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Abstract
Billions of smartphone fingerprint authentications (SFA) oc-
cur daily for unlocking, privacy and payment. Existing threats
to SFA include presentation attacks (PA) and some case-by-
case vulnerabilities. The former need to know the victim’s
fingerprint information (e.g., latent fingerprints) and can be
mitigated by liveness detection and security policies. The
latter require additional conditions (e.g., third-party screen
protector, root permission) and are only exploitable for indi-
vidual smartphone models.

In this paper, we conduct the first investigation on the gen-
eral zero-knowledge attack towards SFA where no knowledge
about the victim is needed. We propose a novelty fingerprint
brute-force attack on off-the-shelf smartphones, named IN-
FINITYGAUNTLET. Firstly, we discover design vulnerabilities
in SFA systems across various manufacturers, operating sys-
tems, and fingerprint types to achieve unlimited authentication
attempts. Then, we use SPI MITM to bypass liveness detec-
tion and make automatic attempts. Finally, we customize a
synthetic fingerprint generator to get a valid brute-force fin-
gerprint dictionary.

We design and implement low-cost equipment to launch
INFINITYGAUNTLET. A proof-of-concept case study demon-
strates that INFINITYGAUNTLET can brute-force attack suc-
cessfully in less than an hour without any knowledge of
the victim. Additionally, empirical analysis on representative
smartphones shows the scalability of our work.

1 Introduction

Smartphone fingerprint authentication (SFA) has become the
most preferred biometric used on smartphones due to its ad-
equate security and comfortable user experience [28]. As a
result, SFA is applied to various applications, including screen
unlocking, privacy application login, and payment authenti-
cation. Unfortunately, unlike fingerprint authentication on
other devices (e.g., fingerprint attendance machine), neither
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the algorithm nor the testing tool of SFA is publicly available,
resulting in insufficient research on its security.

Presentation attack (PA) [29] has long been considered the
main threat to SFA. The classic steps of PA include: 1) cap-
ture a latent fingerprint of the victim from a flat surface (e.g.,
phone screen); 2) process and print the fingerprint on an ar-
tificial material(e.g., silica gel); 3) present the artifact to the
fingerprint sensor. However, the attack effect of PA is limited
for the following reasons. Firstly, adversaries must collect
at least one clear latent fingerprint of the victim, which is
difficult to satisfy in practical scenarios [37], let alone most
smartphones have an oleophobic coating on the screen to
prevent fingerprint residual. Secondly, the deployment of live-
ness detection and quality check make artifacts easier to be
identified. Last, the limit on the maximum number of failed
attempts (hereinafter referred to as “attempt limit”) makes ad-
versaries have to attack successfully within a limited number
of attempts.

In addition to PA, there have been some case-by-case vul-
nerabilities in recent years, which can be divided into two
categories. (1) Fingerprint template update unwarily [5,8,12]:
for example, Samsung Galaxy S10 and Note10 allow unlock-
ing operations via arbitrary fingerprints in certain situations
involving a third-party screen protector. However, these vul-
nerabilities are only accidentally exploitable when the textures
of the screen protector trigger unnecessary template updates.
(2) Implementation bug in SFA systems [6, 7]: for example,
OnePlus 7 Pro contains leftover debug code that allows a
root user to obtain fingerprint images. However, these vul-
nerabilities require adversaries to know the PIN/password
and get privileged permissions. Furthermore, they are only
exploitable for individual phone models, in other words, they
are not generic.

To the best of our knowledge, none has investigated the
general SFA attack that does not require victim information.
Inspired by user feedback [10, 14, 15] of unexpected finger-
print unlocking caused by SFA’s false acceptance rate (FAR),
we study the feasibility of fingerprint brute-force attacks to
achieve the general zero-knowledge attack. In cryptography,



a brute-force attack consists of an attacker submitting many
passwords or passphrases until eventually guessing correctly.
However, the following challenges exist when migrating the
brute-force attack concept from cryptography to SFA.

(a) How to bypass attempt limit to achieve unlimited authen-
tication attempts? We discover two general types of vulner-
abilities in SFA systems: Cancel-After-Match-Fail (CAMF)
and Match-After-Lock (MAL), either of which can be ex-
ploited to bypass the attempt limit. Instead of implementation
bugs, CAMF and MAL leverage design faults in the biomet-
ric authentication framework. So they exist across various
manufacturers, operating systems, and fingerprint types.

(b) How to bypass liveness detection and make automatic
attempts? The research in [23] shows that adversaries can
easily bypass liveness detection if they can inject images at
the hardware layer. Inspired by it, we find the insufficient
protection of fingerprint data on the serial peripheral inter-
face (SPI) and thus propose an approach to make man-in-
the-middle (MITM) attacks for fingerprint image hijacking.
Further, we design an auto-clicker to trigger fingerprint au-
thentication automatically.

(c) How to get a large number of fingerprints for attempts?
Tens of thousands of fingerprints are required to perform
brute-force attacks due to the low FAR of the matching al-
gorithm. A straightforward way to obtain them is to recruit
volunteers to collect real fingerprints. Unfortunately, it is ex-
pensive and tedious for both the data collection technicians
and the subjects providing the data. Besides, it is difficult
to share with others due to privacy legislation that protects
personal data. We propose a synthetic fingerprint generation
method customized from SFinGe [22] to generate infinite
synthetic fingerprints for free.

After addressing the above challenges, we successfully
adapt the brute-force attack to SFA. We name this new
threat model INFINITYGAUNTLET, where INFINITY and
GAUNTLET represent its two core techniques: attempt
limit bypassing and fingerprint image hijacking, respec-
tively.

We design and implement low-cost proof-of-concept equip-
ment that will be open-source to the academic community. Us-
ing the equipment, we show a case study of INFINITYGAUNT-
LET on OnePlus 7 Pro. The experiment results of the case
study prove that the attempt limit and liveness detection are
bypassed completely, and the brute-force attack can succeed
in less than an hour without any knowledge about the victim.
Furthermore, we empirically analyse INFINITYGAUNTLET
on other popular smartphones from top manufacturers, includ-
ing Samsung, Huawei, Xiaomi, Oppo, Vivo, OnePlus, Honor,
and Apple, which cover various operating systems (Android,
HarmonyOS, and iOS) and fingerprint sensor types (optical,
capacitive and ultrasonic). Results show that most of them are
more or less affected by INFINITYGAUNTLET. We believe
the affected list is by far not comprehensive. Nevertheless, it
serves as a wake-up call to reconsider the design for prevent-

ing brute-force attacks.
In summary, we make the following major contributions:

• We first propose the general zero-knowledge fingerprint
brute-force attack on off-the-shelf smartphones.

• We demonstrate the effectiveness of our approach
through a case study and analyse its scalability on repre-
sentative smartphones.

