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Abstract
Mobile applications leaking personal information is a well
established observation pre and post GDPR. The legal require-
ments for personal data collection in the context of tracking
are specified by GDPR and the common understanding is,
that tracking must be based on proper consent. Studies of the
consent dialogs on websites revealed severe issues including
dark patterns. However, the mobile space is currently under-
explored with initial observations pointing towards a similar
state of affairs. To address this research gap we analyze a
subset of possible consent dialogs, namely privacy consent di-
alogs, in 3006 Android and 1773 iOS applications. We show
that 22.3% of all apps have any form of dialog with only
11.9% giving the user some form of actionable choice, e.g.,
at least an accept button. However, this choice is limited as
a large proportion of all such dialogs employ some form of
dark pattern coercing the user to consent.

1 Introduction

Mobile applications do collect a large amount of personal data
of the user and transmit those to third parties. This behavior
has been well documented both on Android [40, 42, 63, 73]
as well as iOS [33, 39, 51]. The introduction of the GDPR
as the European privacy legislation was supposed to better
protect personal data of consumers and outlaw underhanded
data collection. However, recent work studying the collection
behavior of current mobile applications casts doubt on the
overall impact and shows data collection is still happening [48,
49, 58].

However, even though collection of personal data can be
questionable from an ethical standpoint the legislature does
allow for collection. It is legal to collect data, e.g., if it is
strictly required for the functionality of the applications or
legally required. However, for the popular purpose of tracking,
prior consent for data collection has to be given. The GDPR
sets out clear rules on how a request for consent has to be
structured and collected, explicitly stating that consent has to

be voluntary and must not be coerced. Recent fines for Meta
by the Irish Data Protection Commission do underline this
principle [6].

Studies analyzing cookie consent dialogs on the web re-
vealed that a large portion do not conform to the stated rules.
Even worse, the analyzed dialogs widely employed stylis-
tic choices to coerce or nudge a user towards giving con-
sent [54, 55, 60, 71]. Such design choices have been termed
’Dark Patterns’. The overwhelming presence of Dark Patterns
in consent dialogs led to the European privacy advocacy NGO
noyb1 launching two campaigns against deceptive cookie ban-
ners [16, 18] resulting in websites changing their dialog de-
signs. This shows that effort towards the study of consent
dialogs and action based on this information can improve the
self-determination of users concerning their privacy choices.

Assuming tracking, mobile applications also have to collect
the consent by the user prior to data collection, according to
the common understanding of the GDPR. Mobile applica-
tions, thus, tend to push a privacy consent dialog on first start
to get the user to consent to their data collection. Furthermore,
Apple [3] and recently Google [10] require developers to pro-
vide privacy labels, informing the user of the intended data
collection, giving an initial impression of mobile applications
likely being honest concerning private data collection. How-
ever, recent work by Koch et al. [48] has shown that privacy
labels on iOS are not being enforced and flouted by develop-
ers. Additionally, they performed a visual inspection of started
mobile applications and report that there was a lack of privacy
consent dialogs for applications that self-declare themselves
to collect personal information in their privacy label as well as
applications displaying privacy consent dialogs that employed
Dark Patterns. Similar initial observations have been made
for Android by Nguyen et al. [58]. However, no conclusive
research into the design and effect of privacy consent dialogs
in mobile appliations has been done yet.

We approach this research gap and develop a tool chain
that covers both iOS and Android applications to extract and

1https://noyb.eu/en



analyze a subset of consent dialogs, namely privacy consent
dialogs. We then apply this tool chain to 3006 Android and
1773 iOS applications to study the amount of privacy consent
dialogs in mobile applications, their design choices, and the
ratio of possibly GDPR-non-conforming ones. Furthermore,
we leverage our tool chain to test the effect consenting or
declining a dialog has on the transmitted personal information
to known trackers.

Overall, we have two key contributions:

• A novel and mobile OS-agnostic privacy consent dialog
analysis tool chain to download, run, and analyze mobile
applications

• A large scale study of 3006 Android and 1773 iOS ap-
plications concerning:

(a) the structure of a privacy consent dialog;

(b) the effect of consenting or declining to a dialog

In the remainder of the paper, we first detail prior work in
the area of mobile privacy and consent dialogs (Section 2).
We follow up by detailing the legal background governing re-
quirements for consent dialogs (Section 3). Based on those re-
quirements, we first collect a large dataset of both Android and
iOS Apps (Section 4), analyze the usage of Consent Manage-
ment Platforms (Section 5), and develop an analysis tool chain
to interact with mobile applications, detect consent dialogs,
and extract the required features for our analysis (Section 6).
We then apply our tool chain and detail the observed Dark
Patterns as well as data transmission behavior (Section 7),
followed by a discussion (Section 8). Finally, we summarize
our key contributions and results (Section 9).

2 Related Work

Current work related to our research up until now can be split
into work concerning mobile privacy on iOS [33,39,48,50,51]
and Android [42, 57, 58, 62, 63, 69, 73], or comparing the
two [49], as well as work concerned with analyzing privacy
policies and dialogs or frameworks on the web [37,45–47,54–
56, 60, 61, 70, 71] and in mobile applications [63, 67, 74].

Dynamic traffic analysis has been leveraged both on iOS
as well as on Android and shown that apps send and receive
data within the first seconds of launch, and share data with
third-party libraries [48,51,58,68], detecting similar data shar-
ing behavior regardless of operating system [49]. Ren at al.
detected an increase in data collection across multiple app ver-
sions over time [62]. This shows that personal data collection
in mobile applications is prevalent before and after introduc-
tion of the GDPR. Kollnig et al. analyzed Apps before and
after the introduction of iOS 14 and its corresponding rules
on privacy compliance, they found that tracking and data col-
lection is still prevalent regardless of this change introduced
by Apple [50]. Static analysis and symbolic execution have
been used to detect leaks of sensitive information in mobile

apps [39, 42, 73], demonstrating that inferences concerning
privacy-respecting behavior can be gained this way.

Work analyzing privacy policies in mobile apps showed
mismatches between self-declared privacy policy and actual
code behavior [67,74] and that privacy policies do not lead to
improved privacy of the user [63]. Orthogonal work analyz-
ing web consent dialogs and privacy policies mirrors those
insights and indicates widespread violation of proper consent
requirements for dialogs even when belonging to a consent
management platform [54,55,60,71] and that tracking widely
happens before any user interaction or even despite rejection
of data collection [61, 70]. Additional work focusing on the
impact of the GDPR on privacy dialogs and policies showed
changes due to the GDPR [37, 46] but given the previously
detailed plethora of work after 2018 on GDPR violations
those changes clearly did not have a positive effect on actual
privacy protection. Concurrent independent work by Nguyen
et al. looked at mobile consent dialogs on Android but did
not cover iOS [59]. To analyze privacy policies, several tool
chains have been developed leveraging ML to extract features
and enable querying the extracted model [45, 47]. Finally,
Maryam et al. analyzed 100 popular websites online and in
their corresponding mobile apps concerning tracking and pri-
vacy notices and found major inconsistencies for essentially
the same service [56].

