such
cases, more runtime information needs to be recorded [24].

How do Multiview display the change-impact analysis re-
sults? Multiview performs the change impact analysis to find
the impact on the access-control state for each direction of
changes. The number of subjects and objects could be large

in real-world organizations. Even though Multiview tries to re-
duce the number of synthesized requests, the results of change
impact analysis could be lengthy and sysadmins may need
to spend additional efforts to read the report. Currently, Mul-
tiview displays the results in a line-by-line format which
includes the subject, action, object and the access-control re-
sult changes. We leave the tasks including visualizing and
identifying important access-control changes as future work.

How do Multiview ensure no private information is leaked
in the report? Multiview assumes that sysadmins are fully
trusted. When Multiview presents the diagnosis report, it may
contain the information related to all the subjects available
in the system to present a comprehensive view. If there is
sensitive information related to data privacy, certain rules
should be applied to filter or hide such information in the
report. Existing works on automatic private information filter-
ing techniques [23,67,72] can be combined with Multiview
to identify potentially private user information.

9 Related Work

Zero Trust security approach Zero trust is a set of security
principles that remove the assumption of trust from users and
resources within certain security perimeters [37,51,74]. It
requires rigorous authentication and authorization process for
every access, and the accesses are continuously monitored and
logged to detect and audit potential security events. In zero
trust architecture, access control policies are still the core in
the authorization process with dynamic contexts. Multiview
can help sysadmins to mutate and test the access control
policy changes in the diagnosis process. This is particularly
important in a Zero Trust architecture.

Access-deny issues characteristic study Xu et al. [79] first
quantitatively studied the real-world practice of resolving
access-deny issues based on the cases from online forums.
The study demonstrates that sysadmins lack adequate infor-
mation which prevents them from developing a precise un-
derstanding of the system and diagnosing the issue. However,
no solution was proposed and evaluated in their study. Shen
et al. [54] explored improving access-deny logging to help
developers write better log messages for sysadmins. Our work
tackles the problem by finding configurations related to the
issue. Besides, we further perform delta analysis to find more
directions to resolve the access-deny issue and evaluate their
impact on the global access-control state.

Access control misconfiguration detection Many works
have been proposed to detect the inconsistencies in the
access-control policies with data mining [22,26,77, 83], test-
ing [42,43], and verification approaches [32,36]. These works
rely on the security property in a formal model or test oracles
specified by the sysadmins, or learned policies from the prob-
ably correct systems, and then compare with the configuration
settings to detect inconsistencies. Some works [22] can sug-
gest fixes that learned from the other functional systems, but it

introduces false positives as the security goals in each system
may be different. In contrast, our work mutates the configu-
ration settings based on the security order to provide more
directions, and evaluate their impact on the access-control
state to determine the one that best fits the security context.

Misconfiguration detection and diagnosis Previous re-
search [17-19, 34,49, 53,63,71,73,75,78, 81, 83-85] has
applied various types of techniques to the configuration error
detection and diagnosis, including black-box and white-box
approaches. In general, these works try to provide better
tooling support for developers to diagnose configurations by
finding the related configuration entries. They rely on symp-
toms like function failures or performance degradation to
detect conﬁguration errors. However, the access control con-
figuration errors are still intended behavior by the source code.
Besides, some rely on a modified test environment and run
the instrumented programs again to debug the error. However,
sysadmins do not read or have access to the source code as
software developers, which makes them less likely to apply
these tools for diagnosis. Besides finding the related configu-
rations, our work took a step further to explore the possible
directions to solve the access deny issue and evaluate the
changes’ impact to help sysadmins find a solution based on
their security context.

Access control code vulnerabilities The access-control
code in the software, if not properly implemented, may expose
vulnerabilities that allow attackers to bypass the authentica-
tion or authorization process. Many prior works have been pro-
posed to detect the bugs in access control [27,44,57,65,76] or
enforce access-control properties at runtime with techniques
like dataflow tracking [25,48, 80]. Our work is complemen-
tary to their works as they focus on bugs in the code, while
we focus on helping sysadmins find configuration settings
that would solve the access-control issues that best fits in the
security context.