• We discover zero-day design vulnerabilities that can be
exploited to bypass the attempt limit of SFA systems.

• We implement fingerprint hijacking through the hard-
ware of SFA systems.

• We propose a synthetic fingerprint generation method
for SFA.

2 Background

SFA technology is closed-source with few public materials.
This section covers some basics of the state-of-the-art SFA
system, especially security-related.

Figure 1: The authentication workflow of SFA.

2.1 Authentication Workflow
The fingerprint authentication process on smartphones con-
sists of four main stages: acquisition, compensation, anti-
faking and matching, as illustrated in Fig. 1.

Acquisition captures multiple fingerprint images when
sensing a finger press and receives these raw images through
SPI.

Compensation boosts the raw image quality by stacking
a pre-captured base image. The base image contains fixed
patterns mainly caused by screen pixels diffraction, vignetting
effects, or fixed ground noise.

Anti-faking checks the quality of the compensated images
and applies liveness detection to prevent PA. As fake fingers
in PA are made with artificial materials, the liveness detection



is based on materials features, including textures and ridge-
valley contrast [39].

Matching measures the similarity between a query and en-
rolled fingerprints. Since the enrolled fingerprints are stored
as irreversible templates (e.g., feature vectors) rather than
images, the similarity calculation is done on fingerprint tem-
plates. Besides, instead of traditional minutiae-based meth-
ods [38], fingerprint matching on modern smartphones needs
to ensure robustness in various environments. For example,
they extract characteristic SIFT feature points for match-
ing [35].

2.2 Security Policy
Besides the anti-faking, SFA systems incorporate many secu-
rity policies [2]. The typical policies are as follows:
P1: Forbid SFA and challenge for primary authentication
(e.g., PIN, pattern, password) if the number of failed attempts
exceeds the attempt limit.
P2: Forbid SFA and challenge for the primary authentication
once every 72 hours.
P3: Forbid SFA and challenge for the primary authentication
after smartphone restart.
P4: Forbid SFA at least 30 seconds after five consecutive
failed SFA attempts.
P5: Forbid SFA when the primary authentication is locked
out temporarily.

In practice, we find that the attempt limit in P1 varies from
5 to 50 depending on manufacturers and applications.

2.3 Architectural Security
An SFA architecture is considered secure if OS kernel com-
promises do not confer the ability to either read fingerprint
images or inject synthetic images into the system to influ-
ence the authentication decision [13]. The trusted execution
environment (TEE) is used to isolate the fingerprint sensor
driver, fingerprint authentication logic, and fingerprint data in
a secure environment.

Since Android 6, Google has enforced moving all finger-
print data manipulation into TEE, and most smartphone man-
ufacturers adopt TrustZone-based TEE solutions. At nearly
the same time, Apple uses another solution called Secure
Enclave [1].

2.4 Security Metrics
Two metrics [13] are used to measure the security perfor-
mance of an SFA system:

False acceptance rate (FAR) defines the metric of the
chance that an SFA system mistakenly accepts a randomly
chosen unenrolled fingerprint. According to the industry con-
vention, an SFA system is considered secure enough if its
FAR is lower than 0.002% [1, 9]. Measuring FAR requires

collecting multiple fingerprint images from each subject and
each finger. For example, a common practice is to set the min-
imum subject number, the finger number per subject, and the
fingerprint image number per finger to 24, 4 (left thumb, left
index, right thumb, right index) 50, respectively. This setting
theoretically makes (24× 4− 1)× 50× (24× 4) = 456000
negative claims for the FAR evaluation, and a secure SFA
system should give positive confirmations 9 times at most.

Spoof acceptance rate (SAR) defines the metric of the
chance that an SFA model accepts a fake fingerprint. This
metric is first introduced by Google in Android 8.1 and cat-
egorizes SFA systems as either strong or weak security. An
SFA system with a SAR of 7% or lower is at strong security,
and anything above 7% is weak [4]. Measuring SAR uses
2D and 2.5D presentation attack instruments such as printed
fingerprints or a molded replica [13].

3 Threat Model

3.1 Mathematical Derivation
A fingerprint sensor is defined by a mapping S : T →P , where
T represents objects that can trigger the fingerprint sensor to
capture images and P represent the images. The quality check
module, liveness detection module, and fingerprint matching
module described in Fig. 1 are defined by Q : P → {0,1},
L : P →{0,1} and R : ⟨T ,T ⟩→ {0,1}, where “0” represents
“Reject” and “1” represents “Accept”.

We say that V = {v1...vi...vN} ⊂ T are N fingers enrolled
by a victim. We can now define a fingerprint authentication
process:

Mr=N(S(q)) := Q(S(q)) ·L(S(q)) ·
∨N

i=1 R(S(q),S(vi))

where q represents a query finger, and r represents the number
of enrolled fingers.

Suppose an unenrolled finger f ∈ T −V satisfy Q(S( f ))=
1 and L(S( f )) = 1, then FAR is equal to:

FAR : = Pr [Mr=1(S( f )) = 1]
= Pr [R(S( f ) ,S(v)) = 1]

(1)

Since SFA systems allow enrolling multiple fingers (up
to four or five fingers), another metric false positive
identification-error rate (FPIR) [30] defines the metric of the
chance that f are falsely matched by any element of V :

FPIR : = Pr [Mr=N (S( f )) = 1]

= Pr
[∨N

i=1 R(S(x) ,S(vi)) = 1
]

≈ 1−∏
N
i=1 Pr [R(S(x) ,S(vi)) = 0]

≈ 1− (1−FAR)N

≈ N ·FAR

(2)

The methodology of the fingerprint brute-force attack is
to make unlimited submissions of high-quality and liveness



fingerprints until success. We donate the success rate after T
attempts as brute-force acceptance rate (BAR):

BAR : = Pr
[∨T

k=1 Mr=N(S( fk)) = 1
]

≈ 1−∏
T
k=1Pr [Mr=N(S( fk)) = 0]

≈ 1− (1−FPIR)T

= 1− (1−N ·FAR)T

(3)

where T ≤ min{AL,T L ·FIPS}, AL, T L, FIPS represent the
attempt limit, the time limit and the number of submitted
fingerprint images per second. On off-the-shelf smartphones,
5≤AL≤ 50, 0≤ T L≤ 72×60×60, 1≤FIPS ≤ 5, typically.

