
BLEEM: Packet Sequence Oriented Fuzzing for Protocol Implementations

Zhengxiong Luo1, Junze Yu1, Feilong Zuo1, Jianzhong Liu1, Yu Jiang1, B, Ting Chen2,
Abhik Roychoudhury3, and Jiaguang Sun1

1KLISS, BNRist, School of Software, Tsinghua University
2University of Electronic Science and Technology of China

3National University of Singapore

Abstract
Protocol implementations are essential components in net-
work infrastructures. Flaws hidden in the implementations
can easily render devices vulnerable to adversaries. There-
fore, guaranteeing their correctness is important. However,
commonly used vulnerability detection techniques, such as
fuzz testing, face increasing challenges in testing these im-
plementations due to ineffective feedback mechanisms and
insufficient protocol state-space exploration techniques.

This paper presents BLEEM, a packet-sequence-oriented
black-box fuzzer for vulnerability detection of protocol im-
plementations. Instead of focusing on individual packet gen-
eration, BLEEM generates packets on a sequence level. It pro-
vides an effective feedback mechanism by analyzing the sys-
tem output sequence noninvasively, supports guided fuzzing
by resorting to state-space tracking that encompasses all par-
ties timely, and utilizes interactive traffic information to gen-
erate protocol-logic-aware packet sequences. We evaluate
BLEEM on 15 widely-used implementations of well-known
protocols (e.g., TLS and QUIC). Results show that, compared
to the state-of-the-art protocol fuzzers such as Peach, BLEEM
achieves substantially higher branch coverage (up to 174.93%
improvement) within 24 hours. Furthermore, BLEEM exposed
15 security-critical vulnerabilities in prominent protocol im-
plementations, with 10 CVEs assigned.

1 Introduction

Protocol implementations form the foundations of network
infrastructures. Since they are usually exposed directly to
the network, protocol implementations need to handle any
malformed or malicious traffic from potential attackers cor-
rectly. Any flaws undetected in the implementations (0-days)
can easily render devices vulnerable to adversaries. For in-
stance, the infamous Heartbleed [15] vulnerability discovered
in OpenSSL can cause sensitive data exposure. Many tech-
niques have been proposed to increase the security of these

B Yu Jiang is the correspondence author.

protocol implementations, such as formal analysis [40] and
model checking [21]. Though they are somewhat effective
in some regards, these techniques usually require significant
prior knowledge to perform.

Fuzzing, an automated software testing technique, has
emerged as one of the most effective techniques for detecting
vulnerabilities in real-world software. At a high level, given
a target protocol program, a fuzzer works by continuously
generating packets and sending them to the program while
observing for potential anomalies. While traditional protocol
fuzzers have been widely adopted and detected many vulner-
abilities, they still suffer from the following problems.

First, blind packet generation is ineffective and resource-
consumption-intensive. Traditional fuzzers like Peach [18]
generate packets based on a predefined test model without
program feedback. Hence, fuzzers are unaware of whether
the generated input triggered new program states. These valu-
able historical attempts cannot be recognized and utilized for
further optimization, lowering their overall efficiency. Some
recent approaches tackle this problem by applying an evolu-
tionary process: (i) to recognize a successful attempt, they
resort to code coverage [48,58] or status codes extracted from
server responses [45]; and (ii) to explore further based on
these successful attempts, they directly retain the inputs in-
volved and perform variations on them, based on the promise
that these inputs have reproducibility behaviors when passed
to the same target program. However, such a method does
not scale across different protocol implementations: (i) First,
these feedback mechanisms either require instrumenting the
source code or binaries, which may be infeasible when the pro-
tocol implementation is black-box, or are tightly coupled with
a specific protocol format, which is inappropriate when test-
ing a diverse range of protocol implementations. (ii) Second,
some protocols’ specific validation rules can render existing
evolutionary procedures futile. For example, some common
protocols, such as TLS [3], DTLS [4], and SSH [39], employ
random nonces during the handshake to prevent “replay at-
tacks”. In this scenario, the valuable inputs retained in the pre-
vious exploration can no longer replay the interesting behav-

iors it once triggered, making the input generation attempts
based on these inputs less likely to produce valuable results.

Second, since protocol implementations are stateful sys-
tems, the input space of the under-test program is tightly
regulated by its state. Effectively traversing the massive
state space and covering the versatile communication reg-
ulations (i.e., various transitions) requires carefully-crafted
packet sequences. However, constructing such packet se-
quences is non-trivial because it involves complex protocol
logic, e.g., in what order to transmit the packets and how to
construct them to guarantee the format and parameter correct-
ness. Some existing approaches, such as Peach [18], resort to
a user-defined protocol model and generate packet sequences
by strictly following the actions depicted in that model. While
the protocol logic involved in the model can be covered ef-
fectively, logic beyond the confines of the model cannot be
exercised. Other approaches, such as AFLNet [45], generate
packet sequences by performing variants on existing packets.
Due to unawareness of the protocol format, these approaches
remain limited in providing valid inputs for protocol imple-
mentations that process highly-structured packets.

In this paper, we present BLEEM, a packet-sequence-
oriented black-box fuzzer, to address the problems above.
BLEEM employs an on-the-fly noninvasive feedback collec-
tion mechanism and conducts dynamic state-space tracking
of all parties (i.e., both the client and server) from the system-
under-test to guide the packet sequence generation.

First, we introduce a noninvasive on-the-fly feedback mech-
anism by analyzing the system’s output. The insight is that the
outputs of protocol implementations (i.e., packet sequences)
can abstract the inner protocol state while also being typically
structured. Hence, we collect the output sequence of the tar-
get system at runtime, analyze the semantics conveyed in the
output, and leverage it to indicate the internal system state
transitions from the perspective of considering the protocol
parties as a whole system.

Second, we leverage heuristics to guide the packet sequence
generation based on the feedback. We devise the System State
Tracking Graph (SSTG), which is dynamically constructed at
runtime and allows BLEEM to chart the explored state space.
Navigated by the SSTG, we facilitate a comprehensive traver-
sal to increase the exposure of different protocol behaviors
and explore the unknown state space by providing diverse in-
puts for different states. To this end, we extend the SSTG with
richer information to enable it to provide guidance for reach-
ing desired states and introduce mutation operators working
on different levels, including the packet and sequence levels,
to support customized packet generation on different states.
Meanwhile, we leverage information extracted from the inter-
active traffic of the protocol to generate packet sequences. We
observe that since the protocol logic is implemented within
the server and client, we can generate protocol-logic-aware
packet sequences based on the observed traffic exchanged
between the two parties, thus preserving parameter dependen-

cies and avoiding producing meaningless packets.
We evaluated the performance of BLEEM on 15 widely-

used implementations of well-known protocols, including
QUIC, TLS, and DNS. We compared BLEEM against five
state-of-the-art protocol fuzzers, including Peach [18], Boo-
Fuzz [33], AFLNet [45], SGFuzz [8], and Snipuzz [20]. The
experimental results demonstrate that BLEEM outperforms
prior works in branch coverage by 28.5%, 48.9%, 35.7%,
23.4%, and 40.3% on average, respectively, over 24 hours.
We also show that the proposed fuzzing strategy can effec-
tively help BLEEM explore state space. BLEEM exposed 15
new vulnerabilities in previously well-tested real-world proto-
col implementations, and Peach, BooFuzz, AFLNet, SGFuzz,
and Snipuzz can only expose 8, 5, 6, 7, and 5 of them, re-
spectively. Most of these vulnerabilities are security-critical,
where 10 CVEs were assigned due to their severe security
influences. In summary, our main contributions are as follows:
• We develop a versatile technique to collect feedback by

analyzing the system’s output sequence.
• We design the SSTG that identifies the observed state space

to navigate the fuzzing exploration direction and propose a
protocol-logic-aware packet sequence generation method
based on real-world prior information.

• We implement BLEEM and evaluate it on widely-used
protocol implementations. The results demonstrate that
BLEEM outperforms the state-of-the-art and has detected
many security-critical vulnerabilities.

2 Protocol Fuzzing

Traditional protocol fuzzers focus mainly on testing server-
side implementations. They act as clients, constantly generat-
ing packets and sending them to the servers. Based on how the
packets are produced, these fuzzers can be roughly classified
into two categories: mutation-based and generation-based.

2.1 Mutation-based Fuzzers

These fuzzers generate new inputs by randomly mutating
existing inputs selected from a corpus [20, 37, 43, 45, 48, 58].
They require no prior knowledge of protocol specifications
and message formats, thus, are easy to deploy. These fuzzers
are good at testing stateless programs (e.g., file processing
application) where no internal state is maintained. To fuzz
the protocol implementations, developers use a workaround,
where writing test harnesses that implement the unit testing
of specific server state or simply treating the input sent to the
server as a concatenation of messages to implement system
testing. For better performance, AFLNet [45] borrows the
mainstream design that augments the traditional fuzzers with a
feedback loop [58], enabling the fuzzers to track the execution
information exercised by each input and retain the inputs that
contribute to new program behaviors for further utilization.

Also, it integrates state awareness by analyzing the status
codes in server responses. Nevertheless, lacking the format
specification, these fuzzers can quickly encounter barriers
because the packets generated from blind mutation can be
easily dropped by the protocol program that processes highly-
structured packets. Furthermore, these feedback mechanisms
do not apply to black-box fuzzing, and their evolutionary
methods can be futile by the special checks (discussed in §1).

2.2 Generation-based Fuzzers.

These fuzzers generate the packets based on manually con-
structed protocol models, including data and state mod-
els [6, 18, 33, 53]. The state model is typically given in the
form of a graph and specifies the valid message sequencing
in the interaction with the server. The data model depicts the
formats (e.g., field types, field sizes, and valid value ranges)
of accepted messages for the corresponding states. The user
needs to know the protocol interaction logic to provide this
test model by analyzing the source code or reading the proto-
col specification. In the following, we take the QUIC hand-
shake as an example and give the corresponding test model
for Peach [18] initialization.

Client Server
Initial[CRYPTO]

Initial[CRYPTO, ACK],
Handshake[CRYPTO]

Initial[ACK],
Handshake[CRYPTO, ACK]

1-RTT[APPLICATION_CLOSE]

①

②

③

④

Figure 1: An example dialog between the QUIC server and client

Figure 1 depicts a sample dialog between a client-
server pair compliant with QUIC specification (as per the
RFC 9000 [32]). The QUIC client starts by sending an
Initial[CRYPTO] packet (1 , Initial[CRYPTO] denotes
that the packet is of type Initial and contains a CRYPTO
frame, which represents the packet on an abstract level by
omitting some detailed fields). Then the server responds with
Initial[CRYPTO,ACK] and Handshake[CRYPTO] packets,
carrying the essential information for handshake estab-
lishment (2). The client then sends Initial[ACK] and
Handshake[CRYPTO,ACK] packets, indicating the comple-
tion of the handshake (3). For simplification, we as-
sume the server is set to terminate the connection via
1-RTT[APPLICATION_CLOSE] after handshake (4).