10 Conclusion

This paper proposes a new diagnosis framework Multiview
that can provide multiple directions of changes for resolv-
ing access-deny issues to help sysadmins reduce their blind
spots in diagnosis. Multiview achieves this by categorizing
access-control changes and uses delta generation to system-
atically mutate configurations and compares the mutations
with security order. Multiview also examines the impact of
changes in each possible direction to help sysadmins deter-
mine which one is suitable according to the security context.
Our evaluation on real-world access-deny issues shows that
Multiview can successfully help diagnose 89 out of 112 re-
produced issues. We further conducted a user study with 20
participants on five real-world access-deny issues. The user
study shows that Multiview can reduce the percentage of in-
secure fixes from 44.0% to 2.0% and reduced their diagnosis
time by 62.0% on average.

References

(1]

2
3

—_— —

(4]

(5

—

[6

—_

[7

—

[8
(9]

—

(10]
(1]
[12]

[13]

[14]

[15]

(16]

[17]

(18]

(19]

[20]

(21]

Apache user mailing list.
lists.html#http-users.

https://httpd.apache.org/

Dba stack exchange. https://dba.stackexchange.com/.

Mongodb forum. https://www.mongodb.com/community/

forums/.
Nginx user mailing list.
archives/list/nginx@nginx.org/.

https://mailman.nginx.org/

PostgreSQL Privileges.
current/ddl-priv.html.

https://www.postgresql.org/docs/

Postgresql user mailing list.
list/pgsql-general/.

https://www.postgresql.org/

Proftpd user mailing list. https://sourceforge.net/p/proftp/
mailman/proftp-user/.

Server fault. https://serverfault.com.

Squid user mailing list.
pipermail/squid-users/.

http://lists.squid- cache.org/

Stack exchange. https://stackexchange.com/.
Stack overflow. https://stackoverflow.com/.

User study materials. https://drive.google.com/file/d/
1JMBt-MC4kpJ8ix1L4YP1kgqRIQBIcrvO/view?usp=sharing.

Apache configuration parser. https://github.com/etingof/
apacheconfig, 2022.

Nginx configuration parser. https://github.com/nginxinc/
crossplane, 2022.

Supplementary materials. https://github.com/ucsdopera/
Multivew/blob/main/supplementary.pdf, 2023.

ASKUBUNTU. Apache: access denied because search permis-
sions are missing. https://askubuntu.com/questions/451922/
apache-access-denied-because-search-permissions-are-
missing, 2015.

ATTARIYAN, M., CHOW, M., AND FLINN, J. X-ray: Automat-
ing root-cause diagnosis of performance anomalies in produc-
tion software. In Presented as part of the 10th {USENIX}
Symposium on Operating Systems Design and Implementation
({OSDI} 12) (2012), pp. 307-320.

ATTARIYAN, M., AND FLINN, J. Using causality to diagnose
configuration bugs. In USENIX Annual Technical Conference
(2008), pp. 281-286.

ATTARIYAN, M., AND FLINN, J. Automating configuration
troubleshooting with dynamic information flow analysis. In
OSDI (2010), vol. 10, pp. 1-14.

BARKLEY, J. Comparing simple role based access control
models and access control lists. In Proceedings of the second
ACM workshop on Role-based access control (1997), pp. 127—
132.

BARRETT, R., KANDOGAN, E., MAGLIO, P. P., HABER,
E. M., TAKAYAMA, L. A., AND PRABAKER, M. Field studies
of computer system administrators: analysis of system man-
agement tools and practices. In Proceedings of the 2004 ACM
conference on Computer supported cooperative work (2004),
pp. 388-395.

[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

[31]

(32]

[33]

[34]

(35]

[36]

BAUER, L., GARRISS, S., AND REITER, M. K. Detecting
and resolving policy misconfigurations in access-control sys-
tems. ACM Transactions on Information and System Security
(TISSEC) 14,1 (2011), 1-28.

CASTRO, M., COSTA, M., AND MARTIN, J.-P. Better bug
reporting with better privacy. ACM SIGOPS Operating Systems
Review 42,2 (2008), 319-328.