According to Equation 3, we can claim that the fingerprint
brute-force attack is feasible if adversaries have the following
abilities:
A1. Adversaries can bypass the attempt limit AL so that T
and 1/FAR are in the nearby order of magnitude.
A2. Adversaries can attack fingerprint sensor S to submit im-
ages directly. The compromised fingerprint sensor is denoted
as S̃ : P → P , which satisfies S̃(p) = p for ∀p ∈ P .
A3. Adversaries can guarantee that each injected image p is
high-quality and liveness, that is Q(p) = 1, L(p) = 1, and
has at least the F̃AR probability to match one of V :

F̃AR := Pr [R(p,S(v)) = 1]≥ 1− (1−BAR)
1
T

N
(4)

3.2 Attack Strategy and Scenario
The threat model of INFINITYGAUNTLET assumes adver-
saries can physically access the victim’s smartphone for a
while. Besides, they need to remove the rear cover of the
smartphone to plug the adversarial equipment without power-
ing it off and then do some physical manipulations. After tens
of minutes or hours of attacks, they can potentially unlock
the phone, login privacy apps, complete the payment authen-
tication, and as a by-product, obtain a fingerprint image with
similar features to the one enrolled by the victim.

The attack scenario would be expected when the smart-
phone is lost, stolen, temporarily deposited, or unattended
during sleeping.

4 Overview Of INFINITYGAUNTLET

As shown in Fig. 2, the attack surface of INFINITYGAUNT-
LET is the SPI connected to the fingerprint sensor, where we
deploy an SPI MITM framework that can intercept and in-
ject fingerprint images. The attack is divided into two stages:
(1) dictionary generation; (2) continuous attempts. The goal
of the first stage is to generate a brute-force fingerprint dic-
tionary. This phase intercepts base images from the SPI; then
composites these images to a prepared fingerprint database
to generate a dictionary. The second stage is responsible for

continuously injecting image samples from the dictionary in
units of attempt into the SPI. In order to bypass the attempt
limit, INFINITYGAUNTLET exploits one of CAMF and MAL
vulnerabilities depending on the phone model. CAMF ex-
ploitation injects error (e.g., invalidates the checksum) in the
last sample to cancel failed attempt, and MAL exploitation
infers matching results through side-channel leakage (e.g.,
duration of unlocking animation) in lockout mode.

Figure 2: Overview of INFINITYGAUNTLET.

5 Methodology

Three challenges should be tackled to realize our approach:
attempt limit bypassing, SPI MITM, and fingerprint dic-
tionary generation which correspond to the abilities of ad-
versaries: A1, A2 and A3 respectively.This section introduces
generic ways to implement them.

5.1 Attempt Limit Bypassing

This subsection details CAMF and MAL that can be exploited
to bypass the attempt limit.

5.1.1 Cancel-After-Match-Fail Vulnerability

In biometric authentication systems, capturing multiple image
samples in a single authentication attempt is considered one
of the best practices for tolerating fault. [31]. Two rules in it
are related to CAMF vulnerability:
(1) Multi-sampling. To tolerate the false rejection rate of
matching algorithms, an attempt can pass the authentication
if one of its samples passes.
(2) Error-cancel. To tolerate some recoverable errors (e.g.,
caused by a temporary hardware malfunction), a failed at-
tempt should be canceled when these errors occur.

The multi-sampling mechanism and the exploitation of
CAMF vulnerability are shown in Fig. 3. Due to multi-
sampling, the authentication for one attempt needs to cap-
ture multiple fingerprint samples and then match them in a
loop until one sample’s result is error/matched/non-live or the



Figure 3: Multi-sampling and CAMF vulnerability.

number of unmatch sample reaches the maximum M. Unfor-
tunately, due to error-cancel, adversaries can make unlimited
attempts if they fool the M-th sample of each attempt to go
into the error-cancel branch by maliciously injecting an error.
So the authentication result is either cancel or success, de-
pending on whether a matched sample is in the first (M−1)
samples. In contrast, the failed result is always avoided by
canceling.

Different smartphone models have different types of errors
for canceling, which we will discuss in Section 8.3.

5.1.2 Match-After-Lock Vulnerability

Figure 4: Lockout mode and MAL vulnerability.

In SFA systems, two lockout modes (permanent and tem-
porary) are designed to protect the system when triggering
security policies (see Section 2.2). As shown in Fig. 4, the
permanent lockout mode is triggered by P1, P2 or P3, where
fingerprint authentication functions are locked and can only
be resumed by passing a primary authentication (e.g., PIN,
pattern, password). And the temporary lockout mode is trig-
gered by P4 or P5, where fingerprint authentication functions
are locked temporarily and will be resumed when timeout.

However, some manufacturers allow users to make non-
effective attempts in lockout modes to improve the user ex-

perience when waking up the locked screen by pressing the
fingerprint sensor area. The noneffective attempts include
all SFA processes except the final authentication action and
the increment of failed attempt counter. This user-friendly
design may lead to leakage of matching results. As we have
mentioned in Fig. 3, if samples in one attempt are all liveness
and quality, then the early exit of the attempt means it is a
successful authentication attempt. Therefore adversaries can
infer the result from side-channel information on response
time. For example, a shorter unlock animation or a shorter
SPI signal means at least one valid fingerprint exists in the
attempt.

As shown in Fig. 4, adversaries first intentionally let the
SFA system enter a lockout mode by triggering a security
policy (P1-P5); then make unlimited noneffective attempts
in lockout mode until a matched result is inferred by side-
channel; lastly, replay the successful attempt that contains the
valid fingerprint after the lockout mode is exited to authenti-
cation mode by waiting for the timeout or passing a primary
authentication.

Since the time window of the permanent lockout mode is
infinitely long, the number of MAL attempts is unlimited,
so the correct fingerprint can be obtained by brute force. A
practical attack can only be performed after exiting the lock-
out mode, so these attacks are marked COND. However, P40
and Mate30 can repeatedly enter temporary lockout mode to
make MAL attempts. They can also obtain an infinite time
window and inject the correct fingerprint when the lockout
mode automatically exits due to timeout, so these attacks are
marked FULL.

In practice, we find two ways to exploit MAL. The first
is making noneffective attempts in permanent lockout mode.
Although this method can get a correct fingerprint, it cannot
unlock the phone immediately. The second way is to make
the phone repeatedly enter temporary lockout mode to make
noneffective attempts. This way can not only obtain a cor-
rect fingerprint but also can inject it when the lockout mode
automatically exits due to timeout.

5.2 SPI MITM

This subsection details the SPI MITM, which can implement
fingerprint image hijacking.

MITM Attacks on SPI. In SFA systems, serial peripheral
interface (SPI) is used for raw fingerprint image transfer be-
tween the fingerprint sensor and the smartphone processor.
Specifically, the SPI is a four-wire bus consisting of a mas-
ter input or slave output (MISO), a master output or slave
input (MOSI), a serial clock (SCLK), and a chip select (CS),
where the smartphone processor acts as the master and the
fingerprint sensor acts as the slave. Typically, the SCLK has
a frequency range of 8~50 MHz, and a checksum is used for
error-checking. However, to our knowledge, almost all SFA
sensors, except Touch ID, do not encrypt image data and lack



mutual authentication, making SFA systems vulnerable to
MITM attacks on SPI.