Overall, those works paint a picture of questionable design
choices in consent dialogs, with clear indications that even
if the user is presented with a choice, that choice is often
ignored, a bleak picture for users concerned about their pri-
vacy on the web. However, up until now those works focus
on the web and it is unexplored whether the situation on the
web also corresponds to the situation in mobile applications.
Furthermore, prior work demonstrates that data collection via
apps on mobile devices is omnipresent and provides the tech-
nological basis for our work contrasting data collection on
mobile devices with privacy consent dialog interaction.

3 The Makings of Legal Consent

Due to localization and consequent expertise, we perform our
analysis and research in the context of European Union (EU)
laws and, thus, the EU GDPR [24], which does not necessarily
reflect the UK GDPR post BREXIT.

The GDPR is the EU privacy law protecting consumers
from unwanted data collection and processing. It went into
effect in 2016 with a grace period until 2018 [31]. While the
GDPR as a law gives general direction on what constitutes
personal data, processing, and consent, its specific interpreta-
tion and enforcement is done by the Data Protection Agencies
(DPAs). The GDPR is not only binding for companies within
the EU but also includes companies outside the EU if they
process data of people within the EU related to the offering of
goods and services, or the monitoring of behavior [66]. In this
section, we first introduce required vocabulary, then state the



criteria that are required for consent, and finish with lessons
learned summarizing the key points required to understand
the legal context of our research.

We want to emphasize that we present the legal matter in
a clear cut fashion to ease understanding and to focus on the
key takeaways. However, this must not be understood as if the
legal landscape is indeed unified in their opinion. Unless there
is a verdict by the highest court (and even sometimes after)
there are always possibly valid opposing opinions. Thus, each
statement below should be read with an asterisk as a reminder
that there is an ongoing discussion. Even though we did our
due diligence, our summary should not be construed as legal
advice as we are not legal scholars or practitioners.

3.1 What Constitutes Personal Data and Pro-
cessing?

Article 2(1) GDPR specifies what constitutes personal data
and processing. Personal data is any information relating to
an identified or identifiable natural person and processing
is defined as any operation performed on personal data, in-
cluding collection, recording, and storage. This means that in
essence, any data that can be connected to a natural person
(data subject) and is accessed by an organization (data con-
troller) falls under the GDPR. This even applies to pseudony-
mous data (Recital 26(2) GDPR), i.e., data that can be linked
to a person in combination with other data (Article 4(5)
GDRP). Rulings have even applied this to IP addresses
as those could be attributed to a person by obtaining ISP
records [13].

The GDPR also defines the role of data processor. While
the data controller is the party that determines the purposes
and means for which data is collected (Article 4(7) GDPR), a
data processor is any party that processes the data on behalf of
the controller (Article 4(8) GDPR). The GDPR requires data
controllers to enter into data processing agreements with any
employed data processor (Article 28(3) GDPR), to document
this relationship, containing specifications on the form of
processing. However, the liable party for the processing is the
data collector.

Processing of properly anonymized data is not restricted by
the GDPR (Recital 26(5) GDPR). Ways of such an anonymiza-
tion can include statistical aggregation, or collection of in-
formation not related to a person such as application set-
tings. However, research has shown that even a few benign
data points presumed to be anonymous can be leveraged
to uniquely identify a person [35, 36, 43, 44, 64] and that
fingerprinting via settings can be used to identify a unique
device [38]. The GDPR requires considering such indirect
deanonymization before collection [52].

3.2 What Constitutes Proper Consent?

Processing of any personal data is generally prohibited by the
GDPR unless there is a legal basis, with the GDPR provid-
ing a conclusive list (Article 6(1)(a-f) GDPR): (a) Consent
by the data subject, (b) contractual necessity, (c) legal ne-
cessity such as know your customer laws, (d) necessity to
protect a person’s vital interests, (e) tasks in the public in-
terest, usually by public authorities, (f) legitimate interests
by the controller outweighing the data subject’s interests and
fundamental rights.

In the context of mobile applications and our analysis focus
of traffic directed at known trackers (Section 6) lit. c, d, and
e do not apply. Article 6(1)(c) GDPR does not apply as we
are not opening up a bank account or otherwise moving into
a business relationship with the company developing the app,
we simply start the app and at most interact with the privacy
dialog. Article 6(1)(d) GDPR does not apply as by simply
starting the app one cannot construe any vital necessity or
interest of ours to protect. Article 6(1)(e) GDPR does not ap-
ply as we are analyzing the traffic directed at known trackers
which does not include any official authority. Furthermore,
according to data protection authorities lit. b, and f do not ap-
ply as a legal basis for tracking either [11, 41]. Consequently,
only consent remains.

The GDPR lists five basic conditions that need to be met for
consent to be considered valid (Article 4(11) GDPR). Consent
has to be: (1) freely given as data subjects need to have a
genuine and free choice to refuse or withdraw (Recital 42
GDPR); (2) specific for each purpose of processing (Recital
32 GDPR); (3) informed such as the data subject knows at
least the identity of the controller and the purposes of the
processing (Recital 42 GDPR); (4) unambiguous such that it
is clear, concise, and not unnecessarily disruptive to the use of
the service (Recital 32 GDPR); and an (5) affirmative action,
with silence, pre-ticked boxes, or inactivity not constituting
consent (Recital 32 GDPR).

Article 7 GDPR defines further criteria for the legality
of consent, specifically that consent can only be obtained
through a declaration also concerning other matters if it is
clearly distinguishable from those other matters (Article 7(2)
GDPR). Finally, Article 7(3) GDPR requires that consent has
to be withdrawable at any time, that the data subject has to
be informed that they can withdraw their consent at any time,
and finally that withdrawing consent needs to be as easy as
giving it.

Any collection based on consent in violation of those crite-
ria is risking a GDPR violation.

3.3 Resulting Criteria Catalog for Valid Con-
sent Dialogs

We have discussed the wording of the GDPR, what constitutes
personal data and processing, as well as why data collection



for tracking in the context of mobile applications requires
prior consent. Furthermore, we established criteria on what
constitutes consent under the GDPR and that data collection
for tracking, prior to or based on consent lacking the laid out
criteria risks running afoul of the GDPR.

Part of the requirements for consent are subjective or at
least require some form of context understanding such as the
requirement for the consent to be specific, informed, or un-
ambiguous. A machine cannot decide whether a given text
contains sufficient information for the data subject to fulfill
either of those requirements. However, a machine can ana-
lyze design choices that affect affirmative action and indicate
whether a human user is coerced toward consenting.

We, thus, define five criteria based on our understanding of
the GDPR that are required (i.e., a lower bound) for consent
dialogs to be sufficient and that can be assessed by a machine:

1. refusing consent has to be possible with the same number
of clicks as consenting [14, 21, 41]

2. buttons have to have clear and non ambiguous labels [14,
41]

3. the dialog may not only provide a link or refer to infor-
mation deeper in the consent flow [14, 21]

4 it must be possible to directly refuse [41]

We consider our criteria 1, 2, and 3 to be backed by [41],
which is a verdict of the LG Rostock, i.e., a German court of
law, and thus a legal requirement. Criteria 4 is only backed
by [41] on a FAQ provided by the bureau of data protec-
tion of Baden-Württemberg, and should thus be considered a
best practice until a corresponding verdict has been delivered.
The lack of either of those design criteria increases the work
required by a user to refuse consent and thus nudges them
towards consent. Previous literature has termed such design
decisions in consent dialogs as ’Dark Patterns’ [54,55,60,71].
We use this phrase accordingly to encompass violations of our
set design criteria as each violation represents an additional
challenge for the user to not give consent.