Figure 2 depicts the QUIC handshake model (1 - 3 in Fig-
ure 1) in the format of Peach Pit [54], the XML configuration
file for the protocol fuzzer Peach [18]. Lines 16-27 show
the data model of packet Initial[CRYPTO], which is sent at
the first Action (Lines 3-5) of the State HANDSHAKE (Lines 2-
12). Specifically, this State specifies how Peach interacts with
the QUIC server to test the handshake phase: first, send the

Initial[CRYPTO] packet (Line 4); then, wait for responses
from the server and check whether the responses conform to
the format of the given data model Initial[CRYPTO,ACK]
and Handshake[CRYPTO] (Line 7); if so, enter the third Ac-
tion and send Initial[ACK] and Handshake[CRYPTO,ACK]
packets (Line 10, the data models of other kinds of packets,
e.g., Initial[CRYPTO,ACK], have been omitted in Figure 2
due to limited space).
1 <StateModel name="QUIC" initialState="HANDSHAKE">
2 <State name="HANDSHAKE">
3 <Action type="output">
4 <DataModel ref="Initial[CRYPTO]"/>
5 </Action>
6 <Action type="input">
7 <DataModel ref="Initial[CRYPTO ,ACK]+Handshake[CRYPTO]"/>
8 </Action>
9 <Action type="output">

10 <DataModel ref="Initial[ACK]+Handshake[CRYPTO ,ACK]"/>
11 </Action>
12 </State>
13 ...
14 </StateModel>
15
16 <DataModel name="Initial[CRYPTO]">
17 <Block name="Header">
18 <Number name="info" size="8" value="cd" valueType="hex"/>
19 <Number name="version" size="32" value="faceb002"

valueType="hex" token="true"/>
20 <Number name="DCID_length" size="8">
21 <Relation type="size" of="DCID"/>
22 </Number>
23 <String name="DCID" nullTerminated="false"/>
24 ...
25 </Block>
26 <Block name="CRYPTO"> ... </Block>
27 </DataModel>

Figure 2: A Simplified QUIC Handshake Model as Peach Pit.

The generation-based fuzzers have successfully exposed
plenty of vulnerabilities in real-world protocol implementa-
tions. However, their effectiveness is heavily limited by the
quality of the user-provided protocol model, whose construc-
tion usually requires significant expert efforts to read the
protocol specification or the source code. First, such specifica-
tions are prone to misinterpretation because they are typically
expressed in a natural language, thus coming with inherent
ambiguities. Second, the protocol generally features a massive
state space, making it infeasible to construct a complete model
that describes all the protocol behaviors. For example, Fig-
ure 2 only depicts the handshake logic of QUIC and does not
cover many other logics, such as flow control. Unfortunately,
these fuzzers conduct testing by strictly following the actions
depicted in the protocol model (see Figure 2, Lines 1-14),
and they do not update the state model at runtime. Therefore,
the new interesting program behaviors beyond those intro-
duced by the deterministic model cannot be recognized by
these fuzzers and therefore cannot be utilized for further ex-
ploration. For example, say Peach, in the configuration of the
Pit in Figure 2, accidentally triggers a new program behav-
ior via some interesting Initial[CRYPTO] packet, and the
server responds with another packet not defined in the state
model instead of the desired Initial[CRYPTO,ACK] packet.
Peach then discards it and continues to perform the determin-
istic testing behaviors instead of exploring more interesting
behaviors based on this discovery. Third, some illegal be-

haviors in the protocol implementation may be introduced
by implementation errors. These behaviors violate the stan-
dards and thus are not included in the protocol specification.
Hence, these scenarios cannot be covered under the model
constructed based on the protocol specification.

2.3 Challenges
In order to design an effective and efficient fuzzing method
that can scale across diverse protocol implementations, we
need to overcome two challenges.

1) Lack of a scalable feedback mechanism. Although the
feedback-driven approach has shown effectiveness in opti-
mizing fuzzing [58], the versatile applications of protocol
implementations stress the scalability of the traditional feed-
back mechanisms. Nowadays, protocol implementations have
been widely applied in industrial programmable logic con-
troller (PLC) devices and Internet of Things (IoT) devices.
Instrumenting the device’s firmware is challenging and even
infeasible when the implementation is only accessible in a
black-box fashion, which necessitates a noninvasive solution
to obtain feedback for the protocol fuzzers.

2) Highly complex protocol logic. Protocols feature highly
complex logic designed to guarantee correctness and relia-
bility under diverse situations, making the implementations
highly complex and stateful interactive targets. Therefore,
in-depth implementation fuzzing requires carefully construct-
ing the packet sequence by considering the protocol logic,
including the packet format, the parameter dependency be-
tween packets, and the packet interaction logic. Specifically,
the packet format identifies the standard packet structure, the
packet interaction logic identifies the transmission order of dif-
ferent types of packets, and the parameter dependency speci-
fies the value dependencies of parameters exchanged between
packets. For example, in Figure 1, the Initial[CRYPTO]
packet at 1 and the Initial[ACK] packet at 2 should carry
the same value for the parameter DCID, which is a connec-
tion identification field. Otherwise, the handshake would fail,
making the following test actions meaningless.

3 System Overview

Figure 3 illustrates the overview of BLEEM: given the Sys-
tem Under Test (SUT) of the target protocol implementation,
BLEEM is initialized with the Test Initialization and outputs
the Bug Report via packet-sequence-oriented fuzzing.

System Under Test (SUT). The SUT is the protocol im-
plementation we intend to analyze. Such protocols usually
adhere to the client/server model. Given a protocol implemen-
tation, traditional fuzzers mainly target one protocol side and
perform tests by acting as another. For example, to test the
server side, the traditional protocol fuzzer acts as a client and
continuously sends generated packets. In this scenario, effec-
tive server fuzzing requires expert knowledge of the protocol

logic, i.e., in what order packets are transmitted for differ-
ent server states and how these packets are built to guaran-
tee parameter correctness. Instead of manually implementing
such logic from scratch, as is the case with existing black-
box techniques (e.g., Peach Pit in Figure 2), we argue that
the client already encodes the desired protocol logic and can
therefore be utilized to provide information for packet gen-
eration. Specifically, BLEEM requires a pair of client and
server that can communicate with each other and considers
this pair as a whole system to analyze. Meanwhile, unlike
existing coverage-guided works requiring access to the source
code [45] or the binary [48] of the implementation, BLEEM
can be conducted in a black-box manner. All we assume is
that BLEEM can interact with the parties of SUT.

Bleem	Overview

Guided	Fuzzing

Transition	
Priority

System	State	
Tracking	Graph

Mutation
Operators

System	Under	Test	(SUT)Client Server

Abstract	Packet	
Sequence

Network
Traffic

Bug	
Report

Test	
Initilization

Packet Instantiation

Oracle
Map

Packet Pattern	
Sequence

1Analyze

State	Trace

Feedback	Collector

Figure 3: BLEEM Overview. The Feedback Collector monitors
the SUT for feedback extraction, based on which the Guided
Fuzzing module tracks the state space and applies heuristics
to generate packet sequences by leveraging protocol-aware
mutation operators and the interactive traffic with the SUT.

In most cases, providing such a client-server pair requires
low effort. Protocol implementations usually provide users
with client and server utilities, which can be used directly
to compose the SUT. When one side of the pair is missing,
we can resort to any other valid implementation of the same
protocol since the protocols are generally standardized. In
the worst case, when off-the-shelf utilities are unavailable on
either side, the user needs to provide such a pair since a test
entry is a prerequisite for fuzzing, in line with other existing
fuzzers [9, 31, 34, 59, 60].

Test Initialization. Unlike existing black-box techniques
that require manually constructed protocol models, BLEEM
starts fuzzing based on the dialog captured by executing the
SUT, thus is easier to set up. Since testing the protocol im-
plementation by directly launching the SUT is improbable to
reveal flaws, as such compliant cases should have been cov-
ered in pre-release tests, we need to generate different variants
as inputs for the SUT parties. To this end, instead of letting the
two parties communicate normally, BLEEM interacts directly
with both the server and the client, which enables intercept-

ing their exchanged traffic and introducing adversely crafted
packets for testing. Therefore, for test initialization, we need
to provide BLEEM with the server’s service address (e.g., the
socket address) and configure BLEEM with a different service
address for the incoming connection from the client. In this
way, BLEEM can collect the output packets sent by the SUT
parties. These packets are then utilized for SUT inner state
analysis and serve as a basis for packet generation. BLEEM
leverages Scapy’s [50] parsing capability to better analyze the
intercepted packets. For unsupported protocols, we can extend
Scapy by identifying the protocol format (i.e., data model),
which is more accessible than traditional generation-based
fuzzers that require both the data model and the state model.
Meanwhile, we can simplify this step by resorting to protocol
reverse engineering, as discussed in §8.

Workflow. As shown in Figure 3, BLEEM consists of two
components: the feedback collector and the guided fuzzing
module. In each iteration, the noninvasive feedback collec-
tor captures the network traffic during the SUT execution
until it finishes. After that, it analyzes the traffic, extracts mes-
sage semantics to construct an abstract packet sequence, and
translates the abstract packet sequence to a state trace, which
incorporates both the client and server and serves as the SUT
feedback to be passed to the guided fuzzing module.

The guided fuzzing module then merges the state trace to
a System State Tracking Graph (SSTG), refines the SSTG’s
traverse probability distribution, and applies a guided fuzzing
strategy to select mutation operators and generate packet pat-
tern sequence to be instantiated. Specifically, we devise the
SSTG to describe the all-inclusive state-space of the SUT.
BLEEM initializes the SSTG with the initial session embed-
ded in the SUT and dynamically updates it with new findings,
i.e., new states or transitions, discovered in the feedback. Then
BLEEM instantiates the packet pattern sequence based on the
packets exchanged between the SUT parties. It simultane-
ously interacts with both the client and server to intercept
the exchanged packets, which are typically syntactically and
semantically correct. Thus, the packet sequences generated
based on them have a high probability of exercising deep pro-
tocol logic. We dive into the details in the following sections.

4 Feedback Collector

To augment BLEEM’s capability of obtaining feedback when
fuzzing the targets of black-box nature, we propose to re-
trieve system feedback based on system output instead of
invasive execution inspection. Unlike ordinary application
programs, the protocol implementations are tailored for entity
communication over networks. Hence, the program output,
i.e., packets, can be adopted as the indicator of its inner state.
Taking the QUIC session in Figure 1 as an example, when
the client sends an Initial[CRYPTO] packet to the server,
we can infer that the client may stay in the initial state of
the connection. When the client sends Initial[ACK] and

Handshake[CRYPTO,ACK] packets, we can infer that it has
completed the handshake and is ready to enter the data trans-
mission phase. Furthermore, the packets’ structure is typically
standardized and protocol-compliant, thus facilitating analy-
sis. Based on this insight, BLEEM works as shown in Figure 4.

𝑃!"# 𝑃!"! 𝑃!$!

𝑃⍵"# 𝑃&"! 𝑃&$! ❸Process

❶Filter
𝑃!"# 𝑃'"! 𝑃!"! 𝑃'"# 𝑃'$#𝑃!$!

BLEEM Fuzzing

State Trace

❷Abstract ❹Construct

⍵$(𝑃&"! +𝑃&$!)⍵"

Figure 4: Feedback collector workflow

Filtering the Packet Sequence. In Figure 4, Pc
s1 denotes

the 1st packet sent by the client, while Ps
r1 donates the 1st

packet received by the server. Given the network traffic cap-
tured during fuzzing, the feedback collector picks out the
packets associated with the SUT state to assemble a packet
sequence S , where the relative order of these packets remains
the same as in the original traffic (¶). In detail, we only
consider the packets sent by the SUT parties (e.g., Pc

s1) and
discard their received packets (e.g., Pc

r1), which BLEEM sends
for fuzzing purposes and thus cannot reflect the internal state.

Abstracting the Packet Sequence and Processing. To
indicate the SUT states, using the concrete packets directly
can create confusion because some fields, e.g., the data field,
own low association with the system state, and their possible
values are sometimes infinite. Take the Initial[CRYPTO]
packet in Figure 2 as an example. The value of the DCID field
used to identify a connection (Line 23) is randomly generated
at the start of the connection [32]. Considering this field can
make the state space too big or infinite. Therefore, we need to
abstract away some details and focus on the crucial semantic
information carried by the packets.

