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Abstract
Remote password guessing attacks remain one of the

largest sources of account compromise. Understanding and
characterizing attacker strategies is critical to improving se-
curity, but doing so has been challenging thus far due to the
sensitivity of login services and the lack of ground truth la-
bels for benign and malicious login requests. We perform
an in-depth measurement study of guessing attacks target-
ing two large universities. Using a rich dataset of more than
34 million login requests to the two universities as well as
thousands of compromise reports, we were able to develop a
new analysis pipeline to identify 29 attack clusters—many of
which involved compromises not previously known to secu-
rity engineers. Our analysis provides the richest investigation
to date of password guessing attacks as seen from login ser-
vices. We believe our tooling will be useful in future efforts
to develop real-time detection of attack campaigns, and our
characterization of attack campaigns can help more broadly
guide mitigation design.

1 Introduction

Remote password guessing attacks are one of the most ef-
fective and prevalent causes of account compromise for
password-based authentication systems [43, 48]. Password
guessing attacks are easy to mount for attackers, who may
attempt logging in under known usernames with widely pop-
ular passwords or perform credential stuffing by submitting
username-password pairs that have appeared in previous
breaches. Despite being straightforward, such attacks can
nevertheless be highly damaging. As a result, the most ad-
vanced login services in practice use proprietary mechanisms
in an attempt to detect malicious logins using more than just
the correctness of the submitted password, e.g., via user risk
profiles [18, 19, 43].

Improving such mechanisms requires understanding at-
tacker behavior as observed by login services—a delicate task
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given the sensitive nature of login data, especially passwords.
As such, no in-depth measurement studies of attack behavior
as seen from login services have been conducted.

Recently, in our prior work [7], we designed a new login
service instrumentation tool called Gossamer. It securely
records information about login requests, including certain
carefully chosen statistics about the passwords used in the
requests. Gossamer was deployed for seven months at one
university (U1) and three months at another (U2). We ana-
lyzed various aspects of user login behavior, but were only
able to identify three obvious, high-volume attacks. How to
find and characterize more attacks was left as a tantalizing
open question.

In this work, we make progress on answering this open
question. To do so, we obtained approval—from our university
IRBs and IT security teams—to perform a fresh analysis of
the datasets generated by the previous study. These datasets
include a rich amount of information on over 34 million login
requests, Duo two-factor authentication (2FA) logs (just for
U2), and more than 2,000 compromise reports.

Even with the measurements provided by Gossamer, dis-
covering attacks represents a tricky bootstrapping problem.
The compromise logs do not implicate specific login requests
and, more broadly, there is no ground truth anywhere in the
dataset for attacks. This makes the supervised machine learn-
ing approaches used in prior work [18,19] inapplicable to our
setting. At the same time, the scale of the problem renders
manual analysis prohibitive, and so prior work only used a
simple, known method for detecting attacks: Flag IP addresses
that individually flooded the login service with requests. This
of course misses many attacks.

We develop a new analysis pipeline that we call Araña.
Crucially, it focuses not on individual requests but sets of
login requests emanating from the same IP within a day. This
ensures sufficient signal about client behavior for patterns to
emerge. We then built an application-specific filtering, cluster-
ing, and manual analysis approach. We filter out likely-benign
login request sets using custom heuristics, such as filtering
out IP addresses exhibiting high login success rates. We then



use an unsupervised learning approach, specifically agglomer-
ative clustering [33], with a custom distance function tailored
to login sets. This helps us identify clusters of login sets that
can be manually analyzed with little effort to discover attack
campaigns—sets of login requests likely to be submitted by
the same attacker.

Araña is effective at finding these attack campaigns, in-
cluding coordinated attacks involving multiple IP addresses
and those spread out over long stretches of time. We use it to
discover and characterize a diverse set of 29 attack clusters.
Many are high volume credential stuffing attacks that submit
on average one password per targeted username and exhibit
a notable fraction of username-password pairs appearing in
breaches. In addition to the more simplistic stuffing attacks
that quickly flood requests from a handful of IP addresses,
Araña allowed for discovering widely distributed attacks that
may originate from hundreds of different IP addresses. Some
of these attacks try to be “low and slow”, submitting a low
number of requests per day at a slow rate. This confirms that
credential stuffing attackers attempt to evade countermeasures
that focus on individual high volume IPs. These credential
stuffing attacks are unfortunately effective: We uncover hun-
dreds of potential successful logins by attackers for usernames
not flagged already in compromise reports prepared by secu-
rity engineers.

We are also able to discover lower volume, targeted attacks
by focusing on Araña-identified clusters that exhibit a large
number of requests to individual usernames. For example, we
identified an attack campaign made up of two clusters that
targeted 127 users with on average 25 guessed passwords per
user. These attacks included successful logins, suggesting this
targeted strategy can also work for attackers.

We discuss many other attack campaigns in the body. Over-
all, our analyses highlight a number of important takeaways
for authentication system designers. First, they suggest that,
perhaps unsurprisingly, credential stuffing attacks remain a
primary vector for account compromise. This, plus the fact
that most compromised users in our study also had passwords
in known breaches, underscores the urgent need for broader
use of breach alerting APIs (e.g., [22, 27, 43, 45]).

Second, we saw a large number of attacks on Microsoft’s
basic authentication endpoint at U2. It is the least protected
of all of U2’s authentication services, as it does not support
rate limiting or Duo 2FA. It is also easy for attackers to target
any organization using basic authentication by just changing
the destination URL. We observed that attackers regularly
target such weak points, underlining a challenge for large
organizations with heterogenous authentication infrastructure.

Third, mechanisms that look for a large number of submis-
sions per unit time from an IP or to a username are ineffective
against many attacks already being deployed in practice. A
better approach would be to work towards operationalizing
mechanisms like Araña to detect in (near) real time distributed
and sneaky attacks. However, future work will be needed to

explore how to make such mechanisms robust against evasion
by future adversaries.
Summary. Our contributions include the following:
• We perform the first in-depth analysis of a dataset includ-

ing over 34 million login events generated by a recent
system called Gossamer, in order to discover and charac-
terize remote password guessing attacks.

• We design an analysis framework, called Araña, that shows
how to filter and cluster Gossamer logs to enable easy
manual analysis and identify attack campaigns.

• We use Araña to discover and characterize 29 attack clus-
ters against two major universities that compromised hun-
dreds of user accounts in total.

• We identify key characteristics and patterns of attacks re-
ceived by authentication systems at these universities, and
we discuss how authentication systems should evolve to
counter such threats.

Our work has already had some practical impact in terms
of discovering new attacks. We have worked with security
engineers from the two universities to perform responsible
disclosure of potentially compromised usernames. We believe
that Araña will be useful in developing more robust attack
detection methods, and we release it as a public, open source
project [1].

2 Background and Related Work
Passwords remain the most widely used mechanism for user
authentication, despite efforts to move past them [8]. We focus
our discussion on the literature most closely related to our
topic: characterizing password guessing attacks as seen by
login services.

Measurement studies on user passwords. User behavior
with respect to password choice has been extensively re-
searched. Many studies simulate login services (e.g., via Me-
chanical Turk) to perform user studies [24,26]. Others look at
password breach data to characterize aspects of user password
selection [14, 47]. A handful of studies have measured user
passwords in real deployments [8, 12, 17, 30].

Most recently, the Gossamer system [7] was used to mea-
sure not only legitimate user password strength, but also vari-
ous user password submission behaviors as observed by the
single-sign on (SSO) login services at two large universities.
This paper uses the same measurement datasets as reported
in [7], but focuses on characterizing malicious login behavior.

Password guessing attacks. The literature discussed so far
concerned itself with legitimate user behavior, trying in part
to assess whether users are selecting passwords that resist
various types of guessing attacks. A traditional focus has
been on offline password cracking attacks, which occur when
an attacker attempts to crack password hashes found in ex-
posed password hash databases using tools like Hashcat [40]
and John the Ripper [35]. Researchers have also developed



natural language processing techniques to improve guess gen-
eration [20, 25, 28, 32, 34, 47].

Breached username-password pairs—either obtained via
offline cracking, gathered via phishing or malware, or stolen
from another web services storing plaintext password—can
be used in credential stuffing attacks, where an attacker tries
to log into a system using breached username-password
pairs. Users frequently reuse passwords across multiple ser-
vices [14, 36, 46], making credential stuffing one of the most
prevalent forms of account compromise attacks [43, 48]. In
an effort to reduce credential stuffing attacks, breach alert-
ing services such as HaveIBeenPwned [22], Google Pass-
word Checkup [44], and Cloudflare’s exposed credential
checks [37, 45] provide APIs that check whether a user’s
passwords have been compromised.

Credential stuffing is one kind of online guessing attack—
an attack that remotely attempts to log into a service with
guessed credentials. Other examples of guessing attacks in-
clude password spraying attacks that submit a few very pop-
ular passwords against a large number of user accounts and
credential tweaking attacks [36] that submit slight variants of
breached passwords.

Detecting malicious logins. Resisting online password
guessing attacks requires determining which login attempts
are malicious. As Bonneau et al. [9] discuss, login services
increasingly should treat login as more of a classification
problem, taking into account more than just the correctness
of a submitted password. But only a handful of prior works
have focused on how to do so.

