
Exorcising “Wraith”: Protecting LiDAR-based Object Detector
in Automated Driving System from Appearing Attacks

Qifan Xiao*, Xudong Pan*, Yifan Lu, Mi Zhang�, Jiarun Dai, Min Yang�

Fudan University, China
{20210240056@, xdpan18@, luyifan21@m., jrdai14@, mi_zhang@, m_yang@}fudan.edu.cn

(*: co-first authors; �: corresponding authors)

Abstract
Automated driving systems rely on 3D object detectors to rec-
ognize possible obstacles from LiDAR point clouds. However,
recent works show the adversary can forge non-existent cars
in the prediction results with a few fake points (i.e., appearing
attack). By removing statistical outliers, existing defenses are
however designed for specific attacks or biased by predefined
heuristic rules. Towards more comprehensive mitigation, we
first systematically inspect the mechanism of recent appearing
attacks: Their common weaknesses are observed in crafting
fake obstacles which (i) have obvious differences in the local
parts compared with real obstacles and (ii) violate the physical
relation between depth and point density.

In this paper, we propose a novel plug-and-play defensive
module which works by side of a trained LiDAR-based object
detector to eliminate forged obstacles where a major propor-
tion of local parts have low objectness, i.e., to what degree
it belongs to a real object. At the core of our module is a
local objectness predictor, which explicitly incorporates the
depth information to model the relation between depth and
point density, and predicts each local part of an obstacle with
an objectness score. Extensive experiments show, our pro-
posed defense eliminates at least 70% cars forged by three
known appearing attacks in most cases, while, for the best
previous defense, less than 30% forged cars are eliminated.
Meanwhile, under the same circumstance, our defense incurs
less overhead for AP/precision on cars compared with existing
defenses. Furthermore, We validate the effectiveness of our
proposed defense on simulation-based closed-loop control
driving tests in the open-source system of Baidu’s Apollo.

1 Introduction

In automated driving systems (ADS), multiple deep neural net-
works (DNNs) are jointly deployed to provide key functional-
ities of localization, perception and planning, stimulating the
recent development of automated transportation [8, 33, 36].
The robustness of each DNN module is of key importance to

Figure 1: Appearing attacks on LiDAR-based object detectors
in ADS can cause severe traffic accidents by forging cars.

the security of the whole ADS. A typical example is the per-
ception module, which relies on a vector of object detectors,
based on multiple sources like cameras and LiDARs [7], to
predict the categories and locations of the obstacles around
the ADS [12, 32]. As the LiDAR point clouds (PCs) contain
richer location information than the images from cameras,
most commercial ADS, including Google’s Waymo One [5,6]
and Baidu’s Apollo [1,2], set LiDARs as the main sensors and
rely on the detection results of LiDAR-based object detectors
for obstacle perception [27, 32, 37, 38].

Differently using PC as the model input, LiDAR-based
object detectors still share the common vulnerability against
adversarial examples [12, 42, 48]. In general, the attacker
can spoof the LiDAR sensors with a limited number of per-
turbed/crafted points to mislead the detector’s prediction. As
a popular attack class, the appearing attack aims at forging
non-existent cars in the detection results to cause traffic jams
and emergency braking [11, 39] (Fig.1). Despite the severity,
existing defenses [15, 24, 41] either have strong prior assump-
tions on the undergoing attacks, or are biased by predefined
heuristic rules, insufficient for handling complex driving sce-
narios (§3.3).
Our Work. In this paper, we propose a novel plug-and-play
defense for 3D object detectors, which, instead of constructing
a more robust model, adopts a local objectness predictor
(LOP) module to detect and eliminate forged obstacles from
the original detection results. In general, our LOP is designed

as a point-wise PC classifier [29, 34, 35, 45] which learns to
predict each local part of a detected object with an objectness
score, i.e., the confidence of whether the local part belongs to
a real object. By systematizing recent appearing attacks, we
develop the following defensive insights:

1. Recent appearing attacks focus on increasing the confi-
dence score of a fake detection result without considering
the local difference between a real and a forged obstacle.
Although an increased confidence score enhances the pos-
sibility of a non-existent obstacle to be detected by a 3D
object detector, most appearing attacks leave the fake and
the real obstacles locally distinguishable when inspected
at the granularity of pillars or voxels (§4.1)

2. Constrained by the physical capability of attack appara-
tus, appearing attacks are usually unable to forge a fake
obstacle without violating some physical laws, especially
the inimitable relation between the depth and the point
density of real obstacles [14]. To pose real-world threats,
the forged obstacles have to be close to the victim ADS,
because otherwise they can be easily bypassed after the
victim’s re-routing. Yet, constrained by the attack appa-
ratus (e.g., a laser transmitter [41]), the attacker can only
forge a limited number of points near the victim during one
scan of the LiDAR, which could hardly reach the normal
point density of a real car at a close distance (§4.2).

Concurrent to our defense, Hau et al. [24] also notices
the importance of the physical law in detecting forged obsta-
cles, and presents a set of hand-crafted rules to eliminate the
anomaly. Our work steps further by showing stronger robust-
ness can be achieved if we exploit learning-based techniques
to model the complicated physical laws. In fact, modeling
the relation between the depth and the point density is rather
challenging with hand-crafted rules. For example, although
most of the real cars with smaller depth tend to have larger
point density, those real cars occluded by others may also
have smaller depth and point density simultaneously (Fig.4).
To address this challenge, we implement the LOP as a DNN-
based point-wise PC classification model and explicitly in-
corporate the depth information of each point into its feature
vector. This substantially improves the modeling capability
compared with using the original input feature for statistical
outlier detection.

Moreover, another technical challenge is the lack of no
explicit annotation available for supervising the training of
LOP in standard 3D object detection datasets. Inspired by
a recent observation that a single part of the input already
contains rich semantic information for a PC model to predict
its related object’s category and location [15], we construct a
self-supervised learning task where the LOP learns to predict
whether a pillar intersects with any bounding box of real
objects based on the features of its inside points. During
the detection, we first divide the input 3D space into equal-
sized pillars, then the LOP predicts an objectness score for

each pillar intersected with a predicted object’s bounding box.
By majority voting on the local objectness predictions, our
defense determines whether the object is real or fake (§4.3).
Our Contributions. In summary, the key contributions of
this work are as follows:
• We systematize the limitations of recent appearing attacks
in violating the physical invariants and propose a learning-
based defense to detect the forged obstacles with anomaly in
the relation between the depth and the point density for the
mainstream LiDAR-based object detectors.
• We propose the design of our local objectness predictor
(LOP) which learns to predict the confidence of whether a
local object part belongs to a real object, and allows plug-and-
play integration with different defense targets for enhancing
robustness against popular appearing attacks.
• Extensive evaluation on mainstream 3D detectors (i.e., Point-
Pillars [27], PointRCNN [38] and PV-RCNN [37]) on the
KITTI dataset [19] and on real-world PC data we collect from
a driving test of the D-KIT Advanced with Velodyne-128 [4]
validate the advantages of our proposed defense under three
popular attacks. For example, with the same-level trade-off in
model utility, our proposed defense eliminates at least 70%
cars forged by most appearing attacks, while the best baseline
method only eliminates the forged ones less than 30%.
• Moreover, we empirically validate that the effectiveness of
our proposed LOP is robust to the architecture design of the
LOP, the type of the defense target (including fusion models)
which further implies our defense is more general-purpose
than existing defenses. Besides, we also provide a preliminary
study on the robustness of LOP against adaptive attacks.
• We further implement and evaluate the effectiveness of LOP
in Apollo 6.0.0, an end-to-end open-source self-driving sys-
tem, with closed-loop control in the LGSVL simulation tests,
which validates the system-level usefulness of our proposed
defense in both benign and adversarial scenarios.

2 Background

Basics of LiDAR. As one of the main sensors deployed in
an automated driving system (ADS), a LiDAR (Light Detec-
tion and Ranging) scans the surrounding environment and
generates a point cloud (PC) X = {(xi,yi,zi, inti)} ∈ Rn×4, in-
cluding n points with (xi,yi,zi) as i-th point’s location and inti
as i-th point’s intensity, during each detection [7, 39]. Tech-
nically, the LiDAR first emits a laser ray consecutive in both
horizontal and vertical directions, which then captures the
reflected lasers, records their time of flight and light inten-
sity, and further computes the depth and 3D coordinate of the
points related to these reflected lasers. Finally, the LiDAR
collects these information to generate the raw PC, which rep-
resents the object surfaces in the surrounding environment,
and sends this raw PC to the ADS for downstream processing.
3D Object Detectors. DNN-based 3D object detectors em-
power modern ADS for perceiving and detecting objects in

the surrounding environment (i.e., obstacle perception). Tech-
nically, a 3D object detector usually takes PC as the input and
returns the category and bounding box, a rectangle or cuboid
which bounds the detected object to represent its location in a
PC, of each perceived object [21]. In most cases, 3D object de-
tectors can be regarded as the combination of three modules:
the preprocessing, the backbone and the prediction modules.

A typical preprocessing module first divides the points
of PC into a number of sets (e.g., voxels or pillars) based
on specific rules and then calculates the statistical informa-
tion [27, 52], or uses DNN models, such as PointNet [34]
or DGCNN [45], to generate the feature vectors for each
point [38]. Then, the backbone module implemented with
2D/3D convolutional neural networks (CNN) [26,28] extracts
the PC’s features and generates the global feature map. Fi-
nally, the prediction module in one-stage 3D object detectors
like VoxelNet [52] and PointPillars [27] directly predicts the
bounding box and category of each obstacle based on the
global feature map. Differently, in two-stage 3D object detec-
tors like PointRCNN [38] and PV-RCNN [37], the prediction
module predicts the proposal bounding boxes of objects based
on the global feature map and generate a local feature map
for each object based on the combination of the global feature
map and the related proposal bounding boxes at the first stage,
and then the final bounding box and category of each obstacle
based on each local feature map at the second stage.
Adversarial Example. In general, given a machine learning
model F and a normal sample x with label y, an adversarial
example x′ is generated from x by adding a slight perturbation
to mislead the victim model’s prediction while causing no
modification to either the model’s architecture or the parame-
ters [23, 42, 49]. According to the attack goal, an adversarial
example can be further categorized into untargeted and tar-
geted. By definition, an untargeted attack aims at misleading
the victim model into F(x′) ̸= y, while a targeted attack aims
at misleading the victim model into F(x′) = y′, where y′ is
the target label specified by attacker. According to [13], the
targeted adversarial attack can be further represented as the
optimization problem:

argminx′ ||x− x′||p s.t. F(x′) = y′ and x′ ∈ X (1)

where the objective min∥x− x′∥ restricts the region of per-
turbation (i.e., attack budget) and X denotes the input space.
In the context of ADS, to cause severe safety issues, several
recent adversarial attacks focus on conducting LiDAR spoof-
ing to forge a non-existent object in the detection results of a
LiDAR-based object detector, or called appearing attacks, on
which we provide a detailed review in Section 3.2.