CHEN, Y., ZHANG, S., GUo, Q., LI, L., WU, R., AND CHEN,
T. Deterministic replay: A survey. ACM Computing Surveys
(CSUR) 48, 2 (2015), 1-47.

DALTON, M., KOZYRAKIS, C., AND ZELDOVICH, N. Neme-
sis: Preventing authentication & [and] access control vulnera-
bilities in web applications.

DAS, T., BHAGWAN, R., AND NALDURG, P. Baaz: A system
for detecting access control misconfigurations. In USENIX
Security Symposium (2010), pp. 161-176.

DEEPA, G., THILAGAM, P. S., PRASEED, A., AND PAIS, A. R.
Detlogic: A black-box approach for detecting logic vulnerabil-
ities in web applications. Journal of Network and Computer
Applications 109 (2018), 89-109.

DETECTIVES, S. Australian sports fan portal leaks 132GB
of private data. https://www.safetydetectives.com/blog/
bigfooty- leak- report/, 2020.

DIETRICH, C., KROMBHOLZ, K., BORGOLTE, K., AND
FIEBIG, T. Investigating system operators’ perspective on
security misconfigurations. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Secu-
rity (2018), pp. 1272-1289.

DivvyCLOUD. 2020 cloud misconfigurations report.
https://divvycloud.com/wp-content/uploads/2020/02/
Cloud-Misconfiguration-Report-FINAL.pdf, 2020.

Docs, N. Nginx rate limiting. https://docs.nginx.com/
nginx/admin-guide/security-controls/controlling-
access-proxied-http/, 2022.

FISLER, K., KRISHNAMURTHI, S., MEYEROVICH, L. A.,
AND TSCHANTZ, M. C. Verification and change-impact analy-
sis of access-control policies. In Proceedings of the 27th inter-
national conference on Software engineering (2005), pp. 196—
205.

HATCH., B. Linux file permission confusion pt 2. https:
//www.hackinglinuxexposed.com/articles/20030424.html,
2003.

HUANG, H., SHEN, B., ZHONG, L., AND ZHOU, Y. Protecting
data integrity of web applications with database constraints
inferred from application code. In Proceedings of the 28th
ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2

(2023), pp. 632-645.

IBM SECURITY. Cost of a data breach report 2020. https:
//www.capita.com/sites/g/files/nginej146/files/2020-
08/Ponemon-Global-Cost-of-Data-Breach-Study-2020.pdf,
2020.

JAYARAMAN, K., GANESH, V., TRIPUNITARA, M., RINARD,
M., AND CHAPIN, S. Automatic error finding in access-control
policies. In Proceedings of the 18th ACM conference on Com-
puter and communications security (2011), pp. 163-174.