4 App Acquisition

Automatically downloading app files that can be run on a
mobile phone is not trivial. The intended process by both iOS
and Android is to use the provided app store on the phone as a
logged-in user. In the app store, you can browse a selection of
apps and the installation process is triggered by choosing to
install the app within the app store. This process even registers
the app to the user on iOS and an app that is not registered to a
user account cannot be run by that account. Android does not
have such a process and any application can be installed and
run if one has access to the corresponding app binary (APK).

There exist different solutions to access large volumes of
Android APKs [34] and it is possible to individually download

them [22]. The main challenge here is gaining information on
the ranking of apps to focus any analysis on popular and thus
widely used apps. For iOS, only manual solutions are known.
Koch et al. [48] leveraged the 3u tool2 to manually download
a large set of iOS apps but this approach is fairly cumbersome
and labor-intensive. Consequently, we have two challenges:
accessing the ranking of apps and subsequent download of
identified apps of interest.

We solved both challenges by leveraging hidden API end-
points to register apps to the corresponding accounts used for
analysis as well as to download the corresponding APK and
IPA files for Android and iOS, respectively. Neither Google
nor Apple provide publicly advertised endpoints to automat-
ically download a list of the current most popular apps or
the apps themselves. However, using open source tools and
adapting existing web APIs, we are able to automate app ac-
quisition of the top 100 apps across different categories for
both Android and iOS. Those categories encompass all main
categories of both Android and iOS.

Android To gain access to the top 100 apps across differ-
ent categories on Android, we leverage the published charts
by Google themselves. This ranking is not linked anywhere
we know and was found by accident through search engines.
We use the access point to access lists across the different
categories whose IDs can be extracted via the Google Play
Store interface3 and used the PlaystoreDownloader [22] to
download and store the corresponding APKs.

iOS By observing iTunes traffic, we discovered the re-
quired endpoint. We leverage the returned list for each cate-
gory to download apps using IPATool [12]. However, IPATool
used to only be able to download already purchased apps. We
overcame this limitation by further traffic analysis and reverse
engineering of tools capable of buying but not downloading.
Those insights have already been fed back to the community
and are now part of the current IPATool.

For our consent dialog detection and classification, we used
our automated app acquisition to download the top 100 of
each primary category for both Android and iOS. This resulted
in the successful download of 3006 Android and 1773 iOS
applications. We performed the downloads from 2022-11-17
to 2022-11-18 for Android and from 2022-12-04 to 2022-12-
05 for iOS.

5 Consent Management Platforms

Consent Management Platforms (CMP) are off-the-shelf solu-
tions to ensure legal compliance for data collection. They al-
low developers to forgo consent implementations and leverage
standardization. CMPs are potentially useful for researchers
as there is only a limited amount and each has a standardized
method of recording consent. They also provide data collec-

2http://www.3u.com/
3https://play.google.com/store/apps

https://play.google.com/store/apps


tors with a way to check if they are cleared for collection and
processing purposes.

Given that a high prevalence of CMP usage could allow
for a focused and precise analysis of privacy consent dialogs
and their effect we conduct a static analysis of application
binaries to ascertain their prevalence. We show that CMPs
are not popular enough to pivot our privacy consent dialog
analysis around them.

5.1 Prevalence of CMPs
Theoretically, CMPs allow developers to ensure that they stay
within the boundaries of the law. However, due to their high
configurability, this might not always be the case [30] and
recent rulings have declared one large framework for CMPs
to actually be in breach of the GDPR [7].

As CMPs provide a high degree of standardization across
apps that use them, they provide an easy to leverage approach
towards an analysis framework. However, a sufficiently high
usage across mobile applications has to be present.

Analysis of the web has shown that between 6% and 13%
of European websites deploy CMPs [46,54] and roughly 40%
of the top 10k US websites [5]. If this is also the case across
sufficient mobile applications, this could ease our detection
and analysis of privacy consent dialogs.

The Interactive Advertising Bureau (IAB) has designed
the Transparency and Consent Framework (TCF) that intends
to work across multiple CMPs. According to their website,
they have 79 web CMPs compliant with their framework and
32 with their mobile framework. This makes the TCF and
any TCF-compliant CMP a great target for further consent
and consent dialog analysis. However, even usage of the TCF
might not ensure compliance with the GDPR, as a recent
ruling declared it not GDPR-compliant [7].

5.2 Static Analysis of CMP Usage
To estimate the popularity of CMPs and TCF-compliant
CMPs, we use static analysis to detect whether an app poten-
tially uses a CMP. A large prevalence of CMPs would allow
us to leverage the corresponding standardization. To detect
potential usage of a CMP, we search the included libraries of
the APKs and IPAs with a similar approach to what the Exo-
dus Privacy project uses to check for the presence of tracking
libraries [8]: We extract a list of the contained libraries in
the IPA and APK application packages and search for known
CMP names. This provides a rough estimate on the minimal
amount of CMPs being in use. We do not perform any further
static analysis, e.g., analyzing liveness of the library code or
configuration parameter.

Android: To gain access to the included libraries, we use
dexdump for Android APK files that can statically extract the
names of the included classes from an APK. Those names are
then searched for known CMPs.

iOS: An IPA is a essentially a ZIP file that that stores all
included libraries4. The included subdirectory names are then
searched for known CMP identifiers.

5.3 Detected CMP Usage
We first curated a list of 26 different CMPs based on the
official IAB TCF vendor list [26] as well as external re-
sources [27, 28]. This list is a best effort approach towards
detecting CMPs but not necessarily exhaustive. We were able
to determine the CMP vendor names for 20 TCF-compliant
CMPs and 6 additional CMPs. We searched 4779 apps and de-
tected 252 (5.1%) applications containing libraries or classes
matching our curated list.

We detected IAB TCF-compliant CMPs in 252 apps (5.1%).
199 (6.6%) Android apps and 53 (2.7%) iOS apps contained
at least one CMP.

Note that simply including a CMP-related class or library
does not necessarily mean actual (or proper) usage.

5.4 Lessons Learned
Overall, only a small fraction of apps use on of our CMPs.
All of the detected CMPS were IAB compliant but with 5.1%
of all apps too low to use for our purposes. As our analysis
was static, we do not know the amount of apps actually using
the included CMPs and we expect that the amount of actively
used CMPs is even lower. Consequently, any analysis done
based on CMPs would not yield meaningful results and miss
a large fraction of applications.

6 Analyzing Mobile Consent

We have established that focusing our analysis of privacy
consent dialogs by leveraging CMPs does not work, thus, a
more complex analysis tool chain is required. Our analysis
methodology dynamically identifies and analyzes existing
consent solutions deployed by apps. We run each app, monitor
network traffic, and extract and interact with any presented
consent dialog to analyze how consent dialogs affect data
transmission and what design choices were made with regard
to coercing a user to give consent.