3 Security Settings

3.1 Threat Model
• Attacker’s Goal. In general, the direct goal of an appearing
attack is to forge fake cars, in the detection results of the

LiDAR-based object detector in ADS. To refine the attack
goal above, we first analyze the following two attack scenarios
of an appearing attack.
Attack Scenario 1. (On the Highways) As shown in the top
part (a) of Fig.1, an attacker can spoof the LiDAR of the vic-
tim ADS when it passes by. Detecting a forged car at the
immediate front, the victim will make a stop decision and de-
crease its speed to 0 km/h within seconds. The unpredictable
emergency braking may leave no reaction time for other ve-
hicles behind. This may lead to a rear-end collision or even
more severe traffic accidents.
Attack Scenario 2. (At the Traffic Lights) Similarly, as shown
in the bottom part (b) of Fig.1, the attacker conducts LiDAR
spoofing when the victim ADS stops at the red light. By
forging a fake car ahead, the victim will keep immobile even
after the traffic signal turns green, blocking other vehicles
behind and causing a traffic jam.

As the two attack scenarios show, to cause a real-world
threat, the forged cars are required to be not only recognized
by LiDAR-based object detectors with sufficiently large confi-
dence scores, but also close enough to result in the re-routing
of the victim. Therefore, we further refine the attack goal to
expect the cars to be forged in a close distance to the victim.
Specifically, in this work we require a forged car to be within a
5 ∼ 10 meters to the victim to pose a sufficient threat [11,41].
• Attacker’s Capability. Following the threat model in recent
attacks [11, 41], our defense mainly aims at mitigating an
attacker satisfying the following threat model:
Assumption 1. (Prior Knowledge) The attacker knows the
architecture and the parameters of the LiDAR-based object
detector deployed on the victim ADS (i.e., white-box).
Assumption 2. (Number of Added Points) The attacker can
inject at most 200 points (according to [41]) into the input PC
of the victim 3D object detector in one scan of LiDAR.
Assumption 3. (Features of Added Points) The attacker is
allowed to inject points at any location and with arbitrary
light intensity, which is imposed for a more generic defense.
• Attack Process. Before the attack starts, the attacker de-
ploys a physical equipment to receive the lasers emitted by the
victim ADS’s LiDAR, and shoot lasers back to the LiDAR.
Later, the LiDAR-based 3D object detectors of the victim
takes the infected PC and predicts a non-existent car. Finally,
the victim re-routes to avoid the non-existent car, which may
lead to severe collision accidents.

3.2 Recent Appearing Attacks
Next, we review the recent appearing attacks on LiDAR-based
object detectors. As one of the earliest work, Shin et al. pro-
pose a spoofing attack by randomly injecting points into a
certain area regardless of the LiDAR-based object detectors
of the victim ADS, which is sufficient to forge a non-existent
car [39]. Inspired by Shin’s work, Cao et al. standardize the
attack pipeline of adversarial spoofing attack, and propose

an appearing attack, Adv-LiDAR, which aims at breaking
Apollo’s detection system [11]. By modeling the preprocess-
ing and postprocessing modules in Apollo’s LiDAR-based
object detector, Adv-LiDAR successfully uses traditional ad-
versarial attack technology to forge non-existent cars. How-
ever, Sun et al. later prove that other 3D object detectors such
as PointPillars and PointRCNN will not be affected by the
the adversarial samples generated by Adv-LiDAR, and then
suggest a more general black-box appearing attack based on
the intrinsic physical nature of LiDARs [41]. Also, another
attack by Yang et al. shares the same attack goal as the above
appearing attacks but uses a different attack process and phys-
ical equipment [48]. Specifically, they use a physical object
which is specially designed to tempt the 3D object detector
to predict itself as a car with a falsely enlarged bounding box
and therefore fabricate a non-existent part of this object in
the model’s perception. For completeness, we also cover this
attack into the appearing attacks in experiments.

3.3 Previous Defenses

• Rationale behind Defenses by Elimination. To eliminate
the forged vehicles crafted by appearing attacks, a defense
would unavoidably remove a small ratio of detected real ob-
jects from the prediction of 3D object detectors. However,
we argue this would hardly cause as substantial damages to
the ADS as the mistake of detecting forged vehicles. It is
mainly because: (i) As described in the attacker’s goal, ob-
stacles which appear near the ADS take the most decisive
effect on the vehicle’s future planning. Therefore, incorrect
elimination of a real obstacle far from this vehicle may have
limited influence on the decision-making of the ADS [41]. (ii)
In ADS, the multi-object tracking (MOT) module which fol-
lows the perception module will take the predictions from the
LiDAR-based object detectors as input, maintain and predict
the trajectories of objects nearby [17,31,46]. By design, MOT
usually creates an object trajectory for a newly predicted ob-
ject which is constantly detected for 6 frames, while removes
an overdue object trajectory which is continuously unmatched
with any predicted objects for 60 frames in a common visual
perception system [53] of 30 FPS. This mechanism guaran-
tees that it is much easier for an ADS to create a fake object
in its perception due to a successful appearing attack than
forgetting a real object, due to the occasional misprediction of
the LiDAR-based detector itself or the incorrect elimination
of some real objects by such a defense.

Therefore, it is reasonable to tolerate a small ratio of false
alarms from defenses by elimination and recognize the im-
portance of defending against appearing attacks by slightly
trading the recall of LiDAR-based object detectors. However,
the existing defense methods which are possibly against ap-
pearing attacks remain limitations in their design, so it is hard
for them to maintain good performance in different scenes.
To make it clear, we further analyze these defense methods

and discuss their limitations accordingly.
• Limitations of Universal Defenses. SRS (Simple Random
Sampling) and SOR (Statistical Outlier Removal) are two
universal defense methods for PC models. They are both un-
aware of attacks and against adversarial attacks by removing
suspect points in input PC.
(1) SRS. SRS is in essence a random method regardless of any
auxiliary information [51]. Formally speaking, given a raw
input PC X with n points, SRS will randomly sample M(M <
n) points from X by P(X) = {Ix|x∈X , Ix ∼Bernoulli(0.5)},
where Ix indicates the existence of each point x in X .
(2) SOR. For a raw input PC X , SOR computes the average of
the k-nearest neighbors’ (kNN) distances for each point in X ,
and counts the mean µ and the standard deviation σ of these
distances. Then, it recognize those points which fall outside
the range of [µ−α ·σ,µ+α ·σ] as noises and removes them
from X , where α = 1.1 is its hyper-parameter [51].
• Limitations of Specific Defenses. CARLO (oCclusion-
Aware hieRarchy anomaLy detectiOn), SVF (Sequential View
Fusion) and Shadow-Catcher are three specific heuristic de-
fense methods for 3D object detectors. They both specify
the attack as a black-box appearing attack proposed in Sun’s
work [41], and perform defense by removing suspect points
in input PC or deleting suspect objects in the final prediction.
(1) CARLO. CARLO is a heuristic defense algorithm pro-
posed by Sun et al. to detect the cars forged by their black-box
appearing attack [41]. For each object predicted by the 3D
object detectors, CARLO computes an anomalous ratio r in
one of the following two ways: (1) FSD (Free Space De-
tection), which defines r = ∑c∈Sc FC(c)/|Sc|, where Sc is a
set including all the cells in this object’s bounding box, and
FC(c) is a 0/1 function indicating whether there are input
points in the cell c; and (2) LPD (Laser Penetration Detec-
tion), which defines r = |S ↓p|/|S ↓p ⋃Sp ⋃S ↑p|, where the
superscript p indicates the corresponding set is composed of
points. Specifically, S ↓p contains the input points in the space
behind this object, Sp is contains the input points inside this
object’s bounding box, and S ↑p contains the input points in
the space between this object and the LiDAR.

Then, CARLO compares all these r with a fixed threshold
R. For those objects with r > R, CARLO recognizes them as
fake objects and erases them from the prediction.
(2) SVF. Similarly, SVF is another defense algorithm sug-
gested by Sun et al., but its key is more similar to SOR: re-
moving outliers from the raw input PC. As an extra end-to-end
network, SVF turns the raw input PC into front-view (FV) rep-
resentation and uses LU-Net [9], a PC segmenter, to calculate
a segmentation score for each point. SVF then concatenates
these scores with their related points’ input features to re-
generate the input PC, and passes this augmented PC to the
3D object detector as input.
(3) Shadow-Catcher. As our concurrent work, Shadow-
Catcher [24] also exploits the physical law to improve the
robustness of the 3D object detectors in self-driving system.

However, Shadow-Catcher is mainly based on hand-crafted
rules to determine the forged obstacles, while our work pro-
poses the first learning-based defense scheme to model the
complicated physical relation between the depth and density
of real objects for defensive purposes. Specifically, Shadow-
Catcher computes an anomaly score for each detected object
based on the distances of the points inside its bounding box
to four key lines related to its bounding box, then compare
this score with a presetting threshold to determine whether
the perceived obstacle is forged.

As a final remark, most of the previous defenses are initially
designed for mitigating specific appearing attacks. In this
sense, the performance of previous defenses against each
popular attack remains unjustified in a systematic way, which
we accomplish in our evaluation.

4 Defense with Local Objectness Predictor

Methodology Overview. As shown in Fig.2, the pipeline of
our proposed defense can be divided into three stages: training
sample generation, objectness predictor construction and fake
object elimination. In the training sample generation stage,
we construct a learning task for our local objectness predictor
(LOP), which consists of pairs of points inside a small local
pillar and its corresponding objectness label, annotated in a
fully self-supervised way without additional annotation ex-
cept for a standard training dataset for LiDAR-based object
detectors. Then, in the objectness predictor construction stage,
we train the LOP to learn to predict the objectness score for
each pillar, i.e., the confidence of whether a local part belongs
to a real object. Finally, in the fake object elimination stage,
we use our trained LOP to predict an objectness score for
each small pillar intersected with the bounding boxes of the
predicted objects, and determine whether these objects are
real by majority voting. Below, we elaborate on the insights
and the technical designs in each stage of our defense.

