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Abstract
Passwords are the most widely used authentication method,

and guessing attacks are the most effective method for pass-

word strength evaluation. However, existing password guess-

ing models are generally built on traditional statistics or deep

learning, and there has been no research on password guessing

that employs classical machine learning.

To fill this gap, this paper provides a brand new technical
route for password guessing. More specifically, we re-encode

the password characters and make it possible for a series

of classical machine learning techniques that tackle multi-

class classification problems (such as random forest, boosting

algorithms and their variants) to be used for password guess-

ing. Further, we propose RFGuess, a random-forest based

framework that characterizes the three most representative

password guessing scenarios (i.e., trawling guessing, targeted

guessing based on personally identifiable information (PII)

and on users’ password reuse behaviors).

Besides its theoretical significance, this work is also of prac-

tical value. Experiments using 13 large real-world password

datasets demonstrate that our random-forest based guessing

models are effective: (1) RFGuess for trawling guessing sce-

narios, whose guessing success rates are comparable to its

foremost counterparts; (2) RFGuess-PII for targeted guessing

based on PII, which guesses 20%∼28% of common users

within 100 guesses, outperforming its foremost counterpart

by 7%∼13%; (3) RFGuess-Reuse for targeted guessing based

on users’ password reuse/modification behaviors, which per-

forms the best or 2nd best among related models. We believe

this work makes a substantial step toward introducing classi-

cal machine learning techniques into password guessing.

1 Introduction
Passwords are likely to remain the dominant method in the

foreseeable future due to its simplicity to use, easiness to

change and low cost to deploy [12,13,20,27]. However, users

tend choose popular strings, employ personally identifiable

information (PII), and reuse an existing password. Such behav-

iors make passwords vulnerable to guessing attacks (including

trawling guessing [11, 43] and targeted guessing [40, 57]).

To address this issue, service providers often employ a

password strength meter (PSM) [15, 60] to detect weak pass-

words, and research shows that well-designed PSMs do help

users improve their password strength [48]. In practice, guess

number is found to be a good metric to evaluate password

strength [15, 35], and those easily guessed by an attacker are

considered weak passwords. Thus, it is imperative to study

password strength from the attacker’s perspective. While un-

ending password data breaches [3, 6, 8] provide favorable

material for attackers, there are still realistic attack scenarios

(e.g., for e-banking sites, and for passwords from sites beyond

USA, China, and Russia) where training data is scarce (e.g.,

size≤106), and/or when little is known about the target. There-

fore, it is equally imperative to understand guessing threats

when the available training data is not abundant.

In 1979, Morris and Thompson [36] designed several

heuristic transformation rules to generate variants of dictio-

nary words, and exploited them to perform password guessing.

Since then, a series of trawling password guessing approaches

that employ users’ behavior of choosing popular passwords

have been proposed, major ones are probabilistic context-free

grammar (PCFG [59]), and Markov-based models [34,37]. Be-

sides, frequent large-scale PII leaks (e.g., 240 million Deezer

leak [47], 553 million Facebook leak [9] and 77 million Ni-

tro PDF leak [23]) make targeted password guessing (e.g.,

Targeted-Markov [55] and TarGuess-I [57] that employ users’

PII, and TarGuess-II [57] that employ users’ sister passwords)

more and more realistic. All these password guessing algo-

rithms are statistics-based models that crack passwords by

counting the frequency of elements in the training set (such

as the letter segments in PCFG and the n-gram strings in

Markov). These “simply counting” models have the inherent

limitations of data sparseness and overfitting [34].

To address these limitations, deep learning based guess-

ing models (e.g., RNN [35], PassGAN [28], Adams [42] and

CPG/DPG [43]) have been proposed. They mainly use com-

plex neural networks to process the short length and small



feature dimension texts (i.e., passwords). While the model

training only happens once for these models, they usually

require extremely large training set (e.g., >108 for dynamic

dictionaries [42]), but have no significant success-rate advan-

tages over statistics-based guessing models (e.g., PCFG [59]

and Markov [34]) within 1010 guesses [51].

Since Melicher et al. [35] first modeled password guessabil-

ity using long short-term memory (LSTM) in 2016, sustained

attention has been attached to applying deep learning to pass-

word guessing research [28,42,43]. It turns out that password
guessing research has bypassed classical machine learning
and entered into the era of deep learning directly from the
statistics-based period, leaving a huge gap. In reality, as the

development of statistical learning and also the foundation of

deep learning, classical machine learning1 techniques (e.g.,

support vector machine [38] and random forest [14]) have

shown extensive applications in various fields like natural

language processing (NLP), speech recognition and computer

vision [30]. Compared with traditional statistical methods,

classical machine learning algorithms usually have stronger

fitting and predictive abilities; Compared with deep learn-

ing techniques, classical machine learning techniques usually

have more concise models, entail easier parameter tuning, and

require less training data to achieve satisfactory results.

However, to the best of our knowledge, no attention has

been given to designing password guessing models based on

classical machine learning techniques. Particularly, there has

been no satisfactory answer to the following key questions:

(1) Can classical machine learning techniques be used to de-

sign password guessing models? (2) If it is possible, how can

these techniques be used for typical guessing scenarios? (3)

Whether password guessing models based on classical ma-

chine learning techniques can improve the attacking success

rate while reducing the computational overhead? In this paper,

we aim to provide concrete answers to these key questions.

Though applying classical machine learning techniques to

password guessing looks deceptively simple, it is actually

rather challenging. Now we explain why.

Firstly, passwords are essentially short texts and have the

following characteristics that differ significantly from tradi-

tional NLP tasks: (1) A password is usually composed of

6∼30 characters [34, 53], which is much shorter than stan-

dard NLP texts; (2) A password is a piece of artificially con-

structed sensitive text, which may contain rich semantics, but

it is not limited by (and often deliberately deviated from)

the syntactic structure of the ordinary text, such as the pass-

word loveu4ever (with the semantic love you forever); (3)

For password guessing, it is required that the generated pass-

words can precisely match the target. This means any incon-

sistency will lead to the failure of password cracking. For

example, we take P@ssword123 as the target and generate a

series of guesses that are very close to it but different, such

1For simplicity of presentation, the term “machine learning” that appears

in this work stands for the “classical machine learning”.

as password123, p@sswrod123, Password123, etc. Though

they are all similar to the targeted password, none of them

constitutes a correct guess. This is particularly concerned in

guessing scenarios where the number of guesses allowed is

limited, e.g., online guessing [57], while online guessing is

the primary security threat that normal users need to devote

efforts to mitigate (see [12,22,57]). In contrast, some amount

of ambiguity is allowed in traditional NLP tasks, as long as

the ambiguity does not significantly impair understanding.

Hence, classical machine learning techniques originally de-

signed for NLP tasks (or computer vision) cannot be directly

or easily used for password guessing.

Secondly, password guessing models based on deep learn-

ing ( [28, 35, 43]) usually use one-hot encoding for password

characters, and use neural networks to learn the internal con-

nections of these characters automatically. However, classical

machine learning techniques usually require manually extract-

ing and constructing features (i.e., feature engineering). Thus,

it is a considerable challenge to tackle the question of how to

accurately characterize passwords, so that we can not only re-

flect the inherent properties of the characters, but also ensure

the effectiveness of the machine learning algorithm.

We summarize our contributions as follows:

• A new technical route. We represent each password

character in an n-order (e.g., n=4, 5, 6) string in four

dimensions: 〈character type, the rank of the character

(e.g., letter a is the first lower letter in a∼z), keyboard

row number, keyboard column number〉, and represent

the entire n-order string in two additional dimensions:

〈position of the character in a password, position of the

character in the current segment〉. These representations

are generic and make the classic machine learning tech-

niques (e.g., Random Forest and Boosting), for the first

time, be successfully applied to password guessing.

• A new PII matching algorithm. To overcome the limi-

tations of existing PII matching algorithms (i.e., using

heuristic tags to represent PII usages in passwords [57]),

we propose a new approximately optimal PII matching

algorithm that more accurately captures users’ PII us-

ages, and can improve the success rates of leading guess-

ing models by 7%∼13%. We show the effectiveness of

our algorithm through both theory and experiments.

• Extensive evaluation. We perform a series of experi-

ments to demonstrate the effectiveness and general ap-

plicability of our models. Results show that the guessing

success rate of our RFGuess is comparable to its fore-

most counterparts in trawling guessing scenarios, and is

7.03%∼27.54% higher than its counterparts in targeted

guessing scenarios based on PII.

• Some insights. When predicting the next character after

the n-order strings in a password, RFGuess can clearly

show the importance of each character in different dimen-

sions (e.g., type/continuity/position-information). Such

knowledge can help us optimize the model training and



password generation time by making easier the detection

(and elimination) of password features with low impor-

tance, and also sheds light on the design of new machine

learning based guessing models.

2 Background and related work

2.1 Three guessing scenarios
Trawling guessing. Trawling guessing means that the at-

tacker does not care who the specific target is, and its only

goal is to guess more passwords under the guess number al-

lowed. In 2009, Weir et al. [59] proposed a fully automated

password guessing algorithm based on a rigorous probabilis-

tic context-free grammar (PCFG). First, the algorithm di-

vides a password string into three categories: letter segment

L, digit segment D, and special character segment S. Then,

the password is transformed into a template structure (e.g.,

Password123!→ L8D3S1) and the corresponding terminals

that fit into the structure (e.g., L8→Password). Finally, the

probability of a generated password is calculated according

to the probability of its structure multiplied by those of its

terminals. In this context, researchers have proposed a series

of improved techniques, such as performing further semantic

mining in passwords [50], adding keyboard and multiword pat-

terns [29] and adaptive improvement for long passwords [25].

Unlike PCFG [59], which divides passwords into different

segments according to the character type, the Markov model

proposed by Narayanan and Shmatikov [37] trains the whole

characters in a password, and calculates the probability of

passwords through the connection between the characters

from left to right. Particularly, the n-gram Markov needs to

record the frequency of a character followed by a string of

length n-1. Like PCFG, many researchers have conducted

follow-up research on the Markov model. For example, Ma et

al. [34] smoothed and normalized the Markov model to allevi-

ate the problem of data sparseness and overfitting; Markus et

al. [19] enumerated the passwords in descending probability

order to improve the guessing speed.