Figure 5: MITM Attack on SPI.

We design the SPI MITM of SFA in Fig. 5. The adversary
acts as a fake slave to receive the MOSI_A signal or send
the MISO_A signal according to its working mode that is
controlled by two single pole double throw (SPDT) switches:
S0 and S1. Different states of SPDTs are explained in Table 1.
Idle mode is activated when S0 = 0 and S1 = 0, in which the
adversary listens for the fingerprint data acquisition (FDA)
command. Intercept mode is activated when S0 = 1 and S1 =
0, in which the adversary intercepts the raw fingerprint image.
Inject mode is activated when S0 = 0 and S1 = 1, in which
the adversary injects the raw fingerprint image. The MITM
framework implements raw fingerprint image intercept and
injection through mode switching.

A highlight of this framework is to locate the fingerprint
image transmission window through FDA and only hijack
the data in the window so as not to affect other interactive
processes.

Table 1: Function of the two SPDT switches.

State Function

S0
0 Identify the FDA command from MOSI.
1 Intercept raw image from MISO_S.

S1
0 Keep connection from MISO_S to MISO_M.
1 Inject raw image from MISO_A to MISO_M.

Raw Image Decoding and Encoding. The MITM frame-
work also requires functions for decoding and encoding the
raw fingerprint image. The two functions are inverses and
fit the transmission protocol to deal with image shape, pixel
representation, byte sequence, checksum, and frame structure.
For instance, necessary steps for the encoding function in-
clude pixel adaptation to unify bits per pixel, byte reordering
to compress adjacent pixels, checksum attachment to verify

image data, and frame alignment to separate and add a header
to frames. We will show a running example of encoding/de-
coding in Section 7.2.

5.3 Fingerprint Dictionary Generation
In this subsection, we detail how to generate a fingerprint
dictionary containing a large number of fingerprints for brute-
force attacks. We solve this problem by proposing a synthetic
fingerprint generation method for SFA for the first time. The
method includes device-specific base image capturing and
device-independent fingerprint composition.

5.3.1 Base Image Capture

As authentication workflow described in Fig. 1, SFA performs
compensation on the raw fingerprint image and then does the
quality check and liveness detection. If the raw fingerprint
image submitted by adversaries does not have a background
that matches the device, it will be rejected by quality check or
liveness detection. Therefore, we need to collect the device-
specific base image from the victim’s phone.

To avoid capturing the texture of the pressed object, we use
a so-called hollowed-out press to trigger finger sensing. The
hollowed-out press refers to using a hollow and conductive
fake finger to press the fingerprint sensing area. Since the
finger sensing of SFA only relies on the total area pressed,
the hollowed-out press can also trigger image capturing if
the hollowed-out area is not too large. Besides, we use the
attempt limit bypassing method mentioned above to perform
multiple hollowed-out presses to obtain multiple base images
through SPI MITM. We will show the hollowed-out press for
an in-display optical fingerprint smartphone in Section 7.3.

5.3.2 Fingerprint Composition

Figure 6: Synthetic fingerprint generation for SFA.

We propose a fingerprint composition method for SFA
based on the master fingerprint, an intermediate product of



SFinGe [22]. SFinGe is a state-of-the-art synthetic fingerprint
generation method for evaluating the FAR of matching algo-
rithms. The master fingerprint is a binary fingerprint image
containing only valley-ridge patterns but includes the core
information to distinguish different fingerprints.

To make the synthetic fingerprints suitable for brute-force
attack, we make the following adaptation to SFinGe, as shown
in Fig. 6. Firstly, we use the pure master fingerprint that does
not impose intra-fingerprint variations (such as ridge thickness
variations, distortions, perturbations, and global translation/ro-
tation) on it. That is because the variations are counterpro-
ductive to increasing the success rate of brute force attacks.
Secondly, we crop and scale the master fingerprint depending
on the DPI (Dots per Inch) measured from the victim’s phone.
Finally, we average multiple base images pixel by pixel to
reduce noise.

We provide a running example of how to generate in-
display optical fingerprints in Section 7.3.

6 Adversarial Equipment

Figure 7: Adversarial equipment and attack demonstration.

The adversarial equipment we implemented for INFINI-
TYGAUNTLET includes attacking board, auto clicker, and
flexible printed circuit (FPC) cable. The attacking board and
auto clicker are general for different smartphones, only the
FPC cable needs to be customized based on the target smart-
phone model. Fig. 7 shows the attacking demonstration and
the equipment components.

Attacking Board. Attacking board is the core of
the equipment which consists of four main components:
(1) STM32F412: an MCU that has an SPI peripheral with
38 MHz transmission rate in slave mode that controls the

whole attack process; (2) RS2117: an SPDT analog switch
with 400 MHz bandwidth that switches between working
modes of SPI MITM; (3) SD Card: an 8GB flash memory that
can store a fingerprint dictionary containing up to 200 000
fingerprint images; (4) Pin Header Switch: a pin header array
that can switch between different functions, such as raw image
capture (RC), brute-force attack (BF), template enrolls (TE),
and presentation attack (PA) by a jumper cap.

Auto Clicker. Auto clicker is designed to simulate finger
pressing physically. The core of it is a reed relay SIP-1A05
connected to a conductive suction cup attached to the sensing
area. Auto clicker simulates pressing/lifting by opening/clos-
ing the relay, so the frequency of clicks can be controlled by
attacking board.

FPC Cable. FPC Cable is responsible for taking signal
lines such as CLK, CS, MISO_M, MOSI, and MISO_S from
the smartphone’s motherboard to attacking board. FPC Cable
is connected to phone by a B2B socket, so no welding is
required when attacking. Due to the different B2B sockets of
different fingerprint sensors, the circuit of FPC cable needs
to be customized based on the target phone model.

The total equipment costs less than 20 dollars. In order
to fill the gap in the research tools of SFA, we decided to
open source all PCB (printed circuit board), BOM (bill of
materials), and firmware to the academic community1.

7 A Case Study of INFINITYGAUNTLET

In this section, we detail a concrete case study on OnePlus 7
Pro (called the “victim device” throughout the section) and
present the result of brute-force attacks. We explain why
choosing the victim device as a case study. (1) It runs close
to the stock version of Android, which is open-source and
the most popular, making it representative for studying SFA.
(2) Its fingerprint sensor uses the in-display optical technology
that has become the standard configuration of most mid-end
and high-end smartphones.

7.1 Attempt Limit Bypassing
We find CAMF vulnerability on the victim device and make
exploitation with the checksum error-cancel. Unlimited at-
tempts can be achieved with CAMF exploitation.