https://httpd.apache.org/lists.html#http-users
https://httpd.apache.org/lists.html#http-users
https://dba.stackexchange.com/
https://www.mongodb.com/community/forums/
https://www.mongodb.com/community/forums/
https://mailman.nginx.org/archives/list/nginx@nginx.org/
https://mailman.nginx.org/archives/list/nginx@nginx.org/
https://www.postgresql.org/docs/current/ddl-priv.html
https://www.postgresql.org/docs/current/ddl-priv.html
https://www.postgresql.org/list/pgsql-general/
https://www.postgresql.org/list/pgsql-general/
https://sourceforge.net/p/proftp/mailman/proftp-user/
https://sourceforge.net/p/proftp/mailman/proftp-user/
https://serverfault.com
http://lists.squid-cache.org/pipermail/squid-users/
http://lists.squid-cache.org/pipermail/squid-users/
https://stackexchange.com/
https://stackoverflow.com/
https://drive.google.com/file/d/1JMBt-MC4kpJ8ix1L4YPlkgqRIQBJcrv0/view?usp=sharing
https://drive.google.com/file/d/1JMBt-MC4kpJ8ix1L4YPlkgqRIQBJcrv0/view?usp=sharing
https://github.com/etingof/apacheconfig
https://github.com/etingof/apacheconfig
https://github.com/nginxinc/crossplane
https://github.com/nginxinc/crossplane
https://github.com/ucsdopera/Multivew/blob/main/supplementary.pdf
https://github.com/ucsdopera/Multivew/blob/main/supplementary.pdf
https://askubuntu.com/questions/451922/apache-access-denied-because-search-permissions-are-missing
https://askubuntu.com/questions/451922/apache-access-denied-because-search-permissions-are-missing
https://askubuntu.com/questions/451922/apache-access-denied-because-search-permissions-are-missing
https://www.safetydetectives.com/blog/bigfooty-leak-report/
https://www.safetydetectives.com/blog/bigfooty-leak-report/
https://divvycloud.com/wp-content/uploads/2020/02/Cloud-Misconfiguration-Report-FINAL.pdf
https://divvycloud.com/wp-content/uploads/2020/02/Cloud-Misconfiguration-Report-FINAL.pdf
https://docs.nginx.com/nginx/admin-guide/security-controls/controlling-access-proxied-http/
https://docs.nginx.com/nginx/admin-guide/security-controls/controlling-access-proxied-http/
https://docs.nginx.com/nginx/admin-guide/security-controls/controlling-access-proxied-http/
https://www.hackinglinuxexposed.com/articles/20030424.html
https://www.hackinglinuxexposed.com/articles/20030424.html
https://www.capita.com/sites/g/files/nginej146/files/2020-08/Ponemon-Global-Cost-of-Data-Breach-Study-2020.pdf
https://www.capita.com/sites/g/files/nginej146/files/2020-08/Ponemon-Global-Cost-of-Data-Breach-Study-2020.pdf
https://www.capita.com/sites/g/files/nginej146/files/2020-08/Ponemon-Global-Cost-of-Data-Breach-Study-2020.pdf

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

(52]

(53]

KERMAN, A., BORCHERT, O., ROSE, S., AND TAN, A. Im-
plementing a zero trust architecture. National Institute of
Standards and Technology 2020 (2020), 17-17.

LAMPSON, B. W. Protection. ACM SIGOPS Operating Sys-
tems Review 8, 1 (1974), 18-24.

LAWLER, R. Capital One data breach affected 100 million in
the US. https://www.engadget.com/2019/07/29/capital-one-
data-breach/, Jul. 2019.

LINUX. Overlay filesystem. https://www.kernel.org/doc/
html/latest/filesystems/overlayfs.html, 2021.

MANUAL, A. O. Apache authentication and authorization.
https://httpd.apache.org/docs/2.4/howto/auth.html, 2022.

MARTIN, E., AND XIE, T. Automated test generation for
access control policies via change-impact analysis. In Third
International Workshop on Software Engineering for Secure
Systems (SESS’07: ICSE Workshops 2007) (2007), IEEE, pp. 5—
5.

MARTIN, E., AND XIE, T. A fault model and mutation testing
of access control policies. In Proceedings of the 16th interna-
tional conference on World Wide Web (2007), pp. 667-676.

NEAR, J. P., AND JACKSON, D. Finding security bugs in
web applications using a catalog of access control patterns. In
Proceedings of the 38th International Conference on Software
Engineering (2016), pp. 947-958.

NIGHT LION SECURITY. Astoria company data breach re-
search and analysis. https://www.nightlion.com/blog/2021/
astoria- company-breach/, 2021.

0OAsI1s. Xacml v3.0 time extensions. https://docs.oasis-
open.org/xacml/xacml-3.0-time-extensions/v1.0/csprd0l1l/

xacml-3.0-time-extensions-v1.0-csprd01.html, 2022.

OWASP. Owasp top 10 vulnerabilities - 2021.
owasp.org/Top10/, 2021.

https://

PARNO, B., MCCUNE, J. M., WENDLANDT, D., ANDERSEN,
D. G., AND PERRIG, A. Clamp: Practical prevention of large-
scale data leaks. In 2009 30th IEEE Symposium on Security
and Privacy (2009), IEEE, pp. 154-169.

RABKIN, A., AND KATZ, R. Precomputing possible configu-
ration error diagnoses. In 2011 26th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2011)
(2011), IEEE, pp. 193-202.