At USENIX’16, Melicher et al. [35] first introduced deep

learning techniques to password guessing. More specifically,

they build a neural network composed of LSTMs (which are

denoted as FLA, i.e., Fast, Lean, and Accurate). Compared

with the traditional statistical password guessing models (e.g.,

PCFG [59] and Markov [34]), FLA has better cracking rate

under relatively large guesses (i.e., >1010). In 2019, Hitaj et

al. [28] introduced generative adversarial networks (GAN) to

password guessing, and proposed the PassGAN, which shows

the potential of GAN’s application in this field. After that,

Pasquini et al. [43] alleviated the mode collapse problem of

GAN during training, so that the cracking rate of GAN-based

approaches under large guesses has been significantly im-

proved. On this basis, they constructed two password guessing

frameworks, that is, conditional password guessing (CPG) and

dynamic password guessing (DPG). However, compared with

statistics-based models (e.g., PCFG [59] and Markov [34]),

CPG/DPG [43] generally requires extremely large training

data (e.g., size>107), consumes longer training time, and suf-

fers cumbersome parameter tuning.

Targeted guessing based on PII. The goal of a targeted pass-

word guessing is to crack the password of a given user in a

given service (e.g., an online banking account, and personal

mobile phone) as quickly as possible [57]. Thus, the attacker

would use PII related to the target victim to enhance the perti-

nence of cracking. Overall, the current research on targeted

password guessing is still in its infancy, mainly focusing on

how to use demographic information (such as name, birthday

and mobile phone number). In 2015, Wang and Wang [55] first

proposed a targeted guessing model based on Markov [37]

(namely Targeted Markov). Their basic idea is that the fre-

quency of names in the training sets reveals the likehood of

the targeted user choosing a name-based password. In 2016,

Li et al. [32] proposed a targeted guessing model based on

PCFG [59]. The difference with trawling PCFG is that some

PII segments representing different lengths have been added

to the original LDS segments. At CCS’16, Wang et al. [57]

revealed the inherent limitation of length-based PII matching

method, and proposed a new targeted guessing model with a

type-based PII matching method, namely TarGuess-I.

Targeted guessing based on password reuse. At NDSS’14,

Das et al. [17] proposed the first cross-site password-guessing

algorithm based on transformation rules. This algorithm per-

forms several artificially defined transformations (e.g., delete,

insert, and leet) on users’ existing passwords, and then gen-

erates guesses in a pre-defined order. However, users would

hardly reuse/modify passwords in such a pre-defined unified

approach, hence limiting its performance in the real world.

At CCS’16, Wang et al. [57] proposed a PCFG-based model

for password reuse, namely TarGuess-II. The core idea is to

characterize users’ password reuse behaviors in two levels of

modification operations (i.e., structure- and segment-level).

During training, it first learns the probability of the two-level

transformation path of sister password pairs to build a PCFG.

Second, the guess with the highest probability in the PCFG

is output each time through the priority queue, and then they

are transformed and inserted into the priority queue again. In

this way, the guesses sorted by probability can be obtained.

At IEEE S&P’19, Pal et al. [40] proposed Pass2Path, a tar-

geted guessing model for password reuse based on deep learn-

ing. More specifically, it employs a sequence-to-sequence

(seq2seq) model [46] to predict the path of modifications

needed to transform one password into its sister password.

Its guessing success rate is better than that where the input

and output of the model are directly the user’s original pass-

word and the new password, respectively. In other words, this

way of training focuses the model better on learning common

transformations found in password datasets.



2.2 Password guessing modeling
The Markov n-gram model was originally introduced at

CCS’05 [37] and improved at IEEE S&P’14 [34]. Generally, n
is recommended to be 3, 4, or 5 [34,56]. Its core assumption is

that: Each character is only related to the first d characters in

front of it and has nothing to do with other characters, where

d(=n+1) is the order of the Markov model. The conditional

probability for character ci following the string c1c2. . .ci−1 is

Pr(ci|c1c2 · · ·ci−2ci−1) = Pr(ci|ci−d · · ·ci−1)

=
Count(ci−d · · ·ci−1ci)

Count(ci−d · · ·ci−1·) ,
(1)

where Count(ci−d · · ·ci−1ci) denotes the number of occur-

rences of the string ci−d · · ·ci−1ci, and Count(ci−d · · ·ci−1·)
denotes the number of occurrences of the string ci−d · · ·ci−1

where it is followed by an undetermined character (i.e., where

it is not at the end of a string). Then the probability of the

string s=c1c2 · · ·cn is given by:

Pr(s) = Pr(c1)Pr(c2|c1) · · ·Pr(cn|cn−1cn−2 · · ·c1)

=

n∏
i=1

Pr(ci|ci−d · · ·ci−1).
(2)

In reality, while each character in a password may have

varying degrees of security impact on other characters [41],

this paper assumes that the order in which users create pass-

words is from left to right (i.e., the same order with how they

type passwords), and each character is only related to a few

characters before it (This means our model makes the same

assumption with the well-known Markov model [34,37]). Un-

der this assumption, the password generation process can be

regarded as a multi-class classification problem.

More specifically, given a password, the n-order string in

the front of each of its character can be seen as the target to

be classified (and features can be extracted from this n-order

string), and the character itself can be seen as the classification

label corresponding to the string to be classified. From this

perspective, all supervised learning algorithms that tackle

multi-classification problems can be applied to password

guessing. Considering that when the data dimension is low

and the task accuracy required is high (which are exactly the

characteristics of password guessing tasks), ensemble learn-

ing methods generally performs well (see the potential appli-

cability of some representative classification algorithms in

Appendix A of the full paper at https://bit.ly/41w5M0b).

Without loss of generality, in what follows, we take Random

Forest as a typical case study to show how to employ classical

machine learning techniques for password guessing.

Assume that T ={(x1,y1),(x2,y2), ...,(xn,yn)} is the train-

ing set, then we can build a mapping f from the input space X
to the output space Y by learning T. Here X ={n-order strings

of a password set}, Y ={95 printable ASCII codes}∪{Es},

i.e., 96 different categories, where Es denotes the end symbol.

X dataset

N1 features N2 features N3 features N4 features

Tree #1 Tree #2 Tree #3 Tree #4
Class A Class C Class C Class B

Majority Voting

Final Class
Figure 1: A high-level example of random forest [14]. Here, X is all the n-

order strings of a training dataset, N = {N1,N2, ...,} is a randomly extracted

feature subset, and class {A, B,...} represents the category (95 printable

ASCII codes and the end-symbol) to which each n-order string belongs.

2.3 Introduction of random forest
Random forest [14] is a an ensemble learning method for

classification (and regression) that consists of multiple deci-

sion trees [44]. When predicting the category of a sample,

the algorithm counts the prediction results of each tree in the

forest, and then selects the final result by voting (see Fig. 1).

“Randomness” lies in two aspects: the random selection of

features and the random selection of samples. Hence, each

tree in the forest has both similarities and differences.

Formally, we denote the decision tree model as {hk(X),k =
1,2,3, ...}. Given an independent variable x in X dataset, each

decision tree has one vote to select the optimal classification

result. The final classification decision is:

H(x) = argmax
y∈Y

k∑
i=1

I(hi(x) = y), (3)

where H(x) represents the combined classification model (i.e.,

the random forest), hi is a single decision tree, y ∈ Y is the

output, and I(·) is the characteristic function.

The decision tree [44] has three mainstream node splitting

algorithms: ID3, C4.5 and CART. These algorithms use differ-

ent feature selection criteria, namely, information gain, gain

ratio and Gini impurity. Among them, the Gini impurity repre-

sents the probability that two samples are randomly selected

from the dataset and their categories are different. It has a

relatively small calculation cost and is easy to understand.

Therefore, this paper uses the CART decision tree (see Fig. 2).

For a dataset D (composed of n-order strings), the calculation

formula of the Gini impurity is as follows:

Gini(D) =

|y|∑
k=1

∑
k′ 
=k

pk pk′ = 1−
|y|∑

k=1

p2
k , (4)

where |y| represents 96 classification categories (i.e., 95 print-

able characters and the end-symbol Es), and pk represents the

proportion of the category k in D. When dividing features, the

Gini impurity of feature a (the detailed feature construction

method of n-order strings can be seen in Sec. 3.1) is:



··· ···

efg123, bnm444
vbn333, aaa765
···

3334d4, 678�d� 
T6a6s6,  d1d2d3
···

Rule 1: 
The position of the last prefix 

char in the password 7

Rule 2: 
Type of 6th char is digit

Yes

Yes

Yes

No

No NoYes

No

Class = ‘d’Class = ‘4’

asswor, 
Loveyo,  
···

123abc,
efg123,  

102455, 
6-order prefix
to be classified

Rule n: 
Type of 2nd char is letter

Rule 3: 
Type of 5th char is digit

123abc, Loveyo,  
dearbo, ···

efg123, asswor,  
aaa765, ···

Figure 2: A high-level example of a decision tree for password prefix classifi-

cation. The node division is determined according to the corresponding rules

through the if-else logic, and finally, each prefix is divided into the character

category to which it belongs. For example, class=4 means that all prefixes in

this leaf node are followed by the character 4 like efg1234.

Gini(D|a) =
V∑

v=1

|Dv|
|D| Gini(Dv), (5)

where v represents each value of feature a, and Dv represents

the subset of D divided according to the value v. Formula 5

indicates that when selecting features, the weighted average

method is used to calculate the total Gini impurity, and finally,

the feature that minimizes the Gini impurity after division is

selected as the optimal division feature.

2.4 Analysis of random forest
Now we explain why the random forest model [14] can solve

the shortcomings of the Markov n-gram model [37] when

applying to password guessing from three aspects.

Training 
set

123 abc···
abcd, abcd
abcd ···
abca, abca
···
abc1, abc2
···

1234, 1234
1234 ···
1231, 1231
···
123!, 1230
···

Figure 3: Tree diagram of the

Markov model [37]. Here we

take 3-order as an example.