4.1 Training Sample Generation
4.1.1 Insight: Global Objectness ̸= Local Objectness

By inspecting the design of recent appearing attacks, we ob-
serve that most attacks focus on increasing the confidence
scores of the forged obstacles, which represents the possibility
of the detected object to be real. Equivalently, according to
our definition of objectness, the confidence score can be ex-
plained as a global objectness score related with the predicted
obstacle to some extent. As most LiDAR-based object detec-
tors by design keep those objects with higher confidence, or
global objectness scores, in their final predictions, increasing
confidence scores is the most direct way for the attacker to
successfully forge a non-existent obstacle. However, to in-
crease the global objectness score of a forged obstacle does
not necessarily lead to a higher objectness score for each local

part. With the following experiments, we observe that most of
the recent appearing attacks have ignored the local difference,
i.e. the spatial distance of two corresponding subsets, between
a real and a forged obstacle, which leaves an exploitable trace
for the defender.
• A Pilot Study. As the description in Section 3, the main-
stream appearing attacks all focus on forging cars, so we
mainly validate the above observation on cars. We first ran-
domly sample one real car from the training set of KITTI [19]
and 1,000 forged cars crafted by three mainstream appearing
attacks [11, 41, 48] (later described in Section 5). Next, we
translate the interior points of each ground-truth car and each
forged car into its local coordinate system, rotated by the lead
angle to the identical orientation. Then, for the point set S of
the real car and S′ of each forged car, we measure the distance
between them by using the chamfer distance [47] and the
average square L2 distance of kNN as metrics.

Specifically, we collect points belonging to the real car as
SR. For each forged car, we first collect points belonging to it
as SF . Then, we split the point space into equal-sized pillars
p j (as in Fig.2), and generate a point subset SF, j = SF ∩ p j
for each pillar. Finally, we calculate the global difference and
local difference as follows:

Dglobal = D(SR,SF) (2)

Davg_local =
1

|{SF, j}| ∑
D(SR,SF, j) (3)

Dhalf_max_local =
1

Nhalf
TopNhalf

({D(SR,SF, j)}) (4)

where SR,SF denote the two specific point sets defined above,
SF, j denotes the point sets gathered from the separated pillars
of SF , D∈{DC,Dk} denotes the metric that we use to measure
distance between two point sets, Nhalf = ⌈|{SF, j}|/2⌉ is half
of the number of point subsets SF, j, and Topk(V) denotes the
sum of the largest k values in V .

As shown in Fig.3, the local differences of the forged cars
are usually larger than the global differences in both chamfer
distance and average square L2 distance of kNN (with all
p-value less than 1.0×10−11 in Kolmogorov-Smirnov tests).
We further compare the local difference and global difference
for each forged car, and find that if we choose Davg_local as the
local difference, there are 55.7% forged cars have larger local
difference on the chamfer distance metric, and 54.5% forged
cars have larger local difference on the average square L2
distance of kNN metric. If we choose Dhalf_max_local as the lo-
cal difference, 87.4% forged cars have larger local difference
on the chamfer distance metric, and 87.5% forged cars have
larger local difference on the average square L2 distance of
kNN metric. Similar results are observed when we repeat the
experiment above on several other real cars randomly sampled
from the training set of KITTI.

In summary, the experimental results imply that the local
features do provide the defender with a trace to distinguish

Figure 2: The pipeline of our proposed defense. The input space is split into a number of equal-sized pillars (in the form of
blue boxes). The red box in 1⃝ represents the bounding box of a ground-truth object during training, while the green box in 3⃝
represents that of a predicted object from the 3D object detector during testing.

Figure 3: The local and global differences of PCs between
real and forged cars (The grey bars inside denote the overlapping region.).

between the real and forged cars. In fact, our insight also
conforms to a recent work on enhancing the precision of
LiDAR-based object detectors [15], where they suggest that
with an appropriate strategy of spatial division, one small
part of real objects can also contain rich enough spatial and
semantic information to predict the category, bounding box
and confidence score of its related object.

4.1.2 Technical Designs

To facilitate the modeling of local object features, in the
first stage we prepare a dataset Dobj consisting of pairs
of points in each pillar from ground-truth objects and an
automatically annotated objectness label based on a stan-
dard training dataset for LiDAR-based object detectors (e.g.,
KITTI [19]). Formally, we denote the training dataset as
D = {(Xt ,{bk}Nt

k=1)}N
t=1, where Nt denotes the number of

ground-truth objects in the PC Xt , and bk denotes the bound-
ing box of the k-th ground-truth object in Xt . First, we split the
full L×W ×H 3D region which covers the input point clouds
into a number of pillars {p j} with an equal size l ×w×H,
where l = 1m,w = 1m in our implementation. Then for each
pillar p j, we generate an input-output pair, which can be rep-
resented as (pc j,ob j j), as follows:
Generating Input pc j. We directly collect the inside points of
each pillar from the input PC Xt to form the input feature pc j,
i.e., pc j = Xt ∩ p j, composed of a batch of points’ features xi
inside p j. To normalize the generated input, we constrain the
size of pc j as Mpc, where Mpc is a fixed hyper-parameter. For
those pc j with a larger size, we randomly sample Mpc interior
points as its input. Otherwise, pc j is padded with 0⃗ until the
size constraint is satisfied.
Generating Label ob j j. We first calculate the 2D Intersection
over Union (IoU), the ratio of the area of intersection region
over that of union region, between p j and each ground-truth
bounding box bk on the x-y plane. For each pillar p j, we keep
the maximal IoU value over all ground-truth bounding boxes.
Finally, we compare the maximal IoU value with a fixed
threshold TIoU. If this value is greater than TIoU, we annotate
ob j j = 1 to indicate that the pillar p j contains a local part of
a real object, or ob j j = 0 otherwise. Iterating over all the PC

inputs with the pillars, we finish the collection of the training
set Dobj = {(pc j,ob j j)}. As an analogy to the training task of
masked word prediction for pretrained language models [18],
this process works in a fully self-supervised manner without
any additional information.

4.2 Objectness Predictor Construction
4.2.1 Insight: The Inimitable Depth-Density Law

Meanwhile, we find that, because recent appearing attacks are
designed to cause threats in the real world, they are inevitably
limited by certain physical constraints imposed by both the
attacker’s goal and the attack apparatus. As is introduced in
Section 3.3, there exist physical upper bounds on the number
of added points and the permissible distance between a fake
object and LiDAR for recent appearing attacks. Behind these
two limitations, we find that the capability of recent appearing
attacks is inherently restricted by the depth-density law [14]:
with existing technology and methods, it is hard to imitate
the real-world objects’ relation between the depth, i.e. the
distance between this object and the LiDAR, and the point
density, i.e. the ratio of the number of input points inside this
object’s bounding box over the volume of its bounding box.
• A Pilot Study. Similar to the reason introduced in Section
4.1, we mainly validate the above observation on cars here.
We first randomly sample 1,000 real cars from the training
set of KITTI and 1,000 forged cars crafted by the mainstream
appearing attacks described in Section 5. Then, we calcu-
late the depth and point density for these objects based on
their bounding boxes and the related points. As shown in
Fig.4, the point density of real cars is approximately inversely
proportional to their depth. In contrast, the point density of
the forged cars seems to be independent of the depth: they
can have small depth and small point density simultaneously,
while this seldom happens for real cars.

Figure 4: The distribution chart of the depth-density relation.
The blue points represent normal cars, the orange crosses
represent forged cars, and the red rectangle shows the con-
founding region of the two.

Though differences exist between real and forged cars in
terms of the depth-density relation, it is still hard to directly
distinguish them by heuristic algorithms. Due to the complex-
ity of real-world environments, there exists the confounding
region in the depth-density relation distribution (highlighted
in Fig.4), which is mainly caused by some real cars occluded
by others, with smaller depth and point density at the same
time. Besides, the complexity is further increased by errors
such as the noise in LiDAR perception and the deficiency of
attack equipment. In other words, it can be improper to explic-
itly filter out any detected object based on the hand-crafted
rules. As a data-driven approach, we alternatively encourage
the LOP to actively learn to model the complicated depth-
density relation of real objects, by further incorporating the
depth information explicitly into the input feature of each
pillar we derive in the first stage.

4.2.2 Technical Designs

At this stage, we augment the input features in our prepared
training dataset Dobj with the depth information. Specifi-
cally, for each generated training sample (pc j,ob j j) in Dobj,
we expand the feature of each point in pc j from an orig-
inal 4-dim vector xi = (x,y,z, int) into a 7-dim one x′i =
(dx,dy,x,y,z, int,dep), where (dx,dy) is the point’s 2D rel-
ative coordinates to the center of its corresponding pillar in
the x-y plane, and dep =

√
x2 + y2 + z2 is the point’s depth.

In our preliminary, we also experimented with an alternative
design with no depth information explicit in the input feature.
The practice would result in a LOP which is much less effec-
tive in distinguishing the forged objects from the real ones
than using our current solution.

To adaptively learn the depth-density relation for distin-
guishing real and forged cars or other obstacles, we implement
the LOP O with the architecture of an off-the-shelf backbone
PC classifier (e.g., PointNet [34] or DGCNN [45]), consid-
ering their validated performance on many downstream 3D
tasks. Note that the negative samples in Dobj, i.e. the gener-
ated samples with ob j j = 0, are much more than the positive
samples, i.e. the generated samples with ob j j = 1. Thus, we
delete a part of negative samples in random to keep data bal-
ance and ensure that the ratio of positive samples and negative
samples does not exceed 1 : 1.5. To further alleviate the data
imbalance problem, we also adopt the idea of focal loss [30]
in the learning objective of LOP:

FL(p,y) =−α f l(1− py)
γ f l log(py) (5)

where the positive constants α f l ,γ f l (γ f l > 1) are the hyper-
parameters of the focal loss, which are set by following the
best practices in [30]. Besides, py is the probability of the y-th
class returned by the predictor.

Figure 5: The relation graph of defense effect (1-ASR) and
precision on cars of PointPillars under attacks. "PointNet"
and "DGCNN" refers to LOP’s structure, with a boundary
value B used to distinguish real and fake objects as the de-
scription in Section 4.3."LPD" and "FSD" are two strategies
for CARLO to calculate the anomalous ratio, and M, k, R,
Threshold are the hyper-parameters of other defenses, which
are all described in Section 3.3.

Figure 6: The relation graph of defense effect and precision
on cars of (a) PointRCNN and (b) PV-RCNN under attacks.

4.3 Fake Object Elimination

Finally, we leverage the LOP to calculate the objectness score
for each pillar intersected with predicted objects, and deter-
mine whether these objects are real by a majority voting
among the pillars. Specifically, we first divide the detection
space into equal-sized pillars, translate the input PC into a
series of point subsets inside these pillars and then augment
their features, similarly to the former two stage.

Then we use the LOP to calculate a 0/1 objectness score for
each pillar. For each object in the prediction of the 3D object
detector, we search for those pillars whose 2D IoU on the x-y
plane between itself and the predicted object’s bounding box
is greater than a specified threshold β, and calculate the sum
of their objectness scores as well as the ratio of this sum over
the total number of related pillars. Finally, we recognize those
objects with the ratio less than or equal to a boundary value B
as fake objects, and eliminate them from the prediction.