RODEH, O., BACIK, J., AND MASON, C. Btrfs: The linux
b-tree filesystem. ACM Transactions on Storage (TOS) 9, 3
(2013), 1-32.

ROSE, S., BORCHERT, O., MITCHELL, S., AND CONNELLY,
S. Zero trust architecture. Tech. rep., National Institute of
Standards and Technology, 2020.

SECURITY WORLD. 9 years to discover a data
breach. https://www.secureworldexpo.com/industry-news/9-
years-incident-to-breach-discovery-time, 2019.

SHEN, B. Automatic Methods to Enhance Server Systems in
Access Control Diagnosis. University of California, San Diego,
2022.

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

SHEN, B., SHAN, T., AND ZHOU, Y. Improving logging to
reduce permission over-granting mistakes. In USENIX Security
Symposium (2023).

SHEN, B., WEI, L., XIANG, C., WU, Y., SHEN, M., ZHOU,
Y., AND JIN, X. Can systems explain permissions better? un-
derstanding users’ misperceptions under smartphone runtime
permission model. In USENIX Security Symposium (2021),
pp. 751-768.

SILICON ANGLE. Pharma giant pfizer exposes
patient data on unsecured cloud storage. https:
//siliconangle.com/2020/10/20/pharma-giant-pfizer-
exposes-patient-data-unsecured-cloud-storage/, 2020.

SON, S., MCKINLEY, K. S., AND SHMATIKOV, V. Fix me up:
Repairing access-control bugs in web applications. In NDSS
(2013).

SOPHOS. The state of cloud security 2020. https:
//secure2.sophos.com/en-us/medialibrary/Gated-Assets/
white-papers/sophos-the-state-of-cloud-security-2020-
wp.pdf, 2020.

STACK OVERFLOW. Error message "forbidden you
don’t have permission to access / on this server".
https://stackoverflow.com/questions/10873295/error-
message- forbidden-you-dont-have-permission-to-access-
on-this-server, 2013.

STACK OVERFLOW. Apache - Permissions are missing
on a component of the path. https://stackoverflow.com/
questions/25190043/apache-permissions-are-missing-on-
a- component-of-the-path, 2015.

STACK OVERFLOW. Apache 2.4.7 / Search permis-
sions. https://stackoverflow.com/questions/33477056/
apache-2-4-7-search-permissions, 2016.

STACKOVERFLOW. Apache2 mod_wsgi access de-
nied issue. https://serverfault.com/questions/357804/
apache2-mod-wsgi-django-named-virtual-servers, Last ac-

cessed 2022.

SU, Y.-Y., ATTARIYAN, M., AND FLINN, J. Autobash: im-
proving configuration management with operating system
causality analysis. ACM SIGOPS Operating Systems Review
41, 6 (2007), 237-250.

Su, Y.-Y., AND FLINN, J. Automatically generating predicates
and solutions for configuration troubleshooting. In USENIX
Annual Technical Conference (2009).

SuN, F., XU, L., AND Su, Z. Static detection of access con-
trol vulnerabilities in web applications. In USENIX Security
Symposium (2011), vol. 64.

SUPERUSER. Permission denied because search permissions
are missing on a component of the path, after chmod and chgrp.
https://superuser.com/questions/882594/permission-
denied-because-search-permissions-are-missing-on-a-
component-of-the-p, 2016.

TANEIJA, K., GRECHANIK, M., GHANI, R., AND XIE, T. Test-
ing software in age of data privacy: A balancing act. In Pro-
ceedings of the 19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of software engineering
(2011), pp. 201-211.