Android SFA Framework. The victim device uses a fin-
gerprint authentication framework of Android, as shown in
Fig. 8(a). Each mobile application has its own fingerprint
manager to communicate with fingerprint service which is
implemented by a class FingerprintService that belongs to
android open source project (AOSP). Fingerprint service con-
nects to fingerprint HAL with HIDL interface to communicate
with vendor-specific fingerprint libraries. In TEE, fingerprint
TA runs core algorithms including compensation, anti-faking

1https://github.com/alohachen/InfinityGauntlet

https://github.com/alohachen/InfinityGauntlet


(a) SFA framework in Android. (b) Sequence diagram for attempt limit bypassing by CAMF.

Figure 8: Explanation of the attempt limit bypassing in the case study. In Android biometric framework, fingerprint authentication
is closely related to four roles: Fingerprint TA, Fingerprint HAL, Fingerprint Service, and Mobile Application (i.e, KeyGuard).
The interactions between them under our attack are represented with a sequence diagram.

and matching; and TEE kernel communicates with fingerprint
sensor through SPI.

Three important callbacks are defined by the framework
in HIDL interface to return asynchronous results from TEE:
(1) onAcquired is called back when a fingerprint image is
captured by the sensor and notifies a acquiredInfo message
about the image quality. (2) onAuthenticated is called back
when a fingerprint is authenticated and notifies an authentica-
tion result. (3) onError is called back when a fingerprint error
occurs and notifies a error message.

The callbacks are implemented in FingerprintService,
where the attempt limit is monitored by a variable named
mFailedAttempt and can only be increased when onAuthen-
ticated is called back, which will happen when Fingerprint
TA request Fingerprint HAL to notify authentication results.
If the authentication result is FALSE, mFailedAttempt will
be increased by one, which decreases the remaining number
of available attempts. However, mFailedAttempt can remain
unchanged if adversaries construct an error event to trigger
onError for bypassing onAuthenticated.

Checksum Error-cancel. As checksum is recommended
for SPI transmission protocols to do error-check, most SFA
system attaches it to fingerprint data and regard a recover-
able error as a cancelable state for authentication. To exploit
CAMF on the victim device, we invalidate the checksum of
the fourth sample’s fingerprint data and successfully trigger
the error-cancel rule.

We extract the control flow of the victim device’s finger-
print authentication framework to reason the CAMF exploita-

tion and show it in Fig. 8(b). Once fingerprint HAL receives
an authentication request, it will send a wakeup command
to fingerprint TA and notify the onAcquired callback to fin-
gerprint service. Then the authentication loop goes through
image capturing and authentication for each sample until the
last one which notifies the onError callback with a vendor-
specific code (1003) to fingerprint service. It is worth men-
tioning that under our attack, the loop never ends with an
unmatched sample result to notify onAuthenticated with a
failed authentication result. Moreover, if one of the first three
sample is matched, fingerprint HAL will notify onAcquired
with the code 0 (FINGERPRINT_ACQUIRED_GOOD), send
a success result to onAuthenticated, and directly break the
loop.

7.2 SPI Protocol Reverse Engineering.

We observe SPI signals through a logic analyzer and locate
those dense signals on MISO to identify fingerprint image
data. As the data is not encrypted, we can try out the encoding
method with some tricks. For example, the image shape can
be guessed by factoring the total number of pixels, and adap-
tion can be made according to the periodic offset of outlier
values (i.e., values such as checksum other than image pixels).
We find the first sample is transmitted in 4 frames, while the
last three use the same format with 13 frames. Each last frame
is short since it transmits the remained fingerprint data. The
FDA commands can be identified before every frame. Take
the first sample as an example: the FDA commands are al-



Figure 9: Example of reverse-engineered SPI protocol for fingerprint data on MISO and MOSI.

ways 0xF08800, and we show the structure (frame separator
omitted) of fingerprint data in Fig. 9. The structure is not com-
plicated: the gray-scale image is stored in 16 bits per pixel,
and for each line, a serial number and a CRC16 checksum are
attached at both ends. It is worth noting that our method only
operates on the data within the frame, so there is no need to
reverse the full interactive protocol.

7.3 Fingerprint Dictionary Generation

Based on the CAMF and SPI MITM mentioned above, adver-
saries can perform INFINITYGAUNTLET if they have a valid
fingerprint dictionary. This subsection shows how to generate
a fingerprint dictionary for the victim’s device.

Base Image Capture. We take a rubber, hollowed out a
small piece on the bottom side, as shown in Fig. 10, and paint
the surface with black conductive paint to make a hollowed-
out fake finger. Then press it on the fingerprint sensing area
and apply SPI MITM and CAMF to capture base images.
Since the victim device applies two different exposure times
for different samples in one attempt, so the base image is
classified into two brightness levels, as shown in the lower
left part of Fig. 11. To reduce noise, we collect multiple base
images for Sample#1 and Sample#2/#3/#4, respectively, then
average them by pixel to get the final base images. The base
images include regular grids and noticeable vignetting effects.
We guess these fixed patterns are introduced by the screen
pixel diffraction and the lens limitations of the in-display
optical fingerprint sensor.

DPI Measurement. We take a piece of conductive rubber
and carve a short line of known length L on it. Then press it
on the fingerprint sensing area to capture the image, and count
the number of pixels P occupied by the short line. Finally,
divide P by L to get DPI. For example, in the experiment
we did on the victim device: 0.237 inch corresponds to 154
pixels, so the calculated DPI is 652 (154/0.237).

Master Fingerprint Generation. We use Anguli [3], an

Figure 10: Press a hollowed-out and conductive rubber on the
fingerprint sensing area to capture base images.

open source implementation of SFiGe, to generate 200,000
master fingerprints in default parameters. The master finger-
print generated by Anguli has a resolution of 275x400 with
500 DPI.

Crop and Scale. Since the two DPIs are not match, mas-
ter fingerprint needs to be scaled according to their ra-
tio (652/500). Next, we need to crop the scaled master finger-
print to the same size (192x224) as the base image. Consider-
ing the common user pressing habits, we prefer to crop the
upper middle part of master fingerprint, as shown in the left
part of Fig. 6.

Fingerprint Composition. The final step is to composite
fingerprints. As shown in Fig. 11, we first apply the ROI mask
to master fingerprints to simulate the vignetting effects of the
lens. Then stack them with the base image to simulate the
pixel diffraction effect of the in-display fingerprint.

7.4 Experiment Results

We design brute-force experiments on screen unlock to evalu-
ate INFINITYGAUNTLET for this case study. As mentioned
in Section 3, the effect of InfinityGauntlet is related to the
number of fingers enrolled by the victim. So we experiment
on two extreme scenarios: enroll one finger and five fingers.
We generate a fingerprint dictionary containing 200000 im-



Table 2: Results of brute-force experiments on two enrollment
scenarios. The “Success #” represents the average number of
successes when 200,000 synthetic fingerprints are injected
twelve times. The “Failed #” represents the average number
of failures that caused mFailedAttempt to increase. The “Time
Cost” is the average time required for one successful attack.
The “Attack FAR” is the practical FAR of injected fingerprint
images. The “Baseline FAR” is the referenced FAR calculated
by Equation 4, that is required for a successful brute force
with an 0.8 probability (BAR=0.8) within 36 hours (T L=36
×60×60).