Freeman et al. [18] were the first to report on a statisti-
cal framework using the client IP address and user agent to
differentiate between valid and invalid login attempts; this
study used real-world LinkedIn login data, but did not include
password-based features. They also do not report on observed
attack campaigns. Schechter et al. [39] build a malicious login
detection system that also utilizes password-based features, in-
cluding differentiating password typos from other failures and
using privacy-preserving data structures such as a binomial
ladder filter for detecting frequently used passwords. Their
study used simulated data to argue the system’s efficacy at
detecting malicious logins. Finally, Thomas et al. [43] studied
underground forums and tools used to steal credentials—their
only measurements using logins are used to report on the
lack of evidence of targeted guessing attacks that try multiple
queries against accounts.

The Gossamer paper [7] reports on three attack campaigns
that are easily detected using known techniques (i.e., a huge
number of requests from an IP in a relatively short amount of
time). Such techniques will only catch obvious attacks and are
blind to “low and slow” attacks that purposefully use a small
number of guesses per target account (low) and per unit time
(slow), or distributed attacks that perform guesses from many
different IP addresses. While missing these attacks does not
appear to affect the results on benign user behavior reported

in [7], understanding attacker behavior requires finding and
investigating these attacks.

In summary, no prior work has characterized the behavior
of password guessing attacks as seen from login services.

Two-factor authentication. Although effective at prevent-
ing account compromise, two-factor authentication (2FA) has
yet to achieve widespread adoption [13, 15], and user friction
is still very high [4, 16]. As we show, many older accounts
at universities are not enrolled in 2FA; and more importantly,
even when 2FA is used, recent attacks have shown that attack-
ers can spoof push-based 2FA and hide spoofed pushes by
sending them soon after the victim has logged in [23]. Re-
gardless of whether 2FA is bypassed in an attack, we would
like to know when an attacker successfully guesses a user’s
password so that IT security personnel and/or the user can
take preventative steps such as changing the password for the
indicated account and for any other account that uses the same
(or a similar) password.

Unsupervised techniques for attack detection. In this
work, we therefore develop a new approach for detecting
and characterizing password guessing attack campaigns using
Gossamer logs. As we explain in Section 4.2, we did not have
success using supervised machine learning approaches and
so instead focus on unsupervised techniques, which have a
long history of use in attack detection. For example, they are
frequently used in intrusion detection systems (c.f., [10]) and
for various kinds of anomaly detection (c.f., [5]). To the best
of our knowledge, no prior work has developed mechanisms
to detect whether password-based logins are malicious.

3 Gossamer Logs
In this work, we use a dataset of login requests compiled
from two universities (U1 and U2) via our prior work Gos-
samer [7]. For completeness, we provide some details about
Gossamer and how the resulting datasets were collected. We
refer readers to [7] for more details.

Gossamer logs. Our prior work introduced a new, privacy-
preserving instrumentation approach for use with login sys-
tems [7]. The resulting system, Gossamer, provides a secure
way to collect measurement statistics about login requests,
including a subset of HTTP headers, source IP address, target
username, success or failure of a login request, and carefully
chosen measurements on the submitted password. Gossamer
uses two levels of storage to provide extra security for par-
ticularly sensitive information. The submitted passwords are
encrypted and stored in an in-memory database. They are
cryptographically erased every 24 hours, providing a good
trade-off between the ability to calculate password statistics
over one-day windows (e.g., the edit distance between two
submitted passwords) and the ability to protect the secrecy of
passwords even in the low-likelihood case of a full compro-
mise of the instrumentation service. The system also deter-
ministically encrypts the usernames to preserve their privacy



and blind researchers from them.
Gossamer was designed in close collaboration with the

information technology (IT) security teams at two large uni-
versities. We received approval from the IRB and IT secu-
rity teams to deploy Gossamer for 7 months at U1 and for
3 months at U2. In total, we collected more than 34 million
login requests from 347 K valid usernames. In [7], Bohuk et
al. detailed the design of Gossamer and reported on an analy-
sis of this dataset in terms of characterizing legitimate user
behavior. At the time we were only able to detect a few ob-
vious attacks that stood out due to their high rate of requests,
and left finding more attacks as an open question. This paper
is a first step at addressing this open question.

Duo logs. Both universities use Duo 2FA for most login
requests; users are prompted to provide this second factor
after they successfully submit the password (and if they do
not have a valid “Duo cookie” stored in their browser). The
datasets we received include sanitized Duo logs for U2 only.

Unfortunately, there is no identifier in the Duo logs that
can be used to uniquely associate a log entry with a particular
login request. We therefore had to use a timestamp-based
heuristic similar to that used previously in [7], to find the
Duo prompt that likely corresponds to a successful password
submission. Using the timestamp and encrypted username
associated with the Duo request, we correlate the Duo re-
quests with login requests within a 2-minute time window.
Out of these requests, 96.7% were successfully completed,
3.2% were denied, and only 46 (< 0.001%) were marked as
fraud by the user.

Compromised user logs. At both universities, the security
analysts have processes for identifying and reporting com-
promised accounts. These processes include user reporting
mechanisms and third-party breach notification services (e.g.,
U1 uses a Microsoft product to detect accounts that are send-
ing spam). We were given access to compromised account
logs for the period of our previous measurement study, con-
taining the encrypted username, the timestamp reported, the
estimated timestamp of the attack (only available at U1), and
the reason for compromise. Importantly, compromise reports
at U1 were logged from multiple authentication services, but
the Gossamer deployment only instrumented the main one
(U1 web login); so the number of compromised accounts will
be an upper bound for those that were actually compromised
through U1 web login. Also, the IT departments consider an
account compromised if the attacker made a successful login
request, even if they did not bypass two-factor authentication.
Indeed, many older accounts may not be enrolled in 2FA.
We adopt the same terminology and refer to account com-
promises as a successful login from an attacker independent
of whether 2FA was also bypassed. In most cases, analysts
respond to compromise reports by scrambling the passwords
of compromised accounts to prevent further damage.

Our prior work using Gossamer logs contains some basic

U1 U2
(7 mo.) (3 mo.)

Total reports 1,818 611
Unique usernames

- reported 1,468 489
- more than once for same reason 323 122
- more than once for diff. reasons 32 0

% of unique usernames compromised / month 0.59% 0.28%

# IPs tried to log in
- with a compromised username 4,633 6,409
- with multiple compromised usernames 716 156

Max. comp. usernames associated with an IP 382 24
Avg. usernames associated with a single IP 1.98 1.05

Figure 1: Summary statistics on the compromised accounts
reported at each university during the measurement period.

details about the compromise logs; we elaborate more here
since it will be relevant to interpreting some results later in
the paper. We considered compromised reports for the mea-
surement time period at each university, plus one additional
week (which allowed time for analysts to enter compromise
reports for attacks that may have occurred during the mea-
surement period). We give summary statistics on this com-
promise database in Figure 1. On average, 190 usernames
(0.59% of all valid usernames) are reported every month at
U1, and 163 usernames (0.28% of all valid usernames) at U2.
At U1, 323 usernames were reported multiple times, 32 of
which were reported for two different reasons. Users who are
reported twice are compromised on average 26 days apart.

We discuss a breakdown of the reasons for compromise in
more detail in Appendix A. In summary, we found that the
majority of accounts were reported as compromised through
large-scale automated attacks. At U1, the estimated time of
attack is also reported for each compromised user, and so we
investigated the time it takes for an attack to be recorded in the
compromise database. We found that 17% of compromised
accounts are reported within the first hour after the attack, and
90% of compromised accounts are reported within 61 hours.
However, the “timestamp of attack” field is an approximation
of the time of attack based on the analyst’s best guess. There
is no such field recorded at U2.

We also approximate the time of attack by taking the last
successful login for a given username before that username
is entered into the account compromise database. In doing
so, we find that only 4% of compromised accounts at U1 are
reported within the first hour after their last successful login,
and 90% are reported within 46 days. This large difference
shows that either the analyst’s estimated time of attack was
not very accurate, or the last successful login before a com-
promise report is not a good approximation for the time of an
attack—an important challenge in using compromised logs
for detecting attacks, as we discuss in the next section.

Ethical considerations. Throughout our analysis, we
worked closely with the IT security offices at both univer-



sities similar to how we did for Gossamer [7]. We obtained
approval for both this study and Gossamer from the IT secu-
rity offices and university administrators. Both studies were
reviewed by our university IRBs and received IRB exemp-
tions, as the Gossamer logs do not include usernames or other
data considered to be PII by IRB. We could not request con-
sent from individual users, as we do not know the usernames
of users. To further protect the privacy of users, we used simi-
lar security measures as we used for Gossamer study for data
analysis: We used a machine only accessible to a subset of re-
searchers logging in from a specific computer in the university
network and requiring a strong password and 2FA for access.
We also notified the IT administrations at both universities of
all previously unreported compromised accounts we found
using the encrypted usernames.

4 Towards Detecting Attack Campaigns

We now turn to the challenge of discovering remote pass-
word guessing attacks using Gossamer logs. Prior work has
used supervised machine learning approaches to flag likely
malicious login requests [18,39]. However, they relied on sim-
ulated logins, for which they marked each request as benign
or malicious.

For login requests observed in practice, flagging each as
either benign or malicious represents a challenging bootstrap-
ping problem. Not only is the number of login requests re-
ceived too massive for a reasonable set of security engineers
to manually analyze, but also there is no clear set of criteria to
flag a login request as malicious. Moreover, even if an account
has been flagged as compromised by a security engineer or
reported as compromised by a user, there is no obvious way
to correlate this with individual login attempts because, as
discussed in Section 3, compromise databases do not include
information on the specific login sessions.

Individual login requests often do not contain enough in-
formation for even a human analyst to determine if they are
malicious. We instead aim to identify attack campaigns—
that is, sets of login requests submitted by the same attacker.
Attackers often use automated scripts to send guesses for user-
names and passwords from one or more IP addresses over a
period of hours, days, or weeks. To identify attack campaigns
we will cluster login requests into groups that are likely to be
part of the same attack campaign, as we explain below.