The fitting principle. Fig.

3 shows that the Markov n-

gram model [37] can essen-

tially be seen as a decision

tree [44] divided by prefix

string of height one. It divides

all strings with the same pre-

fix into the same leaf node,

resulting in that when the pre-

fix string appears very rarely

in the training set (i.e., data

sparseness issue), it can only

be classified according to the few samples that appear in the

training set. In comparison, the decision tree divides its node

according to the impurity (representing how well the trees

split the data, and there are several impurity measures like

the Gini impurity as defined in Sec. 2.3.) of each feature (i.e.,

division rules) in the prefix. It selects the feature with the

least impurity as the rule of feature division, which makes the

final sample meeting the same division rule fall to the same

leaf node. These samples can be regarded as similar samples

with the same classification results (see Fig. 2 for a high-level

example). Thus, the prefixes that appear less frequently or

do not appear in the training set can also be divided into leaf

nodes composed of similar samples.

Automatic feature screening. The most critical parameter in

the Markov model [37] is the order d, which is the length of

the prefix that needs to be considered. When the order is too

high, the model is easy to overfit [34]. However, this is not a

problem for the random forest [14]. Specifically, the decision

tree [44] selects the feature with the smallest impurity (after

splitting) as the division rule. That is, it will select features

with a higher degree of importance for division, and will not

be affected by those with poor division effects. For example,

the string 1234 followed by the character 5 is a natural law

and should not be changed due to the training set, so the sub-

string 1234 is more important than the whole string #1234
when predicting the next character, while the 5-order Markov

model only considers the frequency of #1234.

Minimum number of samples in each leaf node. For sam-

ples that appear less frequently or have never appeared before,

the decision tree [44] will divide the samples into a specific

leaf node according to the training rules. Since the samples

that meet the same set of rules have the same classifications,

the probability of each category will be obtained according

to the distribution of the sample categories in the leaf nodes.

When the number of samples in the leaf node is large, the deci-

sion tree [44] can smooth the samples well; when the number

of leaf nodes is small, or even if there is only one sample in

a leaf node, this situation degenerates to the Markov model

with the low-frequency prefix problem. Fortunately, the de-

cision tree can reasonably solve this problem by limiting the

minimum number of samples in leaf nodes.

3 RFGuess: A new trawling guessing model
based on random forest

3.1 Password character feature construction

To construct a password guessing model based on classical

machine learning techniques, feature engineering is an essen-

tial step. A password is usually composed of characters and

has two important characteristics: the type of characters and

the continuity of characters. Particularly, there are three types

of characters used in passwords: digits, letters, and special

characters. Each type of character has a certain internal con-

tinuity, such as 0∼9 and a∼z. Therefore, to well represent

these two characteristics of characters in a password, we need

to re-encode the password characters.

We first represent the password characters in two dimen-

sions. One is the character type. Here we use 0, 1, 2, and 3
to represent special characters, digits, uppercase letters, and

lowercase letters, respectively; the second is the serial number

of the characters in each type. For example, letters a∼z are

represented by 1∼26, digits 1∼9 represented by number 1∼9,

and digit 0 represented by 10 (since 0 stands for the beginning

symbol). In this way, the type and continuous characteristics



of password characters can be displayed explicitly.

Secondly, keyboard pattern is a popular way to create pass-

words [57, 62], so the characteristics of keyboard pattern are

also considered in the feature construction. The keyboard

pattern usually means creating passwords through adjacent

keyboard positions, such as 1qa2ws and 123qwe. Thus, we

also use two-dimensional features to represent the keyboard

characteristics of password characters: the row and column

position of the keyboard in the form of coordinates. For ex-

ample, 1 is represented as (1,1), q is represented as (2,1), s
is represented as (3,2). Thus, the position coordinate repre-

sentation can clearly show the continuous characteristics of

the characters and improve the model fitting ability.

The last consideration is the length characteristic of the

string. More specifically, we construct two length features:

position of the character relative to the entire password (i.e.,

trained length) and position of the character relative to the

current segment (i.e., trained length in the current L/D/S seg-

ment). Considering that the password length of most users is

at least six [34, 53], we set the order of our model to six. That

is, we use a 6-order prefix to predict the next character.

As a result, every 6-order prefix can be represented by a

26-dimensional feature vector (26=4×6+2), because there are

6 prefix characters, 4 feature dimensions for each character

and 2 additional feature dimensions for the length informa-

tion of the entire prefix. We take the 6-order prefix wer654 of

password qwer654321 as an example. First, each character in

wer654 can be uniquely represented as a 4-dimensional fea-

ture vector. For instance, character r is represented as (3, 18,

2, 4), where 3 represents the character type of lowercase letter,

18 is the rank of r in the lower letter sequence a∼z, 2 and 4

are the keyboard row and column positions of r, respectively.

Now, wer654 can be represented by a 24-dimensional feature

vector (24=4×6). Then, we add 2-dimensional length feature

(7, 3) of prefix wer654, where 7 represents the position infor-

mation relative to the entire password (i.e., digit 4 in wer654
is the 7th character of qwer654321), and 3 represents the po-

sition information relative to the current digit segment (i.e.,

digit 4 in wer654 is the 3th character of segment 654321).

Figure 4: Impacts of varied orders

(1M Rockyou→Rockyou_rest).

Note that, we have

tested a number of dif-

ferent order values (i.e.,

n=3, 4, 5, 6, 7) of our

RFGuess, and found that

when n≥4, RFGuess can

achieve similar cracking

success rates (as shown in

Fig. 4). Generally, when

the order decreases (e.g., n=3), the number of features (i.e.,

4n+2) decreases accordingly, which may make RFGuess un-

derfit. While when the order is too large (e.g., ≥7), passwords

whose length is smaller than this value cannot be well mod-

eled. Since the cracking success rate is slightly better when

n=6, we set n=6 in the following experiments.

3.2 Feature importance analysis
To verify the effectiveness of the constructed features, the

feature importance scores are calculated by random forest

in different training datasets. According to the results shown

in Figs. 10 and 11 of Appendix E (and Fig. 11 in the full

version of this paper), we find that the trained length feature

(i.e., position of the last prefix character in the password) has

the highest score, indicating its significant impact on fitting

RFGuess. Other top-ranked features are mainly characters

that are closer to the target character. Among the four different

dimensional features of the same character, the serial number

feature (e.g., a is the first in alphabetic types a∼z, 0 is the first

of digits 0∼9) and the keyboard column number feature are

more effective, while the type of character (letter/digit/special

character) and the trained length of current segment features

(position of the character in the L/D/S segment) are relatively

unimportant, and keyboard row number offers little gain on

the model fitting. A plausible reason is that when building

passwords, users create more horizontal keyboard modes (e.g.,

qwerty) than vertical modes (e.g., 1qaz) [62]. Particularly,

we have counted the Top-10 most frequency keyboard patterns

of CSDN, Dodonew, Taobao, and Rockyou, and found that

the Top-10 patterns are either horizontal keyboard modes or

just the repetition of a single character (e.g., aaaaaa).

3.3 Model training and password generation
At a high level, our RFGuess is similar to the Markov 7-gram

model [37]. More specifically, it first processes the password

into the form of 6-order character prefixes and their corre-

sponding characters (e.g., the resulting 6-order set of pass-

word abc123 is {(BsBsBsBsBsBs,a),(BsBsBsBsBsa,b), ...,(a
bc123,Es)}, where Bs and Es stand for the beginning and end-

ing symbol respectively). Then, it represents the 6-order prefix

as a 26-dimensional vector (each character is represented by 4

dimensions, plus two additional length features for the entire

prefix), the single character following this prefix in an ASCII

value, and the beginning and ending symbol are represented

by 0 and -1, respectively. When training the model, RFGuess

traverses the 6-order set of each password in the training set,

takes the 26-dimensional prefix feature vectors as training

input, and takes the numerical label of the corresponding char-

acters as training output. Fig. 2 shows a high-level example

of the decision tree classification process.

The process of guess generation is quite similar to the

Markov n-gram model [34]. The key difference is that we

do not use the Bayes formula when calculating the condi-

tional probability, but use the trained random forest to get

this value. More specifically, each decision tree will vote on

which category (one of the 95 characters and end-symbol)

the input sample (i.e., the 6-order string prefix) belongs to,

and its probability is the proportion of the number of votes

obtained by this category to the total number of trees. For

example, suppose there are 10 decision trees in the random



Table 1: Basic information about our 13 password datasets.†

Dataset Web service Language When leaked Total PWs Length>30 Removed % Unique PWs With PII

Taobao E-commerce Chinese Feb., 2016 15,072,418 88 0.01% 11,633,759
126 Email Chinese Oct., 2015 6,392,568 621 0.23% 3,764,740
Dodonew E-commerce Chinese Dec., 2011 16,283,140 13,4758 0.15% 10,135,260
CSDN Programmer Chinese Dec., 2011 6,428,632 0 0.01% 4,037,605
Wishbone Social English Jan., 2020 10,092,037 250 0.01% 5,933,902
Mate1 Dating website English Mar., 2016 27,401,505 12,430 0.06% 11,916,080
000Webhost Web hosting English Oct., 2015 15,299,907 4,159 0.76% 10,526,769
Yahoo Web portal English July, 2012 453,491 0 2.35% 342,510
LinkedIn Job hunting English Jan., 2012 54,656,615 17,162 0.22% 34,282,741
Rockyou Social forum English Dec., 2009 32,603,387 3,140 0.07% 14,326,970
12306 Train ticketing Chinese Dec., 2014 129,303 129,303 0 117,808 �
ClixSense Paid task platform English Sep., 2016 2,222,045 0 0 1,628,018 �
Rootkit Hacker forum English Feb., 2011 69,330 5 0.01% 56,835 �

†PW stands for password, and PII for personally identifiable information. We clean up passwords longer than 30 or containing non-ASCII characters.

forest voting on the string prefix “123456”. Among them, 6

votes are cast for the character “7”, 3 votes for the character

“a”, and 1 vote for the character “6”. Then the probabilities

of the entire string (6-order prefix plus a single character) are

{“1234567”: 0.6; “123456a”: 0.3; “1234566”: 0.1}.