We start by detailing our dynamic analysis and how we run,
monitor, and interact with each mobile application. Our goal
is to run each app, monitor traffic, as well as analyze, and
interact with privacy consent dialogs. For this, we first detail
how we designed our app execution and traffic recording into
which we hook our consent dialog extraction and analysis
leveraging Appium [4].

We are dedicated to open source research and will open
source our tools described below5.

4The subdirectory is /Payload/<app name>.app/Frameworks/
5https://github.com/the-ok-is-not-enough

https://github.com/the-ok-is-not-enough


6.1 App Execution and Traffic Recording
Execution of apps for iOS and Android face different chal-
lenges on a first view as either is their own operating system.

For iOS we leverage a jailbroken iPhone, libimobilede-
vice [15], Frida [9] for automation, and SSL Kill Switch 2 [25]
to disable SSL certificate validation including certificate pin-
ning. A pre-configured mitmproxy [17] is used to collect
traffic. We mirror this setup for Android using a Galaxy A13
as a device, Frida and objection [19] for automation and dis-
abling of SSL checking and certificate pinning.

Either framework essentially executes four steps:

1. Install the apps and give permissions. This uses
the approach described by Koch et al. [48] using
ideviceinstaller and the iPhone internal permission
database for iOS or adb on Android that also allows
granting permissions.

2. Run the apps using Open [20] on iOS and objection on
Android and perform any required interaction.

3. Collect the traffic generated while the app is running via
a pre-configured proxy running mitmproxy.

4. Remove the app using again ideviceinstaller on
iOS and adb on Android.

6.2 Consent Dialog Extraction and Analysis
We now address the question of how we detect and analyze
displayed privacy consent dialog in an open app. Our first step
is to introduce a taxonomy, classifying privacy consent dialog
into three major types. Based on this taxonomy, we explain
how we distinguish between those types and perform further
analysis to detect deviation from the design requirements
established in Section 3.

6.2.1 Taxonomy of Consent Dialogs

In Section 5, we analyzed the popularity of different CMPs
and had to come to the conclusion that no set of CMPs reaches
sufficient popularity to base our analysis on. Consequently,
we cannot use key elements of different CMPs to identify,
extract, and analyze displayed privacy consent dialogs. We,
thus, conducted an initial manual study on a quarter of our
apps to analyze observable privacy consent dialogs. Based
on this analysis, we defined a taxonomy consisting of three
different types of privacy consent dialogs we observed being
deployed:

Link: A simple link referencing the privacy policy. While
this might inform the user about an existing privacy policy
a link can clearly not fulfill our stated design requirements.
A link differs from a notice or a dialog by only being a link,
without any form of related buttons or context information.

Notice: A notice is a text, e.g., in the form of a banner.
The text informs the user about the app’s privacy practices in
some form but does not offer any form of consent or rejection.

Notices commonly only state that by continuing to use the
app, the user consents to the privacy policy and data collection,
whereas a dialog provides more information. However, the
line between a proper dialog using a ’continue’ button and a
message, informing you that using the app entails agreeing is
thin. The difference between a notice and a dialog resides in
the purpose of the contained buttons, specified by their label.
A notice only offers buttons that (also) serve another purpose
than agreeing to the privacy policy, most commonly they are
the log in buttons.

Proper Dialog: A dialog is text, e.g., in the form of a
banner, that not only informs the user but also actively requires
agreement in form of interaction, i.e., buttons. This is the only
type of privacy consent dialog that can potentially fulfill our
stated design requirements. However, a more detailed analysis
is required, e.g., can a user actually reject data collection or if
they are nudged towards giving consent.

6.2.2 iOS based Consent Dialogs

Apple introduced privacy improvements for iOS starting with
version 14.5 [1]. Apps do not have default access to the IDFA,
a phone global identifier, anymore if a user disables the cor-
responding setting. Furthermore, an app may now ask for
permission to track a user for advertisement purposes. A posi-
tive response for this request enables the App to get the IDFA.
According to the documentation such permission also entails
generic tracking such as ’displaying targeted advertisement’
or ’sharing device location data or email lists with a data
broker’. Operating system based consent dialogs are out of
scope and we deny each app this permission individually after
installation.

6.2.3 Differentiating Between Consent Dialogs

After having established a taxonomy we proceed to detect,
classify, and analyze presented privacy consent dialogs in
running mobile apps (i.e., during step 2). This is done in
a two step process: (1) we sort a detected privacy consent
dialog into our taxonomy; (2) if we detected a proper dialog,
we continue to analyze it to check for any problematic design
patterns casting doubt on the validity of the privacy consent
dialog.

As we detect dialogs and interactable elements based on
text we need to be able to extract text elements of each app.
We are using Appium for this [4]. The Appium framework
provides a generic interface to elements of both Android
and iOS apps. This interface affords extracting attributes of
app elements such as the contained text. Our dialog analysis
process is solely based on the text content of an element to
stay operating system agnostic as attributes such as class
names or id patterns differ between Android and iOS.

(1) Dialog Classification Based on our initial manual
study, we compiled a set of common phrases such as we



care about your privacy or by continuing to use our app,
you acknowledge that we may process your data in line
with our data protection statement and designed regular
expressions capturing essential words or phrases but leaving
out app-specific wordings. One example for such a regexp
would be /have read( and understood)?[ˆ.]{3,35}
(privacy|cookie|data protection|GDPR)
(policy|notice|information|statement)/.

This regexp captures common essential phrases of a pri-
vacy policy text, i.e., have read and understood, as well as
keywords, e.g., privacy policy, GDPR information, or GDPR
statement. However, it also leaves space in between those
phrases and keywords for app- or vendor-specific text while
ensuring that those key elements are within the same sentence.
This allows us to detect the presence of any type of privacy
consent dialog that contains phrases related to privacy and
the GDPR. Our approach catches any dialog that matches our
keywords and we do not analyze further why the developer
chose to include those keywords, i.e., perform any natural
language processing. Thus, we expect that we will encounter
a broad spectrum of privacy related consent dialogs.

We distinguish between a proper dialog and a notice by
checking for the presence of buttons again using our initial
manual study to identify text elements associated with consent
dialog buttons such as okay, accept or reject and whose text is
not significant longer than the provided matching expression.
Furthermore, we ensure that labels such as I do not consent
are not matched as consent by controlling for negating key-
words. If an app does not display a detectable proper dialog or
notice but contains a link to a privacy policy, again identified
with a set of regular expressions, we classify the presented
consent dialog as a link. All extracted information are stored
for further processing. All regular expressions are listed in
the appendix as well as contained in our source code.

(2) Proper Dialog Analysis: The collected data from the
previous step now affords us to perform a more in-depth check
of the patterns employed in the detected proper dialog against
our previously established requirements (ref. Section 3.3):

Ambiguous Button Labels: Requirement 2 states that a
button has to have a an unambiguous label as the common
interpretation of the GDPR by DPAs requires, that a privacy
consent dialog has to clearly communicate that pressing a
button entails consenting. Ambiguous labels such as continue
violate such criteria. Analogously, this also applies to reject
buttons. Labels such as options or manage choices do not
suffice.