4.1 Login Sets and Features

The main Gossamer logs consist of a sequence of login re-
quests. Each request entry includes (1) a timestamp; (2) the
(deterministically encrypted) username; (3) the client IP ad-
dress; (4) the client user agent string; (5) whether the submit-
ted password is weak (has a bucketized zxcvbn score of zero,
as explained in prior work [7]); (5) the edit distances between
the submitted password and previous passwords submitted by

Group Features Acronym

Client IP address © IP
ISP © ISP
User agent string © UA

Volume Total # requests submitted NR
Total # unique usernames submitted NU
Avg. # unique password per user AUP

Login timing Date© DATE
Mean interarrival time MIT
Std. interarrival time SIT

Success rates Fraction of submitted requests
that failed FF
w/ invalid usernames FIU

Password
guessability

Fraction of submitted requests
w/ a weak pw, zxcvbn(w) = 0 FWP
w/ pw in breach FPIB
w/ username in breach FUIB
w/ username-password pair in breach FCIB
w/ a tweaked pw in breach FTP

Figure 2: Features for L sets that we use for analysis. Nominal
features are marked with ©; all others are numerical.

the same IP or username; (6) whether the request succeeded
or failed due to an invalid username or the wrong password;
(7) whether the submitted password is a tweaked variant of a
breached password known to Gossamer; or (8) whether the
submitted password, username, or username-password pair
appear in a breach dataset known to Gossamer.

We group login requests based on the client IP address and
date it was received. We call this grouping a login set, which
we denote by L. The set of all L sets within a Gossamer log
we denote as L= {L1, . . . ,Ln}, where n is the number of L
sets in the log. Each Li contains all login requests received in
a day from an IP address. Note that L defines a partition over
all login attempts.

We define an attack campaign as a set of one or more L sets.
This assumes that all logins in a L set are either malicious or
all are benign. Although it is possible that legitimate users
might share the same VPN or proxy IP address as an attacker,
we expect such scenarios to be rare (and did not encounter
them in our analyses). We leave to future work how to differ-
entiate benign and attack login attempts from a single IP.

To determine if an L set is potentially malicious or benign,
we utilize a rich set of features describing a L set based
on Gossamer logs. The full set of features, consisting of
four nominal and 12 numerical features, are summarized in
Figure 2. At a high level, these 16 features can be roughly
divided into following groups:
• Client features include the source IP address and user agent

(UA) within the request. We also look up the ISP associ-
ated with each IP address (as reported via the MaxMind
Geolocation API [29]). These are useful for determining
whether requests are from the same client device.

• Volumetric features include the total number of requests in
a L set (NR), the number of unique usernames targeted in



the set (NU), and the average number of unique passwords
submitted to a particular username (AUP) for a L set.

• Login timing features include the date of the L set, as
well as the mean (MIT) and standard deviation (SIT) of the
interarrival time between requests within the set.

• Success rate features measure the fraction of invalid
usernames submitted (FIU) and the fraction of invalid
username-password pairs submitted (FF).

• Password guessability features include the fraction of sub-
mitted passwords in an L set that have a zxcvbn score
of zero (FWP), indicating a weak password, as well as
the fraction of submitted passwords in a known breach
(FPIB), usernames in a known breach (FUIB), username-
password pairs in a known breach (FCIB), and the fraction
of passwords submitted that are a close variant of a breach
password—called a “tweaked password” (FTP).

Together, these features serve as the basis for our attack cam-
paign detection mechanisms.

4.2 Initial Attempts Using Compromise Reports

An obvious potential approach for detecting attack campaigns
is to utilize compromised account reports to label L sets as
potentially malicious. However, as discussed in Section 3,
those reports do not record information sufficient to identify
exactly which L set contains the compromising login attempt.
We note that this ambiguity is not just a limitation at the
universities we investigated; anytime a login system allows
compromise reports from users or third party services, they
will not be directly associated with logins. Nevertheless, we
experimented with various ways of using compromise reports
as ground truth for supervised approaches. We briefly report
on two here.

Classifier based approaches. We identified 23,016 L sets
where the corresponding IP address contacted at least one
eventually-compromised user account (at any point during
the data collection period). Let C denote the set of all those
L sets. Of course, not all of these are necessarily malicious;
but we mark them all as malicious since it is unclear how to
label them more precisely.

We first tried to develop a classifier that can identify L sets
likely to have a compromised user based on the features we
identified in Figure 2. We added to C an equal number of L
sets not associated with a compromised user account, labeled
them as benign, and performed an 80/20 training and testing
split on the combined set. We then trained linear regression,
decision tree, random forest, logistic regression, and SVM
models to predict maliciousness. All the models exhibited
very bad precision; the linear regression classifier performed
best, with a recall 0.79 but a precision of just 0.13, making it
essentially useless. The primary reason is the crude labeling
of training data as malicious or benign, presumably including
many false positives.

Directed anomaly scoring. We also explored using Ho et
al.’s directed anomaly scoring (DAS) [21], tuned via com-
promise reports, to rank L sets in order of “suspiciousness.”
These experiments were promising at detecting new types of
attacks, but failed to help us detect attacks spanning multiple
source IP addresses, making it less useful for driving an analy-
sis and characterization of attack campaigns. See Appendix B
for details.

5 Campaign Discovery Pipeline

We developed an analysis pipeline, called Araña, that com-
bines heuristic-based filtering, unsupervised machine learning
to cluster behavior, and a manual analysis review step as illus-
trated in Figure 3. We refer to this as an FCA (filter, cluster,
analyze) approach. While the general notion of an FCA-type
analysis pipeline is not novel, our application-specific heuris-
tics, similarity measures, and manual review processes are
new. Our goal here is not completeness; identifying all mali-
cious logins is impossible. Rather, we build a high precision
(low false positive) pipeline that helps us discover a wide
range of attack campaigns with minimal manual effort.

We first work to develop heuristics for filtering out likely
benign L sets. First, we remove L sets that do not exhibit a
high failure rate (HFR), and then we remove some anoma-
lous known-benign behaviors (such as misconfigured clients
repeatedly making failed requests).

We then use the wide range of features described in the pre-
vious section to help us define an application-specific similar-
ity measure logsetsim(Li,L j) that outputs a similarity score
for any L set pair Li,L j. This helps us capture the likelihood
that two L sets are part of the same attack campaign. Given
logsetsim, we can create a pairwise distance matrix and ap-
ply unsupervised agglomerative clustering [33] to discover
clusters of L sets that could each be part of a single attack
campaign. The candidates can then be manually inspected by
analysts; we report on our findings in Section 6.

5.1 Filtering Likely Benign Requests

Most logins are benign, and benign requests are a source of
obfuscating noise in unsupervised algorithms. We therefore
first develop a set of heuristics for filtering out likely benign
behavior or, equivalently, identifying potentially malicious L
sets. Our heuristics are based on three assumptions regarding
attacker behavior reported in prior work [18, 19, 39]: (a) mali-
cious logins are only a small fraction of the total login traffic;
(b) a large fraction of the malicious login attempts fail; and
(c) attackers use automated scripts or tools to minimize the
time and effort required to send a large number of requests
from IP pools (purchased or free proxies, VPNs), hiding their
own IP. Based on these assumptions, we first use heuristics
to filter out obviously benign behaviors (thereby identifying
potentially malicious behavior).
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Figure 3: Araña’s filter, cluster, analyze pipeline for discovering attack campaigns.

Filtering based on failure rate. We start by focusing at-
tention on L sets that exhibit a high failure rate (HFR). We
choose thresholds for two features: the total number of lo-
gin requests NR within L and the fraction FF of these login
requests that are failures. We say a L set meets the HFR con-
dition if NR > l and FF > f for two thresholds l and f that
we set below. Intuitively, benign logins should succeed most
of the time, and failure rates are not meaningful for one or
two logins.

To choose these thresholds l and f , we first plot the dis-
tributions of NR and FF over the subset of L that includes
all L sets that have at least two login requests (NR > 1) and
one failed login request (FF > 0). We show their distributions
in Figure 4. If we choose extreme thresholds, the HFR heuris-
tic may miss potentially malicious L sets; but on the other
hand, choosing a relaxed threshold may flag benign L sets as
potentially malicious, increasing the noise in our final attack
campaign detection procedure.

Our goal was to build a semi-automated tool for discov-
ering high-volume attack campaigns and help IT analysts
discover them with minimal manual effort. Since security an-
alysts are concerned with finding the most damaging attacks
(that is, attacks compromising the highest number of users)
with high precision, we chose aggressive thresholds for con-
sidering malicious login sets. Thus, at U1, we used the 90th

percentile as the threshold, making lU1 = 9 and fU1 = 0.77.
However, for U2, the 90th percentile yielded fU2 = 1.0, the
highest possible value; this is because U2 had more high vol-
ume unsuccessful attacks which inflated the 90th percentile.
Therefore, we decreased the threshold to the 80th percentile
for U2, setting lU2 = 6 and fU2 = 0.8. Although these ag-
gressive thresholds may miss certain attacks, lowering them
runs the risk of degrading the quality (precision) of clusters
by mixing L sets with starkly different behavior in the same
cluster. Lower thresholds may also cause benign clusters to be
mistakenly flagged as malicious, which would quickly cause
analysts to lose trust in the tool. We investigate the effects of
lowering thresholds by running additional experiments with
more relaxed thresholds as explained in Appendix C .