https://www.engadget.com/2019/07/29/capital-one-data-breach/
https://www.engadget.com/2019/07/29/capital-one-data-breach/
https://www.kernel.org/doc/html/latest/filesystems/overlayfs.html
https://www.kernel.org/doc/html/latest/filesystems/overlayfs.html
https://httpd.apache.org/docs/2.4/howto/auth.html
https://www.nightlion.com/blog/2021/astoria-company-breach/
https://www.nightlion.com/blog/2021/astoria-company-breach/
https://docs.oasis-open.org/xacml/xacml-3.0-time-extensions/v1.0/csprd01/xacml-3.0-time-extensions-v1.0-csprd01.html
https://docs.oasis-open.org/xacml/xacml-3.0-time-extensions/v1.0/csprd01/xacml-3.0-time-extensions-v1.0-csprd01.html
https://docs.oasis-open.org/xacml/xacml-3.0-time-extensions/v1.0/csprd01/xacml-3.0-time-extensions-v1.0-csprd01.html
https://owasp.org/Top10/
https://owasp.org/Top10/
https://www.secureworldexpo.com/industry-news/9-years-incident-to-breach-discovery-time
https://www.secureworldexpo.com/industry-news/9-years-incident-to-breach-discovery-time
https://siliconangle.com/2020/10/20/pharma-giant-pfizer-exposes-patient-data-unsecured-cloud-storage/
https://siliconangle.com/2020/10/20/pharma-giant-pfizer-exposes-patient-data-unsecured-cloud-storage/
https://siliconangle.com/2020/10/20/pharma-giant-pfizer-exposes-patient-data-unsecured-cloud-storage/
https://secure2.sophos.com/en-us/medialibrary/Gated-Assets/white-papers/sophos-the-state-of-cloud-security-2020-wp.pdf
https://secure2.sophos.com/en-us/medialibrary/Gated-Assets/white-papers/sophos-the-state-of-cloud-security-2020-wp.pdf
https://secure2.sophos.com/en-us/medialibrary/Gated-Assets/white-papers/sophos-the-state-of-cloud-security-2020-wp.pdf
https://secure2.sophos.com/en-us/medialibrary/Gated-Assets/white-papers/sophos-the-state-of-cloud-security-2020-wp.pdf
https://stackoverflow.com/questions/10873295/error-message-forbidden-you-dont-have-permission-to-access-on-this-server
https://stackoverflow.com/questions/10873295/error-message-forbidden-you-dont-have-permission-to-access-on-this-server
https://stackoverflow.com/questions/10873295/error-message-forbidden-you-dont-have-permission-to-access-on-this-server
https://stackoverflow.com/questions/25190043/apache-permissions-are-missing-on-a-component-of-the-path
https://stackoverflow.com/questions/25190043/apache-permissions-are-missing-on-a-component-of-the-path
https://stackoverflow.com/questions/25190043/apache-permissions-are-missing-on-a-component-of-the-path
https://stackoverflow.com/questions/33477056/apache-2-4-7-search-permissions
https://stackoverflow.com/questions/33477056/apache-2-4-7-search-permissions
https://serverfault.com/questions/357804/apache2-mod-wsgi-django-named-virtual-servers
https://serverfault.com/questions/357804/apache2-mod-wsgi-django-named-virtual-servers
https://superuser.com/questions/882594/permission-denied-because-search-permissions-are-missing-on-a-component-of-the-p
https://superuser.com/questions/882594/permission-denied-because-search-permissions-are-missing-on-a-component-of-the-p
https://superuser.com/questions/882594/permission-denied-because-search-permissions-are-missing-on-a-component-of-the-p

[68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

(771

(78]

[79]

(80]

(81]

(82]

TWITCH. Twitch update on the security incident.
https://blog.twitch.tv/en/2021/10/15/updates-on-the-
twitch-security-incident/, 2021.

UPDATE, B. Biometrics company allegedly leaves un-
hashed fingerprint data of thousands exposed to internet.
https://www.biometricupdate.com/202003/biometrics-
company - leaves - unhashed- fingerprint-data-of- thousands-
exposed- to-internet, 2020.

VERIZON. 2020 Data Breach Investigations Report.
https://enterprise.verizon.com/resources/reports/2020-
data-breach-investigations- report.pdf, 2020.

WANG, H. J., PLATT, J. C., CHEN, Y., ZHANG, R., AND
WANG, Y.-M. Automatic misconfiguration troubleshooting
with peerpressure. In OSDI (2004), vol. 4, pp. 245-257.

WANG, R., WANG, X., AND LI, Z. Panalyst: Privacy-aware
remote error analysis on commodity software. In USENIX
Security Symposium (2008), pp. 291-306.