Figure 5: Impacts of varied values of

δ (0.1M Rockyou→Rockyou_rest).

Our exploratory ex-

periment shows that in

the process of generating

1.8 million (M) guesses

(training with 6M CSDN

passwords using 30 deci-

sion trees), an average of

70% of the characters do

not get a vote in one-step

prediction, constituting the majority of the alphabet. This indi-

cates that RFGuess may not be good at generating previously

unseen characters.To address this issue, we employ the add-δ
smoothing technique [34] to smooth characters that do not

get a vote. For example, Pr(#|123456) = PrRFGuess(#|123456)+δ
1+δ·|Σ|

(where PrRFGuess(#|123456) means the probability of #
calculated by RFGuess when the input string is 123456, and

Σ is the character table of the training set). We have tested a

number of values of δ (e.g., 0, 0.01, 0.02, 0.001), and found

δ=0.001 is the best among all (see Fig. 5).

3.4 Experimental setups and results
Datasets. We evaluate the existing password guessing ap-

proaches and our RFGuess model based on 13 large real-

world password datasets (see Table 1), a total of 241.27 mil-

lion(M) passwords. Eight of our password datasets are from

English sites and five from Chinese sites. As Table 1 shows,

three datasets (i.e., 12306, ClixSense and Rootkit) are origi-

nally associated with various kinds of PII (e.g., name, birthday,

email). To enable extensive targeted guessing evaluation, we

match the non-PII-associated password datasets with these

three PII-associated ones through email, and this produces a

total of six PII-associated password datasets (see Table 2). For

targeted guessing based on password reuse, we obtain eight

password pair datasets by matching email (see Table 4).

Ethical considerations. Though ever publicly available on

the Internet and widely utilized in existing studies [17, 40,

42, 43, 57], these datasets are private data. Hence, we only

illustrate the aggregated statistical information and keep each

individual account as confidential in order to avoid bring-

ing additional risks to the corresponding victim. While these

datasets may be misused by attackers for cracking, our use is

both beneficial for the academic community to understand the

strength of users’ password choices and for security adminis-

trators to prevent creating weak passwords. As our datasets

are widely used and publicly downloadable on the Internet,

this facilitates fair comparison and good reproducibility.

Experimental setup. To well establish the generality and

effectiveness of our RFGuess, we evaluate it on both one-

site (intra-site) and cross-site guessing scenarios. For intra-

site scenarios, we randomly select 0.01M, 0.1M, and 1M

(M=million) passwords from Rockyou as the training set, re-

spectively, and randomly select 100,000 passwords from the

remaining dataset as the test set. Since the attacker is smart

and will constantly improve her training set to make it as

close as possible to the test set (to improve her success-rates),

our intra-site experimental methodology just reflects this sit-

uation (this methodology is quite routine in password re-

search [54, 57, 59]). Particularly, many sites (e.g., Yahoo [39],

Flipboard [4], Twitter [26] and Anthem [21]) have leaked

their user passwords more than once, and thus it’s practi-

cal/realistic to conduct/consider the intra-site guessing scenar-

ios. For cross-site scenarios, we apply the trained model (on

an older leaked dataset) to crack a newer leaked dataset (i.e.,

Rockyou→000Webhost and 000Webhost→Wishbone). Note

that we do not remove the identical password pairs (i.e., direct

reuse) that occur in the training sets from the test sets, because

the attacker has no prior knowledge of which passwords are

used by the target account, and excluding duplicate passwords

from the test set hinders the evaluation of a guessing model’s

fitting ability. We discuss this point in detail in Sec. 6.

We compare RFGuess with three leading guessers (i.e.,

PCFG [59], Markov [34], and FLA [35]). Also, we introduce

the Min_auto approach [49] to avoid the bias of a single

approach. The setups of each approach are as follows.

PCFG. The PCFG we use is consistent with [34], that is,

the probability of the L segment comes from the training set,

which is better than the original version in [59].

Markov. For the Markov model, due to the great influence

of order, this paper carries out the 3-order and 4-order exper-

iments at the same time, and adopts the Laplace smoothing



(a) 0.01M Rockyou → Rockyou_rest (b) 0.1M Rockyou → Rockyou_rest (c) 1M Rockyou → Rockyou_rest

(d) 0.01M Rockyou → 000Webhost (e) 0.1M Rockyou → 000Webhost (f) 1M Rockyou → 000Webhost

Figure 6: Guessing performance of our RFGuess in comparison with other approaches (i.e., PCFG [59], 3/4-order Markov [34], FLA [35] and Min_auto [49]) in

the intra-site and cross-site trawling guessing scenarios. Note that Min_auto [49] represents an idealized strategy: A password is considered cracked as long as

any of these five real-world password models cracks it. Rockyou_rest means the original Rockyou dataset excluding the corresponding training set.

and end symbol regularization as used in [34].

FLA. We use the source code of FLA [35], and follow its

recommended parameters in our experiments. More specifi-

cally, we train a model consisting of three LSTM layers with

200 cells (namely the “small” model in [35]) in each layer

and two fully connected layers, a total of 20 epochs.

RFGuess. As detailed in Appendix A, we train a random

forest with 30 decision trees. Its minimum number of leaf

nodes is 10, the maximum ratio of features is 80%, and the

rest are in default of the scikit-learn framework [2].

Min_auto. It represents an idealized guessing approach

[49], in which a password is considered cracked as long as

any of these real-world guessing models cracks it.

Experimental results. Since explicitly enumerating large

guesses is computationally intensive, we use the Monte-Carlo

algorithm [18] to reliably estimate a password’s guess num-

ber. That is, how many guesses it would take for an attacker

to arrive at that password when password guesses are at-

tempted in descending order of likelihood. Fig. 6 shows the

results. To accurately show the attack success rates of differ-

ent approaches, we give the concrete result values at some

specific guess numbers (i.e., 107 and 1014; see Table 10 at

https://bit.ly/41w5M0b). In intra-site guessing scenarios,

RFGuess performs slightly better than FLA [35], and beats

PCFG [59] and Markov [34] beginning at around 107 guesses.

In cross-site scenarios, the guessing success rates of RFGuess
are slightly worse than FLA [35] within 1014 guesses, but are

significantly higher than PCFG [59] and Markov [34].

To demonstrate the generality of RFGuess, we evaluate it

with larger training datasets (i.e., 75% 000Webhost of size

11,474,930). Fig. 7 shows that, when using a ten million-

sized training set, RFGuess outperforms all its counterparts

in intra-site guessing scenarios, and is slightly better than (or

comparable to) its counterparts in cross-site guessing sce-

narios. This suggests that RFGuess is better at modeling

the guessability of passwords from the same (or similar) dis-

tribution. By employing the same training and test set (i.e.,

75% of 000Webhost→25% of 000Webhost), we also compare

RFGuess with dynamic dictionaries [42]. However, the suc-

cess rate of dynamic password guessing (DPG) [42] is only

0.13% within 5×109 guesses (which are the maximum num-

ber of guesses that can be reached using 75% of 000Webhost).

A plausible reason is that DPG is more suitable for extremely

large training sets, and this partially explains why the original

paper [42] uses the 1.4 billion-sized 4iQ as its training set.

Our RFGuess is just on the opposite: It is particularly suitable

for guessing scenarios where the training data is not abundant

(e.g., passwords from sites beyond USA, China, and Russia).

We further make an apples-to-apples performance compar-

ison of these approaches in three key criteria (i.e., training

time, model size, and time to generate guesses), and sum-

marize the comparison results in Table 6 (see Appendix B

for details). In all, RFGuess has relatively high training ef-

ficiency (it only takes 0.3 hours to train five million data),

but it has relatively large model size (i.e., 4.5G when the

compress parameter in the joblib tool is set to three), and

its guess generation is relatively slow (about 130∼677 pass-

words/s). This makes RFGuess particularly suitable for online

password guessing attacks where the number of guesses al-

lowed is small. In practice, online password guessing is the



(a) 75% 000Webhost→25% 000Webhost (b) 75% 000Webhost→Wishbone

Figure 7: Evaluate our RFGuess using 75% 000Webhost of size 11,474,930.

most concerning (and unmatured) scenario regarding pass-

word security [7,40,57], because offline guessing can be well

eliminated by slow/memory-hard hashes (e.g., Bcrypt and

Argon2), but online guessing is unavoidable and its success-

rate is rather high (see Tables 3 and 5) even if there are rate-

limiting/blocking mechanisms. This is because the guess num-

ber allowed for an attacker cannot be too small, otherwise the

system will suffer from DoS attacks, which explains why 100

in one month is recommended by NIST-SP800-63B [24].

If one wants to improve the password generation efficiency

of RFGuess, she can set the number of trees to one (i.e., use

the decision tree model). At this time, the password generation

speed can be increased to 1,520 passwords/s, while the attack

success rate is reduced by about 0.4%∼2% (see Fig. 9).

Figure 8: Impacts of varied features on
RFGuess (Taobao→Taobao_rest).

Insights. To understand

the impacts of features,

we remove the relatively

unimportant 5-, 10-, and

15-dimensional features

according to the feature

importance ranking, and

remove 4-, 8-, and 12-

dimensional features ac-

cording to the character position information (e.g., the 4-

dimensional features of character 123 in prefix 123456 are

removed in turn). Results show that the training time and

password generation speed of our RFGuess are improved by

up to 35%, while the success rates remain stable (see Fig. 8).

Thus, when designing new password guessing models

based on classical machine learning techniques, one can cre-

ate as many new features as possible (e.g., the number of

character types contained in the prefix, the Shannon entropy

of the prefix, etc.) to explore more effective password rep-

resentation. Then, the most effective features can be figured

out by measuring the feature importance score and/or success

rates. This improves the training efficiency while maintaining

the success rates, which makes our RFGuess highly scalable.

4 RFGuess-PII: A targeted password guessing
model based on PII

We now use random forest [14] to design a targeted password

guessing model based on PII, called RFGuess-PII. We first

analyze the limitations of the PII matching strategy used in

current targeted guessing models, and then propose a more

effective PII matching algorithm. Based on this algorithm and

the RFGuess model in Sec. 3, we propose RFGuess-PII and

demonstrate its effectiveness through large-scale experiments.