5 Evaluation and Analysis

5.1 Overview of Evaluation

(1) Victim Models. We choose three mainstream LiDAR-
based object detectors: PointPillars [27], PointRCNN [38]
and PV-RCNN [37] as the victim models. Specifically, we
adopt the implementation of these three object detectors avail-
able on an open-source project OpenPCDet [43], each of
which is normally trained on KITTI dataset [19] to achieve
the near state-of-the-art performance.
(2) Attack Methods. We implement three popular appearing
attacks which can be roughly categorized into white-box and
black-box attacks. In the former case, the attacker has full
access to the victim 3D detector, including the architecture
and the parameters, while the latter only accesses the detector
as a black-box prediction API. Specifically, the attacks are
• A Variant of Adv-LiDAR [11] (abbrev. Baseline, white-
box): Because Adv-LiDAR is specially designed for attacking
Baidu’s Apollo [1], it could hardly be directly transferred to
attack other 3D object detectors [41]. Therefore, following
its main idea, we implement a variant of ADV-LiDAR by
randomly injecting a certain number of points into a specified
zone, and using FGSM [20] to increase the confidence scores
of those forged cars related to these points.
• Yang’s Work [48] (abbrev. Roadside, white-box): This attack
forges cars by 3D printing a small and specifically-designed
object, increasing their confidence scores and category scores
of label car, and enlarging their bounding boxes with gradient
descent. Since this attack will generate the adversarial points
and then turn them into a physical object, we will only deploy
the first part for our experiments. In their original work, this
attack mainly aims at breaking PointRCNN with a white-box
access. We thus also follow the settings in our experiments.
• Sun’s Work [41] (abbrev. Physical, black-box): This attack
forges cars by duplicating real cars, which contains a lim-
ited number of points due to either inter-occlusion or intra-
occlusion. The PC of the fake car is then transformed to a
front-near position of the victim ADS.
(3) Baseline Defenses. We implement SRS, SOR, CARLO
and Shadow-Catcher which we have introduced in Section
3.3 as the baseline defenses. We do not consider SVF because
it relies on retraining the whole 3D object detector itself, and
causes much more time and computation cost compared with
other baseline defenses as well as ours (Section 5.2.3).
(4) Metrics. We choose three different metrics to evaluate the
performance of our proposed defense and other defenses:
• Precision measures the proportion of the real objects in the
prediction results. In the context of defense, the decrease in
precision reflects whether these defenses would harm the orig-
inal performance of the victim model. Following [27, 37, 38],
we first choose a certain threshold Cconf for each 3D object
detector, and remove those predicted objects with confidence
scores less than Cconf. Then we calculate the 2D IoU on the

x-y plane between the bounding boxes of each remaining
predicted object and the ground-truth objects. A predicted
object is true positive, if its maximal IoU value surpasses
another certain threshold CIoU and the predicted category is
identical with the ground-truth; otherwise, the predicted ob-
ject is a false positive prediction. For PointPillars and PointR-
CNN, we set Cconf = 0.5, CIoU = 0.5; for PV-RCNN, we set
Cconf = 0.7, CIoU = 0.5.
• Average Precision (AP) is a comprehensive metric over the
precision and the recall of the detection results. Specifically,
AP is the average value of precision when the recall is larger
than different specific values, which can be represented as

AP =
1
11 ∑

r∈{0,0.1,...,1.0}
maxr′≥rPrecision@(Recall = r′) (6)

• Attack Success Rate (ASR) measures the ratio of the num-
ber of forged cars detected by the victim 3D object detector
over the total number of attack attempts, which directly re-
flects the performance of these defenses. A more effective
defense should result in a lower ASR.
(5) Implementation of LOP. We choose two off-the-shelf
point-wise PC classification architectures, PointNet [34]
and DGCNN [45], to instantiate the LOP. For those hyper-
parameters of LOP described in Section 4, we set Mpc =
1024, TIoU = 1×10−6, α f l = 1, γ f l = 2, β = 1×10−3.

5.2 Comparison with Baselines
5.2.1 Attack Scenarios

First, we evaluate the performance of our defense against
recent appearing attacks. We implement three recent appear-
ing attacks to generate adversarial examples against the three
mainstream 3D object detectors based on the KITTI’s vali-
dation set. We evaluate the ASR of these appearing attacks
along with the AP and the precision of these detectors under
attacks. Besides the forged cars crafted by appearing attacks,
there also remains some normal objects in the adversarial ex-
amples, which are considered in the AP and precision metrics.
Table 1 and Table 2 show the AP of the detectors on cars
when equipped with different defenses, and Fig.5 and Fig.6
plots the defense effectiveness (y-axis, in terms of 1−ASR)
and the precision on cars (x-axis) of different defenses.
Results & Analysis. As we can see from Table 1, Table 2,
Fig.5 and Fig.6, compared with SRS and CARLO, our defense
simultaneously achieves higher defense effectiveness and the
victim models under guard have higher AP and precision
on cars. For example, under recent appearing attacks, the
PointRCNN equipped with the LOP keeps AP on cars over
70% and precision on cars over 72%, while AP on cars is
always less than 70% and precision on cars is always less than
63% when deploying SRS or CARLO on the PointRCNN.
Compared with SOR, although in some cases our defense
has slightly lower defense effectiveness (the margin is less

than 5%), it always results in higher AP and precision on
cars under attacks. Compared with Shadow-Catcher, although
in some cases our defense has slightly lower AP on cars, it
always results in higher precision on cars and better defense
effectiveness under attacks.

From a different perspective, we observe that other defenses
only perform well when protecting certain models against
specific attack techniques. For example, SOR performs better
when protecting PointPillars, while CARLO performs bet-
ter when defending against Physical. In contrast, the LOP
performs well independent of the structure of the 3D object
detector or the undergoing appearing attack, which implies
that our proposed defense is more general than other defenses.

5.2.2 Benign Scenarios

Then, we evaluate the performance of the victim models under
guard on clean samples to measure the performance overhead
brought by different defenses. Table 3 and Table 4 present the
AP and precision of them in the normal circumstances.
Results & Analysis. As Table 3 and Table 4 show, compared
with existing defenses, the performance of these detectors has
less degradation in the normal cases when equipped with the
LOP than with other defenses. For example, the AP and preci-
sion of detectors equipped with other defenses both decrease
in most cases, while for these 3D object detectors equipped
with the LOP, the AP on cars even increases by 0.33 ∼ 1.71%,
and the precision on cars increases by 2.78 ∼ 7.12%. Al-
though Shadow-Catcher has slightly higher AP on cars than
the LOP, considering the defensive advantages of LOP un-
der different appearing attacks, our proposed defense may
be more suitable for practical ADS, due to the performance-
robustness balance when the detector is equipped with LOP.

We further analyze why our proposed defense would even
increase the performance of the victim models on cars in
normal cases, while existing defenses would not: (i) The LOP
mainly learns the semantic and spatial features of real objects,
while other defenses focus on recognizing fake objects. (ii)
The bounding boxes of cars are much larger than that of
other objects, which means that there are enough samples
corresponding to components of cars provided for the LOP
to learn. In summary, our proposed defense incurs almost
no damage on the normal performance of the victim models
and may sometimes even improve the performance due to
its finer granularity modeling of the obstacles. In Appendix
A, we further experiment with the hyper-parameters of LOP,
which validate that the model structure will not affect the
performance of LOP.

5.2.3 Overhead Analysis

Next, we evaluate the overhead in the preparation stage. Ex-
cept for our LOP and SVF, other defense methods do not
introduce additional learning modules and therefore no train-

Table 1: The AP on cars of PointPillars with and without LOP or other defense methods under attacks.
None SOR CARLO

k=2 k=10 FSD, r=0.6 FSD, r=0.7 FSD, r=0.8 LPD, r=0.6 LPD, r=0.7 LPD, r=0.8

Physical 70.06% 70.43% 70.01% 65.94% 69.60% 69.64% 67.79% 69.57% 69.82%
Baseline 68.57% 68.84% 68.06% 63.49% 67.96% 67.96% 64.37% 67.99% 68.49%

None SRS Shadow-Catcher Ours

M=500 Threshold=0.2 Threshold=0.4 Threshold=0.6 PointNet, B=0.5 PointNet, B=0.6 DGCNN, B=0.5 DGCNN, B=0.6

Physical 70.06% 70.12% 47.72% 75.46% 77.05% 70.92% 70.97% 71.11% 70.39%
Baseline 68.57% 68.55% 57.81% 75.03% 75.95% 69.50% 69.63% 69.72% 68.61%

Table 2: The AP on cars of PointRCNN and PV-RCNN with
and without LOP or other defense methods under attacks.

PointRCNN PV-RCNN

Physical Baseline Roadside Physical Baseline

w/o. defense 67.92% 65.95% 61.59% 70.11% 66.39%
SRS (M=500) 69.42% 65.44% 62.48% 70.14% 66.27%

SOR (k=2) 72.56% 65.41% 60.84% 71.43% 64.80%
SOR (k=10) 72.63% 65.26% 60.53% 71.28% 64.09%

CARLO(FSD, R=0.6) 67.16% 63.53% 60.16% 67.99% 63.27%
CARLO(FSD, R=0.7) 68.41% 65.29% 60.71% 70.10% 66.07%
CARLO(FSD, R=0.8) 68.15% 65.22% 60.69% 70.15% 65.84%
CARLO(LPD, R=0.6) 68.98% 65.27% 60.53% 69.23% 64.46%
CARLO(LPD, R=0.7) 69.22% 65.97% 61.41% 70.26% 65.71%
CARLO(LPD, R=0.8) 69.15% 66.04% 61.65% 70.35% 66.11%

Ours(PointNet, B=0.5) 73.32% 71.87% 70.82% 71.47% 69.25%
Ours(PointNet, B=0.6) 73.77% 72.30% 71.41% 71.86% 69.19%
Ours(DGCNN, B=0.5) 73.07% 72.29% 71.99% 71.87% 69.88%
Ours(DGCNN, B=0.6) 73.74% 73.42% 72.84% 71.51% 68.30%

ing is required in the preparation stage. Table 5 compares
the time overhead of LOP and SVF during the preparation
phase. Table 6 reports the time and the space overhead of the
inference phase of each defense. We conduct the experiments
with 5 repetitive tests on each case, and report the mean and
the standard deviation as the final results.
• Results & Analysis. As Table 5 shows, the time overhead
of SVF in the preparation phase is much more higher than that
of LOP. It is mainly because SVF requires the retraining of
the whole 3D object detectors from scratch, while the training
task of LOP only involves a PC-based binary classifier, a
much easier learning task compared with that of SVF. More
importantly, once LOP is trained, it can be combined with
different defense targets to provide the defense, while SVF
has to retrain each target.