Accept Button Highlighted: Furthermore requirement 2
states that the button has to be clear and, thus, a dialog may
not nudge the user towards consenting, i.e., the choice of the
user has to be free of any outside influence. We are able to
detect both color- and size- based emphasis of one of the
buttons which would run afoul of this requirement.

Accept but No (Working) Reject Button: According to
requirement 4 a user must be able to give or reject consent

and requirement 1 states that rejection has to be able within
the same number of clicks. We are able to detect whether such
a proper reject option is given. Furthermore, we are able to
detect whether an application stops working after declining
consent, which would also run afoul of requirement 4.

6.3 In-Depth Traffic Analysis

We are also interested in the transmitted personal information
to third parties in the context of privacy consent dialogs, that
would clearly require prior consent by the user. To be able to
analyze the transmitted traffic in-depth we designed a set of
tracking endpoint processors for observed popular endpoints
to 20 different known tracking companies. Each processor is
designed to analyze the traffic directed at the targeted tracking
endpoint and parses the contained data in-depth. We identify
a targeted endpoint by scheme, host, and path. This affords
us the capability to detect any data collection or processing
before Consent. Which is an indirectly stated requirement
for any privacy consent dialog: processing can only rely on
consent as a legal basis if it occurs after consent has been
given.

The endpoints were chosen by their overall requests fre-
quency in our data set as well as for being a known tracking
endpoint. We chose to focus on specific endpoints as it al-
lows us to analyze the vast amount of information send to
an endpoint including information that would normally be
overlooked. We selected datapoints to extract, based on the
content of the request by analyzing parameters send via query
or body to the same endpoint. To understand values we lever-
aged the field names if available or recognizing values, e.g.,
IP or Device Name, by manually analyzing requests. A good
example for data transmitted that would be lost by perform-
ing a generic search for data of already known information
would be the language of the device (commonly just a two
letter string), or a flag whether the device is already rooted
(a simple boolean value). This type of focused analysis also
allows us to decode information that is not transmitted in
the clear but encoded. An example would be our support for
Protobuf [23] used by Firebase.

Even though not every data point is person specific infor-
mation (e.g., the localization of a device) as soon as it is
transmitted in combination with an identifier6 it is personal in-
formation and requires consent. Furthermore, previous work
has shown that a set of non personal identifiers can be used
to identify a person [35, 36, 43, 44, 64] or a device [38] and
thus could be used as an indirect identifier, which again would
then be covered by the GDPR [52]. Thus, focusing specific
endpoints allows for a novel perspective on the vast amount
of information leaked by mobile applications into the internet.

6We consider the Google Advertisement ID (GAID), the iOS Advertise-
ment Identifier (IDFA,IDFV), and any UUID to be an Identifier.



6.4 Summary of Capabilities and Limitations

In this section, we described our framework to run mobile
applications based on previous work and own additions to
provide interaction capability. We are able to automatically
download, install, run, interact with, collect traffic, and re-
move apps for both Android and iOS. Furthermore, we are
able to extract and analyze displayed consent dialogs while
monitoring transmitted traffic. However, our approach does
come with limitations:

Choice of System and Configuration: We leverage a
rooted Galaxy A13 for Android and a jailbroken iPhone for
iOS. Either method of gaining administrative access can be
detected by apps potentially leading to different behavior
as when run on a vanilla mobile phone, e.g., some banking
apps are known to refuse running on a rooted device for
security reasons while other apps might alter their data col-
lection behavior. This does impact the amount of successful
app analysis and might impact the observed traffic. Further-
more, despite leveraging SSL KillSwitch and Objection and
installing our mitmproxy certificate on the phones, apps do de-
ploy SSL certificate checking not affected by those measures.
Consequently, not all requests can be successfully intercepted.

Furthermore, during measurement we deny each app the
tracking permission on iOS as OS based consent dialogs are
out of scope. This may impact the collection behavior of apps
on iOS.

Limited Interaction: We only interact with a detected
consent dialog to either give or deny consent. This results in
two measurements if both an unambigious accept and a reject
button are present. This limited interaction may lead to missed
dialogs that appear later during app usage or otherwise missed
transmission behavior that is triggered by user interaction.

Wrong Dialogs/Violations Detection: Apps may contain
text elements and buttons that indicate a dialog to our im-
plementation but a human inspector would overturn such a
verdict. We optimized our approach of dialog detection and
analysis to rather miss a dialog if it is not clear cut. Due to
this optimization, we may miss dialogs that could be detected
using more lenient rules.

Limited Legal Clarity: Our stated design requirements
are based on our legal understanding of the sources we found.
However, as always with legal matters, it is not always clear
cut whether something is against the law or not and opposing
opinions do exist. Consequently, every classification by our
implementation, indicating some form of GDPR violation,
should be treated as opinion rather than fact unless substanti-
ated by a court of law.

Our methodology and consequently any analysis based on it
has to account for those limitations. The first two limitations
limit the apps and app traffic we are able to monitor and
potentially reduce the amount of detected leaked information.
The third limitation affects the amount of dialogs we are
able to extract and analyze, thus, limits the result set. The

Overall Android iOS
Down. 4779 (100%) 3006 (100%) 1773 (100%)
Succ. 3654 (76.5%) 2134 (71.0%) 1520 (85.7%)
None 2823 (77.3%) 1636 (76.7%) 1187 (78.1%)
Link 232 (6.3%) 151 (7.1%) 81 (5.3%)
Notice 165 (4.5%) 97 (4.5%) 68 (4.5%)
Dialog 434 (11.9%) 250 (11.7%) 184 (12.1%)

Table 1: Table summarizing our detected dialog types overall
and split by operating system.

last limitation reduces the amount of consent dialogs we are
able to identify. Thus, our overall work and results are in
favor of the applications we analyze as we consider a missing
consent dialog and undetected personal information leakage
less severe than detected ones.

7 Analyzed Consent Dialogs in Numbers

In the previous chapters, we discussed motivation (Section 3),
and methodology (Section 6), as well as our initial static anal-
ysis on the popularity of CMPs (Section 5). Now we present
the raw results obtained by our dynamic analysis of Android
and iOS Apps. We start by performing a manual spotcheck
of our results, then detail the numbers of detected dialogs,
dialog types, and contained Dark Patterns. Afterwards, we
present how data collection behavior of apps differs before
and after agreeing or rejecting consent as well as our detection
of TCF-related string properties set in apps.

We were able to analyze 3654 apps. On iOS we success-
fully analyzed 1520 apps (85.7%), whereas under Android
we were able to successfully analyze 2134 apps (71.0%). An
unsuccessful measurement can have different reasons. The
most trivial reason is that an app refused to start or stops run-
ning at some point during the analysis. This behavior could
be due to bugs or the app refusing to start, e.g., due to being
run on a rooted/jailbroken device (ref. Section 6.4). The client
of Appium running on the device was also observed to crash,
leading to an unsuccessful and consequently missing mea-
surement. Furthermore, Appium is not always able to extract
elements or screenshots. Those Appium related limitations
are not necessarily deterministic and it is possible that an
App exhibits multiple failures across multiple measurements.
Remember that we require multiple measurements to collect
traffic and interact with a privacy consent dialog. An iOS
specific limitation is the lack of a working jailbreak for the
current version. Consequently, we are forced to work with
iOS 14.5, and 169 (9%) required a more recent OS.