Using the HFR heuristic, we filtered out a large number
of outright benign L sets for both universities, as shown in
Figure 5. This allowed us to focus on L sets exhibiting more
anomalous behavior and potentially malicious behavior.

Filtering out benign behavior. After removing L sets that
do not match the HFR heuristic, we further filter out other
likely benign behaviors.

First, we filter out L sets with IPs that have successfully
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Figure 4: Percentile of NR (left) and FF (right) for both uni-
versities (shown up to the 99th percentile for viewing). By
choosing the 90th percentile at U1 and 80th at U2, we set
lU1 = 10, lU2 = 7 and fU1 = 0.77, fU2 = 0.8 at the universi-
ties respectively.

completed Duo requests for all target users at least once on
the same day because we assume that a remote attacker con-
ducting large scale password guessing attacks does not have
physical access to a victim’s Duo authentication device. As
we only have the Duo logs at U2, we applied this filtering to
the U2 data. We found 563 L sets matching the HFR heuristic,
but all of them contacted only one user and had successfully
completed at least one Duo request for that user. Around 90%
of these L sets had submitted ≤ 5 unique passwords, and the
failures were due to incorrect password entry—probably just
a typo.

Second, we filter out any L sets having an IP within the uni-
versity networks or belonging to school proxy/VPN servers.
Access to these IPs is restricted, and members of the two
universities can only use them after successful authentication
and completing the Duo request.

Lastly, we filter out L sets that seem to emanate from a
malfunctioning or misconfigured (benign) client. Specifically,
we noticed many IPs submitting a large number of failed
login requests with the same incorrect password. Upon further
inspection, we observe that these were automated requests
belonging to email clients, Outlook Exchange Web Services,
and calendar auto-sync agents that were configured with an
invalid password. Since any rational attacker would not try the
same invalid username-password pair repeatedly, we removed
all L sets reusing the same incorrect username-password pair
for more than 90% of their login requests.

After filtering benign L sets based on the HFR condition,
failure rate, successful Duo two-factor submission, school IP
addresses, and number of unique username-password pairs,
1,717 potentially malicious L sets remained at U1, and 6,408
L sets remained at U2. We show a breakdown of these filtering
steps in Figure 5.



Filter # L sets
U1 U2

L with NR > 1 & FF > 0 225,468 227,893

L with NR > l & FF > f (HFR) 2,074 11,929

L with HFR and
w/ successful Duo request on DATE n/a 563
IP belongs to school IP pool pro-

tected by Duo
60 825

>90% password reuse 419 4,133

Remaining L sets 1,717 6,408

Figure 5: Number of L sets matching each of the filtering
criteria at either university. The last row shows the remaining
number of sets after all filtering steps. Threshold values l and
f for U1 and U2 are indicated in Figure 4.

5.2 Clustering Potentially Malicious L sets

After the filtering step, we cluster the remaining L sets us-
ing the features described in Figure 2. The key question for
clustering is how to define a distance function that gauges
similarity between L sets, such that two L sets have a small
distance if they belong to the same attack campaign.

Similarity modeling. We design a distance function that
can measure the likeliness that two given L sets belong to
the same campaign. For the numerical features presented
in Figure 2, we use the normalized difference between two val-
ues x and y, defined as ND(x,y) = |x− y|/(x+ y). We chose
this particular distance function since ND(x,y) ≈ 0 when
x≈ y, and it is a high value when x and y have a high differ-
ence. That said, we believe other numerical distance measures
would work well too.

For the nominal features IP, ISP, UA, and DATE, we can-
not do a straightforward equality checking to measure their
similarity, since these nominal features are sparse. Therefore,
similar to Freeman et. al. [18], we use a hierarchical backoff
distance (HBD) approach. This technique defines a number of
levels: If the two feature values do not match at a lower-level,
we “backoff” and use values of the feature from a higher level,
while incurring a dissimilarity cost. We set this dissimilarity
to e−`− e−(`+1) for backing off from the lower hierarchical
level ` to a higher hierarchical level `+1, and we accumulate
the dissimilarity costs from each level with each backoff.

For the IP feature, we use the hierarchical structure of In-
ternet routing to define four levels. At level `= 0 we check
for strict IP equality; at level `= 1 we check for /24 subnet
equality; at level `= 2 we check for ISP equality (as reported
in the ISP feature); and at level `= 3 everything is considered
equal. Thus the max level for this feature is `IP

max = 3. For
the UA feature, we use five levels. At level ` = 0 we check
if the UA strings are identical. For subsequent levels we ex-
tract from the UA string to obtain the application (desktop,
mobile, unknown), browser (chrome, edge, other), and OS
(Windows, iOS, Mac OS, Linux, other). Equality checks for
each of these three define levels `= 1 through `= 3. The final

logsetsim(L1,L2):
s← 0
for γ ∈ Γ:

x← γ(L1); y← γ(L2)

if type(γ) is numerical:
s← s+wγ ·ND(x,y)

else
s← s+wγ ·HBD(γ,x,y)

return s

HBD(γ,x,y) :
s← 0
`← 0
while ` < `

γ
max or γ`(x) 6= γ`(y) do

s← s+ e−`− e−(`+1)

`← `+1
return s

Figure 6: Our distance function (logsetsim) to measure the
similarity between two L sets (Left) and the hierarchical back-
off distance (HBD) calculation for nominal features (Right).

level `= 4 indicates that the user agents do not have anything
in common.

For the final nominal feature, DATE, we find the number of
days d between two L sets and compute 1− e−d . Thus two
L sets with the same DATE have a distance of 0; with 1 day
apart, the distance is 0.63, and so on. Note that this backoff
can be calculated (less efficiently) via the same approach as
for the other nominal features, by setting `DATE

max equal to the
maximum number of days.

Pseudocode for the complete logsetsim and the hierarchi-
cal backoff distance (HBD) is shown in Figure 6. The set
Γ includes all feature we used (shown on Figure 2), and we
abuse notation slightly by letting γ ∈ Γ define a function that
maps a L set to the relevant feature value. For the nominal
features, we further let γ` denote the function that extracts the
`th level from the feature value. We also define a predicate
type over features that indicates whether the feature is nom-
inal or numerical. We weight the distance values computed
for each feature based on a hyper-parameter called feature
weight wγ ∈ [0,1].

Clustering. We used an agglomerative clustering tech-
nique [33] that can work with a non-metric distance function.
Agglomerative clustering starts with each data point as a sin-
gle cluster and only merges two clusters if their distance is
smaller than a given threshold. Adjusting the threshold can
help avoid clustering together L sets showing different login
behavior. To set the distance threshold appropriately, we rely
on a knee locator method [38] frequently used in clustering
algorithms to find the correct threshold for distances. We set
the linkage type to “average” and set the distance threshold
for U1 and U2 to 0.44 and 0.51 respectively after applying
the knee locator method at each university separately. The
silhouette score [6] for agglomerative clustering was 0.19 for
U1 and 0.17 for U2, which beat other approaches we tried
(see Appendix C).

Implementation details. We implemented our similarity
model logsetsim in 240 lines of code written in Python 3.6.
To extract the four hierarchical levels for the IP feature, we
used the MaxMind GeoIP database [29]; and for the UA fea-
ture, we used the ua-parser package [3]. Given an L of size n,
we computed an n×n distance matrix to be used for various



clustering algorithms. Computing the distance matrix takes
O(n2) time; however, it can be easily parallelized. We used
40 threads and were able to compute the distance matrix for
n = 1,717 within 9 minutes at U1 and for n = 6,408 within
28 minutes at U2 (using an Intel Xeon Linux machine with
56 cores and 125 GB of memory). For the clustering step, we
used the sklearn [11] library, and clustering completed in less
than a minute for both universities.

5.3 Attack Campaigns Discovered

Based on our designed similarity modeling, the agglomera-
tive clustering approach described in Section 5.2 produced
366 clusters from 1,717 L sets at U1 and 640 clusters from
6,408 L sets at U2. For each cluster we recompute the feature
values mentioned in Figure 2, after taking the union of L sets.
Next, we sample a few of the top most interesting clusters for
manually analyzing them.

To identify the large volumetric attack campaigns, we sam-
pled clusters containing a high number of requests or high
number of unique usernames. At U1, we found eight such
clusters with NR≥ 1,000∨NU≥ 1,000. At U2, we sampled
12 clusters with NR≥ 5,000∨NU≥ 5,000. We chose these
thresholds by manually observing that the clusters found after
these thresholds do not clearly show malicious behavior. As
our goal is to characterize attacks, we focus on precise iden-
tification of attack campaigns, foregoing high recall. Thus
we sorted possible attacks by a few different metrics. For
example, we sorted by the number of unique usernames and
found one additional attack at U1; all the top clusters at U2
had already been found using the volumetric thresholds.

All of the above sample clusters did not exhibit any tar-
geted behavior—sending roughly one unique password to
each user on average. Therefore, to capture attack campaigns
exhibiting targeted behavior, we consider clusters sending a
high number of unique passwords submitted per username
on average. Although at U1 we did not find any such clusters
appearing to be attacks, we discovered eight clusters from
U2 that submitted an average of at least 25 unique passwords
per user. Altogether, we sampled nine attack clusters at U1
and 20 attack clusters at U2. Attack clusters at U1 sent on
average 8,432 requests to 1,294 unique usernames, with a
total number of 41 successful logins among these 9 clusters.
At U2, we saw an average of 14,358 requests submitted per
cluster to 7,614 unique usernames, with a total number of
1,116 successful logins among all 20 clusters. We describe
these clusters further in Section 6.1.