We abstract the packets in S one by one to obtain an el-
ementary abstract packet sequence π (·). For each packet
P ∈ S , the feedback collector employs Scapy to parse it and
gets the dissection Pd . The dissection result is a hierarchi-
cally organized list of fields, where each field is represented
as a type-value pair. Based on Pd , the module constructs the
corresponding packet abstraction Pω by retaining these fields
of type enumeration, which is a general field type defined in
Scapy to describe the fields whose valid values are taken from
a fixed small set. Through our investigation of over 50 sup-
ported protocols in Scapy, we found that the different values
of the enumeration field typically represent different types of
packets or frames (some protocols’ packet payload consists
of a sequence of complete frames, like QUIC). In this way,
BLEEM abstracts the first flight of the QUIC handshake (1 in
Figure 1, Lines 16-27 in Figure 2) as Initial[CRYPTO] by
retaining the packet type Initial and frame type CRYPTO and
their hierarchical relationships. We also provide a detailed ex-
ample in Figure 11 in Appendix D. Moreover, BLEEM caches
an intermediate map between each abstract packet Pω and
its corresponding recent concrete packet P in a data structure
called Oracle Map, which is further explored in §5.4.

Then, to facilitate the state trace construction, we further

process the abstract packet sequence π by concatenating these
adjacent abstract packets Pωs sent from the same source
into one abstract packet ω (¸). For example, in Figure 1,
the two packets at 2 can be abstracted and concatenated
into Initial[CRYPTO,ACK]+Handshake[CRYPTO]. There-
fore, in the final abstract packet sequence π, the adjacent
two abstract packets are sent by different protocol parties.

Constructing the State Trace. For a given abstract packet
sequence π : {ω1,ω2, . . . ,ωn}, each abstract packet ωi can
only indicate the temporal state of the corresponding SUT
party pi instead of the whole SUT. Because there may be
multiple paths that can reach this temporal state for the party
pi, but their corresponding temporal SUT states at the point ωi
vary. For example, assume that the client sends either packet
a or packet b (a and b are different types) to the server at a
certain point, and both packets are unexpected to the server.
In this case, the server would respond to either with the same
error message c. When the server sends out packet c, the
whole SUT state should be different under these two different
paths. Hence, we treat the protocol fuzzing as a bipartite SUT
and model its state by introducing some prior information.
However, considering a complete history can cause state space
explosion. We have found that considering the most item
in the bi-directional communication is enough to strike a
practical balance in indicating the temporal state of the whole
SUT while minimizing the overall state tracking space.

Definition 1 SUT State. A SUT State incorporates both par-
ties of the SUT and can be represented as an ordered pair
of objects in the form of 〈Ob j1 | Ob j2〉. Each object is taken
from the set {T (ω) | T ∈ {C, S},ω ∈Ω}, where C represents
the client while S represents the server, and Ω is an abstract
packet alphabet. Meanwhile, the order of these two objects is
significant: 〈T1(ω1) | T2(ω2)〉 represents that the party T1 is
going to respond ω1 (the prior), with the precondition that the
party T2 has sent ω2 (the posterior). Note that ω2 only records
the most recent abstract packet delivered by T2.

In this way, we can infer the executed SUT States by analyz-
ing each pair of adjacent abstract packets ωi and ωi+1 (their
sources are opposite as guaranteed above) in π. Then, adding
transitions between two adjacent SUT States forms a state
trace (¹). We represent the involved SUT states in Figure 1
using an abstract packet alphabet Ω with 5 symbols:

Ω = {∅ : NoPacket, a : Initial[CRYPTO],
b : Initial[CRYPTO,ACK]+Handshake[CRYPTO],
c : Initial[ACK]+Handshake[CRYPTO,ACK],
d : 1-RTT[APPLICATION_CLOSE]},

(1)

The SUT State at point 1 can be represented as 〈C(a) | S(∅)〉,
indicating that the server has sent no packet while the client is
going to respond a (Initial[CRYPTO]). Similarly, the SUT
State at point 2 can be represented as 〈S(b) |C(a)〉. In this
way, the state trace constructed for this session would be:
〈C(a) | S(∅)〉 → 〈S(b) | C(a)〉 → 〈C(c) | S(b)〉 → 〈S(d) | C(c)〉 (2)

5 Guided Fuzzing
Empowered by the feedback collector, BLEEM can track the
state transitions of the SUT and determine whether the SUT
reaches a new, previously untraversed state region. We de-
vise the SSTG to represent the explored all-inclusive system
state-space formally. Taking the perspective of the SSTG, we
introduce protocol-aware mutation operators to support di-
verse packet generation for different states. We also extend
the SSTG with richer information to embrace the ability to
provide a guideline for reaching the desired state. We design a
guided sequence generation strategy to effectively explore the
state space and leverage the packet instantiation sub-module
to provide high-quality packet sequences.

5.1 Mutation Operators
We introduce protocol-aware mutation operators that work on
different levels, including the packet and sequence levels.

Packet-Level Mutation Operator. This mutation opera-
tor (denoted as σP) operates on the fields in the packet. For
a given packet, it randomly selects several fields and per-
forms corresponding mutation operations according to the
field type. Scapy has identified five general field types, includ-
ing NumberField, StringField, ListField, EnumerationField,
and LengthField. Thus, based on their features, we devise
mutation operators for them. For example, the NumberField
mutation operator performs random addition or subtraction
operations to the original value while considering the valid
value range. We provide further details in Appendix A.1.

Sequence-Level Mutation Operator. This mutation oper-
ator (denoted as σS) operates on the packets in the sequence.
BLEEM offers the following two kinds of operators:
1. Packet duplication. Given a packet sequence, this opera-

tor selects an arbitrary packet Pi and, after it, introduces
several duplicate copies of Pi (denoted as P∗i). Figure
5(a) gives an example. The original sequence is [P1,P2,
P3,P4 . . .]. If selecting P2 and duplicating it twice, the
sequence after mutation would be [P1,P2,P∗2 , P∗2 ,F5 . . .].
Note that the subsequent packets in the sequence may
change after duplication, and we introduce the symbol “F”
to represent the packets lying after the manipulated pack-
ets. In this case, the packet following the intentionally
introduced P∗2 s may no longer be P3 in real traffic. We use
F5 to represent the fifth packet in the mutated sequence.

2. Packet disordering. Given a packet sequence, this operator
selects an arbitrary packet Pi (the i-th one in the original
order) and changes its order to be delivered. Similarly,
Figure 5(b) gives an example, the fourth packet P4 in the
sequence [P1,P2, P3,P4 . . .] is selected to be delivered after
P1, namely deleting P2 and P3 and yielding the mutated
sequence [P1,P4, F3,F4 . . .].

These two sequence-level mutation operators are designed
to stress test anomalies under uncertain network environments
that may introduce dynamic packet delays or losses, espe-

cially for the protocols over UDP. Specifically, the packet
disordering operator enables the discovery of anomalies trig-
gered by the abnormal order of packets carrying commands.
For instance, the File Transfer Protocol (FTP) applies a set
of commands to comprise the control information flowing
from the user-FTP to the server-FTP process [47]. Con-
sider a simplified legal command sequence from the user-
FTP: [USER test, PASS test, STOU test.txt, . . . , DELE
test.txt], which means that the user-FTP first logins to the
server-FTP with username test and password test, then
uploads a file test.txt, performs some actions, and finally
deletes it. Due to possible malicious actions induced by adver-
saries, the server-FTP implementation should correctly handle
bad command sequences, e.g., deleting the PASS test in the
sequence to attempt an authentication bypass. The packet
sequence given in this example is one-way for ease of under-
standing. In practice, BLEEM operates over a two-way packet
sequence, i.e., packets exchanged by the two parties.

P1 P2 P3 P4 …

P1 P2 P2* …P2* F5

Original
sequence

Mutated
sequence

(a) Packet duplication

P1 P4 F3 F4 …

P1 P2 P3 P4 …

(b) Packet disordering

Figure 5: Sequence-level mutation operators

Formalization. To facilitate the representation, we can also
regard the sequence-level mutation operator as operating on
the involved packet, in line with the packet-level mutation op-
erator. For example, the packet duplication in Figure 5(a) can
be considered as operating on P2. Similarly, the packet disor-
dering shown in Figure 5(b) can be considered as operating
on P2, i.e., substituting P2 with cached P4 in the Oracle Map.
Based on this premise, we introduce a symbol ⊕ to associate
the packet P with the adopted mutation operator σ. In this
way, P⊕σ can be used to represent the packet(s) generated
by mutating P using σ (we use “packet(s)” because the packet
duplication mutation operator can generate multiple packets).
Hence, P⊕σ can be considered a packet pattern, which can
be employed to create new packet(s). Additionally, we intro-
duce σ◦ to indicate performing no mutation operation. Due to
the inherent randomness of any mutation operator σ (σ 6= σ◦),
the set of the packet(s) that can be generated by the packet
pattern is typically infinite. As a further generalization, the
involved packet P can also be given on an abstract level. In
this case, it is necessary to instantiate P before applying the
mutation operators.

5.2 System State Tracking Graph

We devise the SSTG to identify the explored state space of
the SUT and extend it with richer information to mitigate the
reproducibility problem mentioned above.

Labeling the State Transitions. First, for the state trace

obtained from the feedback collector, BLEEM labels the trig-
gering condition of each transition. Instead of retaining the
concrete packets directly, as existing approaches do, BLEEM
records how to generate these packets using the correspond-
ing abstract packet ω and the mutation operator σ selected to
operate on it, i.e., packet pattern ω⊕σ. The abstract packet
ω can be extracted from the source SUT State as BLEEM
generates packets based on the packet received from the SUT
parties. The corresponding mutation operator σ can be ob-
tained from BLEEM’s execution record. Meanwhile, we do
not track the details of the mutation operators to avoid the
state space explosion problem.

S(d) | C(c)S(b) | C(a)C(a) | S(Ø) C(c) | S(b)
a⨁𝜎∘ b⨁𝜎∘ c⨁𝜎∘

q0 q1 q2 q3

Figure 6: The initial SSTG for the QUIC session in Figure 1

For example, we label the state trace in Formula 2, which is
equivalent to BLEEM directly forwarding the received packets
without mutation (i.e., σ◦). Figure 6 shows the result. In detail,
the SUT starts at the state q0, where the client is going to
output packet a. After receiving a, BLEEM generates packets
as input for the SUT by mutating a using σ◦, namely a⊕
σ◦ (actually, a⊕σ◦ is delivered to the server at the micro level,
which is achieved by the packet instantiation sub-module in
§5.4). After reading the input a⊕σ◦, the SUT transitions to
the state q1. The remaining states are traversed similarly.

Merging the State Trace. Then, we use the SSTG to track
the explored state space by continually merging the state trace.
Definition 2 System State Tracking Graph (SSTG). A SSTG
is a variant of nondeterministic finite automaton (NFA), and
can be represented formally by a 5-tuple (Q,q0,Ω,Σ,∆), such
that: Q is a finite set of the SUT State, q0 is the initial (or start)
state, Ω is an abstract packet alphabet, Σ is a set of mutation
operators, and ∆ defines a transition function: Q×{Ω⊕Σ}→
P (Q), where P (Q) denotes the power set of Q. Due to the
inherent randomness of any mutation operator σ ∈ {Σ\σ◦},
for an abstract packet ω ∈Ω, the set of packet(s) that can be
generated using packet pattern ω⊕σ is infinite. Hence, the
SSTG is nondeterministic.

BLEEM initializes the SSTG using the state trace defined
in the initial dialog. For example, if BLEEM conducts fuzzing
based on the dialog in Figure 1, Figure 6 gives the initial
SSTG over the alphabet Σ = {σ◦} and Ω given in Formula 1.

BLEEM interacts with the SUT parties during the fuzzing
and generates diverse packets for the SUT parties instead of
forwarding the received packets directly (which is equiv-
alent to establishing the initial dialog). Although this may
bring on different state traces, these state traces have the same
start state. Because BLEEM conducts fuzzing based on the
interactive traffic, the launch of each iteration is driven by
the first action of the SUT. For example, as for the fuzzing
based on the dialog in Figure 1, the client would always send
the Initial[CRYPTO] packet to BLEEM at the beginning of
each iteration. The difference lies in the follow-up actions

of BLEEM, e.g., how BLEEM mutates the received packets.
Therefore, in order to merge the state trace into the imple-
mented SSTG, BLEEM starts from SSTG’s start state, which
is also the start state of the state trace to be merged, merges
their shared nodes or transitions, and updates the SSTG with
new states or state transitions discovered in the state trace.