Each App exhibiting a measurement error is excluded from
our analysis and, thus, incomplete measurements and missing
elements or screenshots do not impact our results. However,
this also means that we do not observe those apps data collec-
tion behavior or privacy consent dialogs, this might introduce



None Link Notice Dialog

Initial 192 194 23 14 10 11 25 31
None - - 0 5 0 1 0 1
Link 2 5 - - 0 0 1 0

Notice 1 5 8 6 - - 0 1
Dialog 4 10 8 2 0 2 - -

Table 2: We visually checked 500 randomly selected apps and
counted how many were classified into the wrong category.

a measurement bias as we miss apps that, e.g., refuse to run
on a rooted/jailbroken device.

7.1 Manual Validation of Results
Overall our results demonstrate that only a subset of apps
display a dialog and even if they do display a dialog they
leverage design choices to nudge a user towards consenting.
To underline our results we perform a manual inspection
of a subset of apps to understand the performance of both
our taxonomy as well as our dialog design pattern detection.
We inspected 500 apps concerning their taxonomy and 40
concerning the detected design choices.

For our manual inspection we use artifacts collected during
our automated app analysis as Appium allows not only to
take a screenshot of the whole app but also of individual
elements. Thus, we are able to reconstruct the classification
and interactions our measurement implementation did.

Overall the results demonstrate that our implementation is
in favor of the app developer as we are under reporting the
amount of privacy consent dialog and, thus, the amount of
apps that are deploying hostile design patterns to nudge users
towards giving consent. Furthermore, our analysis on why
our implementation made mistakes shows that errors are due
to technical limitations and side cases in phrasing or design
choices that require a human to make a proper decision.

Finally, our manual inspection of detected dialogs con-
firmed our expectation of a broad spectrum of privacy consent
dialogs. We encountered dialogs that contain short catch-all
texts as well as extensive texts with explicit description of the
legal basis for data collection.

7.1.1 Taxonomy

The manual inspection of initial app screens demonstrates that
we are able to distinguish between our four different types
of privacy consent dialog (None, Link, Notice, Dialog) and
do not paint a worse picture than actually exists. We look at
the initial display content of an app, i.e., the elements we are
basing our taxonomy classification on and check, whether a
human inspector would perform a similar judgement as our
implementation. Finally, we also look for indicators that a
consent dialog could be hidden behind initial privacy consent

Initial Wrong Missed

Clear Accept 11 10 2 0 0 0
Ambig. Accept 9 9 0 0 0 0
Highl. Accept 6 9 0 1 1 0
Clear Reject 5 3 0 0 0 0
Ambig. Reject 7 10 1 3 2 1
Interaction 11 13 2 2 0 0

Table 3: We visually checked 40 randomly selected apps pre-
senting a privacy consent dialog and verified that the design
patterns we extract match a visual inspection.

dialog unrelated interactions, but is not directly accessible to
the user after the app is started.

The manual inspection revealed that our implementation
is in favor of app developers as we are underreporting the
amount of privacy consent dialogs with 53 apps displaying
some stronger form of privacy consent dialog than detected
by our implementation. Each app that does not have a privacy
consent dialog is negligent in their approach towards user
privacy whereas an app that uses Dark Patterns in their privacy
consent dialogs could be considered malicious.

We also detected 9 privacy consent dialog apps that were
displaying a weaker form of privacy consent dialog. How-
ever, only 3 of those relate to a proper privacy consent dialog
being part of our design requirement analysis: We detected
one dialog due to Appium extracting more than was visually
displayed including multiple dialog associated keywords and
button labels leading to the wrong classification. The identifi-
cation of a link as a dialog was due to the unusual structure
of the displayed app, dedicating a heading to a privacy link,
leading to the wrong classification. Finally, the wrongful iden-
tification of a notice as a dialog was due to the app opening a
keyboard including a dialog associated button label, leading to
the wrong classification. In each case the technical detection
of a dialog was correct, however, the context of the detection
lead to a human inspector to overturn the classification. A
summary of the taxonomy classification check are given in
Table 2.

During our visual inspection, we detected 6 apps for which
the display indicates that further interaction will lead to a
consent dialog, either by saying so or due to an dialog partially
hiding a privacy consent dialog. Those numbers show that
further work on the open research question of in-depth app
interaction is required. However, detecting those dialogs is
out of scope for this work, as we are focusing on initially
displayed consent dialogs.

7.1.2 Dialog Design Patterns

After analyzing how well our sorting into our taxonomy works
we now perform a manual inspection of design requirement



analysis. We isolate different failure modes and contextualize
them into our overall design analysis. Overall we encountered
7 classifications that can be partially criticized when applying
a human eye. We had one interaction failure, due to a root
warning preventing Appium from performing an interaction,
thus, potentially incorrectly reporting an app that does not
close after refusing consent favoring the dialog design. We
extracted one dialog that was hidden behind an overlay, i.e.,
the dialog was correctly recognized however, the extraction of
the buttons yielded the wrong colors. We wrongly classified a
link as a dialog, due to a button being present on the screen
but actually in no relation to the privacy text which requires
context intelligence to recognize. Additionally we wrongly
classified a consent dialog as being a privacy consent dialog,
however, the text the user agrees only relates to the terms
and conditions. The wrong button identifications were due
to specific keywords being used separately and thus being
wrongly recognized as buttons. Details of our classification
check are given in Table 3.

7.2 Consent Dialogs and Dark Patterns

While running the apps, we applied our consent dialog de-
tection. Overall, we detected 814 (22.3%) apps displaying a
privacy consent dialog on start. 232 (6.3%) displayed a link,
165 (4.5%) displayed a notice, and 434 (11.9%) displayed
a proper dialog. Overall, the differences between Android
and iOS are minuscule. The results are listed in Table 1, also
stating the distribution for Android and iOS individually.

7.2.1 Dark Patterns

After sorting all detected privacy consent dialog into our tax-
onomy, we are left with 434 (11.9%) proper dialogs.

Those pass the first muster towards fulfilling our minimal
privacy consent dialog design criteria and we are interested in
a more in-depth analysis of their design elements. As estab-
lished in Section 3, a consent inquiry has to be explicit, present
an actual choice, and must not trick the user into consenting.

We applied our detection facilities to extract elements of
detected proper dialogs and determine if our stated design
criteria are met as detailed in Section 6. An overview of the
results is given by the UpSet plot in Figure 1.

We detected at least one violation of our design require-
ments in 429 apps (98.8%). On Android, we detected a viola-
tion in 246 (98.4%) dialogs, and on iOS in 183 (99.5%).

However, a violation of our design requirements is by itself
not necessarily a GDPR violation. They may only invalidate
the consent given and, thus, render any personal data col-
lection based on such a consent a possible violation. We,
consequently, still have to analyze the data transmission done
by those apps.