4.1 Problems in mainstream methods
Previous PII matching methods. Li et al. [32] first proposed

a PII matching method similar to PCFG [59] (for example, N4

represents name information with a length of four like Wang).

At CCS’16, Wang et al. [57] pointed out that this method has

severe limitations. Instead, they introduced a series of type-
based PII tags and achieved drastically better results. More

specifically, they use N standing for name usages, while N1

for the usage of full name, N2 for the abbr. of full name,· · · ;
U stands for username usages, U1 for full username, U2 for

the letter segment of the user name,· · · . We summarize these

notations in Table 6 of our full version paper.

In the process of training, the leftmost and longest matching

strategy is adopted for disambiguation when matching the PII

contained in the passwords. For example, if a user’s username

is Alice0102, name is Alicexxx, birthday is 19930102, and

password is Alice01021993, then according to the leftmost

and longest matching strategy used in [57], it should be rep-

resented as U1B5 instead of N3B2 (where B5 represents the

birthday year, N3 represents the full name of the surname, and

B2 represents the birthday in the MY format), because the

username Alice0102 will be matched first.

This matching strategy uses a greedy strategy to first match

the longest PII at the leftmost position, and it is not opti-

mal. “Optimal” here refers to the global optimum for the

entire training password set rather than the local optimal for

a single password. To explain the concept of global optima

more clearly, we introduce information entropy for analysis.

Shannon Entropy [45] metric is proposed in 1948 to measure

the uncertainty of a distribution. The greater the information

entropy, the more random the password distribution, and the

more secure the password set. Thus, for the same password set,

the feature extraction and representation method that makes

the password set’s information entropy lower can better make

use of the characteristics of the training set.

4.2 New PII matching algorithm
The current strategy for PII matching is not optimal because

there will be ambiguities (multiple representations for the

same password) when matching, and as in the above example,

using the leftmost and longest matching strategy would result

in heuristically selecting one option for PII tagging. This

cannot minimize the information entropy. In other words, it

cannot entirely and accurately extract the PII usage behavior

of the entire user group. To address this issue, we propose an

approximately optimal PII matching algorithm.

The first step of our proposed algorithm is similar to the

type-based PII matching method [57], which subdivides the

various possible transformations of PII and use different tags



Table 2: Basic information about our PII datasets.
Dataset Language Items num Types of PII useful for this work

12306 Chinese 129,303 Email, User name, Name, Birthday, Phone

CSDN Chinese 77,216 Email, User name, Name, Birthday, Phone

Dodonew Chinese 161,517 Email, User name, Name, Birthday, Phone

ClixSense English 2,222,045 Email, User name, Name, Birthday

000Webhost English 79,580 Email, User name, Name, Birthday

Rootkit English 69,418 Email, User name, Name, Birthday

to represent them. Notably, we use digital tags instead of letter

tags (e.g., N1∼N7,B1∼B10 in TarGuess-I [57]), and summa-

rize these notations in Table 6 at https://bit.ly/41w5M
0b. Thus, they can be conveniently used as input to the ma-

chine learning model for training. For example, starting from

1,000 to stand for name usages, where 1,000 for the usage of

full name, 1,001 for the lowercase letter of last name,· · · .
The second step is to list all the possible representations

with PII tags for each of the passwords in the training set

(e.g., three representations {4000, 2001}, {4001, 2003, 2004,

2001} and {1002, 2003, 2004, 2001} for Alice01021993).

After that, we sort the representations by frequency from

high to low. Specifically, the most frequent representation

(e.g., {4000, 2001}) is denoted as R1, the second is denoted

as R2 (e.g., {4001, 2003, 2004, 2001}),· · · . Then, we use R1

to represent all passwords that can be represented as R1, and

the frequency of each of their remaining representations (e.g.,

{4001, 2003, 2004, 2001} and {1002, 2003, 2004, 2001}) sub-

tracts one. Next, the remaining passwords (remove those al-

ready represented by R1) that can be represented as R2 are all

represented by R2, and their frequency of the remaining repre-

sentations continues to subtract one. The process repeats until

the frequency of all remaining representations is less than or

equal to one. Finally, the password whose representation has

not been determined is represented by the shortest structure,

and the algorithm ends. We formalize this process in Algo-

rithm 1, and demonstrate its generality and effectiveness both

theoretically and experimentally (see Appendix C for details).

4.3 New targeted guessing model based on PII

Based on RFGuess proposed in Sec. 3 and the approximately

optimal PII matching algorithm, we now propose a new tar-

geted password guessing model RFGuess-PII. The password

training and generating process is similar to the trawling

guessing scenario. The difference is that the PII string in

the password is replaced with the corresponding digital tag

through PII matching, and then the password set containing

PII tags is used for training. Also, the generated guesses may

have PII tags, and they need to be replaced with the corre-

sponding PII string of the target user to obtain a final guess.

Similar to the construction of character features in trawling

guessing scenarios, we also use four-dimensional features to

represent PII tags in targeted guessing scenarios. Specifically,

we have used 〈character type, the rank of this character in its

type, keyboard row number, and keyboard column number〉
to represent an ordinary character. For PII tags, they are sim-

ilar to ordinary characters except for the lack of keyboard

features. Therefore, we use 〈PII type, PII serial number, 0,

0〉 to represent PII tags. The last two 0s are to align with the

four-dimensional features of ordinary characters.

4.4 Experimental setups and results
Datasets. In Table 1, only 12306, ClixSense and Rootkit

datasets are with PII (name, email, birthday, etc.). To enable

extensive targeted guessing evaluation, we match the non-PII-

associated datasets with these PII-associated ones through

email, and this produces six PII-associated password datasets

(i.e., PII-12306, PII-CSDN and PII-Dodonew, PII-ClixSense,

PII-000Webhost and PII-Rootkit; See Table 2). Among them,

Rootkit is a hacker forum, and 000Webhost is a free web host-

ing site and is mainly used by web administrators. Therefore,

the users of both sites are likely to be more security-savvy

than normal users, and this has been observed in [57]. We use

these six PII-associated datasets to conduct six comparative

experiments. In each experiment, half of each dataset is used

as the training set, and the other half is used as the test set as

recommended in [15, 54, 57] (see Table 3).

Approaches for comparison. The current mainstream tar-

geted guessing models employing PII mainly include the

TarGuess-I [57] based on PCFG [59] and the Targeted-

Markov [55] based on the Markov model [34]. Note that

the original Targeted-Markov proposed by Wang et al. [55]

exploits only name information, but it can be easily extended

to incorporate user name, birthday, email, etc. For a more com-

prehensive comparison, we apply our proposed PII matching

algorithm to FLA [35], leading to FLA-PII. To our knowledge,

this is the first time that FLA can capture PII semantics.

More specifically, we first identify the PII in a password,

and encode it to a one-dimensional array based on the dictio-

nary order (e.g., wang666→[1001,6,6,6], where 1001 and 6

are the numerical labels corresponding to the surname and

the digit 6 in the dictionary, respectively.). Here, we use an
embedding layer rather than the canonical one-hot encoding

layer to reduce the sparsity of the embedding vector due to the

large size of PII tags. Then, the embedded vector is fed into

LSTM neural networks. Finally, the dense layer converts the

hidden layers into the output size. The output is the possible

subsequent labels with probabilities, and FLA-PII chooses

the next label with the highest probability. Here we set the

embedding size to 128, and the remaining parameters are

completely consistent with trawling FLA [35] in Sec. 3.4.

Note that, theoretically, an online guessing attacker can

only perform very limited guessing attempts if the protec-

tion measures (e.g., lockout, rate-limiting [20]) are deployed

on the server. For instance, NIST requires that “the verifier

(server) shall limit consecutive failed authentication attempts

on a single account to no more than 100” [24]. However,

in reality, as revealed in [33], 72% of the top 182 websites

“allow frequent, unsuccessful login attempts without account

lockout or login throttling”. Overall, the system has to balance



Table 3: Comparison of four PII-based models.†

Experimental setup RFGuess- 4-order Tar- Tar- FLA [35]-
Guessing scenario Guess # PII Markov [55] Guess-I [57] PII

50% PII-12306

10 11.19% 11.00% 10.60% 8.41%
102 21.37% 20.91% 20.30% 17.47%

↓ 103 28.89% 28.20% 26.30% 24.01%
50% PII-12306 107 52.75% 42.00% 44.79% 50.51%

1014 98.42% 87.68% 48.12% 97.50%

50% PII-CSDN

10 21.24% 20.13% 21.20% 15.94%
102 28.23% 27.01% 27.90% 21.96%

↓ 103 33.30% 32.96% 33.00% 26.97%
50% PII-CSDN 107 53.14% 46.94% 42.23% 52.85%

1014 94.68% 80.74% 44.00% 94.51%

50% PII-Dodonew

10 9.54% 9.52% 9.40% 6.07%
102 20.45% 20.33% 19.10% 16.00%

↓ 103 30.21% 30.29% 26.50% 24.93%
50% PII-Dodonew 107 61.21% 59.62% 59.45% 60.72%

1014 99.12% 92.61% 64.86% 93.80%

50% PII-Clixsense

10 5.99% 5.87% 4.90% 4.12%
102 9.51% 9.05% 7.70% 7.67%

↓ 103 13.48% 12.06% 11.70% 11.15%
50% PII-Clixsense 107 48.30% 41.01% 43.48% 33.75%

1014 92.38% 85.33% 56.38% 82.60%

50% PII-Rootkit

10 6.96% 6.77% 6.77% 3.97%
102 11.40% 11.07% 10.46% 8.21%

↓ 103 14.88% 15.17% 14.59% 12.45%
50% PII-Rootkit 107 39.45% 35.73% 27.73% 38.70%

1014 89.81% 76.01% 33.24% 86.91%

50% PII-000Webhost

10 3.86% 3.75% 0.90% 1.76%
102 7.31% 6.89% 6.10% 4.64%

↓ 103 10.88% 10.52% 9.54% 7.71%
50% PII-000Webhost 107 25.56% 22.26% 26.17% 25.73%

1014 77.10% 60.45% 36.43% 70.60%
†A bold value (attack success rate) means that it is the highest one in each row.

online guessing attacks and denial-of-service (DoS) attacks.