Furthermore, BLEEM implements a power schedule that
dynamically refines the priority of exercised transitions during
the merging. For a transition τ with exercised times Tτ, its
priority is calculated by h(Tτ), where h(x) is a decreasing
function. That is to say, the newly added transition during
merging will be assigned the highest priority.

The SSTG captures the exercised state space of the protocol
implementation and provides an efficient way for the state
space traversing: given a target state qi to be reached, the
transition labels on any trace from q0 to qi form a packet
pattern sequence, which provides a guideline for the SUT
input generation.

5.3 Guided Sequence Generation
Navigated by the SSTG, we devise heuristics to efficiently
explore unknown state space and facilitate comprehensive
traversal. This module outputs the packet pattern sequence
and passes it to the packet instantiation sub-module as a guide-
line for packet sequence generation.

Algorithm 1: Guided packet sequence generation
Input: SSTG: System State Tracking Graph
Input: PT : transition priority
Output: ϕ: packet pattern sequence

1 S ← TRAVERSE(SSTG)
2 if S is not empty then
3 q← SELECTONE(S)
4 ϕ← ENTERANDAPPEND(SSTG,q)
5 else
6 ϕ←∅
7 q← GETINITIALSTATE(SSTG)
8 while HASSUCCESSOR(q) do
9 τ← SELECTTRANSITION(SSTG,PT ,q)

10 ϕ← ϕ∪GETPACKETPATTERN(τ)
11 q← TRANSITION(SSTG,q,τ)

12 return ϕ

Algorithm 1 provides an overview of the process: first, we
attempt to stress test each SSTG state with diverse inputs by
utilizing the proposed mutation operators (Lines 1-4). Specif-
ically, for a SUT State 〈C(α)|S(β)〉, although the state output
α is “deterministic” (the corresponding concrete packets of
each execution may vary in some details) such that BLEEM
receives the same packet type α as the mutation basis, we
can select a different mutation operator σ to construct a dif-
ferent packet pattern α⊕σ as test inputs. To this end, we
first check whether there is a state q that can be further ex-
ercised by other kinds of packet patterns that have not been

applied (Line 1). If so, we construct a packet pattern sequence
ϕ that can reach q and then append the desired packet pattern
after ϕ (Line 4). For example, for the SSTG in Figure 6 with
Σ′ = {σ◦,σP,σS}, if stressing q1 with a new packet pattern
that combines q1’s output b with an unused mutation operator
σP, i.e., b⊕σP, then we can construct such a packet pattern
sequence: [a⊕σ◦,b⊕σP]. Second, after all the SUT states
have been exercised by all kinds of packet patterns that are
available, we attempt to facilitate comprehensive traversal
of the implemented SSTG by steering towards low-density
regions. We start from the initial state (Line 7) and then run
in a loop until reaching an end state (Line 8): in each step,
we select the one with the highest priority among the avail-
able transitions of the corresponding state (Line 9), record
the corresponding packet pattern labeled on it (Line 10), and
take this transition (Line 11). It is worth noting that even if
we have once applied a packet pattern P to stress a state S
and failed to discover new behaviors, it is also worthwhile
trying P on S later because, as mentioned above, the set of
the packet(s) that P can produce is typically infinite.

5.4 Packet Instantiation

For a given packet pattern sequence ϕ : [ω1 ⊕ σ1,ω2 ⊕
σ2, . . . ,ωn⊕σn], the packet instantiation sub-module gener-
ates a concrete packet sequence conforming to ϕ as the SUT
input. Since the packets ωis in ϕ are given on the abstract
level, we need to instantiate them while maximally guarantee-
ing their syntactic and semantic correctness. To this end, this
module utilizes the protocol logic encoded in the SUT parties.
It runs as a proxy and simultaneously interacts with both the
client and server, thereby leveraging their exchanged packets
and introducing crafted packets.

The adjacent packet patterns in ϕ are prepared for different
SUT parties, as guaranteed by the SSTG. The packet instanti-
ation sub-module instantiates them one by one. For example,
for a packet pattern ωi⊕σi to be instantiated as server input,
the packet instantiation sub-module intercepts a packet P (if
there are multiple packets, concatenate them into one) from
the client and checks whether P conforms to ωi’s structure:
(i) if so, it directly takes P as the instantiation of ωi and then
performs the corresponding mutation operator σi on P to gen-
erate test packet; (ii) if not, indicating that the realistic inner
state transition of the SUT differs from the one designed by
ϕ, there are two possible situations: (a) some new states or
state transitions are discovered; and (b) due to SSTG’s in-
herent non-deterministic, some transitions were not taken as
expected, causing a different state trace. In these situations, to
strike a balance between comprehensive traversal of the im-
plemented SSTG and efficient exploration of unknown state
space, BLEEM randomly selects the following two strategies
to generate the concrete packets: (1) neglect ωi and perform
σi on P directly; and (2) resort to the Oracle Map for the
packet conforming to ωi and perform σi on it.

6 Evaluation

In this section, we implement and evaluate BLEEM to answer
the following three research questions:

RQ1 Is BLEEM more effective and efficient than traditional
protocol fuzzers? (§6.3)

RQ2 Is BLEEM effective in exposing unknown vulnerabili-
ties in real-world protocol implementations? (§6.4)

RQ3 Does the guided packet sequence generation strategy
contribute to the effectiveness of BLEEM? (§6.5)

6.1 Implementation

We implement a prototype of BLEEM in Python 3 and use a
modular approach to facilitate further extensions.

Feedback Collector. We implement the analysis of col-
lected packets based on the packet parsing capability provided
by Scapy [50], a packet manipulation library that supports
more than 140 common protocols. Given the parse result
with detailed field type and value along with the structure
information (e.g., the hierarchical relationship of a packet and
its contained frames), we abstract each packet by retaining
the enumeration field values while maintaining the packet
structure. Then we construct the abstract packet sequence by
concatenating adjacent abstract packets with the same source.
Based on this process, we implement the state trace construc-
tion following the construction rule in §4. Furthermore, to
demonstrate the scalability of BLEEM, we also selected two
protocols, i.e., QUIC and SSH, that have not been supported
by Scapy for the experiment, as shown in §6.2. One of the
authors completed coarse-grained Scapy extensions for these
two protocols in about six hours.

Guided Fuzzing Module. First, we implement the pro-
posed mutation operators that work on two levels: (i) to sup-
port the packet-level mutation, we design and implement mu-
tation strategy for the five general field types used in Scapy,
as summarized in Appendix A.1; and (ii) we perform the
sequence-level mutation based on the Oracle Map, which
caches an intermediate map between each abstract packet and
its corresponding recent concrete packet. These two mutation
operators are applied in the packet instantiation sub-module.
Second, following the rule in §5.2, we implement the run-
time construction of the SSTG by continuously merging ab-
stract packet sequences and refining the priority of transitions.
Based on it, we implement the sequence generation strategy
proposed in §5.3 for efficient state space traversal. Third,
the packet instantiation sub-module interacts with the client
and the server simultaneously and intercepts the exchanged
packets. These packets usually contain several layers (e.g.,
network layer and transport layer). To focus on the target pro-
tocol’s layer `, we implement the proxy that provides reliable
communication underlying `. At present, we support layers
in the network stack. We present the details in Appendix A.2.

Crash Detection. Besides the wildly-used local process
monitoring, we also implement several network monitors
that can remotely detect system crashes to support black-box
fuzzing. We provide the details in Appendix A.3.

6.2 Experiment Setup

Subjects. We measured the performance of BLEEM on two
benchmarks. (i) Open-source protocol implementations. We
selected several open-source implementations of widely used
protocols, as shown in Figure 7 and Table 5 in Appendix B.
The selected protocols are pretty diverse, ranging from secu-
rity protocols to messaging protocols, transport protocols, and
industrial control system protocols. These protocols’ corre-
sponding implementations are typical and widely used in prac-
tice. To facilitate a fair comparison, all the selected SUTs (cf.
the fourth column of Table 5) come from off-the-shelf util-
ities. (ii) Closed-source protocol implementations. We also
collected firmware of mainstream IoT manufacturers and used
the contained protocol binaries as the closed-source targets.

Compared Fuzzers and Manual Configurations. Since
BLEEM is a black-box fuzzer, we select three famous black-
box protocol fuzzers widely used in academia and industry
as baselines for black-box schemes, including Peach [18],
BooFuzz [33], and Snipuzz [20]. Also, to demonstrate the ef-
fectiveness of BLEEM, we pick AFLNet [45] and SGFuzz [8],
two state-of-the-art grey-box protocol fuzzers integrating cov-
erage and state feedback, for comparison.

We use the corresponding server utilities of the selected
SUTs to evaluate the compared protocol fuzzers (these fuzzers
can only test one side of the protocol at a time, and they usu-
ally focus on the server side). To adapt these fuzzers to the
selected subjects, we followed their tutorials [5,10,18,30,33]
to prepare the required configurations: (i) For generation-
based fuzzers BooFuzz and Peach, we offered the required
test model for each implementation by modeling the corre-
sponding session embedded in the dialog of the SUT. Specifi-
cally, in the test model, we depicted the format of the involved
protocol messages (data model) and their sequencing over the
session (state model). (ii) For mutation-based fuzzers Snipuzz,
SGFuzz, and AFLNet, we prepared the initial seed corpus
based on the messages captured by executing the SUT. We
evaluated SGFuzz on partial TCP-based protocol implementa-
tions due to the limitation of the netdriver it bases on and the
in-process requirement of its base fuzzer Libfuzzer [10]. We
also extended AFLNet to recognize the protocols that have
not been supported (e.g., QUIC and PPTP).

Experiment Settings. Since the fuzzing performance fluc-
tuates to a certain degree due to the inherent randomness, we
ran each fuzzing tool on each selected project with a 24-hour
time budget and repeated each 24-hour experiment 10 times
to establish statistical significance of results [35]. For fairness,
each fuzzing campaign runs on a Docker container that is
configured with 1 CPU core and 1G RAM.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
ra

nc
he

s C
ov

er
ed

0 0.2 0.4 0.6 0.8 1

Time (hh:mm)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

OpenSSL (DTLS)

0:00 6:00 12:00 18:00 24:00
0

2000

4000

6000

8000

10000
mvfst (QUIC)

0:00 6:00 12:00 18:00 24:00
0

10000

20000

30000

40000

50000
accel-ppp (PPTP)

0:00 6:00 12:00 18:00 24:00
0

500

1000

1500
 IEC104 (IEC104)

0:00 6:00 12:00 18:00 24:00
0

100

200

300

OpenSSH (SSH)

0:00 6:00 12:00 18:00 24:00
0

2000

4000

6000

8000

10000
libcoap (CoAP)

0:00 6:00 12:00 18:00 24:00
0

2000

4000

6000
Dnsmasq (DNS)

0:00 6:00 12:00 18:00 24:00
0

500

1000

1500
CycloneDDS (RTPS)

0:00 6:00 12:00 18:00 24:00
0

5000

10000

15000

20000

25000
Mosquitto (MQTT)

0:00 6:00 12:00 18:00 24:00
0

2000

4000

6000

 libiec_iccp_mod (ICCP)

0:00 6:00 12:00 18:00 24:00
0

1000

2000

3000

4000

5000
 GnuTLS (SSL/TLS)

0:00 6:00 12:00 18:00 24:00
0

1000

2000

3000

4000
 LibreSSL (SSL/TLS)

0:00 6:00 12:00 18:00 24:00
0

2000

4000

6000
 OpenBGPD (BGP)

0:00 6:00 12:00 18:00 24:00
0

500

1000

1500

2000

0:00 6:00 12:00 18:00 24:00
0

20

40

60

80

100

120
 rudp (RUDP)

BoringSSL (SSL/TLS)

0:00 6:00 12:00 18:00 24:00
0

1000

2000

3000

4000

Bleem
Peach
AFLNet

BooFuzz
SGFuzz
Snipuzz

Figure 7: The number of unique branches covered (only on the server-side) by different fuzzers on each protocol implementation over ten
24-hour runs. The average number of discovered branches is displayed, alongside with minima and maxima over the individual runs.