Meanwhile, Table 6 shows, LOP incurs slightly more time
and space overheads than most of the statistical defenses,
which can be further reduced by some optimization tech-
niques. For example, to simplify the implementation, we split
the whole input space into pillars and use LOP to predict their
objectness score during the split in this experiment. However,
there is not necessary to check all pillars in the real case. We
can identify the pillars which not only intersects with the
predicted bounding boxes but also contains points, and only
predict their objectness scores to reduce the total times of cal-
culations. Furthermore, we can combine parts of these pillars

into a batch and uses LOP to predict in a parallel way for fur-
ther acceleration. In Section 5.4, we follow the optimization
mentioned above to deploy LOP in the end-to-end self-driving
system and reduce the time overhead caused by LOP to less
than 10ms per detection, which has almost no influence on
the real-time requirement of the self-driving system.

5.3 Adaptive Attacks

In this part, we evaluate whether our defense is robust against
an adaptive attacker who knows the existence of LOP and in
the worst case has the access to the structure and the parame-
ters of our LOP. In this almost worst-case threat model, it is
possible for the adversary to attempt to bypass our defense
during the generation of forged objects. As the Physical attack
in [41] requires no training stage in its generation, we choose
to modify the Baseline attack, i.e., the attack in [11], which
we refer to as the Baseline attack throughout this response
letter, into an adaptive attack against our defense. Specifically,
we propose to generate the adversarial point cloud by simul-
taneously optimizing the original appearing attack objective
and maximizing the score of the crafted object under LOP. To
enhance the performance of the Baseline attack, we further re-
place the FGSM algorithm by PGD. Table 7 reports the ASR
of the adaptive attacks on the three 3D object detectors when
LOP is deployed or not, along with the AP and the precision
of the detectors on cars under the adaptive attack.

• Results & Analysis. As we can see from Table 7, our LOP
performs well when defending against the adaptive attacks
above. Both the PointNet-based and the DGCNN-based LOP
can reduce the ASR of the adaptive attacks by a large mar-
gin, while only a slight loss of performance on clean samples
is observed. For example, when defending PointPillars, the
ASR is reduced from 45% to 12% with the DGCNN-based
LOP, while the decrease of AP is by less than 4%. From our
perspective, the result may be because the orthogonality be-
tween the original attack target and the intention of bypassing
LOP, which brings challenges for optimizing two different
loss function at the same time. In summary, LOP has certain
robustness against even the worst-case adaptive attack where
the attack has a full white-box access to the defense module.

Table 3: The AP and precision of PointPillars on cars with different defenses on clean samples.

None SOR CARLO

k=2 k=10 FSD, r=0.6 FSD, r=0.7 FSD, r=0.8 LPD, r=0.6 LPD, r=0.7 LPD, r=0.8

AP 72.34% 71.20% 70.58% 67.92% 72.03% 71.95% 69.80% 71.58% 72.02%
Precision 78.99% 78.91% 78.86% 75.06% 77.81% 78.00% 75.77% 77.56% 78.31%

None SRS Shadow-Catcher Ours

M=500 Threshold=0.2 Threshold=0.4 Threshold=0.6 PointNet, B=0.5 PointNet, B=0.6 DGCNN, B=0.5 DGCNN, B=0.6

AP 72.34% 72.33% 50.58% 77.41% 79.47% 72.86% 72.88% 73.63% 72.73%
Precision 78.99% 79.14% 70.25% 77.31% 76.91% 81.77% 82.38% 83.04% 83.90%

Table 4: The AP and precision of PointRCNN and PV-RCNN
on cars with different defenses on clean samples.

PointRCNN PV-RCNN

AP Precision AP Precision

w/o. defense 75.13% 75.04% 73.32% 73.12%
SRS (M=500) 75.52% 74.75% 73.48% 73.23%

SOR (k=2) 74.46% 74.49% 72.52% 72.92%
SOR (k=10) 74.04% 73.88% 72.22% 72.94%

CARLO(LPD, R=0.6) 73.49% 73.10% 71.43% 70.08%
CARLO(LPD, R=0.7) 74.63% 74.35% 73.21% 72.22%
CARLO(LPD, R=0.8) 74.53% 74.32% 73.20% 72.41%
CARLO(FSD, R=0.6) 74.17% 73.07% 72.00% 69.93%
CARLO(FSD, R=0.7) 74.79% 74.38% 72.94% 71.66%
CARLO(FSD, R=0.8) 74.89% 74.87% 73.15% 72.37%

Ours(PointNet, B=0.5) 76.49% 79.29% 73.65% 77.85%
Ours(PointNet, B=0.6) 76.37% 80.03% 73.80% 78.53%
Ours(DGCNN, B=0.5) 76.77% 80.75% 74.50% 79.61%
Ours(DGCNN, B=0.6) 76.84% 81.52% 73.86% 80.34%

Table 5: The time overhead of LOP and SVF during the prepa-
ration phase. “*” means that the results are from the OpenPCDet, an open source
platform of 3D object detectors, which we use the training time of the specific 3D object
detector to approximate the re-training time of SVF on the same detector.

Defense Total Time (h) Time Per Epoch (s) Time Per Iter (s)

SVF (PointPillar) 1.2∗ 54.0∗ 8.21∗

SVF (PointRCNN) 3.0∗ 135.0∗ 20.51∗

SVF (PV-RCNN) 5.0∗ 225.0∗ 34.19∗

Ours (PointNet) 0.41 7.30 0.07
Ours (DGCNN) 0.77 13.88 0.14

5.4 System Integration

To evaluate the system-level usefulness of our proposed de-
fense, we implement the PointNet-based LOP in Baidu’s
Apollo 6.0.0 system in the optimized way described in Sec-
tion 5.2.3 , and conduct both the modular and the closed-loop
control evaluation in two simulation environments in normal
driving scenarios and against the Physical attack. We release
the implementation details in [3].
• Experimental Settings. In the experiments, we construct
two different scenarios (e.g., Single Lane Road and Borregas
Ave) with random traffic in the LGSVL simulator to evaluate
LOP’s performance in the end-to-end system. Table 8 reports
the ASR of the Physical attack on Apollo 6.0.0, together with

Table 6: The time and space overhead of LOP and other de-
fenses during the inference phase.

Time per sample (s) GPU Mem (MB) CPU Mem (MB)

None 0.060±0.005 1477 2551

SRS 0.069±0.007 1473 2549
SOR 0.114±0.005 5827 2516

Carlo (LPD) 0.503±0.003 1477 2552
Carlo (FSD) 2.463±0.005 1477 2506

Shadow-Catcher 0.089±0.002 1477 2551

Ours (PointNet) 1.341±0.011 2283 2518
Ours (DGCNN) 1.589±0.013 3747 2506

the precision and the time cost of the 3D object detectors in
Apollo’s perception module when LOP is deployed or not, and
Fig.7 illustrates the detection results in an end-to-end driving
test when the system is deployed without or with LOP, and
shows a snapshot of the attacking scenario in the experiments.
• Results & Analysis. As Table 8 shows, LOP effectively
defends against appearing attacks in the end-to-end Apollo
6.0.0, with a slight proportion of time overhead (less than
10ms). As Fig.7(b) shows, the Physical attack can success-
fully fools Apollo’s perception module, and remains existent
in the Dreamview even after the processing of MOT. This
confirms our argument that appearing attacks is easier to be
mounted in practical scenarios than disappearing attacks. In
the Dreamview view of Fig.7(c), with the help of our LOP,
the forged object is eliminated from Apollo’s perception dur-
ing the evaluation (with ASR= 0%), while the real obstacles
remain intact in the perception of the ADS. Therefore, the
driving trajectory of the ADS with LOP remains normal and
safe during the full driving test. Besides, LOP only incurs
a 9.12ms overhead on the running time of the 3D detection
pipeline on average and slightly brings down the FPS from
29.97 to 23.54, which still satisfies the real-time requirement
of a physical self-driving system [21].

Moreover, we use the previously forged objects, which can
successfully fool the perception module of Apollo for at least
one frame, to further test whether they would lead to a poten-
tial harsh braking in different traces. Specifically, we measure
whether the self-driving vehicle would do sudden braking,
which is shown as it decelerating to 0 km/h in less than 1
second, to calculate the harsh braking rate, i.e., the ratio of

Table 7: The performance of LOP against adaptive attack. The names behind “w/o defense” denotes the target LOP of attack.
PointPillars PointRCNN PV-RCNN

ASR AP Precision ASR AP Precision ASR AP Precision

No Attack / 72.34% 78.99% / 75.13% 75.04% / 73.32% 73.12%

w/o. defense (PointNet) 45.61% 68.52% 66.54% 8.78% 66.14% 55.63% 12.58% 66.37% 28.12%
w/o. defense (DGCNN) 44.78% 68.53% 66.65% 8.56% 65.87% 55.13% 12.53% 66.39% 28.18%

Ours (PointNet, B=0.5) 22.17% 69.36% 74.11% 5.14% 71.95% 74.31% 6.42% 69.27% 60.29%
Ours (PointNet, B=0.6) 16.17% 69.55% 75.87% 4.42% 72.33% 76.06% 5.58% 66.39% 61.20%
Ours (DGCNN, B=0.5) 17.11% 69.73% 76.30% 3.86% 72.31% 76.41% 6.58% 69.89% 63.62%
Ours (DGCNN, B=0.6) 12.53% 68.56% 78.02% 3.25% 73.33% 77.85% 5.83% 68.37% 64.48%

Figure 7: The simulating scenario and the Dreamview of Apollo 6.0.0 without and with our LOP under Physical attack.

Table 8: The performance of the perception module in an
end-to-end Apollo 6.0.0 system when the 3D object detector
is deployed with or without LOP.

Precision ASR time cost (ms) FPS

Apollo 6.0.0 (w/o. LOP) 8.33% 53.66% 33.36ms 29.97
Apollo 6.0.0 (w/. LOP) 100.00% 0.00% 42.48ms 23.54

the test cases where the self-driving vehicle suddenly brakes
when there is no real obstacle in front of it. We observe that
the harsh braking rate of the Apollo without LOP is 13.33%
(2/15), while, with LOP, the harsh braking rate is reduced to
0.00% (0/15). We provide the Dreamview snapshot and the
details of these experiments in Appendix D. Therefore, com-
bined with the comprehensive evaluation results on the KITTI
benchmark, our end-to-end experiments further validate the
system-level usefulness of our proposed defense in terms of
the improved system robustness, and the acceptable overhead
on the running time and the normal driving performance.

6 Discussion

Appearing Attacks vs. Disappearing Attacks. Our current
defense mainly focuses on appearing attacks, which form
a popular attack class on LiDAR-based object detectors in
ADS In contrast to appearing attacks, a disappearing attack
aims at hiding the existing objects from the prediction results
of the victim 3D object detector [16, 40, 50]. To accomplish
this purpose, the adversary would optimally generate a 3D-
printing object to the target detector would not recognize it or
its neighbouring object, and put the object on the road or near

some objects to mount the attack.