6 Analysis of Attack Campaigns

As seen in the last section, Araña’s FCA pipeline helped us
identify 29 clusters that are probable attack campaigns. We
first describe a subset of these campaigns in more detail,
to better understand attack behavior as seen in practice. In

Section 6.2 we generalize from these case studies to identify
a variety of observed higher-level attacker behaviors.

6.1 Example Attack Campaigns

First we describe some attack clusters representative of dif-
ferent types of attack behavior we observed and show how
we group some of them into campaigns involving more than
one cluster. We show the timeline of the attack campaigns
discussed in Figure 7, and the full list of attack clusters we
found is shown in Figure 8.

Previously reported attacks. Three attacks were manually
identified and discussed in prior work [7]. All three were also
detected via our FCA pipeline: Attack #1 from [7] corresponds
to Clusters 1 & 6, Attack #2 corresponds to Cluster 2, and
Attack #3 corresponds to Cluster 10 (also shown in Figure 7).

Attack #1 from [7] was a credential stuffing attack dis-
tributed over four IPs that were active on different days. Each
of the IPs submitted lots of requests very quickly, with a peak
rate of over 100 requests per second. As such, these were eas-
ily identified manually as related attacks by the similar attack
behaviors and time period when they were active. This still
required significant manual analysis of Gossamer logs; how-
ever, our FCA approach automates this analysis. Two clusters
identified by the FCA method capture the bulk of the L sets
associated with these attacks. One L set containing 16,035 re-
quests that were previously manually identified was omitted;
this L set had a lower failure rate (0.67) than our heuristic
filtering thresholds (which was 0.77 at U1).

Attack #2 from [7] was a high volume credential stuffing
attack using SentryMBA [42] to send requests from a single
source IP address. Since the attack consisted of only one IP
address on a single date, the cluster consisted of one L set,
ranked second by volume of requests in our FCA approach.

Attack #3 from [7] was observed at U2 and involved 12
distinct IP addresses with an average rate of 188 requests
per second. This attack was easy to detect due to its sheer
volume and rate of requests. Manual inspection revealed that
the attack requests mimicked SMTP and IMAP clients, which
helped in manually clustering them. Again, our FCA pipeline
automated this step, placing all activity from these IP ad-
dresses into a single attack cluster.

Our new FCA approach helps automatically identify these
attack campaigns with little error relative to the manual analy-
sis used in prior work [7]. However, it did split the first attack
into two clusters, and it also missed an IP address from that
attack. Across these three attack campaigns, 17 L sets were
identified by both the manual and FCA approach as being
part of attack campaigns, and one L set was identified by the
manual approach but not the FCA approach. We show the
corresponding confusion matrices in Appendix D. Note that
the FCA approach also found many attack campaigns hard to
manually detect that we describe next.

Future work can look into whether unsupervised clustering
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Figure 7: Number of requests per day for the 1,752 and 6,408 potentially malicious L sets at U1 and U2 respectively as shown
in Figure 5. Attack clusters we found in Section 4 are shown in red boxes. Clusters marked with a * were identified in prior
work [7] as high volume attacks. Note that the x- and y-axes are different for the two universities for better visualization.

approaches can be improved to be more accurate than manual
inspection. For now it is clear that FCA helps find and char-
acterize attack campaigns in an automated fashion that can
later be investigated by an analyst. We now discuss in further
detail the new attacks discovered using our pipeline.

Clusters 5 & 7: Repeated attacks from the same IP. We
saw two credential stuffing attacks at U1 (Clusters 5 & 7) a
month apart (May 22 and June 20) from the same IP address
and user agent (and thus, likely from the same attacker) at-
tempting to login to 4,480 and 1,347 users respectively. The
five user agents used in the June 20 attack were a subset of the
seven used in the May 22 attack, and the two attacks targeted
295 overlapping usernames. Thus we believe that the IP was
under the same attacker’s control for both attacks. This IP was
active on 24 other days, but only submitted between one and
four requests per day to nine distinct usernames over that time
period. We believe the attack exhibited credential stuffing
behavior, as the fractions of breached passwords submitted
were 0.63 and 0.32 respectively, and less than 8% of the pass-
words submitted were weak passwords. Other features such
as the AUP, FTP, and FSP were relatively similar between the
two clusters. All but two usernames were incorrect across the
clusters, so we believe the attack was curated for U1.

Cluster 12: Multi-day attack from a single IP. Although
most of the attacks we saw were finished within a 24 hour
period, some attackers may spread out the attack over multiple
days in an attempt to stealthily avoid detection. We saw this
behavior in Cluster 12 at U2. In this attack, one IP from
Microsoft Corporation ISP sent one request per minute on
15 days in a two month period. In total, the IP sent 13,289
requests to 8,192 unique usernames. There was evidence of
credential stuffing, as 61% of passwords submitted appeared
in breach data known to Gossamer, and fewer than 0.04%

of them were weak passwords. We did not see any evidence
of targeted behavior, as there was an average of only one
unique password submitted per username; however 63% of
the attempted usernames were valid, meaning the attacker
curated their password guessing attack for U2. The IP attacked
the basic authentication protocol that does not have two factor
authentication set up at U2. This IP successfully guessed the
passwords of 501 user accounts over this time period, only
163 of which were detected by the security engineers.

We saw similar multi-day attacks in Clusters 15, 18, 19, and
29, albeit for shorter time periods. Such attacks may easily
avoid simple volumetric detection methods (as they were
missed in the prior work) and thus show the utility of a richer
feature-based clustering approach.

Cluster 14: High volume, distributed, credential stuffing.
We saw several cases exhibiting high volume, distributed,
curated credential stuffing. For example, in Cluster 14 at U2,
843 IPs belonging to 13 ISPs submitted 10,535 requests to
7,771 usernames over the course of 23 hours. Since each IP
submitted only around 12 requests, it avoided detection by the
manual analysis performed in the prior work [7]. This attack
exhibited credential stuffing, with 66% of passwords present
in breach data; and 48% of the submitted request contained
a valid usernames from U2. During this attack, the involved
IPs successfully guessed the passwords of 258 unique user
accounts, 74 of which were confirmed by security engineers
independently. Clusters 3, 4, 8, 9, 11-13, and 15-19 showed
similar signs of high volume, distributed, credential stuffing
with varying levels of curation to the target university.

Cluster 17: Possible credential stuffing with unknown
breach data. A few attacks showed a high fraction of
tweaked passwords (passwords that are a close variant of a
breached password for the targeted user), but a lower fraction
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1§ / U1 5 h 3 3 10,424 18,093 1.21 0.12 0.56 0.41 0.69 0.06 0.94 1.00 1 1
2§ / U1 4 h 1 1 15,209 17,827 1.10 0.04 0.56 0.22 0.42 0.06 0.97 1.00 14 13
3‡ / U1 14 h 555 4 12,659 15,117 1.00 0.01 0.14 0.02 0.58 0.46 0.78 1.00 14 12
4‡ / U1 11 h 77 2 12,318 14,603 1.00 0.01 0.14 0.02 0.58 0.45 0.78 1.00 7 6
5 / U1 41 m 1 1 4,480 4,593 1.03 0.08 0.63 0.21 0.44 0.08 0.97 1.00 1 1
6§ / U1 4 h 3 1 2,101 2,683 1.21 0.07 0.66 0.48 0.69 0.04 0.98 1.00 0 0
7 / U1 9 h 1 1 1,347 1,481 1.00 0.00 0.32 0.10 0.22 0.05 0.99 1.00 2 2
8 / U1 19 h 85 13 894 1,246 1.00 0.01 0.33 0.08 0.92 0.84 0.92 1.00 2 2
9 / U1 37m 30 7 219 241 1.00 0.06 0.92 0.78 0.96 0.10 0.93 1.00 0 0

10§ / U2 11 h 12 1 76,321 169,573 1.01 0.00 0.03 0.00 0.00 0.00 0.00 1.00 0 0
11 / U2 10 m 663 10 27,488 33,304 1.00 0.10 0.79 0.00 0.00 0.00 0.01 1.00 0 0
12 / U2 15d 1 1 8,192 13,289 1.02 0.04 0.61 0.07 0.54 0.02 0.63 0.93 501 6
13 / U2 3 d 1 1 7,939 12,240 1.30 0.05 0.66 0.10 0.75 0.00 0.35 0.99 120 0
14 / U2 23h 843 13 7,771 10,535 1.01 0.08 0.66 0.00 0.71 0.00 0.48 0.97 258 0
15 / U2 5 d 1 1 4,662 9,714 1.07 0.09 0.84 0.00 0.91 0.00 0.40 0.99 32 0
16 / U2 2 d 2 1 4,934 7,323 1.00 0.06 0.58 0.00 0.23 0.00 0.81 0.84 786 0
17 / U2 2d 3 2 2,513 6,290 1.55 0.03 0.40 0.18 0.91 0.70 0.37 0.99 35 0
18 / U2 10 d 1 1 1,902 5,434 1.37 0.04 0.55 0.27 0.82 0.41 0.39 0.99 13 0
19 / U2 5 d 1 1 3,584 5,261 1.04 0.07 0.76 0.80 0.98 0.18 0.42 1.00 6 0
20 / U2 2 d 3 2 1,756 5,199 1.56 0.04 0.50 0.22 0.92 0.72 0.35 0.98 83 0
21 / U2 23 h 1 1 5,076 5,103 1.00 0.06 0.59 0.00 0.26 0.00 0.80 0.85 777 0

22 / U2 13 h 73 43 75 1,878 25.04 0.82 0.88 0.01 0.31 0.29 0.96 1.00 1 0
23 / U2 21 h 52 38 52 1,296 24.92 0.82 0.89 0.01 0.34 0.32 0.88 1.00 1 0
24 / U2 12 h 4 4 4 101 25.25 0.80 0.86 0.00 0.55 0.50 0.51 0.99 1 0
25 / U2 16 h 3 3 3 80 26.67 0.81 0.75 0.01 0.65 0.58 0.30 0.99 1 0
26 / U2 8 m 1 1 1 27 27.00 0.85 0.85 0.00 0.00 0.00 0.00 1.00 0 0
27 / U2 8 m 1 1 1 27 27.00 0.85 0.78 0.04 1.00 0.96 1.00 1.00 0 0
28 / U2 13 m 1 1 1 25 25.00 0.84 0.88 0.00 0.00 0.00 0.00 1.00 0 0
29 / U2 4 d 1 1 3 468 38.75 0.15 0.59 0.00 0.67 0.16 0.33 1.00 0 0

‡ Since the measurement collection ended during these clusters, some of these measurements (such as NR and NU) may be lower bounds.
§ These clusters are part of campaigns that were discussed in previous work [7].
† Duration units are days (d), hours (h), and minutes (m).
∗ The last column represents the accounts that were flagged independently by security engineers at the respective universities.