6.3 Coverage Analysis

Since the compared fuzzing schemes are pretty diverse, we
need a uniform metric for a fair comparison. Branch coverage
is a commonly used metric to measure the effectiveness of
fuzzers in software testing. Therefore, we use branch cover-
age as the metric for comparison and utilize LLVM’s Sani-
tizerCoverage [36] to count the number of unique branches
covered by each fuzzer on a target program.

Figure 7 shows the branches covered on the server side
by different fuzzers. On average, BLEEM achieved 40.3%,
35.7%, 23.4%, 48.9%, and 28.5% higher branch coverage
than Snipuzz, AFLNet, SGFuzz, BooFuzz, and Peach, respec-
tively, within 24 hours. All results are statistically significant
according to the Mann–Whitney U test, as recommended
by Klees et al. [35]. In 64 out of 69 times, the minimum
branches achieved by BLEEM exceed the maximum branches
of the prior approaches. In other words, even the worst run
of BLEEM performs better than the best run of other prior
approaches, except for partial runs on Dnsmasq, IEC104, and
OpenBGPD. The reason is that these protocols employ simple
interactive logic and packet format. Hence, other fuzzers also
did well on it. Even so, BLEEM also outperforms them on the
average branches achieved. DTLS and SSH employ random
nonces to provide replay protection [4, 39], as mentioned in
§1. When adapted to their implementations, i.e., OpenSSL and
OpenSSH, existing protocol fuzzers have difficulty in complet-
ing the handshake, thus covering fewer branches. In contrast,
BLEEM can penetrate deeply into the protocol logic by utiliz-
ing the intercepted interactive traffic and the proposed SSTG.
TLS also employs this mechanism, and the results of other
fuzzers on BoringSSL are fine. The reason is that we enabled
the fuzzer mode provided by BoringSSL [11] in the experi-

ments. This mode modifies the library to disable randomness
and thus is more friendly to traditional fuzzers. Still, BLEEM
covers more branches than prior techniques on BoringSSL.

Answer to RQ1. Overall, BLEEM can achieve higher cover-
age than existing protocol fuzzers, which means that BLEEM
can test protocol implementations broadly and deeply.

6.4 Bug-Detection Capability
To measure the bug detection capability, we adapt BLEEM
to fuzz real-world protocol implementations, including open-
source and closed-source.

Open-Source Targets. We use the number of unique vul-
nerabilities reported by AddressSanitizer [51] and Undefined-
BehaviorSanitizer [13] (a.k.a., ASan and UBSan) as the uni-
form metric. The reason is that the vulnerability detection
methods of BLEEM and other fuzzers vary. For example, the
classic black-box fuzzer Peach typically detects vulnerabil-
ities by checking the liveness of under-test service via port
probing. However, not all the vulnerabilities (e.g., some buffer-
overflow vulnerabilities) will crash the program. Therefore,
we utilize ASan and UBSan to enhance the target program and
use the crashes identified by different fuzzers as the metric
to represent their vulnerability detection ability. Furthermore,
some Sanitizer-reported crashes may result from the same
root cause. To eliminate duplicate entries, we utilize the stack
traces in the Sanitizer report for bug deduplication and only
consider unique vulnerabilities.

BLEEM has detected 15 new vulnerabilities in several ex-
tensively used implementations of well-known protocols, with
10 CVE identifiers assigned after a coordinated disclosure.
We also tried to reproduce these bugs using the other fuzzers
based on the similar configuration construction method men-
tioned in §6.2. Table 1 summarizes the vulnerabilities exposed

by BLEEM and whether other fuzzers can find them. Specif-
ically, Peach, BooFuzz, AFLNet, SGFuzz, and Snipuzz can
only expose 8, 5, 6, 7, and 5 bugs, a strict subset of the bugs
uncovered by BLEEM. These protocol implementations have
been thoroughly tested, and some of them, e.g., GnuTLS [1]
and LibreSSL [2], have even been incorporated into the OSS-
Fuzz [27], which demonstrates the effectiveness of BLEEM
in bug detection. Some of these bugs are hard to trigger, and
we provide the bug details and a case study in Appendix C.

Table 1: Previously unknown vulnerabilities exposed by
BLEEM and the statistics of the compared fuzzers

Subject Type AFLNet Snipuzz SGFuzz BooFuzz Peach BLEEM CVE ID
LibreSSL Stack Buffer Overflow CVE-2021-41581
GnuTLS Null Pointer Dereference CVE-2021-4209
BoringSSL SIGPIPE -
accel-ppp Stack Buffer Overflow CVE-2021-42870
accel-ppp Stack Buffer Overflow CVE-2021-42054
accel-ppp Memory Leak -
IEC104 Stack Buffer Overflow CVE-2020-20486
IEC104 Segmentation Violation CVE-2020-18731
rdup Memory Leak CVE-2020-20665
libiec_iccp_mod Heap Buffer Overflow CVE-2020-20490
libiec_iccp_mod Heap Buffer Overflow CVE-2020-20662
libiec_iccp_mod Heap Buffer Overflow CVE-2020-20663
OpenBGPD Undefined Behavior -
OpenBGPD Undefined Behavior -
mvfst Heap Buffer Overflow -
SUM 6 5 7 5 8 15 10 CVEs

Closed-Source Targets. We collected four firmware con-
taining vulnerable protocol implementations, as disclosed by
the CVE dataset [16], from different mainstream IoT manufac-
turers to evaluate the performance of the selected black-box
fuzzers in discovering severe vulnerabilities. These CVEs
seriously threaten various devices and are classified as CRIT-
ICAL by CVSS 3.x Severity and Metrics (see Table 4 in
Appendix B). We compared BLEEM against selected black-
box fuzzers and used the network-related monitors to de-
tect crashes by checking the liveness of under-test services
through port probing. We use the time to first crash as the met-
ric to evaluate the bug-detection capability of these fuzzers.
As shown in Table 2, BLEEM achieves the best CVE discovery
performance compared to other fuzzers. BLEEM and Peach
can find all of these CVEs, while BooFuzz and Snipuzz can
find only 3 and 1, respectively. On average, BLEEM can find
a crash at least 7.5×, 13.3×, and 87.1× faster than Peach,
BooFuzz, and Snipuzz, respectively, demonstrating BLEEM’s
efficiency boost over the state-of-the-art.

Table 2: Average time to expose published CVEs
CVE ID Protocol Snipuzz BooFuzz Peach BLEEM

CVE-2018-5767 HTTP - 25min 34min 6min
CVE-2020-25067 UPnP 26min 36s 47s 33s
CVE-2019-14457 HTTP - - 652min 35min
CVE-2019-1663 HTTP - 501min 307min 72min

Answer to RQ2. BLEEM is capable of finding unknown
bugs effectively in real-world protocol implementations.

6.5 Effectiveness of Sequence Generation
To evaluate the effectiveness of the guided sequence gen-
eration (§5.3), we implemented BLEEMRand, a variant of
BLEEM, in which we replaced it with random sequence selec-
tion and maintained the SSTG construction for comparison.

Table 3 shows the mean value of each metric across repe-
titions. The column “Paths” indicates the number of unique

state traces discovered during the SSTG construction, and the
column “Len.” indicates the average length of these paths.
The column “Types” indicates the number of different types
of abstract packets (after concatenation), which are the ele-
ments of the SUT States. The columns “Nodes” and “Trans.”
indicate the state and state transition numbers of the SSTG,
respectively. The “Branch Coverage” shows the achieved
unique branches of the whole SUT, including the coverage
achieved on both sides, which is different from §6.3 because
both BLEEMRand and BLEEM can test the whole system.
Note that the “Paths” and “Len.” are not necessarily propor-
tional to the complexity of the constructed SSTG, as different
transition ways of existing nodes and transitions can trigger a
new path while no new nodes or transitions will be found. The
table shows that the overall unique paths are finite, indicat-
ing that our provision for the SSTG construction effectively
avoids state space explosion. To further illustrate this, we
also tried constructing a long initial sequence using the pro-
vided client utility when testing the Dnsmasq, libcoap, and
Mosquitto. The results demonstrate that the path numbers
achieved on these projects are also within an acceptable range.

Table 3: Statistics about the constructed SSTG and the unique
branches achieved by BLEEM and BLEEMRand.

Subject Fuzzer SSTG Construction SSTG Metrics Branch
CoveragePaths Len. Types Nodes Trans.

BoringSSL BLEEMRand 42 4.11 32 72 84 4293
BLEEM 75 3.82 69 152 183 4549

OpenSSL BLEEMRand 266 6.84 73 247 397 10512
BLEEM 256 5.96 90 267 442 10614

mvfst BLEEMRand 2352 7.83 492 1494 2806 53942
BLEEM 10781 7.99 671 2779 6581 55575

accel-ppp BLEEMRand 101 6.07 14 33 46 1384
BLEEM 30 4.62 11 25 31 1385

IEC104 BLEEMRand 39 5.57 84 113 137 279
BLEEM 49 5.86 88 149 164 321

OpenSSH BLEEMRand 43 5.23 20 59 82 12444
BLEEM 97 5.58 30 104 171 14579

libcoap BLEEMRand 10013 85.08 325 1340 3400 8292
BLEEM 10286 83.42 331 1427 4143 8530

Dnsmasq BLEEMRand 2958 22.60 60 163 511 1271
BLEEM 1783 14.62 58 155 413 1292

CycloneDDS BLEEMRand 55 4.55 18 67 132 22912
BLEEM 139 4.26 31 153 303 23710

Mosquitto BLEEMRand 19522 15.67 215 1037 2815 9284
BLEEM 20652 13.09 253 1085 3142 10285

libiec_iccp_mod BLEEMRand 116 9.05 28 96 155 6059
BLEEM 314 9.71 41 139 294 6265

GnuTLS BLEEMRand 50 4.66 25 70 98 5057
BLEEM 57 4.12 38 92 114 5222

LibreSSL BLEEMRand 209 3.93 67 248 394 5473
BLEEM 196 3.78 100 277 385 6157

OpenBGPD BLEEMRand 222 17.73 35 92 131 2072
BLEEM 253 17.21 43 111 169 2086

rudp BLEEMRand 149 5.86 21 82 151 112
BLEEM 154 5.70 30 109 185 115

From each row of Table 3, the complexity of our proposed
SSTG is roughly in positive correlation to the packet types
and the covered unique branches, indicating that the proposed
SSTG can reflect the inner system execution status of the SUT
in some degree. With the help of the guided sequence genera-
tion strategy, BLEEM achieves 5.7% more unique branches
than BLEEMRand on average, and the improvement on the
server is typically comparable to that on the client since they
are mutually reinforcing. We also note that BLEEMRand per-
forms better on Dnsmasq and accel-ppp in the complexity
of the implemented SSTG. Through investigation, we found
that the logic of the corresponding SUTs is relatively simple

compared with other subjects. The randomly generated long
packet sequences of BLEEMRand can easily trigger more out-
puts of the SUT parties, resulting in a more complex SSTG.
Nonetheless, BLEEMRand is hard to reach deep states in the
protocol implementation without guided packet sequence gen-
eration, thus covering fewer branches than BLEEM.