Without loss of generality, we set T = 103 as with mainstream

online-guessing literature [40, 57] in our experiments.

In reality, there also exist offline attack scenarios that target

specific users. For example, after obtaining a leaked password

file, attackers will focus on some specific, most valuable ac-

counts (such as celebrities, politicians, or specific common

users deemed valuable/profitable), and devote more effort to

them. In this case, the number of guesses will be limited only

by the cost the attacker is willing to pay, which can be ex-

tremely large (e.g., >1010). Thus, as recommended by [18],

we also evaluate all the PII-models under larger guesses (i.e.,

1014) through the Monte-Carlo algorithm.

Experimental results. We design six targeted guessing sce-

narios, and the results are summarized in Table 3. For a more

comprehensive comparison, we further use the guess-number-

graph to evaluate the effectiveness of our RFGuess-PII with

its counterparts, and put the results in Appendix C of our full

version paper. For a fair comparison, all three counterpart tar-

geted models (i.e., TarGuess-I [57], Targeted-Markov [55] and

FLA [35]-PII) employ our improved PII matching algorithm.

Results show that RFGuess-PII achieves a slightly better at-

tack success rate in most cases within 10∼103 guesses. As the

number of guesses increases, the superiorities of RFGuess-

PII over its counterparts are enhanced. More specifically,

RFGuess-PII outperforms its foremost counterpart (i.e., FLA-

PII [35]) by 5.20%∼8.36% within 107∼1014 guesses.

Further exploration. We now show that our representation of

passwords can be easily transferred to other machine learning

algorithms. More specifically, we replace the random for-

est with Xgboost [16]/DecisionTree (We simply replace the

RandomForestClassifier class in our script with Xgboost

(a) 0.5M CSDN → CSDN_rest (b) 50% PII-CSDN → 50% PII-CSDN

Figure 9: Using Xgboost [16] and decision tree for password guessing: (a)

trawling guessing; (b) targeted guessing based on PII.

and DecisionTreeClassifier with all the remaining pro-

cessing flows unchanged), and perform two exploratory exper-

iments in both trawling and targeted guessing scenarios. Fig.

9 show that attack success rates of Xgboost and DecisionTree

(and also Targeted-Xgboost and Targeted-DecisionTree) are

comparable to state-of-the-art models. Notably, their param-

eters can be better tuned for potential optimization, and we

leave further exploration as future work.

5 RFGuess-Reuse: A new targeted guessing
model based on reuse

We now focus on modeling users’ password reuse behavior.

Based on our RFGuess in Sec. 3, we first design a targeted

guessing model called RFGuess-Reuse, and then conduct

large-scale experiments to demonstrate its effectiveness.

5.1 New targeted password guessing model
based on reuse

We now describe how the random forest model can be used for

password reuse-based scenarios. Inspired by TarGuess-II [57],

we also consider both structure-level and segment-level trans-

formations. First, we count structure-level transformations

like L8S2→L7D3) by calculating the editing matrix for each

password pair in the training set. Then we train a segment-

level transformation (i.e., a transformation within a string of

the same type, e.g., password→passwor in letter segment)

model based on random forest. The formula for calculating

the probability of generating a new password is

Pr(pw1 → pw2) =

(
n∏

i=1

Pr(Pti
pw1→pw2

)

)
∗ pn, (6)

where Pti
pw1→pw2

stands for a specific transformation

operation (e.g., inserting the digital structure 123) from pw1

to pw2, and pn represents the probability of ending after n
operations. For example, given a password password!!,

Pr(password!!→p@sswor123)=Pr(password!!→passwor
d)∗Pr(password→passwor)∗Pr(passwor→passwor123)∗
Pr(passwor123→p@sswor123)∗p4, where Pr(password!!
→password) (i.e., L8S2→L8) and Pr(passwor→passwor12
3) (i.e., L7→L7D3) are the probability of structure-level trans-

formation, and can be obtained by statistics of password pairs



in the training set; Pr(password→passwor) (i.e., delete a

single character d) and Pr(passwor123→p@sswor123) (i.e.,

a→@) are the probability of segment-level transformation,

and can be obtained by the trained random forest model; p4

is the probability of ending after four transformations, and

can also be obtained by statistics of the training set.

For structure-level transformation, we take the insertion

of the structure 123 (i.e., D3) at the tail of passwor as

an example. Its probability is Pr(passwor→passwor123)=
Pr(T1)∗Pr(T2)∗Pr(123|D3), where T1 denotes the event “In-

sert structures at the tail of passwor”, and Pr(T1) can be ob-

tained by counting the reuse behaviors in the training set

according to the length distribution of the training set (see

Table 11 in Appendix D); T2 denotes the event “Insert the

specific structure D3”, and both Pr(T2) and Pr(123|D3) can be

obtained by training a PCFG model [34].

For segment-level transformation, we consider four atomic

transformations based on [57]: head insertion, head deletion,

tail insertion, and tail deletion. For three types of segments

(i.e., letters, digits, and special character), we train random

forests in positive order and reverse order, respectively, and

this generates 3×2 models in total. For example, when deter-

mining the probability of performing the tail insertion oper-

ation of passwor, we input passwor into the positive order

letter random forest to obtain this conditional probability;

when determining the probability of performing the head in-

sertion operation, we input rowssap into the reverse order

letter random forest to obtain this conditional probability.

We take the positive order letter random forest as an ex-

ample, and consider the operations related to the last char-

acter. When training the password password!!, three be-

havioral characteristics need to be trained for the letter string

password: inserting characters, unchanged, and deleting char-

acters. For inserting characters, our model uses asswor as

the training input, and uses d as the training output; for un-

changed, our model uses ssword as the training input, and

uses the end character Es as the training output; for deleting

characters, our model uses ssword plus any letter as the train-

ing input and uses -1 as the training output (i.e., the input is

sword* and the output -1, where * can be any letter).

Here we give a toy example of how to calculate the prob-

ability of a segment-level transformation. Given a password

password!!, it can be divided into two segments L8 and S2

(denoted as p1,p2), and we calculate the probability of delet-

ing d at the tail of the first segment p1 (denoted as event

Pt
1) as Pr(Pt

1)= Pr(S1)∗Pr(S2)∗Pr(S3)∗Pr(S4), where S1 de-

notes the event “Perform segment-level transformation" , and

Pr(S1) can be obtained by counting the reuse behavior of the

training set; S3 and S4 denote the event “Perform tail dele-

tion operation on p1” and the event “Delete character d at

the end of p1”, respectively, and both Pr(S3) and Pr(S4) are

calculated by the trained random forest model; S2 denotes the

event “Perform operation on p1”, and Pr(S2) is calculated by
1−Pr(Es|p1)+1−Pr(Es|p1)∑2

i=1(1−Pr(Es|pi)+1−Pr(Es|pi))
, where p1 represents the inversion

Table 4: Basic information about password reuse datasets.

Dataset Language Items
# Same

password pair
# Similar

password pair†

CSDN→126 Chinese 195,832 62,686 47,690
CSDN→12306 Chinese 12,635 7,079 2,815
12306→Dodonew Chinese 49,775 35,395 9,386
CSDN→Dodonew Chinese 5,997 2,040 1,597
000Webhost→Clixsense English 150,273 35,470 41,731
000Webhost→LinkedIn English 231,452 50,875 52,731
000Webhost→Yahoo English 36,936 5,960 6,303
000Webhost→Mate1 English 51,942 7,613 25,504
† Similar means that the similarity score s is within [0.5, 1.0], and it is calculated

as s = 1−EditDistance(pw1, pw2)/max(|pw1|, |pw2|).

of p1 (i.e., password→drowssap), and Pr(Es|p1)/Pr(Es|p1)
is obtained by the positive/reverse order random forest model;

“1−Pr(Es|p1)” represents the probability of performing the

tail operation (because Pr(Es|p1) represents the probability

of unchanged operation), and “1−Pr(Es|p1)” represents the

probability of performing the head operation.

The formula of calculating Pr(S2) is used to solve the prob-

lem of unequal operation probability of each segment. For

instance, the structure of password!! is L8S2, and the op-

eration probability (e.g., insertions or deletions) on differ-

ent segments (i.e., L and S) is not equal in practice, while

TarGuess-II [57] regards it as equal in the structure-level. To

address this issue, we treat the probability of each segment

(take L segment as an example) be expressed by the ratio

of “the sum of the operation probabilities of L segment (i.e.,

password) to that of all the segments (L and S segments)”.

In the guess-generation phase as with [57], after each oper-

ation performed on the original password, the corresponding

probability is calculated and inserted into a priority queue,

and the guess with the highest probability is output. Then

we repeat this process until the number of generated guesses

reaches the predefined threshold (e.g., 103).

5.2 Experimental setups and results
Datasets. We select four English and four Chinese datasets to

conduct experiments on password-reuse guessing scenarios

(see Table 4). Among them, 000Webhost→ClixSense and

CSDN→126 are selected as the training set for English and

Chinese guessing scenarios. We take the dataset “000Web-

host→ClixSense” as an example. It is obtained by matching

two datasets (000Webhost and ClixSense) through email and

consists of password pairs like (emailUi , pwi1, pwi2) for user

Ui. In the training phase, Ui’s password pwi1 comes from the

1st dataset (000Webhost), and the attacker A learns/trains how

it can be used to guess pwi2 from the 2nd dataset (ClixSense).

Then, suppose the dataset “000Webhost→Yahoo” is used

for testing. A exploits pw j1 from 000Webhost as victim j’s
leaked password, and uses the trained password model to

generate guesses until pw j2 from Yahoo is generated.