Figure 8: Attack clusters detected using a set of heuristics and manual review. The first column notes the ID of each cluster as we
refer to them in the paper. The attack IDs we describe in detail (Section 6) are shown in bold font. We discovered a total of 41
and 1,116 unique compromised users at U1 and U2 respectively.

of breached passwords. For example, in Cluster 17, we saw
three IPs submit 6,290 requests to 2,513 unique usernames
over the course of two days. Although 91% of the submitted
usernames in this attack campaign are present in the breach
data used by Gossamer, only 18% of the submitted passwords
appear with those usernames. Of the remaining 82% submit-
ted passwords for those users, we that found 70% are only
small tweaks of the password(s) present in the breach data
with the corresponding username, and 40% of the submitted
passwords exactly match the breach data. This may indicate
that the attacker is using a breach dataset that is unknown
to Gossamer; but because users choose similar passwords
across web services [14], we can still detect these breached
passwords not present in Gossamer’s breach data.

This attack produced successful logins to 35 users, two of
which were independently detected by the security engineers.
Cluster 20 showed similar signs of possible credential stuffing

with unknown breach data, with a high fraction of tweaked
passwords. Neither of these attacks exhibited targeted behav-
ior (having AUPs of 1.55 and 1.56 respectively); therefore,
we do not believe these are credential tweaking attacks [36].

Clusters 22 & 23: Targeted attacks. In a few cases, we
saw a higher average number of unique passwords tried per
username. For example, in Cluster 22, we saw 73 IPs submit
1,878 requests to 75 unique usernames, with an average of
25 unique passwords tried per username, each attacking only
one user. Cluster 23 was active on the same day and executed
a very similar attack: 52 IPs submitted 1,296 requests to 52
usernames, each submitting an average of 25 unique pass-
words to one unique username, just like Cluster 22. Thus we
believe they are part of the same campaign.

In this attack campaign, the attacker clearly used a popu-
lar password dictionary, as 82% of passwords submitted had



weak passwords (zxcvbn score of 0). The fraction of valid
usernames for Clusters 22 and 23 were 0.96 and 0.88 respec-
tively, indicating that the attack data was probably curated to
the university. The campaign was successful in guessing the
passwords for two usernames, neither of which was detected
by the security engineers.

Clusters 24-28 exhibited similar targeted dictionary attack
behavior, although with fewer IPs and a lower number of total
requests. Our clustering approach, however, failed to cluster
all of these L sets together. This is a common limitation in
agglomerative clustering [41].

6.2 Higher-Level Attack Behaviors Observed

Attack campaigns employ various strategies to maximize their
success in compromising user accounts. Broadly, there are
two components in an attack campaign that the attacker has to
choose: (a) the types of username-password pairs to submit,
and (b) how login requests with those username-password
pairs are delivered to the target service. We noticed different
approaches to each of the two components in the attack cam-
paigns we found at U1 and U2, as we discuss in more detail
below. The list of different behaviors we observed as well
as some example clusters showing that behavior are shown
in Figure 9. We also explore the geographical distribution of
attacks, but relegate details to Appendix E.

Types of submitted username-password pairs. A key com-
ponent in an attack is the set of guessed username-password
pairs, as the success of the attack depends on it. There are dif-
ferent strategies for picking username-password pairs—e.g.,
an attacker can choose usernames belonging to the university
and try several popular passwords against those users, or an
attacker can choose breached username-password pairs with
or without filtering the usernames specific to the university.

Curates usernames to the target university. We found that all
attacks at U1 curated their set of usernames, with more than
75% of requests containing a username present in U1. How-
ever, at U2, only 7 (out of 20) attack clusters contained more
than 50% valid usernames. Clusters 10 and 11 combined sub-
mitted nearly 200 K requests, but only 286 of them contained
a username present at U2. Even when an attacker attempted
to log in multiple times for a particular username, we found
that in several cases the username did not exist. Some attacks
are therefore rather indiscriminate, trying arbitrary usernames
without checking first whether they are valid for the target
authentication service.

Targets certain users. An attacker may submit requests
against one, a few, or many unique usernames. Among at-
tacks we detected, it was more common for an attack to target
a large number of usernames in a “horizontal attack.” Most
of the attacks we found were horizontal attacks—trying one
or two passwords per username but for a large number of
usernames. An attack submitting multiple unique passwords

Attack
component

Behavior Ex. clusters

Type of
username-
password
pairs

Curates to the target university 2, 21
Targets certain users 22, 23
Uses breach data 9, 19
Submits popular passwords 22, 23

Delivery of
requests

Distributed among multiple IPs 3, 11
Distributed among multiple days 12, 19
Ends quickly (within 24 hours) 1, 11
Exhibits low interarrival time 5, 11

Figure 9: Different attack behaviors we observed.
against fewer usernames may be exhibiting targeted behavior.
We found six attack clusters targeting 137 users in total, each
with more than 25 unique popular passwords. We do not know
if the set of passwords used were the same for different users,
as Gossamer logs at U2 do not allow comparing passwords
submitted to different usernames.

Uses breach data. In our analysis, we found that attackers
often use prior breaches to source their username-password
pairs in what is popularly known as a credential stuffing attack.
In six out of nine clusters at U1 and in one cluster at U2, 50%
of the submitted username-password pairs are present in the
breach data used by Gossamer. Among the remaining 22
clusters, eight clusters (all at U2) had more than 50% of the
targeted usernames in a known breach, and all but one attack
cluster at U2 submitted passwords that were found in prior
breaches. This reiterates the threat of credential stuffing.

Uses popular passwords. Although most attacks used
breached passwords, some attacks relied on especially popular
passwords. Attackers may use popular password dictionar-
ies [49] curated from prior password breaches for such at-
tacks, and such passwords will, by definition, also be flagged
as having appeared in a known breach. We found a num-
ber of attack clusters submitting popular weak passwords,
such as Clusters 22 & 23. More than 81% of the passwords
submitted in these attacks appear in the 1000 most frequent
passwords found in the breach data known to Gossamer. No-
tably, all of these attacks were targeted, submitting more than
25 passwords per user. Both universities have password selec-
tion policies that aim to disallow popular, weak passwords.
Nevertheless, we found that such attacks were successful in
compromising two users at U2.

Delivery methods for attack requests. After choosing the
set of username-password pairs to submit, the attacker must
decide how to submit them to the target service. Primarily,
the attacker must identify how quickly they can submit all
the username-password pairs without being detected. To do
so, attackers can use multiple IP addresses to parallelize the
attacks, and/or spread the attack over a long period of time.

Distributed among multiple IPs. We found several attack
campaigns that distributed their login requests over multiple
IP addresses. In particular, we identified three large attack
clusters using more than 500 IP addresses and five other



clusters each using more than 50 IP addresses. In the two
clusters with the most IP addresses at U2 (Clusters 11 &
14), the majority of IPs were flagged as proxies by Blackbox
API [2]. By distributing over multiple IPs, an attacker can
achieve a higher throughput, as exhibited in cluster 11 which
used multiple IPs to achieve a very fast request rate. This
distribution of requests across IPs can help to avoid volumetric
detection mechanisms, as exhibited in clusters 22 and 23.

Duration of the attack. Attacks can be short-lived and bursty
or spread across multiple days. All attack clusters at U1 were
short-lived, finishing within 19 hours and four of them com-
pleting within five hours. At U2, however, we found that most
high volume attacks (submitting more than 5 K requests) span
multiple days, and two clusters were active for over 10 and 15
days, respectively. Interestingly, these attacks would be very
difficult to detect by looking at their behavior on only one
day; however, our clustering approach helps to see the full
attack by combining the attack behaviors from multiple days.

Interarrival time. Finally, sending requests too quickly could
also trigger alarm or lockout. Therefore, some attackers try to
submit requests at a lower rate. However, we see at least four
attack campaigns that submitted as much as 60 requests per
minute at U1 and U2. These attacks are not curated, meaning
that the majority of the submitted usernames do not belong to
the target university and thus could not result in a successful
login. Both U1 and U2 have a soft rate limiting policy, mean-
ing that too many unsuccessful attempts against a username
could lead to account lockout for 15–30 minutes. However,
we did not find any attack that submitted requests fast enough
to a single user that could trigger that lockout. We are unsure
if attackers adapted their attacks to this lockout constraint or
if their typical behavior avoids such lockouts.