7.3 Before and After Consent
During our dialog analysis, we collected all transmitted traffic,
each time running the app for 60 seconds. Between each app
execution, the environment was reset by removing the app.
The first collection established the transmitted traffic before
any interaction with the consent dialog. The second collected
the transmitted traffic after interaction with the consent dialog.
While running the apps, we successfully intercepted 128468
requests with 50% of apps making less than 35 and 75% of
apps making less than 15 requests. 187 apps made no request
at all out of which 149 were on Android and 38 on iOS.
We analyzed the obtained traffic and leveraged our tracking
endpoint specific processors. Overall 25.2% of all intercepted
traffic was directed to one of our monitored tracking domains
with 14.0% of traffic being covered by our endpoint parser.
We distinguish between anonymously transmitted data and
pseudonymous transmitted data, i.e., data that is accompanied
or by itself an identifier.

7.3.1 Before Consent

Analyzing the transmitted traffic, 1285 (35.2%) apps sent
at least one request containing a unique identifier rendering
the contained information at least pseudonymous and thus
covered by the GDPR. The majority of the transmitted data
was transmitted pseudonymously. The distribution of different
data types transmitted anonymously or pseudonymously is
presented in Figure 2.

Overall, 17418 requests went to one tracker covered by our
endpoint parser before any interaction took place. Mapping
the requests back to apps, leads to 3013 (82.5%) of apps
contacted one of our covered tracking endpoints before any
interaction took place.

7.3.2 After (No) Consent

For each proper dialog, we repeated our collection twice if
a dialog had the appropriate buttons. Once for rejecting con-
sent and in a separate run accepting the consent dialog using
Appium. Overall we performed 350 accept and 112 reject
analysis. We then monitored the transmitted traffic after inter-
action.

This resulted in 6653 and 839 requests for accept and reject,
respectively. Overall, 77 apps transmitted pseudonymous data
after accepting the consent dialog out of which 75 where new.

We observed 5 transmitting pseudonymous data after inter-
acting with an unambiguous reject button out of which all 5
were new. Of the traffic intercepted after giving consent 7.2%
went to one of our covered endpoints. Meanwhile after reject-
ing consent, the proportion was 10.8%. Figure 2 shows the
amount of different data points transmitted to trackers after
giving consent. There is no corresponding figure for trans-
mitted data after declining consent due to the low number of
observed requests.



Figure 1: UpSet plot [29, 53] showing the different possible combinations of Dark Patterns we have detected in consent dialogs.
The upper violin plot illustrates the distribution of top chart positions among the apps in the respective set.

Figure 2: The amount of transmissions of our monitored data types before and after giving consent. The data is grouped by
whether they were transmitted anonymously or in combination with a unique identifier. Both IDFA and Google Advertising ID
are included in GlobalOSAdvertisingIdentifier.



7.3.3 Relevance of Consent

Overall, we detected pseudonymous data transmission aggre-
gated across our runs with and without interaction for 355
(81.8%) apps with any type of consent dialog. Out of the apps
using a dark pattern in their dialog, 187 (43.6%) transmit
pseudonymous data in any of our runs. This means that 43.1%
of all detected proper dialogs presumably failed to acquire
valid consent for the observed data collection.

7.3.4 Detected IAB TCF Property Strings

We already statically inferred that only a small subset of apps
are using one CMP out of our selection of possible CMPs.
However, we want to verify and augment those numbers with
actual observed CMP usage and how sensible retrieved CMP
data is. During our runs, we also collected the property strings
set by an app during execution and analyzed them to check
whether they belong to the IAB TCF [32] by searching for
property strings starting with IABTCF_. Besides the standard-
ized data storage format this framework also provides the
largest amount of covered CMPs in our list and provides a fea-
sible approach to gain insight into the actual usage of CMPs,
though, with a selection bias for IAB TCF compliant CMPs.

We detected 146 apps setting such a string (76 on Android,
and 70 on iOS). For 57 of those apps, we did not detect a
dialog. During manual confirmation, only 17 were actually
showing a dialog and thus were missed by us due to highly
specific sentences or rendering the display as an image render-
ing use of Appium to extract text impossible (see Section 7.1).
2 apps were setting the any TCF related string after interac-
tion, the remaining 123 set the values before interaction. We
analyzed whether the value for the applicability of the GDPR
is set, what CMP is being used, and the configuration string
itself containing agreed-to collection purposes and vendors.

Applicability of the GDPR: A total of 129 apps correctly
stored that the GDPR applies, 8 apps incorrectly assumed that
the GDPR does not apply. This information is stored as a
Boolean value labeled ’IABTCF_gdprApplies’.

Used CMPs: 121 apps set the CMP value, with Source-
point (55 apps) and Google (23 apps) being the most popular
by far. Followed by OneTrust with only 14 apps. The remain-
ing CMPs only having single digit usage numbers.

Agreed-to Collection Purposes and Vendors: We de-
tected the TC string also containing purposes and vendors in
64 apps. Out of 24 possible different purposes, on average
consent was stored for 7.15 with a median value of 10. On
average 262.35 vendors were consented to with a median
value of 137.

8 No Regard for Consent

In Section 4, we have downloaded 4779 apps, statically an-
alyzed the library usage to detect inclusion of CMPs in Sec-

tion 5, and run each app to collect traffic while analyzing and
interacting with presented consent dialogs in Section 7. We
interacted with the dialogs by either accepting or if possible
rejecting consent to data collection.

In this section, we discuss the implications of our results.
We compare them with corresponding results in previous
work on mobile application data collection and web-based
consent dialogs. Finally, we discuss consequences and possi-
ble solutions to the observed lack of regard for consent and
respect of privacy by app developers in a call to action.

8.1 No Real Prevalence of CMPs or the TCF
Overall, we detected only minor usage of CMPs with only
252 (5.1%) apps containing any class or library contained
in our curated list of popular CMP identifiers. All of them
were IAB TCF compliant. This statically retrieved number
was confirmed by our dynamic analysis as we only detected a
TCF-related settings in 146 (4.0%) apps. This highly limits
any analysis approach based on frameworks and hinders re-
searchers, privacy advocates, and possibly privacy enforcing
tools from leveraging the power of a framework to research
and improve the state of consent on a fine-grained level, such
as the purposes for which consent is given.

When comparing the usage of CMPs with previously re-
ported web usage, we can see a similarly small popularity.
Matte et al. [54] report a TCF-compliant cookie banner on
6.2% of crawled Tranco top 1000 sites for different TLDs.
They report a high variability between TLDs, ranging from
18.9% on .uk to 0% on .mt. Nouwens et al. [60] detected the
usage of a CMP on 6.8% of crawled UK Top 10k domains but
reference a no longer accessible survey from 2019 that places
CMP usage at around 20%. They also name possible method-
ological issues that indicate that Nouwens et al. numbers are
more accurate concerning actual usage. A newer survey from
the same source places the CMP usage across the top 10k
US sites at at least 33% as of Q1 2022 [5]. If we assume the
academic numbers to be the correct ones, the small popularity
of around 6% is mirrored in the mobile space with only 4.0%
actively using a TCF-compatible CMP and our static analysis
indicating that 5.1% include a CMP from our curated list.