WANG, Y.-M., VERBOWSKI, C., DUNAGAN, J., CHEN, Y.,
WANG, H. J., YUAN, C., AND ZHANG, Z. Strider: A black-
box, state-based approach to change and configuration man-
agement and support. Science of Computer Programming 53,
2(2004), 143-164.

WARD, R., AND BEYER, B. Beyondcorp: a new approach to
enterprise security.; login: 39 (6), 6-11, 2014.

WHITAKER, A., Cox, R. S., GRIBBLE, S. D., ET AL. Config-
uration debugging as search: Finding the needle in the haystack.
In OSDI (2004), vol. 4, pp. 6-6.

XIANG, C. Detecting Access Control Misconfigurations with
Change Validation. University of California, San Diego, 2021.

XIANG, C., WU, Y., SHEN, B., SHEN, M., HUANG, H., XU,
T., ZHOU, Y., MOORE, C., JIN, X., AND SHENG, T. Towards
continuous access control validation and forensics. In Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security (2019), pp. 113-129.

Xu, T., JiN, X., HUANG, P., ZHOU, Y., LU, S., JIN, L., AND
PASUPATHY, S. Early detection of configuration errors to
reduce failure damage. In /12th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 16)
(2016), pp. 619-634.

Xu, T., NAING, H. M., Lu, L., AND ZHOU, Y. How do
system administrators resolve access-denied issues in the real
world? In Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems (2017), ACM, pp. 348-361.

YIpP, A., WANG, X., ZELDOVICH, N., AND KAASHOEK, M. F.
Improving application security with data flow assertions. In
Proceedings of the ACM SIGOPS 22nd symposium on Operat-
ing systems principles (2009), pp. 291-304.

YUAN, D, XIE, Y., PANIGRAHRY, R., YANG, J., VERBOWSKI,
C., AND KUMAR, A. Context-based online configuration-error
detection. In Proceedings of the 2011 USENIX conference on
USENIX annual technical conference (2011), USENIX Asso-
ciation, pp. 28-28.

ZDNET.
citizens, including 6.7 million

Database leaks data on most of Ecuador’s
children. https:

//www.zdnet.com/article/database- leaks-data-on-most-
of-ecuadors-citizens-including-6-7-million-children/,
2019.

[83] ZHANG, J., RENGANARAYANA, L., ZHANG, X., GE, N.,
BALA, V., XU, T., AND ZHOU, Y. Encore: Exploiting system
environment and correlation information for misconfiguration
detection. In Proceedings of the 19th international confer-
ence on Architectural support for programming languages and
operating systems (2014), pp. 687-700.

[84] ZHANG, S., AND ERNST, M. D. Automated diagnosis of
software configuration errors. In 2013 35th International
Conference on Software Engineering (ICSE) (2013), IEEE,
pp- 312-321.

[85] ZHANG, S., AND ERNST, M. D. Which configuration option
should i change? In Proceedings of the 36th International
Conference on Software Engineering (2014), pp. 152-163.

A Diagnosis Results

Detailed descriptions for Multiview’s diagnosis results for cases in
Table 3.

Case 1 (FS)

Related configurations
Apache process user lacks execute permission
on “/var/www/html/www 1/pages”

Possible directions

1. Add execute permission on group so Apache process user
has execute permission.

2. Make apache process user to be owner of
“/var/www/html/www1/pages*

Case 2 (FS)

Related configurations

Apache process user lacks execute permission on
“/var/www/html/greg/”

Apache process user lacks read permission on
“/var/www/html/greg/index.html”

Possible directions

Multiview has 3 mutations to access “/var/www/html/greg/”

1. Grant Apache execute permission as other.

2. Change directory’s group to be Apache.

3. Change directory’s owner to be Apache.

Multiview has 3 mutations to access
“/var/www/html/greg/index.html”

1. Grant Apache read permission as other.

2. Change directory’s group to be Apache.

3. Change directory’s owner to be Apache.

Combine both directories’ mutations to 9 directions.