Endpoints targeted. An attacker may choose an attack end-
point with the least safeguards in place. We found that most
of the attacks at U2 targeted the Microsoft basic email au-
thentication endpoint. We suspect that there are four reasons
for this high usage of the basic authentication endpoint: (a)
this endpoint does not support two factor authentication; (b)
it has poor (non-existent) rate limiting of requests, as basic
authentication requires frequent submission of passwords;
(c) the requesting IP seems to be from Microsoft (as seen
by the authentication server); and (d) attackers would have
to make only a small change (the URL) to attack different
organizations using basic authentication.

7 Discussion

We design Araña, an attack analysis system based on our
FCA—filter, cluster, analyze—framework. Using Araña with
the logs created by our prior work [7], we identified several
attack campaigns in two university login systems. These at-
tack campaigns are spread across 29 clusters as detailed in

Figure 8 and compromised 1,157 users across two universi-
ties. Although our study is limited to the attacks received by
two universities, we believe the patterns we observed across
attacks can form a basis for building future defenses against
password guessing attacks.

At U1, the most common type of attack we saw was a com-
bination of a high volume, distributed, curated, short-lived,
credential stuffing attack; the interarrival times of the attacks
varied from 55 milliseconds to 108 seconds. At U2, almost all
the attacks were high volume credential stuffing attacks, but
they varied in whether they were distributed, curated to the
university, short-lived, or exhibiting a low interarrival time.
Of the eight lower volume attacks we found, all were curated,
short-lived, targeted credential stuffing; and they varied as to
whether they were distributed across IPs. The distributions
of attacks observed in the two universities are quite different,
possibly because Gossamer gathered data from all login end-
points at U2, but only the main login endpoint at U1. Thus,
attackers utilizing different endpoints at U1 are not reflected
in Gossamer logs.

Efficacy of breach alerting services. To determine how
much a breach alerting service could mitigate password guess-
ing attacks, we investigated the characteristics of the password
from the last successful login before a user was reported as
compromised. We found that 2% of compromise reports were
associated with a breached username-password pair (that is,
the last successful login to that username before the compro-
mise report was a breached username-password pair), 12%
were associated with at least a breached password, and 19%
were associated with a tweaked password. At U2, we observed
that 11% of compromised users’ last logins were made with
a breached username-password pair, 46% were made with
at least a breached password, and 1.51% were made with a
tweaked password. Thus automatically resetting passwords
of users using vulnerable, breached, or tweaked credentials
could have prevented a significant fraction of account com-
promises. At U1, 71% of eventually compromised users used
a breach password at some point during the instrumentation
period. This further underpins the need for proactive breach
alerting [27] services that could have saved 47% of account
takeovers as stated earlier.

Key observations from attacks. Our findings reiterate the
ongoing threat of credential stuffing, which has been the most
prevalent and successful form of account compromise attack.
We also observed a few low volume targeted attacks against
specific users. Attackers often use multiple IPs from cloud
providers, VPNs, and network proxies to distribute and hide
their attacks, but our FCA approach can identify such cam-
paigns even when each individual IP makes only a handful
of requests. Such observations should be taken into account
while building defense policies. For example, locking user
accounts due to a small number of incorrect attempts rarely
translates to higher security, whereas discouraging users from



reusing passwords from other websites and using breach alert-
ing services can be very effective. Proactive breach alert-
ing [27] using services such as HIBP [22] would be very
helpful in combating credential stuffing attacks.

Using an FCA approach for attack analysis. Our FCA ap-
proach helps analyze attack campaigns by clustering L sets
with similar attack behavior. This enables a security engineer
to look at the whole attack, instead of considering login activ-
ities from a single IP or on a single day. As we show, several
attacks are spread across multiple days and use multiple IPs;
in some cases, they may use only one IP and spread the at-
tack over multiple days, making them very hard to detect. We
believe clustering seemingly unclear behaviors into groups
can help security engineers see the attack pattern, detect hard-
to-detect attacks, and have confidence in their judgment. We
envision that our FCA approach can be used on authentication
logs such as the ones produced by Gossamer [7] to group
possible attack campaigns and sort by those that are more
likely to be actual attacks. Then analysts can manually in-
vestigate further, using the features and groupings produced
by the clustering to inform their decision. Throughout the
design of our FCA approach, we focused on minimizing false
positives by choosing aggressive thresholds and evaluating
threshold effects so that an analyst can have confidence that
clusters found by Araña are highly likely to be attacks. Thus
our FCA approach could reduce the effort needed to analyze
the complete logs of all IPs; such a tool could prepare daily
(or weekly) reports about potential attacks.

8 Real-World Deployment Constraints

Despite the many campaigns detected by Araña, there are
certain challenges that may occur during deployment in real-
world settings. Here we talk about a few that we have faced.

Recording password-derived features. Most organizations
do not record password-based features for good reason, and
while Gossamer [7] showed how to record them safely, it
is still an open question whether widespread deployment
of recording password-derived features is wise or necessary.
Araña provides evidence that certain password-derived fea-
tures can be useful for attack detection. For example, we
identified that password breach statistics are very effective
at detecting credential stuffing attacks. On the other hand,
password similarity statistics—which require storing pass-
words in memory for 24 hours—are not as effective for attack
detection in the FCA approach. So organizations could log a
small set of already proven-helpful password-derived features
and apply clustering using those features. We detail clustering
results without password based features in Appendix C and
leave the open question of which features are the most helpful
for detecting different types of attacks to future work.

Reporting compromised accounts. Based on the attack
campaigns discovered by our FCA approach, we believe 41

unique user accounts were compromised at U1, and 1,116
were compromised at U2 (some accounts were compromised
multiple times by different campaigns).

At U1, 37 of the 41 compromised accounts detected by
Araña were already detected via other mechanisms, and man-
ually recorded by the security engineers as compromised. We
reported the remaining accounts and received feedback that
they were indeed compromised, and the remaining account
had already been deleted.

At U2, only six out of 1,116 compromised users detected
by Araña had been independently flagged by the security engi-
neers. We reported the rest to U2’s security engineers in two
rounds. In the first round, we reported 823 compromised ac-
counts, 373 (44%) of which the security engineers confirmed
as definitely compromised. For the remaining 450 accounts,
U2’s security engineers said they could not verify fully due
to unavailability of adequate logs but that their best guess
was that they were compromised based on what logs were
available. In the second round, we reported another 293 com-
promised usernames; however, we received a similar response
mentioning that the IT department did not have adequate logs
to determine whether these were compromised.

In practice, confirming if accounts are compromised is
nuanced and often relies on indirect indicators like an ac-
count being used to send spam or a report from an account
owner. Elsewhere, compromise status can be inherently am-
biguous. Even so, our experience working with the security
engineers suggests that more detailed and persistent logging
may help. Likewise, our experience with Araña suggests that
password-derived measurements can be helpful to analysts
when attempting to characterize and confirm compromises.
We also note that this difficulty in confirming account com-
promise makes it difficult to automatically finetune many
of the hyperparameters in Araña (e.g., distance thresholds
and percentile thresholds for filtering L sets). Therefore we
had to rely on experimentation with different thresholds and
manual analysis on password-derived and volumetric-based
measurements which took comparatively much more effort.
Nevertheless, Araña provides a way to use Gossamer logs
to identify high-volume and distributed attacks that were not
detected by existing mechanisms.

9 Conclusion

Using data collected at two universities from a measurement
framework for logging password-derived information behav-
ior, we designed a set of features that describe an IP address
on a given date, along with a clustering algorithm to group IP
addresses active on certain dates together into probable attack
campaigns. We describe several of these clusters in full detail
to show the differences and similarities between attacks, and
we discuss our observations about behavioral patterns of the
attacks as a whole.

Our results indicate that clustering approaches can aid an
analyst in detecting and labeling suspicious groups of requests



that may be part of the same attack campaign. They also pro-
vide initial progress towads the future design and deployment
of real-time, automated attack campaign detection tools.
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A Reasons for Compromise Reports

As described in Section 3, we received the logs of compro-
mised account reports from both universities. We show the
breakdown of the reasons for compromise as recorded at
U1 in Figure 10. We that found 69% of accounts were re-
ported as compromised due to large-scale automated attacks
(referred to as “Bulk credential testing” at U1). For compro-
mised accounts reported within one hour of the time of attack,
46% were classified as “Bulk credential testing”, 17% as self-
reported password compromise, and the remaining 37% were
split between the other 10 reasons appearing in the dataset.
For the six compromised accounts that took longer than 300
hours (12.5 days) to report, all were reported as “Simultane-
ous use from different locales.”

At U2, the recorded reasons for compromise are very
coarse: 99% are reported simply as “compromised accounts”.
Three accounts were disabled based on requests from the hu-
man resources department (former employee), and two were
disabled as the user is “deceased”. No username is reported
more than once for different reasons.

B Using DAS to Detect Attacks

The DAS algorithm [21] has been used successfully in other
contexts, such as detecting spearphishing attacks. Applied
to our context, the DAS algorithm takes a set L1,L2, . . . and
orders the sets as follows. For some configured subset of
numerical features, we first associate an ordering operator
over possible feature values (e.g., higher failure rate FF is
more suspicious). Then we associate to Li a score that is
equal to the number of other sets L j (i 6= j) such that Li’s
features are all strictly more suspicious than L j’s features. We
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can then obtain a partial ordering over the set of L sets based
on these scores.