Case Study. To intuitively illustrate how BLEEM imple-
ments guided fuzzing and its effectiveness, we use the ses-
sion discovered during fuzzing mvfst as a case study. By
executing the selected SUT of mvfst, BLEEM constructed
an initial SSTG in Figure 6 as the basis. Directed by Algo-
rithm 1, BLEEM tried to stress q1 with the packet pattern
b⊕σP, yielding the packet pattern sequence [a⊕σ◦,b⊕σP].
Then BLEEM instantiated it and triggered the session in Fig-
ure 8 (in reality the client and server interact with BLEEM’s
packet instantiation sub-module, we omit it to facilitate the
understanding). The mutated Initial[CRYPTO, ACK] (de-
noted as Initial[CRYPTO, ACK]*) transmitted at 2 trig-
gered retransmission of the client (3 , this Initial[CRYPTO]
differs from 1 at the concrete level). Through our investi-
gation of the implementation logic, after reading the second
Initial[CRYPTO], the server immediately responds ACK
for 3 (Initial[ACK]) instead of packing ACK and CRYPTO
frames into one Initial packet like 2 . Then, it invokes
CloningScheduler, a packet scheduler designed to clone exit-
ing packets that are still outstanding, to derive the following
Initial[CRYPTO] and Handshake[CRYPTO]. In this way,
the testing procedure covered the logic of CloningScheduler,
where a known problem has been exposed [19].

As a result, exercising q1 using the new packet pattern
b⊕σP achieved a new state trace. Empowered by the feedback
collector, BLEEM can monitor this automatically and update
it on the initial SSTG with an extended alphabet:
Ω̂ = {e : Initial[ACK]+Initial[CRYPTO]+Handshake[CRYPTO],

f : Handshake[CRYPTO,ACK]},
yielding the overall SSTG shown in Figure 9.

Client Server

②

④

⑤

③

①
Initial[CRYPTO]

Handshake[CRYPTO, ACK]

Initial[CRYPTO]

Initial[CRYPTO, ACK]*,
Handshake[CRYPTO]

Initial[ACK], Initial[CRYPTO],
Handshake[CRYPTO]

1-RTT[APPLICATION_CLOSE]
⑥

Figure 8: The mvfst handshake flow if the packet at 2 is
mutated (Initial[CRYPTO,ACK]*).

Unfortunately, triggering such logic is non-trivial for other
fuzzers because they need to craft the two Initial[CRYPTO]
packets carefully: (i) The two packets need to be syntactically
correct, which can be easily guaranteed by generation-based
fuzzers like Peach but is hard for mutation-based fuzzers like
AFLNet. (ii) They need to correctly set some parameters
in the packets to ensure semantic correctness. For example,

these two packets should own the same DCID field to identify
the same connection, and the PN field value x of the former
packet and the value y of the latter should satisfy y = x+2. If
these two packets are semantically incorrect, the server will
reject them without a response. In the 24-hour experiments
across 10 repetitions on mvfst, we found that all the com-
pared fuzzers failed to trigger this behavior. Instead, BLEEM
generates packets by resorting to the packets provided by the
protocol parties. Therefore, it can easily guarantee the above
conditions and trigger this behavior (q4−q7) at an early stage.
Meanwhile, BLEEM discovered 410 more successor states on
average based on q4− q7. This state region is hard to trig-
ger for other fuzzers, but discovering this region effectively
contributes to BLEEM’s branch coverage.

S(d) | C(c)S(b) | C(a)C(a) | S(Ø) C(c) | S(b)
a⨁𝜎∘ b⨁𝜎∘ c⨁𝜎∘

q0 q1 q2 q3

S(e) | C(a)C(a) | S(b) C(f) | S(e)
a⨁𝜎∘ e⨁𝜎∘

b⨁𝜎"

f⨁𝜎∘
q4 q5 q6

S(d) | C(f)

q7

Figure 9: The System State Tracking Graph (SSTG) after
introducing the new packet pattern (b⊕σP) on q1.

Answer to RQ3. The guided sequence generation strat-
egy of BLEEM is able to increase the exposure of different
protocol behaviors, thus contributing to fuzzing effectiveness.

7 Related Work

Protocol Fuzzing. Fuzzing has been widely adopted to test
protocol implementations [23–25, 38, 61–63]. Existing works
focus on individual packet generation and lose sight of con-
textual correctness between packets in a sequence. Peach [18]
and BooFuzz [33] select a state trace in the user-defined state
model each time and separately generate packets for these
states. Scapy fuzzing API [49] generates individual packets
based on given values, which is equivalent to a packet-level
mutation operator. Although these approaches provide syn-
tactically valid packets that prevent early parse error, they
are incapable of handling the parameter dependency and
generating correct values for the context-sensitive dynamic
fields (e.g., handshake configuration of SSL). Meanwhile,
they are pretty random and do not use feedback to guide
fuzzing. Instead, BLEEM generates packets at a sequence
level. It provides a sequence-based feedback mechanism to
navigate protocol-logic exploration and a sequence-level ma-
nipulation to discover anomalies under out-of-order or du-
plicated packets. Meanwhile, it accounts for the contextual
information by leveraging the intercepted packets between
the SUT parties.

Some recent works introduce state awareness for protocol
fuzzing. SGFuzz [8] relies on a programmatic intuition that
the state variables used in protocol implementations encode
fine-grained program processing actions and often appear in
enum-type variables. It recognizes these variables, injects
instrumentation to monitor their assignment, and uses their
different values to identify different server program states.

In comparison, without instrumentation, BLEEM leverages
the enum in the packet fields to identify packet type and
constructs the states by combining the packet types with bidi-
rectional communication information. We also provide an
example in Appendix D. StateAFL [43] adopts fine-grained
compile-time instrumentation to obtain runtime information
for protocol state inference. Nyx-Net [48] solves the re-
producibility problem mentioned in §1 by ensuring noise-
free fuzzing through a snapshot-based approach. These ap-
proaches require the source code or the binary of the protocol
implementation and thus do not scale to the black-box nature.
Instead, BLEEM applies a noninvasive feedback mechanism
and models state transitions across packet exchanges, thus can
be scaled to diverse protocols even in the black-box setting.

Some works utilize the server response to optimize fuzzing.
AFLNet [45] leverages the status code in the server re-
sponse as state feedback and uses it to guide packet mutation.
Snipuzz [20] infers the grammatical role of each message
byte by analyzing the server response using a hierarchical
clustering strategy. This strategy works well for IoT proto-
cols whose responses are usually textual and organized in a
common format such as JSON. These approaches work well
but are tightly coupled with specific protocol formats. In con-
trast, BLEEM analyzes the semantics conveyed in the output
to obtain system feedback and can be applied to both textual
and binary protocols. Meanwhile, it analyzes both client and
server output and thus can obtain more information.

State Machine Inference. The most closely related works
employ learning algorithms to infer protocol state machines,
and there are two different technologies.

Active-inference-based approaches [17, 21–23, 52] actively
generate packet sequences to query a protocol implementation
and infer a state machine using model learning algorithms,
such as Angluin’s L* algorithm [7]. Applying this algorithm
usually requires tailoring a mapper to translate between the
abstract alphabets of the model and the concrete packets of the
implementation, which is not reusable for different protocols
and implementations. Instead, BLEEM abstracts packets by
automatic semantic extraction and instantiates packets using
the interactive traffic.

Passive-inference-based approaches [14, 26, 28, 29] infer
a state machine by analyzing a corpus of packet sequences
sampled on the network. Pulsar [26] analyzes the sampled
network traces and infers a generative model for message for-
mat and protocol states. AutoFuzz [28] analyzes the sampled
traffic to infer the server’s finite state machine (FSM) and con-
ducts server fuzzing based on this stationary FSM. These ap-
proaches perform fuzzing based on the inferred model. There-
fore, their fuzzing effectiveness relies on the completeness of
the captured network traffic. Instead, BLEEM constructs the
initial SSTG based on the SUT dialog and gradually enriches
it at runtime with the packets generated during guided fuzzing,
which builds a closed-loop of vulnerability detection.

Most of all, we do not infer the protocol’s state machine but

derive the SSTG structure from the observed network traffic
to identify the state space and guide fuzzing. Meanwhile, the
SSTG encompasses all protocol parties, unlike the traditional
state machine that depicts only one protocol party.

8 Discussion
Despite BLEEM’s positive results, we briefly discuss limita-
tions and avenues of further improvement.

First, the feedback collector analyzes the output packets
based on Scapy’s parsing capability. However, some protocols,
especially those proprietary protocols, are not supported by
Scapy. Since BLEEM can capture the network traffic and gain
additional traffic beyond the initial session through fuzzing,
we can recognize unsupported protocols by resorting to traffic-
based protocol reverse engineering [12, 57].

Second, the current representation of the SSTG cannot
always guarantee reproducibility due to its inherent non-
deterministic and coarse-grained transition labeling. We can
solve this by transforming the SSTG into a deterministic finite
automata using typical algorithms [41, 55] and recording fine-
grained mutation information, such as the detailed subclass
and parameters of the mutation operator.

Third, BLEEM now supports crash detection and memory-
related bugs with ASan/UBSan. BLEEM can also detect se-
mantic bugs if provided with corresponding oracles. For exam-
ple, if provided with the packet-exchange constraints, BLEEM
can detect non-compliance with protocol specification by
analyzing the SUT’s state trace. The cause of CVE-2021-
40523 [42] is that the server may fail to send WILL/WONT
response for WILL commands, which violates the property
restricted in RFC 854 [46]. To detect this bug, we can provide
such a packet-exchange constraint for BLEEM: a WILL packet
from the client should be followed by a WILL/WONT packet
from the server under normal conditions. With the help of
the abstract packets, BLEEM can focus on the packet types,
thus facilitating analysis. Then, it can detect the bug by check-
ing, for the SUT State that matches 〈S(∗) |C(WILL)〉 (“*” is a
wildcard), whether its outgoing edge with label WILL⊕σ◦ tran-
sitions to state 〈C(WILL) | S(WILL)〉 or 〈C(WILL) | S(WONT)〉.
If not, a bug exists.

9 Conclusion
In this paper, we present BLEEM, a packet-sequence-oriented
protocol fuzzer that applies an evolutionary approach to ex-
plore the massive protocol state space: it accesses the sys-
tem feedback by analyzing the output sequences and dynami-
cally tunes the exploration direction by applying the proposed
guided fuzzing strategy. Meanwhile, BLEEM generates highly
protocol-logic-aware packet sequences by leveraging the ob-
served interactive traffic. Compared to state-of-the-art fuzzers,
BLEEM can achieve higher coverage and detect more bugs in
real-world protocol implementations. BLEEM is fully auto-
matic and can be applied to test the implementations of most
general protocols in the black-box setting.

Acknowledgments

We thank the anonymous reviewers for their construc-
tive feedback and suggestions. This research is sponsored
in part by the National Key Research and Development
Project (No. 2022YFB3104000, No2021QY0604) and NSFC
Program (No. 62022046, 92167101, U1911401, 62021002).

References

[1] OSS-Fuzz/Gnutls. https://github.com/google/
oss-fuzz/tree/master/projects/gnutls.

[2] OSS-Fuzz/Libressl. https://github.com/google/
oss-fuzz/tree/master/projects/libressl.

[3] RFC 4346. The transport layer security (TLS) proto-
col. section f.1.1.2: Rsa key exchange and authentica-
tion. Website. https://www.rfc-editor.org/rfc/
rfc4346#appendix-F.1.1.2.

[4] RFC 6347. Datagram transport layer secu-
rity version 1.2. section 4.1.2.6: Anti-replay.
https://datatracker.ietf.org/doc/html/
rfc6347#section-4.1.2.6.

[5] aflnet. AFLNet: A greybox fuzzer for network protocols.
https://github.com/aflnet/aflnet.

[6] Pedram Amini and Aaron Portnoy. Sulley. 2012. https:
//github.com/OpenRCE/sulley.

[7] Dana Angluin. Learning regular sets from queries and
counterexamples. Inf. Comput., 75, 1987.

[8] Jinsheng Ba, Marcel Böhme, Zahra Mirzamomen, and
Abhik Roychoudhury. Stateful greybox fuzzing. 2022
Usenix Security Symposium.

[9] Domagoj Babic, Stefan Bucur, Yaohui Chen, Franjo
Ivancic, Tim King, Markus Kusano, Caroline Lemieux,
László Szekeres, and Wei Wang. FUDGE: Fuzz driver
generation at scale. 2019 ACM ESEC/FSE.