10. Add user to the group of both directories
“/var/www/html/greg/index.html” and
“/var/www/html/greg/”.

https://blog.twitch.tv/en/2021/10/15/updates-on-the-twitch-security-incident/
https://blog.twitch.tv/en/2021/10/15/updates-on-the-twitch-security-incident/
https://www.biometricupdate.com/202003/biometrics-company-leaves-unhashed-fingerprint-data-of-thousands-exposed-to-internet
https://www.biometricupdate.com/202003/biometrics-company-leaves-unhashed-fingerprint-data-of-thousands-exposed-to-internet
https://www.biometricupdate.com/202003/biometrics-company-leaves-unhashed-fingerprint-data-of-thousands-exposed-to-internet
https://enterprise.verizon.com/resources/reports/2020-data-breach-investigations-report.pdf
https://enterprise.verizon.com/resources/reports/2020-data-breach-investigations-report.pdf
https://www.zdnet.com/article/database-leaks-data-on-most-of-ecuadors-citizens-including-6-7-million-children/
https://www.zdnet.com/article/database-leaks-data-on-most-of-ecuadors-citizens-including-6-7-million-children/
https://www.zdnet.com/article/database-leaks-data-on-most-of-ecuadors-citizens-including-6-7-million-children/

Case 3 (Apache)

Related configurations
Request denied by the directive
“Require method GET POST”.

Possible directions
1. Add DELETE method in the allowed HTTP methods.
2. Restrict the DELETE method to only be allowed

to the requested data.

Case 4 (Apache)

Related configurations
Request denied by the directives in the config
directory block “/var/www/sales/stats/”.

Possible directions
1. Add denied user to group admin.
2. Allow the denied user’s role
‘sales_manager* in the configuration
3. Allow the denied user’s role ‘sales® in the configuration
4. Allow the denied user ‘Alice‘ in the configuration

Case 5 (Nginx)

Related configurations
Request denied by the directives the config directory block
“/var/www/html”.

Possible directions
1. Allow the denied user’s IP in the configuration block.

Case 6 (Vsftpd)

Related configurations
Request denied by the configuration entry “deny_file”.

Possible directions
1. Remove the option that matches with the denied
object in the “deny_file”.

Case 8 (MySQL)

Related configurations
The user requires references privilege on Table B.

Possible directions

1. Grant the user with references privilege on Table B.

2. Grant the user with the same role of the owner of Table B
to grant a set of privileges on Table B including references.

Case 9 (PostgreSQL)

Related configurations
The user requires usage privilege on the schema,
and execute privilege on the function.

Possible directions

1. Grant the user with USAGE privilege on the schema and
grant the user with EXECUTE privilege on the function

2. Grant the user with the same role of the schema’s owner
so the user can have a set of privileges to access the
schema and the function.

Case 10 (MongoDB)

Related configurations
The user requires administrative privilege to read the storage
stats on the table.

Possible directions

1. Create a role with dbStats privilege and
grant the user with the newly created role.

2. Grant the dbAdmin role to the denied user.

Case 7 (Proftpd)

Related configurations
Request denied by rules “<Limit LOGIN>" in
the configuration block <VirtualHost>.

Case 11 (Squid)

Possible directions

1. Add <AllowUser> for the denied user in the Limit section.

2. Add <AllowGroup> for current group of the denied user
in the Limit section.

3. Add the denied user to the current allowed group ftpuser.

Related configurations
The user’s IP is inside the IP subnet of the block list.

Possible directions
1. Allow the IP with http_access allow denied_IP;
before the rule to block the whole subnet.

	Introduction
	Motivation
	Our Contributions

	Overview
	Faulty Configuration Localization
	Identify Faulty Component
	Identify Request-related Configurations
	Identify Related Objects
	Identity Related Rules

	Delta Generation
	Delta Generation Overview
	Access-Control Rule Mutation
	Minimize Permissions w. Security Order
	Generate Final Directions

	Change Impact Analysis
	Implementation
	General Considerations
	Toggle Analysis Implementation
	Delta Generation Implementation
	Change Impact Analysis Implementation

	Evaluation
	Real-world Access-Deny Issues
	Methodology
	Results

	User Study
	Methodology
	Results

	Performance and Adoption Efforts

	Limitations and Discussion
	Related Work
	Conclusion
	Diagnosis Results