Enroll One Finger Enroll Five Fingers

Success # 9.21 41.92

Failed # 0 0

Time Cost 2.01 hours 0.44 hours

Attack FAR 4.6×10−5 4.2×10−5

Baseline FAR 4.14×10−6 0.83×10−6

1 9.2 = mean(8, 11, 8, 7, 15, 7, 8, 13, 8, 6, 12, 7)
2 41.9 = mean(38, 42, 43, 48, 42, 44, 40, 43, 34, 48, 40, 41)

ages. Using the dictionary, we conduct twelve brute-force
experiments for the two scenarios at FIPS = 3 (3 fingerprint
images are injected per second). Each enrolled fingerprint
differs from experiment to experiment and does not appear in
the dictionary.

Table 2 shows the statistical metrics and average results.
The “Failed #” metric is always zero, meaning the attempt
limit (AL), quality check (Q) and liveness detection (L) that
defined in Section 3 are all compromised completely. The vic-
tim device is successfully unlocked 9.2 times when “Enroll
One Finger” and 41.9 times when “Enroll Five Fingers”; the
corresponding “Time Costs” are 2.01 and 0.44 hours, respec-
tively. We notice something interesting: the “Attack FAR” is
at least an order of magnitude higher than the “Baseline FAR”,
suggesting that INFINITYGAUNTLET has strong robustness in

Figure 11: Examples of fingerprint composition.

this case study. The T L we choose for the baseline is 36 hours
because this is the mathematical expectation of T L when the
adversary controls the phone according to P2. Fig. 12 shows
four samples randomly selected from the injection fingerprints
of successful attacks.

Figure 12: Successful samples from the experiment.

8 Scalability of INFINITYGAUNTLET

After confirming the feasibility of INFINITYGAUNTLET
through the case study, we begin to discuss the scalability
of our attack in this section.

8.1 Target Selection

Scalability experiments are done on 12 off-the-shelf smart-
phones. We cover mainstream smartphone manufacturers and
sensor vendors on the market with our best effort, although
similar issues found on newer Android 12 devices cannot
be disclosed due to NDA. Besides the OnePlus discussed in
the case study, we select smartphones from top manufactur-
ers [11]: Samsung, Huawei, Xiaomi, Oppo, Vivo, OnePlus,
Honor, and Apple. The specific models are chosen accord-
ing to their fingerprint sensors and OSs. For the scanning
technology of SFA sensors, the pioneer is capacitive scan-
ning. The representative is Touch ID, so we pick two Apple
models. We also pick an Android model equipped with a ca-
pacitive sensor to complement. The increasing applications of
in-display optical sensors are the latest trend, where Goodix
dominates the market and adopts optical scanning. Hence, we
choose the maximum number of models equipped with them.
We select Mi 11 Ultra since it represents the most current
ultra-thin in-display optical sensor. A branch of in-display
sensors adopts ultrasonic scanning developed by Qualcomm,
for which we choose two Samsung Galaxy series. Two mod-
els from Huawei are also selected since they use the recently
released HarmonyOS and embed fingerprint sensors supplied
by different vendors. We evaluated typical fingerprint authen-
tication applications, including screen lock, payment, and
privacy.

However, due to time constraints, it is difficult for us to con-
duct a complete experiment like the case study in Section 7
for all test targets. Therefore, we choose to verify whether the
test phones have CAMF/MAL and SPI-MITM vulnerabili-
ties and then infer the possible attack types according to the



Table 3: Experimental smartphones, sensor information, discovered vulnerabilities, and the attack types on three typical fingerprint
authentication applications. ✔ means the vulnerability exists. ✘ means the vulnerability does not exist. ⃝ means the vulnerability
exists but has a finite effect.

Smartphone Sensor Vulnerability Attack

Manuf./Model OS/Ver. Vendor Type CAMF MAL MITM Unlock1 Payment2 Privacy3

Samsung Galaxy S20U Android 11 Qualcomm Ultrasonic ✔ ✘ ✔ FULL FULL FULL
Samsung Galaxy S10+ Android 9 Qualcomm Ultrasonic ✔ ✘ ✔ FULL FULL FULL
Xiaomi Mi 11 Ultra Android 11 Goodix Optical ✔ ✘ ✔ FULL FULL FULL
OnePlus 7 Pro Android 11 Goodix Optical ✔ ✘ ✔ FULL FULL FULL
OnePlus 5T Android 8 Goodix Capacitive ✔ ✘ ✔ FULL FULL FULL
Huawei Mate30 Pro HarmonyOS 2 Goodix Optical ✘ ✔ ✔ FULL FULL FULL
Huawei P40 HarmonyOS 2 Novatek Optical ✘ ✔ ✔ FULL FULL FULL
OPPO Reno Ace Android 10 Goodix Optical ✔ ✘ ✔ FULL FULL FULL
Honor Magic3 Android 11 Goodix Optical ✘ ✔ ✔ LIMIT/COND FULL FULL
Vivo X60 Pro Android 11 Goodix Optical ⃝ ✔ ✔ LIMIT/COND FULL LIMIT
Apple iPhone 7 iOS 14.4.1 AuthenTec Capacitive ⃝ ✘ ✘ PA_ONLY PA_ONLY PA_ONLY
Apple iPhone SE iOS 14.5.1 AuthenTec Capacitive ⃝ ✘ ✘ PA_ONLY PA_ONLY PA_ONLY
Apple iPhone SE(2nd) iOS 15.5 AuthenTec Capacitive ⃝ ✘ ✘ PA_ONLY PA_ONLY PA_ONLY

1 Unlock: screen unlock.
2 Payment: make payments on pre-installed or third-party payment apps, including: Paypal, Alipay, Samsung Pay, Huawei Pay, OPPO Pay,

Vivo Pay, and Apple Pay.
3 Privacy: log into pre-installed privacy protection apps, including Secure Folder for Samsung, Hidden Folders for Xiaomi, LockBox for

OnePlus, Safe for Huawei and Honour, Private Safe for OPPO, File Safe for Vivo and Notes for Apple.

degree of vulnerability and the exploitability in different ap-
plications. The logic behind this choice is that the existence of
CAMF/MAL and SPI-MITM means that the abilities A1 and
A2 discussed in the threat model are satisfied. Meanwhile, be-
cause the SFA algorithms developed by vendors have strong
homology, we assume that the ability A3 can also be satisfied.