[10] bajinsheng. SGFuzz: Stateful greybox fuzzer. https:
//github.com/bajinsheng/SGFuzz.

[11] BoringSSL. Fuzzer mode. https://github.com/
google/boringssl/blob/master/FUZZING.md.

[12] Georges Bossert, Frédéric Guihéry, and Guillaume Hiet.
Towards automated protocol reverse engineering using
semantic information. 9th ACM symposium on Informa-
tion, computer and communications security, 2014.

[13] Clang. Clang 15.0.0 documentation, undefinedbe-
haviorsanitizer. https://clang.llvm.org/docs/
UndefinedBehaviorSanitizer.html.

[14] Paolo Milani Comparetti, Gilbert Wondracek, Christo-
pher Krügel, and Engin Kirda. Prospex: Protocol speci-
fication extraction. IEEE Symposium on Security and
Privacy, 2009.

[15] CVE-2014-0160. Heartbleed - a vulnerability in openssl.
2014. http://heartbleed.com.

[16] US National Vulnerability Database. Common vulnera-
bilities and exposures (CVE).

[17] Joeri de Ruiter and Erik Poll. Protocol state fuzzing of
TLS implementations. 2015 USENIX Security Sympo-
sium.

[18] Michael Eddington. Peach fuzzing plat-
form. https://gitlab.com/gitlab-org/
security-products/protocol-fuzzer-ce.

[19] facebookincubator. A known problem in the
CloningScheduler in Facebook mvfst. https:
//github.com/facebookincubator/mvfst/blob/
421196ec98a9abd69c7a4353c555a0c981a69109/
quic/api/QuicBatchWriter.cpp#L17.

[20] Xiaotao Feng, Ruoxi Sun, Xiaogang Zhu, Minghui Xue,
Sheng Wen, Dongxi Liu, Surya Nepal, and Yang Xi-
ang. Snipuzz: Black-box fuzzing of IoT firmware via
message snippet inference. 2021 ACM SIGSAC CCS.

[21] Tiago Ferreira, Harrison Brewton, Loris D’antoni, and
Alexandra Silva. Prognosis: Closed-box analysis of net-
work protocol implementations. 2021 ACM SIGCOMM.

[22] Paul Fiterau-Brostean, Ramon Janssen, and Frits W.
Vaandrager. Combining model learning and model
checking to analyze TCP implementations. 2016 CAV.

[23] Paul Fiterau-Brostean, Bengt Jonsson, Robert Merget,
Joeri de Ruiter, Konstantinos Sagonas, and Juraj So-
morovsky. Analysis of DTLS implementations using
protocol state fuzzing. 2020 USENIX Security Sympo-
sium.

[24] Matheus E. Garbelini, Vaibhav Bedi, Sudipta Chattopad-
hyay, Sumei Sun, and Ernest Kurniawan. Braktooth:
Causing havoc on bluetooth link manager via directed
fuzzing. 2022 USENIX Security Symposium.

[25] Matheus E. Garbelini, Chundong Wang, Sudipta Chat-
topadhyay, Sumei Sun, and Ernest Kurniawan. Sweyn-
Tooth: Unleashing mayhem over bluetooth low energy.
2020 USENIX Annual Technical Conference.

[26] Hugo Gascon, Christian Wressnegger, Fabian Yam-
aguchi, Dan Arp, and Konrad Rieck. Pulsar: Stateful
black-box fuzzing of proprietary network protocols. Se-
cureComm, 2015.

https://github.com/google/oss-fuzz/tree/master/projects/gnutls
https://github.com/google/oss-fuzz/tree/master/projects/gnutls
https://github.com/google/oss-fuzz/tree/master/projects/libressl
https://github.com/google/oss-fuzz/tree/master/projects/libressl
https://www.rfc-editor.org/rfc/rfc4346#appendix-F.1.1.2
https://www.rfc-editor.org/rfc/rfc4346#appendix-F.1.1.2
https://datatracker.ietf.org/doc/html/rfc6347#section-4.1.2.6
https://datatracker.ietf.org/doc/html/rfc6347#section-4.1.2.6
https://github.com/aflnet/aflnet
https://github.com/OpenRCE/sulley
https://github.com/OpenRCE/sulley
https://github.com/bajinsheng/SGFuzz
https://github.com/bajinsheng/SGFuzz
https://github.com/google/boringssl/blob/master/FUZZING.md
https://github.com/google/boringssl/blob/master/FUZZING.md
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
http://heartbleed.com
https://gitlab.com/gitlab-org/security-products/protocol-fuzzer-ce
https://gitlab.com/gitlab-org/security-products/protocol-fuzzer-ce
https://github.com/facebookincubator/mvfst/blob/421196ec98a9abd69c7a4353c555a0c981a69109/quic/api/QuicBatchWriter.cpp#L17
https://github.com/facebookincubator/mvfst/blob/421196ec98a9abd69c7a4353c555a0c981a69109/quic/api/QuicBatchWriter.cpp#L17
https://github.com/facebookincubator/mvfst/blob/421196ec98a9abd69c7a4353c555a0c981a69109/quic/api/QuicBatchWriter.cpp#L17
https://github.com/facebookincubator/mvfst/blob/421196ec98a9abd69c7a4353c555a0c981a69109/quic/api/QuicBatchWriter.cpp#L17

[27] Google. OSS-Fuzz. https://github.com/google/
oss-fuzz.

[28] Serge Gorbunov and Arnold Rosenbloom. Autofuzz:
Automated network protocol fuzzing framework. Ijcsns,
2010.

[29] Yating Hsu, Guoqiang Shu, and David Lee. A model-
based approach to security flaw detection of network
protocol implementations. IEEE International Confer-
ence on Network Protocols, 2008.

[30] Immor278. Snipuzz-py. https://github.com/
Immor278/Snipuzz-py.

[31] Kyriakos K. Ispoglou, Daniel Austin, Vishwath Mohan,
and Mathias Payer. FuzzGen: Automatic fuzzer genera-
tion. 2020 USENIX Security Symposium.

[32] Iyengar, J., Ed., and M. Thomson, Ed. QUIC: A udp-
based multiplexed and secure transport, 2021. https:
//www.rfc-editor.org/rfc/rfc9000.html.

[33] jtpereyda. BooFuzz: Network protocol fuzzing for hu-
mans. https://github.com/jtpereyda/boofuzz.

[34] Jinho Jung, Stephen Tong, Hong Hu, Jungwon Lim,
Yonghwi Jin, and Taesoo Kim. WINNIE: Fuzzing
windows applications with harness synthesis and fast
cloning. 2021 NDSS.

[35] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei,
and Michael W. Hicks. Evaluating fuzz testing. 2018
ACM SIGSAC CCS.

[36] LLVM. SanitizerCoverage. https://clang.
llvm.org/docs/SanitizerCoverage.html#
edge-coverage.

[37] Zhengxiong Luo, Feilong Zuo, Yu Jiang, Jian Gao, Xun
Jiao, and Jiaguang Sun. Polar: Function code aware fuzz
testing of ICS protocol. ACM Trans. Embed. Comput.
Syst., 18:93:1–93:22, 2019.

[38] Zhengxiong Luo, Feilong Zuo, Yuheng Shen, Xun Jiao,
Wanli Chang, and Yu Jiang. ICS protocol fuzzing: Cov-
erage guided packet crack and generation. ACM/IEEE
Design Automation Conference (DAC), 2020.

[39] T. Kohno M. Bellare and C. Namprempre. The secure
shell (SSH) transport layer encryption modes. https:
//datatracker.ietf.org/doc/html/rfc4344.

[40] Kenneth L. McMillan and Lenore D. Zuck. Formal
specification and testing of QUIC. ACM Special Interest
Group on Data Communication, 2019.

[41] Robert McNaughton and Hisao Yamada. Regular ex-
pressions and state graphs for automata. IRE Trans.
Electron. Comput., 9, 1960.

[42] MITRE. CVE-2021-40523.

[43] Roberto Natella. StateAFL: Greybox fuzzing for stateful
network servers. ArXiv, abs/2110.06253, 2021.

[44] OpenBSD. Libressl. https://www.libressl.org.

[45] Van-Thuan Pham, Marcel Böhme, and Abhik Roychoud-
hury. AFLNET: A greybox fuzzer for network protocols.
2020 ICST.

[46] J. Postel and J. Reynolds. Rfc854, telnet proto-
col specification. https://datatracker.ietf.org/
doc/html/rfc854.

[47] Postel, J. and J. Reynolds. File transfer protocol, 1985.
https://www.rfc-editor.org/rfc/rfc959.html.

[48] Sergej Schumilo, Cornelius Aschermann, Andrea Jem-
mett, Ali Reza Abbasi, and Thorsten Holz. Nyx-net: net-
work fuzzing with incremental snapshots. Seventeenth
European Conference on Computer Systems, 2022.

[49] secdev. Scapy Fuzzing API. https:
//scapy.readthedocs.io/en/latest/usage.
html#fuzzing.

[50] secdev. Scapy: Packet crafting for python2 and python3.
https://scapy.net.

[51] Kostya Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitriy Vyukov. AddressSanitizer:
A fast address sanity checker. 2012 USENIX Annual
Technical Conference.

[52] Juraj Somorovsky. Systematic fuzzing and testing of
TLS libraries. 2016 ACM SIGSAC CCS.

[53] Synopsis. Defensics fuzz testing.

[54] Peach Tech. Peach fuzzer configuration file (Peach
Pit). Website. https://peachtech.gitlab.io/
peach-fuzzer-community/v3/PeachPit.html.

[55] Ken Thompson. Programming techniques: Regular ex-
pression search algorithm. Communications of the ACM,
1968.

[56] Twistedmatrix. Twisted: building the engine of your
network. https://twistedmatrix.com.

[57] Yapeng Ye, Zhuo Zhang, Fei Wang, X. Zhang, and
Dongyan Xu. NetPlier: Probabilistic network protocol
reverse engineering from message traces. 2021 NDSS.

[58] Michal Zalewski. American fuzzy lop. 2015.

[59] Cen Zhang, Xingwei Lin, Yuekang Li, Yinxing Xue,
Jundong Xie, Hongxu Chen, Xinlei Ying, Jiashui Wang,
and Yang Liu. APICraft: Fuzz driver generation for
closed-source SDK libraries. 2021 USENIX Security
Symposium.

https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
https://github.com/Immor278/Snipuzz-py
https://github.com/Immor278/Snipuzz-py
https://www.rfc-editor.org/rfc/rfc9000.html
https://www.rfc-editor.org/rfc/rfc9000.html
https://github.com/jtpereyda/boofuzz
https://clang.llvm.org/docs/SanitizerCoverage.html#edge-coverage
https://clang.llvm.org/docs/SanitizerCoverage.html#edge-coverage
https://clang.llvm.org/docs/SanitizerCoverage.html#edge-coverage
https://datatracker.ietf.org/doc/html/rfc4344
https://datatracker.ietf.org/doc/html/rfc4344
https://www.libressl.org
https://datatracker.ietf.org/doc/html/rfc854
https://datatracker.ietf.org/doc/html/rfc854
https://www.rfc-editor.org/rfc/rfc959.html
https://scapy.readthedocs.io/en/latest/usage.html#fuzzing
https://scapy.readthedocs.io/en/latest/usage.html#fuzzing
https://scapy.readthedocs.io/en/latest/usage.html#fuzzing
https://scapy.net
https://peachtech.gitlab.io/peach-fuzzer-community/v3/PeachPit.html
https://peachtech.gitlab.io/peach-fuzzer-community/v3/PeachPit.html
https://twistedmatrix.com

[60] Mingrui Zhang, Jianzhong Liu, Fuchen Ma, Huafeng
Zhang, and Yu Jiang. IntelliGen: Automatic driver syn-
thesis for fuzz testing. 2021 ICSE-SEIP.