In the previous literature, Cao et al. propose one of the
earliest disappearing attacks on ADS, and successfully hide
the printed objects from the LiDAR-based detection system
of Baidu’s Apollo by modeling its preprocessing and postpro-
cessing phases into differentiable functions [12]. Later, Tu et
al. present a more general disappearing attack which breaks
the state-of-the-art 3D object detectors including PointPillars
and PointRCNN, and hide the car on which the printed object
is positioned from the model’s prediction results [44]. Re-
cently, Cao et al. further devise a more powerful disappearing
attack, MSF-ADV, which fools the image-based 2D object
detectors and LiDAR-based 3D object detectors at the same
time, and causes the fusion-based detection system of Baidu’s
Apollo to ignore the existence of the printed objects [10].

Compared with appearing attack, we argue that a disap-
pearing attack is not physical because it is untargeted and
single-shot, i.e., the attacker has to put a printed object on the
road or near some objects in preparation. This indicates that
he/she could hardly choose the victim ADS during the attack.
Moreover, the printed object can only take effect once because
it might be destroyed or recognized by the people nearby after
the first accident happens. In contrast, in an appearing attack
the attacker can choose the victim to fire the laser and forge
non-existent cars as he/she wishes, making it difficult for oth-
ers to note the attack due to the almost no evidence left in the
accident scene. Nevertheless, considering the severe conse-
quences if happening, how to mitigate disappearing attacks
remains a meaningful direction to pursue.

Extension to Other Attack Classes. We further discuss the
applicability of our defense for mitigating mis-categorization

attacks, which aims at changing the predicted class of the
target objects in the victim’s detection results. In this sense, a
mis-categorization attack can be seen as the combination of
a disappearing attack and an appearing attack. In the above
process, we observe that the crafted object would also be left
with an abnormal density-depth characteristic which does not
belong to the target class. Specifically, in Appendix B, we
modify the appearing attacks covered in our experiments into
mis-categorization attacks, which selects the objects from the
bicycle or pedestrian classes, and injecting a limited number
of points around them to fool the victim 3D detector to mis-
categorize them as vehicles, and evaluate the performance
of our LOP when deployed alongside the 3D detector. The
experimental results in Appendix B show that our proposed
defense is also effective against mis-categorization attacks
due to the depth-density anomaly introduced by them.
Fusion Models as Defense Targets. We first clarify the re-
lation between our proposed LOP and the fusion models.
According to [21], the detection frequency of existing fusion
models (including FPN, FCN and AVOD) is usually lower
than 15 FPS, and may be unsuitable for real-time self-driving
systems due to the efficiency bottleneck. Besides, we suggest
our defense is orthogonal to the fusion strategy. LOP in our
defense provides a different view for the detectors to confirm
their detection, while the fusion strategy incorporates new
input modality to enhance robustness. Therefore, instead of
viewing fusion models as a comparison group to our defense,
we prefer to view the fusion models, which are by essence
detectors, as our defense targets. In Appendix C, we provide a
preliminary study which validates that our LOP substantially
improves the robustness of fusion models against appearing
attacks. For example, the PointNet-based LOP would reduce
the ASR of the Physical attack on EPNet [25] to 0%. In other
words, we prefer not to view LOP as a competitor for the
fusion models. Instead, LOP empirically improves the robust-
ness of the fusion models, while, as no modifications is made
on the image input branch, LOP would not hurt the benefits
of fusion models in self-driving systems. For future works,
it would be meaningful to systematically evaluate our pro-
posed defense on more representative fusion and 3D object
detection models.
Limitation and Future Directions. Finally, we discuss the
potential limitations of our proposed defense: According to
the case study on the false positives from our defense, we find
that our LOP may not recognize the forged obstacles well in
some cases due to its uncertainty on distant vehicles. How-
ever, due to the existence of the MOT module, the self-driving
system keeps refreshing the driving plan and corrects the mis-
prediction of distant objects when the obstacle comes nearby.
Moreover, MOT would prevent the self-driving system from
ignoring a distant object only if LOP misses a distant ob-
ject in several consecutive frames, the possibility of which is
less than 0.1% according to our calculation. Therefore, the
negative influence of LOP on the normal performance of the

detector would hardly influence the normal driving behaviors
of the defense target. The similar results are also provided in
our end-to-end experiments in Section 5.4.

Besides, due to our limited computing resources, we mainly
prove the advantages of LOP in terms of computational over-
head compared with SVF, while we admit the additional over-
head may trade for better defense effectiveness and would not
be a problem for most autonomous driving companies. Never-
theless, SVF as a retraining-based approach lies in a different
defense category from our proposed plug-and-play defense
module. A 3D object detection module which is enhanced by
SVF can be further combined with our LOP for better defense
effectiveness. As SVF still has a space for improvement in
defense effectiveness [41], it would be meaningful for future
works to explore their combination in the future.

7 Conclusion

In this paper, we systematically analyze the working mecha-
nisms of recent appearing attacks and summarize their com-
mon weaknesses in violating the depth-density law and fail-
ing to imitate the local parts of real objects. Based on the
defensive insights, we propose a novel plug-and-play defense
method which adopts a LOP module to work by side of an
arbitrary LiDAR-based object detector to detect and elimi-
nate forged obstacles from its prediction results. To handle
the complexity of the depth-density law and the local object
feature, we build the LOP with an off-the-shelf point-wise PC
classifier and explicitly expand the input point feature with the
derived depth information. We present extensive experiments
spanning three state-of-the-art 3D object detectors and three
known appearing attacks on the standard benchmark KITTI
dataset, which validate the effectiveness and flexibility of our
proposed defense. Furthermore, we deploy and evaluate the
LOP in an end-to-end self-driving system, which validates
the system-level usefulness of our proposed defense.

Acknowledgments

We would like to thank the anonymous reviewers and
the shepherd for their insightful comments that helped im-
prove the quality of the paper. This work was supported in
part by the National Key Research and Development Pro-
gram (2021YFB3101200), National Natural Science Founda-
tion of China (61972099, U1736208, U1836210, U1836213,
62172104, 62172105, 61902374, 62102093, 62102091). Min
Yang is a faculty of Shanghai Institute of Intelligent Electron-
ics & Systems, Shanghai Institute for Advanced Communica-
tion and Data Science, and Engineering Research Center of
Cyber Security Auditing and Monitoring, Ministry of Educa-
tion, China. Mi Zhang and Min Yang are the corresponding
authors.

References

[1] Apollo Open Platform. https://apollo.auto/
developer.html. Accessed: 2022-01-30.

[2] ApolloAuto/Apollo. https://github.com/
ApolloAuto/apollo/tree/master.

[3] Apollo_LOP. https://anonymous.4open.science/
r/Apollo_LOP-A1F4.

[4] Baidu Autonomous Driving Development Kit (Apollo
D-KIT). https://apollo.auto/apollo_d_kit.
html. Accessed: 2022-01-30.

[5] Combine Lidar and Cameras for 3D object detec-
tion - Waymo. https://www.louisbouchard.ai/
waymo-lidar/.

[6] Waymo One - Waymo. https://waymo.com/
waymo-one/. Accessed: 2022-01-30.

[7] Light detection and ranging. In Shashi Shekhar, Hui
Xiong, and Xun Zhou, editors, Encyclopedia of GIS,
page 1119. Springer, 2017.

[8] Marco Allodi, Alberto Broggi, Domenico Giaquinto,
Marco Patander, and Antonio Prioletti. Machine learn-
ing in tracking associations with stereo vision and li-
dar observations for an autonomous vehicle. In 2016
IEEE Intelligent Vehicles Symposium, IV 2016, Goten-
burg, Sweden, June 19-22, 2016, pages 648–653. IEEE,
2016.

[9] Pierre Biasutti, Vincent Lepetit, Jean-François Aujol,
Mathieu Brédif, and Aurélie Bugeau. Lu-net: An effi-
cient network for 3d lidar point cloud semantic segmen-
tation based on end-to-end-learned 3d features and u-net.
In 2019 IEEE/CVF International Conference on Com-
puter Vision Workshops, ICCV Workshops 2019, Seoul,
Korea (South), October 27-28, 2019, pages 942–950.
IEEE, 2019.

[10] Yulong Cao, Ningfei Wang, Chaowei Xiao, Dawei Yang,
Jin Fang, Ruigang Yang, Qi Alfred Chen, Mingyan Liu,
and Bo Li. Invisible for both camera and lidar: Security
of multi-sensor fusion based perception in autonomous
driving under physical-world attacks. In 42nd IEEE
Symposium on Security and Privacy, SP 2021, San Fran-
cisco, CA, USA, 24-27 May 2021, pages 176–194. IEEE,
2021.

[11] Yulong Cao, Chaowei Xiao, Benjamin Cyr, Yimeng
Zhou, Won Park, Sara Rampazzi, Qi Alfred Chen, Kevin
Fu, and Z. Morley Mao. Adversarial sensor attack on
lidar-based perception in autonomous driving. In Pro-
ceedings of the 2019 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS 2019, London,

UK, November 11-15, 2019, pages 2267–2281. ACM,
2019.

[12] Yulong Cao, Chaowei Xiao, Dawei Yang, Jing Fang,
Ruigang Yang, Mingyan Liu, and Bo Li. Adversarial
objects against lidar-based autonomous driving systems.
CoRR, abs/1907.05418, 2019.

[13] Nicholas Carlini and David A. Wagner. Towards evalu-
ating the robustness of neural networks. In 2017 IEEE
Symposium on Security and Privacy, SP 2017, San Jose,
CA, USA, May 22-26, 2017, pages 39–57. IEEE Com-
puter Society, 2017.

[14] Jamie Carter, Keil Schmid, Kirk Waters, Lindy Betzhold,
Brian Hadley, Rebecca Mataosky, and Jennifer Halleran.
Lidar 101: An introduction to lidar technology, data,
and applications. National Oceanic and Atmospheric
Administration (NOAA) Coastal Services Center, 2012.

[15] Qi Chen, Lin Sun, Zhixin Wang, Kui Jia, and Alan L.
Yuille. Object as hotspots: An anchor-free 3d object
detection approach via firing of hotspots. In Computer
Vision - ECCV 2020 - 16th European Conference, Glas-
gow, UK, August 23-28, 2020, Proceedings, Part XXI,
volume 12366, pages 68–84. Springer, 2020.