8.2 Empirical Analysis Result

The empirical analysis results are given in Table 3. We identify
four types of attacks with different strengths: FULL, LIMIT,
COND and PA_LIMIT. The FULL attack means the adversary
can perform a full INFINITYGAUNTLET attack. The LIMIT
attack means the adversary can perform a limited attack, that
the attempt limit can be bypassed but can not enlarge to in-
finite. The COND attack means the adversary can perform a
conditional attack, where the valid fingerprint image obtained
by brute force needs to be re-injected after the lockout mode
is exited by primary authentication. The PA_ONLY attack
represents that the adversary can only perform a presenta-
tion attack with the expanded number of attempts because
fingerprint injection via SPI-MITM is impossible, and the
attempt limit can not enlarge to infinite. From Table 3, we
can see all models but iPhones have at least two vulnerabili-
ties, and at least one fingerprint authentication application is
subject to the full INFINITYGAUNTLET attack. We have sub-
mitted these vulnerabilities to these seven manufacturers,
and all have been confirmed, including critical and high
ones. After we submitted these vulnerabilities, Google also

raised the security requirements of the “false trial” in the
Android compatibility definition document (CDD) [2] to
prevent fingerprint brute-force attacks.

In fact, after submitting this paper, we still found an ex-
ploitable CAMF vulnerability on Motorola S30 Pro which
was launched on August 2022 by Lenovo, with Android 12.

In addition, we open the black box of the SFA through
SPI MITM and expose fingerprint images of different types
of sensors for the first time, as shown in Fig. 13. Mate 30
Pro 5G and OnePlus 7P use the same pixel encoding method,
both are 13bit grayscale images with resolutions of 182x182
and 192x224, respectively. Due to the capacitive technology,
the image of OnePlus 5T has a smaller resolution, which is
a 108x88 12bit grayscale image. The advanced ultra-thin in-
display optical fingerprint technology adopted by Mi 11 Ultra
realizes color sense by adding a color filter to the sensor and
captures a 126x122 color image in 32bit CMYK format. The
image of the Galaxy S10+ is composed of several 108x80
12-bit grayscale sub-images vertically. Due to the use of ultra-
sonic technology with a high-noise floor, it is not easy to see
the fingerprint pattern on the raw image. So we use the col-
lected base images to compensate for the raw image (left half),
and a clear fingerprint pattern can be seen in the processed
image (right half). In summary, we successfully obtained the
raw fingerprint images by reverse engineering from the inter-
cepted SPI data for each type of fingerprint sensor. Moreover,
as Mate 30 Pro and OnePlus 7 Pro use in-display optical fin-
gerprint sensors provided by Goodix, we find the protocols
share much in common. So we guess there will not be much



work for the protocol reverse on untested smartphone models
since there are only a handful of sensor vendors on the market.

Figure 13: Fingerprint raw images intercepted by SPI-MITM.

8.3 Details and Findings
This subsection supplements some technical details of the
empirical analysis and shares some interesting findings.

Sensor Hot Plugging. Because the FPC cable needs to
be inserted between the fingerprint sensor’s B2B sockets, IN-
FINITYGAUNTLET requires the smartphone to support sensor
hot plugging. Otherwise, restarting the smartphone will trig-
ger the security policy P3. Therefore, before experimenting
with each smartphone, we firstly checked whether its sensor
supports hot plugging. Results suggest that all smartphones
support hot plugging. We guess this is the default feature
across the industry.

Different Error-cancels. In our experiments, we find that
the error-cancels triggering CAMF involve various errors:
CRC check error (E1), too fast lifting error (E2), timeout un-
responsive error (E3), lock screen interrupt error (E4). For
example, Galaxy and the Mi 11 Ultra use E1 and E2; OnePlus
uses E1 and E3; Reno Ace and X60 Pro utilize E4. Exploiting
these errors for CAMF follows the methodology we summa-
rized in Section 5.1.

Restricted Attempt Limit Bypassing. From Table 3, for
some applications, only restricted attempt limit bypassing can
be achieved on X60 Pro and iPhones, and their attempt limit
can be enlarged from 20 to 50 and from 5 to 15, respectively.
We guess that the X60 Pro and iPhones introduced additional
counters to limit the number of failures.

MAL Exploitation in Different Lockout Modes. In the
experiments, we find that Mate30 Pro, P40, Magic3, and X60
Pro are affected by MAL, but they can be exploited in differ-
ent lockout modes by triggering different security policies.
Mate30 Pro and P40 can be exploited in temporary lockout

mode triggered by P5. Magic3 can be exploited in tempo-
rary lockout mode triggered by P4. Magic3 and X60 Pro
can be exploited in permanent lockout mode triggered by
P1/P2/P3. Due to the different lengths of time windows avail-
able for making noneffective attempts (see Fig. 4) and dif-
ferent lockout mode exiting conditions, these attacks have
different strengths.

9 Mitigation

To defend against the attempt limit bypassing based on CAMF,
we recommend checking each attempt to see whether a cancel-
lation happens and switching to “No Cancel Mode” once the
historical cancel numbers reach a threshold. In “No Cancel
Mode”, the smartphone can only be unlocked when there is
no canceled sample in the current attempt. The mitigation
balances usability with security as the unlocking time is only
increased slightly in “No Cancel Mode” while the false reject
rate is not increasing. To prevent SPI MITM, we suggest that
fingerprint sensor vendors and smartphone manufacturers are
responsible for encrypting crucial data during communication.
Most importantly, the pin MISO should carry high entropy
data. Besides, we suggest that the fingerprint acquisition be-
have consistently in attempts so that adversaries cannot infer
the matching results by side-channel information. For exam-
ple, at the UI level, preventing the animation of fingerprint
acquisition leaks the authentication results. Lastly, we recom-
mend moving the attempt limiting logic from REE to TEE to
protect against privileged adversaries. Therefore thoroughly
addressing InfinityGauntlet requires the whole industry to be
aware of our proposed attack model.

10 Discussion

We discuss the potentials of INFINITYGAUNTLET’s technique
beyond fingerprint brute-force attack, the limitations of IN-
FINITYGAUNTLET, and our future work.

Attack Beyond Brute-force. Besides achieving fingerprint
brute-force attacks that require no prior knowledge about
the victim, the proposed method can also enhance traditional
presentation attacks that require the fingerprint latent of the
victim. The first point is that the attempt limit is no longer a
barrier for smartphone presentation attacks. More importantly,
the laborsome fabrication process can be replaced with image-
level editions, which can significantly improve SAR.

Biometric Beyond Fingerprint. As the multi-sampling
mechanism is considered one of the best practices in bio-
metric authentication systems, there is reason to suspect
that CAMF also exists in other biometric systems based
on face, iris, or palmprint. In fact, from the AOSP code,
we find the integration of the biometric authentication
framework in hardware.biometrics.BiometricManager and
server.biometrics.BiometricServiceBase packages, where the



error-cancel mechanism can also be seen. However, since
the transmission channel differs among biometric sensors,
some hardware-related adaption must be made to confirm
the vulnerability to brute-force attacks and make exploitation.
Nevertheless, INFINITYGAUNTLET offers a new perspective
on the attack surface of various biometric authentication sys-
tems.