However, even in the few detected usages of the TCF, we
detected questionable usage. On average, consent was stored
for 262.35 vendors, which is, even assuming a proper consent
dialog, questionable under the GDPR as consent needs to be
informed. We seriously question the possibility to properly
inform a user about that many vendors.

8.2 More Data Transmission Before than After
Consent

During our traffic collection, we detected 120976 requests
before any interaction took place, and only 6653 and 839 after
accepting or rejecting consent, respectively. Overall 14.0% of



requests were analyzed by our endpoint parser. We detected
that 75 and 5 apps started sending pseudonymous data in ei-
ther group, compared to 1285 in our initial traffic observation
before any interaction. Based on the difference in magnitude
of requests as well as in amount of identifiers send, it is safe
to assume that most personal data is leaked before any dialog
has been processed and agreed to by the user. This has clear
implications for privacy-conscious user as they cannot trust
an app to ask for permission prior to data collection, thus,
each starting of an app bears a risk of leaking personal in-
formation. Furthermore, users cannot expect that they will
have a choice free from incentives towards sharing their data
if they are presented with a privacy consent dialog and are
forced to consciously and carefully interact with privacy con-
sent dialogs to prevent being nudged towards a decision. This
demonstrates a clear disregard for consent and user privacy
concerning contacting trackers or transmitting personal infor-
mation. Our results are in line with recent previous work on
Android [58], Android compared to iOS [49], and iOS [48].
Based on this repeated demonstration of data leakage by dif-
ferent research groups, it must be considered a fact for the
time. The GDPR did not have the intended effect for users of
mobile apps and action has to be taken to improve privacy for
them.

8.3 The Questionable State of Consent Dialogs

Only a small percentage of apps (22.3%) displayed any form
of consent dialog, and even fewer offered the user an actual
dialog with at least a button (11.9%) suggesting some form of
active choice for the user. Combining this with the high trans-
mission of personal information (Figure 2) and the amount of
requests going to our limited set of endpoint trackers already
demonstrates that the requirement to inquire active consent
or any consent at all is widely ignored.

The state of consent inquiry becomes even worse when
looking at the design choices made in the detected proper
dialogs. For both Android and iOS, the dialogs that deployed
Dark Patterns to nudge a user towards consent were at 98.4%
and 99.5%, respectively. This highlights a clear disregard for
user choices independent of the operating system.

Another aspect visible from our UpSet diagram (Figure 1)
is that Dark Patterns in privacy consent dialogs are not re-
stricted to low or high ranking apps but are present through-
out. The diagram includes a violin plot, i.e., a visualization
of density and range, displaying the app ranks contained in
the sets described by the intersections below. Those violin
plots, bearing intersections with a small cardinality, span the
whole range or close to the whole range of app ranks consid-
ered with the median being close to the center of the range.
It is possible that top 100 apps are not sufficiently different a
difference becomes visible when analyzing even higher ranks.
However, Nguyen et al. performed a long-tail app analysis
and found that there is no real difference between high profile

apps and long tail apps when it comes to transmitting personal
information prior to any consent [58]. It stands to reason that
this disregard for privacy transfers to privacy consent dialogs.

Previous work on consent dialog was primarily focused on
web consent dialogs. In 2019 Eijk et al. [72] found a consent
dialog or notice on 40% of analyzed websites (1500 websites),
and Sanchez-Rola et al. [65] on 50% (2000 websites). A year
later, Mehrnezhad et al. [56] report observing a consent dialog
on 91% of websites (116 websites). Even though the web data
sets are individually smaller than our mobile data set, they
indicate a high prevalence of dialogs which is mirrored in our
subjective observations when browsing the web. This is in
contrast to our mobile observations, where we only detected
dialogs in 22.3% of all apps.

When comparing privacy consent dialogs on the web with
the mobile ecosystem we detected an accept but no reject
button in 40.6% of all dialogs, whereas Mehrnezhad et al. [56]
reported only 35.4% of all analyzed websites having such a
dialog. Nouwens et al. [60] report finding a reject all button
on only 12.6% of websites, though this criterion is strictly
stronger than ours.

9 Conclusion

In this paper, we presented a tool chain for both Android and
iOS to download apps, run, and analyze their traffic, as well as
consent dialogs. Furthermore, our tool chain is able to interact
with displayed consent dialogs. We used this tool chain to
analyze the traffic transmission behavior in the context of the
presented consent dialogs. Out of 4779, apps we detected a
consent violation in 43.1%. Furthermore, we observed that
94.2% of requests already occur before any interaction with
a consent dialog happened, leading us to the conclusion that
consent dialogs amount to little more than window dressing
and are not respected.

In order to assess our findings in a broader context, we
compared the results of our study with similar measurements
made on the web. To our surprise, we were able to show that
mobile applications are even less privacy-respecting than web-
sites. Our low number of privacy consent dialog conforming
to our minimal design requirements paints a clear picture of
the app developers’ blatant disregard for the user’s wishes
towards their privacy.
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Appendix

Targeted Tracker

It is not only interesting to see how much requests is trans-
mitted but also who is on the receiving end. Across all our
supported endpoints Firebase was the most popular endpoint
for receiving data. Figure 3 shows a scatter plot associating
our supported endpoints with the amount of received data
points. Overall if an endpoint collected on an operating sys-
tem, it across a large variety of different data points, however,
not all tracker are active on all platforms. Figure 4 shows the
data send to our monitored endpoints after giving consent
respectively.

Initial observation shows that Facebook, Doubleclick,
Mopub, and start.io show anomalies concerning the operating
system.

Facebook primarily collects data on Android. However,
we still intercept a significant number of requests directed at
Facebook, but they do not contain any of our supported per-
sonal information. Even after giving consent this pattern does
not change. Our hypothesis is that the Facebook associated
libraries do not perform any data collection on iOS anymore
but are still left in by the developer.

Doubleclick seems to collect only data on iOS. We iden-
tified the url https://googleads.g.doubleclick.net/
mads/gma and https://googleads.g.doubleclick.ne
t/getconfig/pubsetting as observed popular endpoints

receiving personal inforamtion. However, those endpoints
seem to only be utilized on iOS. Especially the /mads/gma,
carrying the most information, does not appear in our Android
traffic data set.

Mopub is only active on Android. However, Mopub was
acquired by AppLovin and has sunset on March 31. 2022 [2].
It is surprising to still see Mopub requests. We explain this
artifact by apps still using an old library either due to devel-
opers holding off on making the required code changes or the
app not having been updated since.

start.io also is only active on Android. We are monitor-
ing three different endpoints and neither is targeted by any
requests on iOS.

Regular Expressions
Due to space constraints we cannot include our used regular
expressions to identify dialog and dialog elements. However,
they are published with our code at pending publication.

https://googleads.g.doubleclick.net/mads/gma
https://googleads.g.doubleclick.net/mads/gma
https://googleads.g.doubleclick.net/getconfig/pubsetting
https://googleads.g.doubleclick.net/getconfig/pubsetting
/mads/gma


Figure 3: The amount of different datapoints direct at different endpoints prior to giving or refusing consent.

Figure 4: The amount of different datapoints direct at different endpoints after giving consent.
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