[16] Shang-Tse Chen, Cory Cornelius, Jason Martin, and
Duen Horng (Polo) Chau. Shapeshifter: Robust phys-
ical adversarial attack on faster R-CNN object detec-
tor. In Machine Learning and Knowledge Discovery in
Databases - European Conference, ECML PKDD 2018,
Dublin, Ireland, September 10-14, 2018, Proceedings,
Part I, volume 11051 of Lecture Notes in Computer
Science, pages 52–68. Springer, 2018.

[17] Hsu-Kuang Chiu, Jie Li, Rares Ambrus, and Jeannette
Bohg. Probabilistic 3d multi-modal, multi-object track-
ing for autonomous driving. In IEEE International Con-
ference on Robotics and Automation, ICRA 2021, Xi’an,
China, May 30 - June 5, 2021, pages 14227–14233.
IEEE, 2021.

[18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: pre-training of deep bidi-
rectional transformers for language understanding. In
Proceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1
(Long and Short Papers), pages 4171–4186. Association
for Computational Linguistics, 2019.

[19] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are
we ready for autonomous driving? the KITTI vision
benchmark suite. In 2012 IEEE Conference on Com-
puter Vision and Pattern Recognition, Providence, RI,

https://apollo.auto/developer.html
https://apollo.auto/developer.html
https://github.com/ApolloAuto/apollo/tree/master
https://github.com/ApolloAuto/apollo/tree/master
https://anonymous.4open.science/r/Apollo_LOP-A1F4
https://anonymous.4open.science/r/Apollo_LOP-A1F4
https://apollo.auto/apollo_d_kit.html
https://apollo.auto/apollo_d_kit.html
https://www.louisbouchard.ai/waymo-lidar/
https://www.louisbouchard.ai/waymo-lidar/
https://waymo.com/waymo-one/
https://waymo.com/waymo-one/

USA, June 16-21, 2012, pages 3354–3361. IEEE Com-
puter Society, 2012.

[20] Ian J. Goodfellow, Jonathon Shlens, and Christian
Szegedy. Explaining and harnessing adversarial ex-
amples. In 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings, 2015.

[21] Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu,
Li Liu, and Mohammed Bennamoun. Deep learning
for 3d point clouds: A survey. IEEE Trans. Pattern Anal.
Mach. Intell., 43(12):4338–4364, 2021.

[22] R Spencer Hallyburton, Yupei Liu, Yulong Cao, Z Mor-
ley Mao, and Miroslav Pajic. Security analysis of
camera-lidar fusion against black-box attacks on au-
tonomous vehicles. In 31st USENIX Security Sympo-
sium (USENIX SECURITY), 2022.

[23] Abdullah Hamdi, Sara Rojas, Ali K. Thabet, and
Bernard Ghanem. Advpc: Transferable adversarial per-
turbations on 3d point clouds. In Computer Vision
- ECCV 2020 - 16th European Conference, Glasgow,
UK, August 23-28, 2020, Proceedings, Part XII, volume
12357 of Lecture Notes in Computer Science, pages 241–
257. Springer, 2020.

[24] Zhongyuan Hau, Soteris Demetriou, Luis Muñoz-
González, and Emil C. Lupu. Shadow-catcher: Looking
into shadows to detect ghost objects in autonomous ve-
hicle 3d sensing. In Computer Security - ESORICS
2021 - 26th European Symposium on Research in Com-
puter Security, Darmstadt, Germany, October 4-8, 2021,
Proceedings, Part I, volume 12972 of Lecture Notes in
Computer Science, pages 691–711. Springer, 2021.

[25] Tengteng Huang, Zhe Liu, Xiwu Chen, and Xiang Bai.
Epnet: Enhancing point features with image semantics
for 3d object detection. July 2020.

[26] Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3d con-
volutional neural networks for human action recognition.
In Proceedings of the 27th International Conference on
Machine Learning (ICML-10), June 21-24, 2010, Haifa,
Israel, pages 495–502. Omnipress, 2010.

[27] Alex H. Lang, Sourabh Vora, Holger Caesar, Lubing
Zhou, Jiong Yang, and Oscar Beijbom. Pointpillars: Fast
encoders for object detection from point clouds. In IEEE
Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2019, Long Beach, CA, USA, June 16-20,
2019, pages 12697–12705. Computer Vision Foundation
/ IEEE, 2019.

[28] Yann LeCun, Bernhard E. Boser, John S. Denker, Don-
nie Henderson, Richard E. Howard, Wayne E. Hubbard,

and Lawrence D. Jackel. Backpropagation applied to
handwritten zip code recognition. Neural Comput.,
1(4):541–551, 1989.

[29] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan
Di, and Baoquan Chen. Pointcnn: Convolution on x-
transformed points. In Advances in Neural Information
Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS 2018,
December 3-8, 2018, Montréal, Canada, pages 828–838,
2018.

[30] Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming
He, and Piotr Dollár. Focal loss for dense object detec-
tion. In IEEE International Conference on Computer
Vision, ICCV 2017, Venice, Italy, October 22-29, 2017,
pages 2999–3007. IEEE Computer Society, 2017.

[31] Wenhan Luo, Junliang Xing, Anton Milan, Xiaoqin
Zhang, Wei Liu, and Tae-Kyun Kim. Multiple object
tracking: A literature review. Artif. Intell., 293:103448,
2021.

[32] Gregory P. Meyer, Ankit Laddha, Eric Kee, Carlos
Vallespi-Gonzalez, and Carl K. Wellington. Laser-
net: An efficient probabilistic 3d object detector for au-
tonomous driving. In IEEE Conference on Computer Vi-
sion and Pattern Recognition, CVPR 2019, Long Beach,
CA, USA, June 16-20, 2019, pages 12677–12686. Com-
puter Vision Foundation / IEEE, 2019.

[33] Sina Mohseni, Mandar Pitale, Vasu Singh, and
Zhangyang Wang. Practical solutions for machine
learning safety in autonomous vehicles. In Proceedings
of the Workshop on Artificial Intelligence Safety,
co-located with 34th AAAI Conference on Artificial
Intelligence, SafeAI@AAAI 2020, New York City,
NY, USA, February 7, 2020, volume 2560 of CEUR
Workshop Proceedings, pages 162–169. CEUR-WS.org,
2020.

[34] Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and
Leonidas J. Guibas. Pointnet: Deep learning on point
sets for 3d classification and segmentation. In 2017
IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, Honolulu, HI, USA, July 21-
26, 2017, pages 77–85. IEEE Computer Society, 2017.

[35] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J.
Guibas. Pointnet++: Deep hierarchical feature learning
on point sets in a metric space. In Advances in Neural
Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, De-
cember 4-9, 2017, Long Beach, CA, USA, pages 5099–
5108, 2017.

[36] Yunli Shao, Yuan Zheng, and Zongxuan Sun. Machine
learning enabled traffic prediction for speed optimiza-
tion of connected and autonomous electric vehicles. In
2021 American Control Conference, ACC 2021, New
Orleans, LA, USA, May 25-28, 2021, pages 172–177.
IEEE, 2021.

[37] Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jian-
ping Shi, Xiaogang Wang, and Hongsheng Li. PV-
RCNN: point-voxel feature set abstraction for 3d object
detection. In 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR 2020, Seattle, WA,
USA, June 13-19, 2020, pages 10526–10535. Computer
Vision Foundation / IEEE, 2020.

[38] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li.
Pointrcnn: 3d object proposal generation and detection
from point cloud. In IEEE Conference on Computer Vi-
sion and Pattern Recognition, CVPR 2019, Long Beach,
CA, USA, June 16-20, 2019, pages 770–779. Computer
Vision Foundation / IEEE, 2019.

[39] Hocheol Shin, Dohyun Kim, Yujin Kwon, and Yongdae
Kim. Illusion and dazzle: Adversarial optical chan-
nel exploits against lidars for automotive applications.
In Cryptographic Hardware and Embedded Systems
- CHES 2017 - 19th International Conference, Taipei,
Taiwan, September 25-28, 2017, Proceedings, volume
10529 of Lecture Notes in Computer Science, pages 445–
467. Springer, 2017.

[40] Dawn Song, Kevin Eykholt, Ivan Evtimov, Earlence
Fernandes, Bo Li, Amir Rahmati, Florian Tramèr, Atul
Prakash, and Tadayoshi Kohno. Physical adversarial ex-
amples for object detectors. In 12th USENIX Workshop
on Offensive Technologies, WOOT 2018, Baltimore, MD,
USA, August 13-14, 2018. USENIX Association, 2018.

[41] Jiachen Sun, Yulong Cao, Qi Alfred Chen, and Z. Mor-
ley Mao. Towards robust lidar-based perception in au-
tonomous driving: General black-box adversarial sensor
attack and countermeasures. In 29th USENIX Security
Symposium, USENIX Security 2020, August 12-14, 2020,
pages 877–894. USENIX Association, 2020.

[42] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian J. Goodfellow, and Rob
Fergus. Intriguing properties of neural networks. In
2nd International Conference on Learning Representa-
tions, ICLR 2014, Banff, AB, Canada, April 14-16, 2014,
Conference Track Proceedings, 2014.

[43] OpenPCDet Development Team. OpenPCDet: An
Open-source Toolbox for 3D Object Detection from
Point Clouds. https://github.com/open-mmlab/
OpenPCDet, 2020.

[44] James Tu, Mengye Ren, Sivabalan Manivasagam, Ming
Liang, Bin Yang, Richard Du, Frank Cheng, and Raquel
Urtasun. Physically realizable adversarial examples for
lidar object detection. In 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, CVPR
2020, Seattle, WA, USA, June 13-19, 2020, pages 13713–
13722. Computer Vision Foundation / IEEE, 2020.

[45] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma,
Michael M. Bronstein, and Justin M. Solomon. Dy-
namic graph CNN for learning on point clouds. ACM
Trans. Graph., 38(5):146:1–146:12, 2019.

[46] Xinshuo Weng, Jianren Wang, David Held, and Kris
Kitani. 3d multi-object tracking: A baseline and new
evaluation metrics. In IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, IROS 2020, Las
Vegas, NV, USA, October 24, 2020 - January 24, 2021,
pages 10359–10366. IEEE, 2020.

[47] Chong Xiang, Charles R. Qi, and Bo Li. Generating
3d adversarial point clouds. In IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2019,
Long Beach, CA, USA, June 16-20, 2019, pages 9136–
9144. Computer Vision Foundation / IEEE, 2019.

[48] Kaichen Yang, Tzungyu Tsai, Honggang Yu, Max
Panoff, Tsung-Yi Ho, and Yier Jin. Robust roadside
physical adversarial attack against deep learning in li-
dar perception modules. In ASIA CCS ’21: ACM Asia
Conference on Computer and Communications Secu-
rity, Virtual Event, Hong Kong, June 7-11, 2021, pages
349–362. ACM, 2021.