We compare our proposed model with TarGuess-II [57]

and Pass2Path [40]. TarGuess-II and our RFGuess-Reuse

require additional PCFG structure dictionaries (see Sec. 5.1)

and popular password dictionaries (see Sec 4.2 in [57]), and

we maintain the same datasets for these two models. For



Table 5: Comparison of three password reuse models.†

Experimental setup RFGuess- Pass2- TarGuess-
Guessing scenario Guess number Reuse Path [40] II [57]

CSDN → 12306
10 68.41% 68.80% 68.13%
100 73.09% 70.72% 73.19%

1,000 75.86% 72.16% 75.57%

CSDN → Dodonew
10 48.59% 48.82% 48.44%
100 53.86% 51.79% 54.56%

1,000 57.71% 53.84% 57.58%

12306 → Dodonew
10 84.14% 83.44% 84.11%
100 86.00% 85.69% 86.34%

1,000 87.65% 86.78% 87.58%

000webhost → Mate1
10 27.70% 25.11% 30.17%
100 31.29% 26.42% 32.14%

1,000 33.77% 27.73% 34.37%

000webhost → LinkedIn
10 35.67% 32.65% 36.17%
100 37.77% 34.06% 38.16%

1,000 39.52% 35.69% 39.72%

000webhost → Yahoo
10 26.53% 24.84% 27.12%
100 28.59% 25.87% 28.69%

1,000 30.13% 26.99% 30.19%
†A value with dark gray (resp. light gray) represents the highest one (resp. 2nd one).

Pass2Path, we use the recommended parameters in [5] to

train the model. Similar to the targeted guessing scenarios

based on PII, we also generate 103 guesses for each model.

Table 5 shows that RFGuess-Reuse achieves the best or

2nd best results among three models. In particular, within

103 guesses, the attack success rates of TarGuess-II [57] and

our RFGuess-Reuse are about 1%∼7% higher than that of

Pass2Path [40]. For English datasets, although the attack suc-

cess rate of RFGuess-Reuse is slightly lower than that of

TarGuess-II, it is still 7%∼22% higher than Pass2Path.

6 Discussion
We now discuss the security implications of this work and our

insights on online/offline password guessing.

Honeywords. At CCS’13, Juels and Rivest [31] proposed a

decoy password mechanism to timely detect password file

compromises, called honeywords. This mechanism can gen-

erate k−1 (e.g., k=20 in [31]) honeywords for each account,

and both the real password and its corresponding honeywords

are stored together. In addition, the index of each real pass-

word is stored in another server named honeychecker. When

an attacker tries to log in with a honeyword, the system signals

a possible leak. As a leading password model, RFGuess can

be potentially employed to generate honeywords to timely

detect password leakage. In this application scenario, the

model size and password generation speed are not particu-

larly important since the server only needs to generate 20∼40

honeywords (as recommended by [58]) for each account, and

such generation is conducted only once for an account. For

example, the Markov/TarMarkov model employed by the hy-

brid method proposed in [58] can simply be replaced by our

RFGuess/RFGuess-PII to generate flatter honeywords (that

are harder to be differentiated from real passwords).

Feature importance score. As shown in Sec. 3.2, RFGuess
can efficiently identify the dominant factors of password secu-

rity through the feature importance score to resist against data-

driven guessing. For example, we only need to set the number

of character classes as a password prefix feature, and RFGuess

can automatically show if it is one of the dominant factors

impacting password security through the feature importance

score. This can help administrators enforce more effective

password policies. For example, more character classes con-

tribute marginally improvement in password security due to

the imbalanced use of symbol strings, while more segments

(i.e. a continuous string whose characters have a strong cor-

relation) can significantly help resist against guessing [52].

Also, the feature importance score allows users to understand

which dimensions of a character (e.g., type, continuity, and

position-information) impact the password security to what

extent, thus helping them create more secure passwords.

Online/Offline password guessing. Before cracking, the of-

fline guessing attacker has the salted-password accounts, but

generally has no prior knowledge of which passwords are used

by the target accounts, and thus it is more realistic/reasonable

to do not exclude duplicate passwords in the training set from

the test set when evaluating a guessing algorithm, as done in

Sec. 3.4 (and [34,35,51]) and opposed to [28,59,61]. Besides,

excluding duplicate passwords can only evaluate/simulate the

generalization ability, but overlooks the evaluation of fitting

ability. In practice, the generalization ability corresponds to

offline guessing scenarios with relatively large guess num-

bers (e.g., >107). Although previous work [22] suggested

that 1014 could be a lower boundary for offline guessing, the

size of guessing dictionaries explicitly generated by existing

password guessing literature (e.g., [34, 35, 43, 59]) generally

does not exceed 1011 (due to the limitation of generation

speed and computing resources). This implies that the practi-

cal significance of guessing algorithms’ generalization ability

is mainly highlighted in 107∼1010 guesses. In contrast, the

fitting ability mainly corresponds to online guessing scenarios

with relatively small guess numbers (e.g., <107), while online

guessing is the most concerning threat that normal users need

to devote efforts to mitigate [7,22,57]. Thus, when evaluating

a guessing model/algorithm, it is of practical significance to

consider both the fitting ability and generalization ability.

In all, it is more realistic to do not exclude duplicate pass-

words in the training set from the test set. Actually, this prac-

tice has been preferred in password research (see [34,35,51]),

but we for the first time explain why it is acceptable.

7 Conclusion
This paper, for the first time, introduces classical machine

learning techniques for password guessing, and designs three

new guessing models for the three most representative guess-

ing scenarios: trawling guessing, targeted guessing based on

PII and on reuse. Extensive experiments with 13 real-world

datasets demonstrate the effectiveness and scalability of our

models. This work provides a brand new technical route for

modeling users’ password guessability and opens up new

directions for designing effective password guessing models.
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A Parameter selection

As far as we know, there are few scientific methods to find the

best hyperparameters. However, a task-oriented analysis along

with a number of empirical experiments provide a promising

way: Since the password length of most users is at least six

Table 6: Performance of different trawling guessing models.†

Model RFGuess PCFG [59] 3-order Markov [34] FLA [35]

Training time 0.3h 24s 102s 16h

Model size 4.5G 93.2M 1.4G 5.8M

Generated PW/s 130 82,372 13,303 2,500
† CPU: Xeon silver 4210R 2.4GHz; GPU: GeForce RTX 3080 (5M dataset).

Table 7: Model size of different PII-based models.†

Model RFGuess-PII TarGuess-I [57]
3-order Tar-
Markov [55] FLA [35]-PII

Model size 101M 893K 12.2M 5.8M
†CPU: Xeon silver 4210R 2.4GHz; GPU: GeForce RTX 3080 (50% CSDN-PII).

[34, 53], the order of our model is set to six. In this way, the

total number of prefixes (6-order strings) is about 8.9∼10.4

times the number of passwords, so the minimum number

of samples in each leaf node is set to 10. For the number

of trees, we take the CSDN dataset as an example, and set

this value to 10, 30, 50, and 70, respectively. We find that

when the number of trees is >30, the increase in the attack

success rate is very limited (<0.5%). Also, the greater the

value, the larger the RAM consumed during training (e.g.,

with 30 trees and five million training sets, it occupies about

40GB of RAM), and the slower the password training and

generating will be. Therefore, we set this value to 30. In

addition, the maximum ratio of features is determined by

the importance score of each feature after our preliminary

exploratory experiment (see Sec. 3.4). Compared with the

complex parameters (e.g., number and type of layers, number

of neurons per layer, activation function, etc.) of deep learning

based models, the hyperparameter tuning of random forest

are more concise and straightforward.

B Supplementary experiment results

We compare different approaches in terms of training time,

generation speed as well as trained model size. Table 6 re-

veals that statistics-based models (i.e., PCFG [59] and 3-order

Markov [34]) require the shortest training time, followed by

our RFGuess, and FLA [35] is the longest. Our RFGuess has

the largest model size even after the compress (we set the com-

press parameter in the joblib tool to three and the number of

trees to 30), but its fast training speed enables it to be trained

on site without the need to save/maintain model files, and this

property is quite desirable. While computational complexity

is not particularly important for online guessing, we give the

detailed model size of all tested models in targeted guessing

scenarios, and the results are shown in Tables 7 and 8.

As for the guess-generation speed, RFGuess is first built on

the scikit-learn framework [2], which does not support GPU

acceleration. As a result, the generation speed is low: 130

passwords/s. We further migrate our RFGuess to the cuML

framework (which supports GPU acceleration) [1], and the

generation speeds increase by 5.2 times to 677 passwords/s

in our preliminary experiments with 1,000 training data. Be-



Table 8: Model size of different reuse-based models.†

Model RFGuess-Reuse Pass2Path [40] TarGuess-II [57]

Model size 121M 40.1M 1.04G
†CPU: Xeon silver 4210R 2.4GHz; GPU: GeForce RTX 3080 (CSDN→12306).

sides, if we use the decision tree model (i.e., set the number

of trees to one), the password generation speed will be further

increased to 1,520 passwords/s. In general, for online pass-

word guessing, an account should have been blocked quickly

after a predefined number of failed login attempts (e.g., 100

and 1,000 are typical values considered by the main-stream

standard [24] and academic literature [40, 57]); For offline

guessing, memory hard hash algorithms such as SCRYPT or

Argon2 are recommended [24], and they might move offline

attackers closer to 106∼107 guesses [10]. Thus, the guess-

generation speed of RFGuess is practically acceptable.

C Evaluation of PII matching algorithm

Experimental evaluation. Considering that the Chinese

dataset contains complete PII (which can better reflect the

advantages of our PII matching algorithm), we take three Chi-

nese datasets as examples, and compare the attack success rate

of TarGuess-I [57] and Targeted-Markov model [55] (4-order)

after using the two PII matching methods, respectively (the re-

sults can be seen in Table 9). We find that, within 100 guesses,

our proposed PII matching algorithm can improve the guess-

ing success rate of TarGuess-I [57] by 7%, and can improve

Targeted-Markov [55] by 13%. For three English datasets, our

PII matching algorithm has not much optimization effect. This

is because: 1) Many PII attributes in English datasets are miss-

ing; 2) The three English PII-associated passwords are from

more security-savvy users (i.e., hackers/administrators/tech-

savvyers) [57]. Specifically, Rootkit is a hacker forum, and

000webhost is a free web hosting site and is mainly used

by web administrators. Therefore, the users of both sites are

likely to be more security-savvy than normal users, and this

has been observed in Fig.13 of [57].