In finding a configuration of features for DAS, we opti-
mized for the fraction of the top 50 L sets as ordered by
DAS that were associated with a compromised username, as
reported by the security engineers. In doing so, we found
that using two simple volumetric features—the number of
requests submitted (NR) and the number of unique users con-
tacted (NU)—yielded one of the highest fractions of L sets
associated with a compromised username. In fact, computing
DAS with the features NU and NR yielded 41 out of the top
50 L sets and 87 out of the top 100 L sets associated with
a compromised username. Adding as a feature the number
of consecutive days an IP has been active (CD) increased it
to 50 out of the top 50 and 98 out of the top 100. Thus we
hypothesize that these three features are most correlated with
the current mechanisms used by the university IT offices for
detecting attacks that cause compromise reports.

DAS with NR, NU, and CD may only be useful for discover-
ing attacks already being caught by existing countermeasures,
so we explore extending to further features that the IT of-
fices may not be considering. For example, features such as
the fraction of passwords in a breach (FPIB), the fraction of
tweaked passwords (FTP), and average unique passwords per
user (AUP) may all help in detecting attacks. We tried run-
ning DAS on a configuration with a much richer feature set:
NR, NU, FPIB, FCIB, FTP, AUP, and FF. Despite manually
flagging all 50 as probable attacks, only 19 were flagged as
attacks in the compromise database. This indicates that the IT
offices may be missing many attacks that could be found with
a richer combination of features, and it also suggests that the
compromise reports may not be a good ground truth.

Our experiments with DAS show that it has promise for
discovering attacks. While naively using it with just volu-
metric features seems to miss more subtle attack behaviors,
when used with richer Gossamer-enabled features DAS can
even discover (successful) attacks that are not being caught by
existing countermeasures. This suggests that future deploy-
ments may want to consider using DAS-style approaches for
remote guessing attack detection, similar to its original use
with spearphishing. However, from the perspective of our goal
of better characterizing attack campaigns, DAS has various
limitations. In particular, it cannot group IP addresses into
attack campaigns, and distributed attacks that use multiple
IPs will be treated as separate attacks.

Thus we consider clustering as an unsupervised approach
to grouping suspicious IP addresses into attack campaigns.

C Additional Clustering Results
Clustering Quality. Before settling on agglomerative clus-
tering for grouping L sets into potential campaigns, we tried
a number of other clustering techniques. We considered the
K-means++, DBSCAN, HDBSCAN, and agglomerative clus-
tering techniques in this study on the same set of features

Clustering algorithm Silhouette score ↑
U1 U2

PCA and K-Means++ −0.13 −0.09
DBSCAN −0.39 −0.30
HDBSCAN −0.12 −0.08

Agglomerative +0.19 +0.17

Figure 11: Silhouette scores of different clustering models.

from Figure 2. Since K-means++ cannot work with a custom
similarity model, we applied principal component analysis
(PCA) on all feature values of L sets and projected them in
a two dimensional space to run K-means++ clustering. We
also tried projecting to more than two dimensions but did not
observe any noticeable effect on the clustering quality. To
judge the quality of the clustering techniques, we used the
silhouette score [6], which computes the normalized differ-
ence between the average inter-class and intra-class distances.
We did a grid search over all hyperparameters for each of the
clustering techniques and reported the best silhouette score
in Figure 11.

All clustering methods except agglomerative clustering re-
ceived a negative silhouette score, signifying poor quality clus-
ters. We hypothesize that the poor performance is because our
similarity model is not a metric similar to Euclidean distance,
which is essential for K-means++ to produce meaningful clus-
ters. DBSCAN performed well when the clusters were of the
same density—that is, when L sets belonging to the same
cluster are uniformly distributed inside a cluster. However, in
our use case, it is common to have attack campaigns of differ-
ent densities. While HDBSCAN [31] is specifically designed
to handle non-uniform clusters and produced relatively better
clusters for a number of attack campaigns, it still received a
lower silhouette score than agglomerative clustering.

Sensitivity of clustering threshold. To analyze how sensi-
tive our clustering results are for different thresholds, we run
two experiments by changing (a) the filtering threshold which
is applied to L sets and (b) the distance threshold that dictates
whether two clusters would be merged or not. Our findings
show that the clustering results are sensitive to changes in the
distance threshold but remain relatively the same for changes
to filtering thresholds.

For the first experiment, we change the filtering thresh-
old to a less aggressive 70th percentile instead of the 80th

percentile as we did originally, while keeping the distance
threshold the same as before at 0.51. After manual analysis,
we find no noticeable change in the likely malicious clusters
in comparison to Araña’s clustering results. This indicates
that clustering results may not be sensitive to changes in the
filtering thresholds.

In the second experiment, in addition to the filtering thresh-
olds, we also change the distance threshold by applying a
knee locator method on L sets filtered by the 70th percentile.
This gives a distance threshold of 0.41, which is lower than
the original distance threshold of 0.51. Although the majority



of the resulting clusters remain the same, we observe a few
noticeable changes in the clusters as we describe below.

We sampled the top 20 (16 untargeted and 4 targeted) likely
malicious clusters using the same sampling criteria used in
Araña. The first 16 clusters had NR ≥ 5,000∨NU ≥ 5,000,
exhibiting high volume, untargeted behavior. Out of these
16, we discover that 9 clusters were exactly the same as the
ones found in Araña’s clustering results. However, we identify
five new untargeted clusters which we did not see in Araña’s
clustering result. Our manual analysis confirms one of them
to be a malicious attack campaign, one to be clearly benign
behavior, and the other three to contain a mix of benign and
malicious behavior. Furthermore, we observe that two attack
campaigns which were previously split into five clusters by
Araña, are more accurately represented by two distinct clusters
with this new distance threshold. The remaining 4 clusters
with AUP≥ 25 exhibited targeted behavior and were identical
to those found by Araña.

Lastly, we notice that, with the new relaxed distance thresh-
old, two targeted attack campaigns detected by Araña are
completely missed. This is because lowering the distance
threshold introduced spurious L sets that did not exhibit the
same targeted behavior as the other malicious L sets showing
clear targeted behavior. Thus, the AUP value of the mixed
cluster was reduced below our selection threshold 25.

In conclusion, we find that Araña’s clustering results are
particularly sensitve to changes to the distance thresholds.
While lowering the distance theshold can allow for the dis-
covery of more potential attack campaigns, it also increases
the chance of mixing benign and malicious L sets in the same
cluster. To prioritize precision and a low false positive rate,
we choose the higher percentile filtering thresholds which
result in a high distance threshold, minimizing the chance of
benign and malicious L sets appearing in the same cluster.

Clustering without password-based features. To under-
stand the importance of recording users’ password-based in-
formation, we reran Araña at U2 without the six password-
based features; We found that without these features, we were
still able detect 92% (1,570) of 1,709 malicious L sets and
80% (16) of 20 attack clusters discovered by Araña as shown
in Figure 8. However, it missed one multi-day credential stuff-
ing attack from a single IP address (cluster #15) and three
targeted attacks (clusters #22, #23, #29). We hypothesize that
since all L sets in attack cluster #15 have similar values across
five password guessability features and all L sets in attack
clusters #22, #23, and #29 have similar feature values for AUP,
Araña placed them in the same respective attack clusters pre-
dicting that they originate from the same attackers even if
they were spread across multiple days.

Additionally, clustering without password-based features
flagged 46 new L sets. We manually analyzed these 46 L sets
and suspect that at least four L sets are malformed clients,
since they submitted the same password against a single user.
Moreover, we found that L sets within the same cluster have

# L sets # L sets flagged by FCA
Attack # [7] flagged [7] Clusters Flagged Not Flagged

#1 (at U1) 7 1,6 6 1
#2 (at U1) 1 2 1 0
#3 (at U2) 12 10 12 0

Figure 12: Confusion matrices of the number of L sets corre-
sponding to the three attack campaigns found in prior work [7]
using their manual approach versus our FCA approach.

significantly different values for password-based features. For
example, eight L sets formed a new cluster in which one IP
address had an FPIB value of 0, but the other seven L sets had
FPIB > 0.55 with an average FPIB of 0.66. For the remaining
34 L sets, it is difficult for us to judge them as either fully
malicious or benign, since the password-based features varied
within a cluster. Thus we believe password-based features are
important for grouping attack traffic into attack campaigns,
as well as manually judging a cluster as malicious or benign.

D Comparing Araña to prior work [7]
In Section 6.1, we discuss the three attack campaigns manu-
ally identified in prior work [7]. Here we compare in more
detail how their attack identification compares to the corre-
sponding clusters found using Araña. In Figure 12, we present
three confusion matrices—one for each attack. These show
how many L sets were labeled as part of the attack or not for
both methods. For two attacks, agreement was perfect (unsur-
prising for attack #2 which only emanated from a single IP on
a single day), and for attack #1 Araña missed just one L set.
We believe that this false negative arose because that L set
set fell on the next day (after midnight) compared to the prior
L sets, suggesting that there can be some noise introduced
by our 24-hour cut-offs for login sets. Even so, an analyst
using Araña could, in this case, easily detect the false negative
manually since the IP address is the same.

E Geographical Source of Attacks

We use the ISP of a request to determine the country or coun-
tries of origin. Since a campaign often contains multiple IPs,
there may be more than one country of origin. Figure 13
shows the most common countries from which attacks orig-
inated. At U1 and U2, the vast majority of malicious IP ad-
dresses originated from within the United States.

Country # of requests

United States 65,474
Germany 6,170
Morocco 3,467
Canada 152
Brazil 112

Country # of requests

United States 234,515
Russia 19,003
Ireland 13,130
Netherlands 5,678
Canada 1,571

Figure 13: The five most common countries at U1 (left) and
U2 (right) by number of attack requests.
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