Limitations. (1) Our work can not bypass the limit of the
security policy P2, so the full INFINITYGAUNTLET attack
must be completed in 72 hours or less. Nevertheless, accord-
ing to the experimental results of the case study, adversaries
can complete the attack in a few hours. (2) The valid fin-
gerprint image guessed by INFINITYGAUNTLET does not
look similar to the enrolled finger from a human observation
point of view. That is because, as described in Section 2.1,
the matching algorithm in SFA is based on template features
rather than overall image relevance. (3) Although we have
introduced some tricks of inferencing image transfer protocol
in Section 7.2, which are applied to most smartphone models,
it is not excluded that there are still some difficulties for a few
models. For example, we found that some models use a cus-
tom checksum algorithm to check each line in the image. Our
solution to this problem is to reverse engineer the associated
checksum code in the fingerprint TA.

Future Work. The time cost of the attack is related to the
distribution of injected fingerprints. However, the fingerprint
dictionary used in INFINITYGAUNTLET is non-selective, so
there is much room for improvement. The idea from Deep-
MasterPrint [20] can be borrowed to optimize fingerprints that
trigger more collisions. With the help of our open-source ad-
versarial equipment, researchers can easily inject fingerprints
into smartphones to evolve the dictionary. If a well-design
dictionary is obtained, we believe it is also probable to attack
smartphones where the attempt number can not enlarge to
infinite.

11 Related Work

Prior works have proposed different PAs targeting traditional
fingerprint authentication systems. The most widely adopted
methodology is to impersonate a legitimate user via arte-
facts [29], such as latent print images [21] and gummy fin-
gers [18, 32]. On off-the-shelf SFA systems, a few PAs were
reported successful. For instance, the CCC team [26] fabri-
cated a latex sheet after photographing a victim’s fingerprint
and bypassed the iPhone 5S Touch ID. A recent study from
Cisco [36] selected fabric glue to make 3D printed fingers,
which claim to bypass 8 out of 13 tested smartphones. These
works differ mainly in the chosen materials and fingerprint
engraving techniques. In comparison, our work can inject
arbitrary fingerprint images by SPI MITM. This way, we
avoid delicate crafts and enhance the attack through effort-
less image editions. Besides, the above attacks all rely on the
knowledge of the victim’s fingerprint. Whereas our work can

make exploitation to achieve infinite fingerprint brute-force
attempts, becoming free of prior knowledge about the victim’s
fingerprint.

Zhang et al. [40] study four types of security pitfalls on
SFA that may be exploited by malware and are the first (in
2015) to discuss the attacks targeting the authentication frame-
work. However, as the architectural security of SFA has much
enhanced in recent years, especially with securer TEE imple-
mentations, follow-on works hardly appear. Our work discov-
ers defects in state-of-the-art SFA frameworks that affect the
most advanced software and hardware solutions.

MasterPrint [17] investigates the security of partial fin-
gerprint authentication systems, especially when multiple
user fingerprints are enrolled. DeepMasterPrints [20] further
demonstrate the vulnerability to collision attacks. However,
the proof-of-concept of DeepMasterPrints cannot work in a
high security-level setting. Specifically, only 1.11% attacks
are shown successfully on the VeriFinger [16] (a none-SFA
matcher without liveness detection) with 0.01% FAR. In con-
trast, we manage to attack off-the-shelf smartphone authenti-
cation systems in a much tougher 0.002% [1, 9] FAR setting
with a very high probability of success.

Prior works make efforts to defeat attacks through liveness
detection with extra hardware or image analysis [25, 27]. The
hardware-based methods use specialized sensors to capture
biological characteristics [19,33]. However, they require addi-
tional hardware costs. The image-based approaches leverage
features such as texture to separate live and dummy fingerprint
images [24], and many recent works are learning-based [34].
Inspired by [23], our work injects fingerprint images directly
rather than using an intermediate, which fools image-based
liveness detection by nature.

12 Conclusion

This paper proposes a novel fingerprint brute-force attack on
off-the-shelf smartphones for the first time. Adversaries can
pass fingerprint authentication with zero knowledge of the
victim to unlock the smartphone, log into privacy apps and
make payments. We hope our work can inspire the industry
to improve the security of biometric authentication.
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Figure 14: Signals captured during our CAMF attack on
Touch ID within one attempt.

A CAMF on Touch ID

As mentioned in Section 8.2, we find that the attempt limit
of Touch ID can not enlarge to infinite. This section explains
why and how.

To trigger error-cancel in CAMF exploitation, we use the
E1 type error discussed in Section 8.3. Figure 14 shows a
malicious attempt under CAMF. The Glitch signal in the fig-
ure indicates whether the connection between the fingerprint
sensor and processor is valid or not.

Unlike most Android devices, only three consecutive
CAMF attempts can be exploited in Touch ID. We guess
that Touch ID is equipped with a counter relevant to error-
cancel, which may serve to prevent ghost touches or minor
hardware failures. Nevertheless, we successfully make 15
actual attempts, which is three times as much as the attempt
limit supposes. The whole process is described in two steps:
(a) repeat the CAMF attempt twice when the screen is sleep-
ing; (b) make normal attempts till a UI response is given when
the screen is waking. A successful authentication result in
any of the two steps can break the process. The second step
ensures that the following matched fingerprint can unlock the
device. Adversaries can repeat these steps until reaching the
attempt limit.

https://blog.talosintelligence.com/2020/04/fingerprint-research.html
https://blog.talosintelligence.com/2020/04/fingerprint-research.html
https://blog.talosintelligence.com/2020/04/fingerprint-research.html

	Introduction
	Background
	Authentication Workflow
	Security Policy
	Architectural Security
	Security Metrics

	Threat Model
	Mathematical Derivation
	Attack Strategy and Scenario

	Overview Of InfinityGauntlet
	Methodology
	Attempt Limit Bypassing
	Cancel-After-Match-Fail Vulnerability
	Match-After-Lock Vulnerability

	SPI MITM
	Fingerprint Dictionary Generation
	Base Image Capture
	Fingerprint Composition


	Adversarial Equipment
	A Case Study of InfinityGauntlet
	Attempt Limit Bypassing
	SPI Protocol Reverse Engineering.
	Fingerprint Dictionary Generation
	Experiment Results

	Scalability of InfinityGauntlet
	Target Selection
	Empirical Analysis Result
	Details and Findings

	Mitigation
	Discussion
	Related Work
	Conclusion
	CAMF on Touch ID