Theoretical proof. We now prove the effectiveness of our

proposed PII matching algorithm (in Sec. 4.2) in theory. As-

sume that there are N passwords in the password set D. For

any two PII representations Rp and Rq, passwords that can be

represented as Rp is denoted as Sp, and passwords that can be

represented as Rq is denoted as Sq, where |Rp|> |Rq|. Then

D can be divided into the following four sets.

Apq = Sp
⋂

Sq, Ap = Sp −Sq,

Aq = Sq −Sp, Ao = D−Sp −Sq.
(7)

The calculation of information entropy is given by: H =∑n
i=1−pi · log(pi), so let

f (x) =− x
D
· log(

x
D
), (8)

Algorithm 1: PII matching algorithm.

Input: Passwords set X = {pw1, pw2, ..., pwn}.
Output: Passwords with corresponding PII matching structures (P).

1 match_set = matchOrder(X );/* Get all PII structure
representations and their corresponding frequency of set X in
descending order. match_set is a priority queue.*/

2 item = match_set.pop(); /* item contains the PII structure
representation and its frequency i.e., (structure,frequency). */

3 while !match_set.empty() and item. f requency > 1 do
4 for pwi in X do
5 match_pwi = pwMatch(pwi)/* All PII structure

representations of pwi. */
6 if item.structure in match_pwi then
7 P .push((pwi, item.structure));
8 X .remove(pwi);

9 for remain_item.structure in match_pwi do
10 remain_item. f requency-=1;

11 while !X .empty() do
12 pw =X .pop();
13 structure = shortMatch(pw);/* The shortest PII matching

structure of pw. */
14 P .push((pw,structure))
15 return P

Table 9: The effect of PII matching algorithm (100 guesses).†

Targeted guessing model TarGuess-I [57] Targeted-Markov [55]

Attack scenarios Optimal Original Optimal Original

50% PII-CSDN→50% PII-CSDN 27.90% 22.90% 27.01% 25.55%

50% PII-Dodo→50% PII-Dodo 19.10% 19.00% 20.33% 17.48%

50% PII-12306→50% PII-12306 20.30% 20.20% 20.91% 17.86%
†Optimal means using our new proposed PII matching algorithm, and original means

using the leftmost&longest PII matching algorithm; Dodo=Dodonew.

where f (x) is an upward convex function. Then the infor-

mation entropy is expressed as H=
∑m

i=1 f (ci), where m is

the number of representation tags, and ci is the frequency of

representation tags Ri. We now prove that when only two rep-

resentations are considered, the information entropy is lower

when the password is first represented as Rp with higher fre-

quency than as Rq. Here, only the influence of Rp and Rq
on the information entropy is considered, so the passwords

that cannot be represented in these two ways (i.e., the set

Ao) is not considered. For the set Apq, Ap and Aq, if the pass-

word is first represented as Rp, and then represented as Rq, the

information entropy is Hp= f (|Apq|+ |Ap|)+ f (|Aq|). If the

password is first represented as Rq, the information entropy is

Hq = f (|Apq|+ |Aq|)+ f (|Ap|). Considering |Apq|+ |Ap| =
|Rp|> |Rq|= |Apq|+ |Aq|, we get |Ap|> |Aq|.

Let g(x) = f (x)− f (x+ |Apq|), where x > 0, and take the

derivative of g(x), we get

g′(x)= f ′(x)− f ′(x+ |Apq|)

=

−1−ln( x
|D| )

|D| −−1−ln(
x+|Apq |

|D| )

|D|
ln2

=
ln( x+|Apq|

|D| )− ln( x
|D| )

|D| · ln2
> 0.

(9)

Since the derivative of g(x) is greater than 0, g(x) is a



monotonically increasing function. And |Ap|> |Aq|, we have

g(|Ap|)> g(|Aq|), namely

g(|Ap|) = f (|Ap|)− f (|Ap|+ |Apq|)> g(|Aq|)
= f (|Aq|)− f (|Aq|+ |Apq|).

(10)

By shifting the term, we get

f (|Aq|)+ f (|Ap|+|Apq|)< f (|Ap|)+ f (|Aq|+|Apq|), (11)

that is, |Hp|< |Hq|. Therefore, when only two representations

are considered, the information entropy is lower when the

password is first expressed as Rp with higher frequency than

as Rq. It can be seen from this conclusion that preferential

representation as R1 can make the information entropy the

lowest. According to the algorithm proposed in Sec. 4.2, the

highest frequency representation taken out for the first time

is R1. Then the current highest frequency representation is

taken out in each round. That is, the representation taken out

each time can be used as a priority representation. As a result,

each round of selection is the current optimal choice, and the

representation obtained at the end of the algorithm can be

regarded as an approximately optimal solution.

Overhead. Although computational complexity is not partic-

ularly important for online guessing, we have tested the time

consumption of our optimal PII matching algorithm. More

specifically, it takes about 440s on a common server (CPU:

Xeon Silver 4200R; System: Ubuntu 20.04) to complete PII

matching on 50% of the Dodonew-PII dataset (about 80,000

pieces of data), which is acceptable.

D Structure-level transformation behavior
statistics

Through the analysis of the problems in TarGuess-II [57],

we find that the focus is whether the behavior of insert-

ing and deleting structures is related to the password it-

self. Taking the CSDN→126 dataset as an example (which

is a dataset composed of password pairs matched through

email), we count the similar but different password pairs

among them (“similar" here means the similarity score s
is greater than 0 and less than 0.5, and it is calculated as

s = 1−EditDistance(pw1, pw2)/max(|pw1|, |pw2|).). More

specifically, there are a total of 25,917 items, accounting for

26.47% of the entire dataset. We have made statistics on the

insertion and deletion of structural behaviors of them, and the

top-ten frequent ones are shown in Table 10.

Table 10 shows that the tenth-ranked reuse behavior (i.e.,

insert or delete the string “11”) only occurs 49 times, which

makes it challenging to learn the behavior of inserting and

deleting password structures based only on the number of oc-

currences in the dataset. To address this issue, we divide the

probability of structure-level transformation into two parts in

RFGuess-Reuse: the probability of the structure-level trans-

Table 10: Structure-level insertion/deletion statistics.
Insertions/Deletions Position Frequency Example

a Prefix 264 a3221041 →3221041
123 Suffix 196 cwhwan123→cwhwan
a Suffix 154 4231294a →4231294
1 Suffix 93 wuchunlei→wuchunlei1
qq Suffix 87 qq849210 →849210
aa Suffix 79 5631842aa→5631842
aa Prefix 71 aa123321 →123321
. Prefix 56 3232334. →3232334
abc Suffix 53 81983064 →81983064abc
11 Suffix 49 resing11 →resing

Table 11: Structure-level transformation in each length.

Password length Tail insertion Tail deletion Head insertion Head deletion

3 0 0 0 0

4 3 0 11 0

5 14 0 128 0

6 1757 0 2274 0

7 1853 3 2339 2

8 396 1010 380 1223

9 178 1141 96 1667

10 95 1061 42 1169

11 37 429 37 556

12 23 358 2 373

13 5 159 1 166

14 3 131 1 115

15 2 39 0 19

16 0 30 0 20

formation, and the probability of which specific structure is

performing on structure-level transformation.

For the first part, we consider the correlation between pass-

word length and structure-level transformation behaviors. We

still take the CSDN→126 dataset as an example, and the

statistics are summarized in Table 11. We find that the behav-

ior of structure-level transformation has a great relationship

with the password length. More specifically, passwords with

lengths of 6 and 7 are more likely to be inserted into new

structures, while passwords with lengths of 8∼10 are more

tend to delete existing structures. Therefore, the probability

of structure-level transformation can be obtained by statistics

of corresponding transformation behaviors of passwords with

different lengths in the training set. As for the transforma-

tion probability of a specific structure, it can be learned in a

relatively large password set through PCFG [59].

E Feature importance

Although there is a slight difference in feature importance

between the Chinese and English datasets (see Fig. 10), they

are still very similar overall (the value of the cosine similarity

between Chinese and English datasets is 0.98). Furthermore,

there is almost no difference in the feature importance of

the same language datasets (the cosine similarity within the

Chinese and English datasets are both 0.99). Therefore, we

calculate the average of the feature importance scores of the

four datasets for observation (see Fig. 11).



Figure 10: Feature importance obtained by our trained RFGuess. The Y-axis represents the proportion of the feature as the model classification rule: It reflects

the importance of the feature. Thus, the larger the value, the higher the importance, and the sum of all feature importance scores for one dataset is one. The

green bar is the average of the feature importance scores of the 000Webhost and Rockyou datasets (English datasets); the red bar is the average of the Taobao

and CSDN datasets (Chinese datasets). Overall, the length of the trained characters (position of the character in a password) and the characters close to the

predicted target character are more important in the Chinese datasets. While in English datasets, characters near the middle position (relative to the order) are

more important (third and fourth character). We calculate the cosine similarity of feature importance scores between the two language and find this value to be

0.98. Besides, the cosine similarity of scores in the same language datasets is greater than 0.99. This shows that these two scores are very similar, indicating that

language has little effect on feature importance scores, so we further calculate the average feature importance scores of the four datasets in Fig. 11.

Figure 11: Feature importance (average). We sort the average of feature importance scores of two Chinese and two English datasets. Among these features, the

serial number feature (e.g., a is the first in alphabetic types a∼z, 0 is the first of digits 0∼9) and the keyboard column number feature (e.g., d is located in the

third column of the keyboard) are more effective, while the type of character (whether this character is a letter, digit or special character) and the current segment

trained length (position of the character in the segment) are relatively unimportant, and the feature of keyboard row number has little effect on the model fitting.

Since random forest can filter features, existing of some unimportant features will not affect the fitting ability of the model. In particular, relatively unimportant

features can be selectively removed before training. For example, our experiments show that if the relatively unimportant 10-dimensional features are removed,

the model training speed is improved by 30%. However, the maximum decrease in success rates is no more than 0.4% compared with the original.