[49] Yue Zhao, Yuwei Wu, Caihua Chen, and Andrew Lim.
On isometry robustness of deep 3d point cloud mod-
els under adversarial attacks. In 2020 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pages
1198–1207. Computer Vision Foundation / IEEE, 2020.

[50] Yue Zhao, Hong Zhu, Ruigang Liang, Qintao Shen,
Shengzhi Zhang, and Kai Chen. Seeing isn’t believ-
ing: Towards more robust adversarial attack against real
world object detectors. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS 2019, London, UK, November
11-15, 2019, pages 1989–2004. ACM, 2019.

[51] Hang Zhou, Kejiang Chen, Weiming Zhang, Han Fang,
Wenbo Zhou, and Nenghai Yu. Dup-net: Denoiser and
upsampler network for 3d adversarial point clouds de-
fense. In 2019 IEEE/CVF International Conference on
Computer Vision, ICCV 2019, Seoul, Korea (South), Oc-
tober 27 - November 2, 2019, pages 1961–1970. IEEE,
2019.

https://github.com/open-mmlab/OpenPCDet
https://github.com/open-mmlab/OpenPCDet

[52] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end
learning for point cloud based 3d object detection. In
2018 IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR 2018, Salt Lake City, UT, USA,
June 18-22, 2018, pages 4490–4499. Computer Vision
Foundation / IEEE Computer Society, 2018.

[53] Ji Zhu, Hua Yang, Nian Liu, Minyoung Kim, Wenjun
Zhang, and Ming-Hsuan Yang. Online multi-object
tracking with dual matching attention networks. In Com-
puter Vision - ECCV 2018 - 15th European Conference,
Munich, Germany, September 8-14, 2018, Proceedings,
Part V, volume 11209 of Lecture Notes in Computer
Science, pages 379–396. Springer, 2018.

A Hyperparameter Sensitivity

Experiment Settings. To explore the impact of the hyperpa-
rameters and the structure of LOP, we implement the LOP
with different values of B and different architectures. Table
9 report the AP and precision of PointRCNN when our de-
fense is deployed with different settings under the normal
circumstance. Fig.8 report the defense effectiveness and the
precision of PointRCNN when our defense is deployed with
different settings under attacks.

Table 9: The AP and precision of PointRCNN equipped with
the LOP with different B and different model structures.

AP Precision

Car Car Pedestrian Cyclist

w/o. defense 75.13% 75.04% 47.08% 56.87%

Ours(PointNet, B=0.2) 75.96% 76.49% 50.70% 58.66%
Ours(PointNet, B=0.3) 76.21% 77.15% 50.94% 58.93%
Ours(PointNet, B=0.4) 76.50% 78.05% 50.49% 61.59%
Ours(PointNet, B=0.5) 76.49% 79.29% 49.63% 61.92%
Ours(PointNet, B=0.6) 76.37% 80.03% 49.43% 63.87%

Ours(DGCNN, B=0.2) 76.44% 77.56% 51.04% 61.03%
Ours(DGCNN, B=0.3) 76.66% 78.36% 51.31% 61.72%
Ours(DGCNN, B=0.4) 76.58% 79.44% 51.21% 63.74%
Ours(DGCNN, B=0.5) 76.77% 80.75% 49.59% 65.14%
Ours(DGCNN, B=0.6) 76.84% 81.52% 49.42% 67.24%

Results & Analysis. As we can see from Table 9, the choice
of LOP’s structure has limited influence on the performance of
PointRCNN under the normal circumstance. The differences
between their precision are at most 1.49%, 0.72% and 3.37%
on cars, pedestrians and cyclists, and the differences between
their AP are at most 0.48% on cars. In contrast, the value of
B greatly affects the performance of PointRCNN. Normally,
the higher value of B is realted with better performance of
PointRCNN with the LOP: the precision of PointRCNN on
cars and on cyclists increase with a larger B, while the change
of AP on cars is always less than 2%.

In fact, the point-wise PC model also performs well in
other downstream tasks such as classification and semantic
segmentation, which means the key features extracted by them
is general enough to handle different CV tasks [34, 35, 45].

Thus, the LOP with different structures can both perform well
in recognizing the components of real objects. However, in
the pipeline of our proposed defense the value of B directly
determines whether a predicted object is preserved or elim-
inated. Therefore, the value of B affects the performance of
3D object detectors equipped with the LOP.

B Mis-categorization Attack Experiments

• Experimental Settings. To implement mis-categorization
attack, we follow the idea of Physical attack: we collected
the PCs about objects which was labeled as pedestrian in the
training set of KITTI, and kept the PCs with less than 200
points as the basic data of mis-categorization attack. Then,
during each time of mis-categorization attacks, we randomly
chose a PC from the basic data and injected it into the target
sample, then we further used PGD to change the positions of
some points in this PC in order to increased its confidence
scores and its classification probability of vehicles. Table
10 reports the ASR of this mis-categorization attack on 3
different object detectors, and the performance of these 3
object detectors with and without our LOP.
• Results & Analysis. As we can see from Table 10, LOP
reduces the ASR of the mis-categorization attack to almost
half of its origin in most cases. For example, LOP reduces at
least 58.92% of the original ASR on PointRCNN and reduces
at least 49.46% of the original ASR on PV-RCNN. An ex-
ception is the PointPillars, which seems to be more resilient
against mis-categorization attacks and thus the defense effect
of LOP is not as clear as the other two cases. In addition, we
also notice a similar phenomenon as discussed in Section of
our original manuscript, that LOP can slightly increase the
performance of the 3D object detectors in some cases. For
example, on PointPillars, the AP increase by 1.13%, while the
precision increases 7.52% when the detector is deployed with
LOP. In summary, the experimental results validate that LOP
is also effective against mis-categorization attacks, and incurs
almost no overhead on the performance of object detectors.

C Fusion Experiments

• Experimental Settings. According to [22], we choose the
fusion model EPNet, which can prevent appearing attacks in
a certain degree, as the defense target. Based on the official
implementation of EPNet, we implement the Physical attack
against EPNet, and evaluate its performance on KITTI with
or without LOP. Table 11 reports the corresponding results.
• Results & Analysis. As we can see from Table 11, without
our LOP, the physical attacks can still forging objects in EP-
Net’s detection and bring down the precision of it. However,
the ASR of physical attack on EPNet can be reduced to less
than 3% with the support of our LOP, and the ASR will further
be reduced to 0% when we deploy PointNet-based LOP with

Figure 8: The ASR of different attacks and the precision of PointRCNN when deploying the LOP with different values of B and
different model structures on PointRCNN.

Table 10: The ASR of mis-categorizan attacks and the performance of 3D object detectors under this attack.
PointPillars PointRCNN PV-RCNN

ASR AP Precision ASR AP Precision ASR AP Precision

w/o. defense 4.42% 70.40% 73.78% 13.39% 64.36% 52.22% 12.86% 63.89% 28.51%

Ours (PointNet, B=0.5) 3.67% 70.91% 78.80% 5.50% 72.09% 74.25% 6.44% 67.90% 61.24%
Ours (PointNet, B=0.6) 3.36% 70.96% 79.50% 4.06% 72.85% 76.50% 5.81% 68.01% 62.30%
Ours (DGCNN, B=0.5) 3.39% 71.53% 80.43% 4.67% 72.50% 75.88% 6.50% 68.47% 63.96%
Ours (DGCNN, B=0.6) 3.06% 70.18% 81.30% 3.44% 73.18% 77.83% 5.89% 67.28% 65.01%

Table 11: The ASR of physical attack on EPNet and the per-
formance of EPNet with and without LOP.

Precision
(w/o. attack)

Precision
(w. attack) ASR

None 46.45% 44.96% 44.39%

Ours(PointNet, B=0.4) 61.82% 60.69% 0.53%
Ours(PointNet, B=0.5) 64.19% 63.18% 0.00%
Ours(PointNet, B=0.6) 71.78% 69.82% 0.00%

Ours (DGCNN, B=0.4) 59.90% 57.28% 2.67%
Ours (DGCNN, B=0.5) 62.37% 58.33% 0.53%
Ours (DGCNN, B=0.6) 69.23% 67.05% 0.53%

B = 0.5,0.6 on EPNet. Besides, the precision of EPNet with
LOP also increased at least 12.32% under attacks and at least
13.45% in the normal circumstances. In summary, we believe
LOP should not be viewed a competitor for multi-sensor fu-
sion. Instead, LOP empirically improves the robustness of the
fusion models and the 3D object detectors. As LOP has no
interruption on the prediction on the image input and simply
focus on eliminating malicious objects, LOP would not hurt
the benefits of fusion models in self-driving systems.

D Details of The System-level Evaluation

Specifically, to perform these experiments, we first select 5
different fake PCs which are located in front of the self-driving
vehicle and can successfully forge the perception module of
Apollo or those 3D object detectors for at least 1 frame in the
previous experiments. Then, we inject the selected fake PCs
into 15 testing traces to conduct the appearing attack against
the self-driving vehicle.

We use the Dreamview to visualize the generated future

Figure 9: The Dreamview of Apollo without and with our LOP
while the attack is aiming at interrupting the route planning.

routes of Apollo 6.0.0, which are shown as the green rectan-
gles in front of the self-driving vehicle and represent the mov-
ing trajectories of the self-driving vehicle under the Apollo’s
control. Based on these routes and the planning module, we
define that the self-driving vehicle is harsh braking when the
planning module guide the self-driving vehicle decelerate to
0 km/h in less than 1 second.

As shown in the part (a) of Fig.9, the generated future
route is extended to the crossroads, which means the self-
driving vehicle will move normally and stop at a red light
under the instructions of the Apollo with our LOP. Therefore,
we consider this situation as “normal”. Meanwhile, as shown
in the part (b) of Fig.9, the generated future route disappears
for a while, and the planning module guide the self-driving
vehicle stop in a certain place, which means the self-driving
vehicle will falsely brake in the middle of the road. Therefore,
we consider this situation as a “harsh braking”. We calculate
the proportion of the “harsh braking” in the 15 poisoned traces
as the harsh braking rate, and report it in Section 5.4.

	Introduction
	Background
	Security Settings
	Threat Model
	Recent Appearing Attacks
	Previous Defenses

	Defense with Local Objectness Predictor
	Training Sample Generation
	Insight: Global Objectness = Local Objectness
	Technical Designs

	Objectness Predictor Construction
	Insight: The Inimitable Depth-Density Law
	Technical Designs

	Fake Object Elimination

	Evaluation and Analysis
	Overview of Evaluation
	Comparison with Baselines
	Attack Scenarios
	Benign Scenarios
	Overhead Analysis

	Adaptive Attacks
	System Integration

	Discussion
	Conclusion
	Hyperparameter Sensitivity
	Mis-categorization Attack Experiments
	Fusion Experiments
	Details of The System-level Evaluation