[61] Yong-Hao Zou, Jia-Ju Bai, Jielong Zhou, Jianfeng Tan,
Chenggang Qin, and Shih-Min Hu. TCP-Fuzz: De-
tecting memory and semantic bugs in TCP stacks with
fuzzing. 2021 USENIX Annual Technical Conference.

[62] Feilong Zuo, Zhengxiong Luo, Junze Yu, Ting Chen,
Zichen Xu, Aiguo Cui, and Yu Jiang. Vulnerability
detection of ICS protocols via cross-state fuzzing. IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst., 2022.

[63] Feilong Zuo, Zhengxiong Luo, Junze Yu, Zhe Liu, and
Yu Jiang. PAVFuzz: State-sensitive fuzz testing of pro-
tocols in autonomous vehicles. ACM/IEEE Design Au-
tomation Conference (DAC), 2021.

A Implementation Details

The implementation is well-modularized. We defined uni-
form interfaces between the main fuzzing process and each
module to facilitate scalability. In this way, we can easily ex-
tend BLEEM with new mutation operators, customized moni-
tors (e.g., a semantically-aware monitor), and new protocol
stacks (e.g., Bluetooth stack) by implementing corresponding
required interface functions.

A.1 Packet-Level Mutation Operators
Scapy has identified five general field types, including
NumberField, StringField, ListField, EnumerationField, and
LengthField. We devise respective mutation operators for
these field types based on their features. More specifically,
• The NumberField mutation operator performs random ad-

dition or subtraction operations to the original value while
considering the valid value range or returns a number ran-
domly selected from the valid value range.

• The LengthField holds the length value of referenced field.
The LengthField mutation operator inherits all the opera-
tions defined in the NumberField mutation operator. It also
provides an additional operation of replacing the original
value with extreme values (e.g., zero, negative values, the
maximum, and the minimum) to manifest corner cases that
cause memory errors, since their values usually affect the
memory access in the program (as the bug case study given
in Appendix C shows).

• The StringField mutation operator conducts a finite
combination of string-splicing, substring-duplication, and
substring-deletion on the original string.

• The ListField depicts the field holding a list with items
of the same type. The ListField mutation operator per-
forms a finite combination of element-duplication, element-

deletion, element-addition (based on the Oracle Map cor-
pus), and list-order-shuffle on the original list.

• The EnumField represents the field whose possible values
are taken from a given enumeration. For example, in HTTP,
the Method field with possible values [“GET”, “POST”,
“HEAD”, ...] is EnumField. The EnumField mutation op-
erator selects a value from the valid enumeration set with
high probability. It also provides value out of the valid set,
with low probability, to manifest corner cases.

A.2 Packet Instantiation Sub-Module

For target protocols on different layers, we implement cor-
responding proxies working on underlying layers to provide
reliable underlying communication, including TCP Proxy,
UDP Proxy, IP Proxy, and Ether Proxy. For example, when
fuzzing SSL protocol, we can use a TCP Proxy that provides
reliable TCP connections with the client and server so that
we can focus on fuzzing the SSL packet instead of the full
protocol stack. To this end, for a target protocol on layer `, the
support proxy working on `−1 should: (i) provide network
isolation on layer `− 1 to intercept the exchanged payload
of layer `; (ii) maintain the two links with the client and
server and synchronize their status; and (iii) support efficient
concurrent interaction with the client and server on layer `.

We implement the first requirement by configuring the
client with a proxy-provided service address, which differs
from the server’s service address. For example, for the target
SSL server listening on TCP port 4433, we start TCP Proxy
and bind to TCP port 4432, and then configure the client with
the service address of TCP port 4432. This step is noninvasive
since the client is typically configurable regarding the service
address to connect.

The second requirement is tailored for the TCP Proxy since
TCP is connection-oriented. For target protocol running on
TCP, the TCP Proxy is responsible for maintaining the two
TCP links with the client and server and synchronizing their
status, including the connection establishment and connection
close. We implement it upon Twisted [56], which provides an
event-driven programming paradigm for internet applications.
Specifically, we design and implement two Protocols based
on twisted.internet.protocol.Protocol to handle the
data of these two links in an asynchronous manner.

Third, to concurrently handle bidirectional traffic, we im-
plement asynchronous interaction logic to separately manage
the traffic of two directions, i.e., the server-to-client traffic
and client-to-server traffic. The interaction logic of each direc-
tion continuously sniffs the traffic, conducts mutation on the
received packet (as directed by the proposed strategy), and
sends out the mutated packet.

Table 4: Published CVE IDs of protocol implementations in firmware and the emulation setting in our experiment

CVE ID Device Type Vendor Model Firmware Version Vulnerable Binary Protocol Emulation Platform
CVE-2018-5767 Router TENDA AC15 15.03.1.16 bin/httpd HTTP QEMU user-mode

CVE-2020-25067 Router NETGEAR R8300 1.0.2.130 usr/sbin/upnpd UPnP QEMU full-system
CVE-2019-14457 IP Camera VIVOTEK CC8160 0100d usr/sbin/httpd HTTP QEMU user-mode
CVE-2019-1663 Router CISCO RV130 1.0.3.44 usr/sbin/httpd HTTP QEMU full-system

A.3 Monitors
We design and implement Process Monitor and Network Mon-
itors to detect crashes. These monitors can be used in combi-
nation according to different scenarios.

Process Monitor. When the target process is locally ac-
cessible, the Process Monitor detects crashes by checking
whether the process was terminated by a system signal (e.g.,
SIGSEGV). We can also enhance the program with ASan to
detect memory corruption (in this case, the process will be
terminated by SIGABRT when a memory error occurs).

Network Monitor. We implement the following network
monitors, which can be employed locally or remotely.
• TCP Monitor. For the TCP-based protocols, we detect

crashes by trying to conduct a TCP connection to the lis-
tening port since TCP is connection-oriented.

• UDP Echo Monitor. For the UDP-based protocols, this
monitor provides an interface that allows users to identify
the heartbeat packet of the under-test protocol. Then it
works by assembling it with a UDP header, sending it to
the listening port, and waiting for a response.

• Ping Monitor. The Ping Monitor validates a target is still
alive by performing ICMP Echo tests.

B Selected Targets in Evaluation

Table 4 shows the information on the selected closed-source
targets, including the firmware information, corresponding
vulnerable protocol binaries, and the emulation settings in our
experiment.

Table 5: Selected open-source protocol implementations

Protocol Subject LOC SUT (client, server)

TLS/SSL BoringSSL 92K tools/bssl client, tools/bssl server
DTLS OpenSSL 884K apps/openssl s_client, apps/openssl s_server
QUIC mvfst 104K samples/echo client, samples/echo server
PPTP accel-ppp 61K pptpsetup (Linux utility), sbin/accelpppd
IEC104 IEC104 3K iec104_monitor, iec104_monitor
SSH OpenSSH 136K ssh, sshd
CoAP libcoap 28K examples/coap-client, examples/coap-server
DNS Dnsmasq 32K nslookup (Dnsutils, a Linux utility), dnsmasq
RTPS CycloneDDS 226K HelloworldPublisher, HelloworldSubscriber
MQTT Mosquitto 45K mosquitto_sub & mosquitto_pub , mosquitto
ICCP libiec_iccp_mod 74K client_example2, server_example1
RUDP rudp 570 rudp.exe, rudp.exe
TLS/SSL LibreSSL 596K apps/openssl s_client, apps/openssl s_server
TLS/SSL GnuTLS 429K src/gnutls-cli, src/gnutls-serv
BGP OpenBGPD 12K bgpd, bgpd

Table 5 shows detailed information on target open-source
protocol implementations, including the protocol type, pro-
tocol implementation name, lines of implementation code,

and selected SUT. To facilitate a fair comparison, the selected
SUT (cf. the fourth column) all come from off-the-shelf utili-
ties provided in the project, except for the client utility used
to test accel-ppp and Dnsmasq, where we resorted to related
utilities in the Linux community.

C Bug Case Study and Coordinated Disclosure

Table 6 shows the detailed information on previously un-
known vulnerabilities exposed by BLEEM.

1 char working[DOMAIN_MAX_LEN + 1] = { 0 };
2 size_t i, wi = 0;
3 for (i = 0; i < len; i++) {
4 char c = candidate[i];
5 ... // checking validation of candidate[i]
6 if (wi > DOMAIN_MAX_LEN) // bug: the corner case is

mistakenly handled
7 goto bad;
8 working[wi++] = c;
9 if (i == len - 1) {

10 candidate_domain = strdup(working); // buffer may
lack ’\0’ termination when invoking strdup

11 }
12 }

Figure 10: Simplified code snippets related to CVE-2021-41581.

Case Study of CVE-2021-41581. This bug is revealed in
the LibreSSL [44], the default TLS provider for OpenBSD
and macOS. It is triggered at the certificate validation stage.
Figure 10 presents the relevant code snippets of the flawed
function, which walks through a given buffer candidate with
length len, and checks its validation as a mailbox. In this
process, the buffer working is firstly cleared for initializa-
tion (Line 1) and then is used to cache each checked character
c in candidate (Lines 4, 8). Actually, the developers have
considered the overflow but mistakenly handled the corner
case (Line 6). If the len is equal to DML, the original ‘\0’
termination of working would be overwritten when the vari-
able wi equals DML (line 8), leading to the stack-based buffer
over-read when invoking strdup (Line 10) due to lack of ‘\0’
termination. Triggering this bug is non-trivial because the
packet sequence should satisfy the following three conditions:
(i) the program logic enters the certificate validation stage; (ii)
the length len of the buffer candidate should be DML; and
(iii) the characters in the buffer candidate should be valid
to pass the check (Line 5). Otherwise, it would be rejected at
the early process, and this case cannot be covered. If this bug
is exploited, the devices that run this protocol may expose
sensitive data. The three state-of-the-arts all failed to expose

Table 6: Previously unknown vulnerabilities exposed by BLEEM

Protocol Subject Information Status CVE ID CVSS Score
TLS/SSL LibreSSL Stack buffer overflow in the x509_constraints_parse_mailbox in libcrypto/x509/x509_constraints.c Assigned CVE-2021-41581 5.5 MEDIUM
TLS/SSL GnuTLS MD_UPDATE does not prohibit zero-length input from illegal address, causing null pointer dereference Assigned CVE-2021-4209 6.5 MEDIUM
TLS/SSL BoringSSL The server tries to write to a socket that has been shut down even after the client has sent TLS Alert Fixed - -
PPTP accel-ppp Stack-based out-of-bounds read in post_msg when processing a call_clear_request Assigned CVE-2021-42870 7.5 HIGH
PPTP accel-ppp Stack-based out-of-bounds read in the server if the client exits after authentication Assigned CVE-2021-42054 7.5 HIGH
PPTP accel-ppp Memory allocated to pool in ippool_init2 is not free when exits, which can cause a denial of service Requested - -
IEC104 IEC104 Stack buffer overflow in the parameter Iec10x_Sta_Addr Assigned CVE-2020-20486 7.5 HIGH
IEC104 IEC104 Segmentation violation in the Iec104_Deal_FirmUpdate function Assigned CVE-2020-18731 7.5 HIGH
UDP rdup Memory leak in the rudp_delete function because memory allocated rudp is not freed Assigned CVE-2020-20665 7.5 HIGH
ICCP libiec_iccp_mod Heap buffer overflow in the ByteStream_readOctets in common/byte_stream.c Assigned CVE-2020-20490 7.5 HIGH
ICCP libiec_iccp_mod Heap buffer overflow in the parseIncomingMessage in mms/iso_cotp/cotp.c Assigned CVE-2020-20662 6.5 MEDIUM
ICCP libiec_iccp_mod Heap buffer overflow in the MmsConnection_create in mms_client_connection.c Assigned CVE-2020-20663 6.5 MEDIUM
BGP OpenBGPD Undefined behavior, a null pointer is passed as the first argument of memcpy in imsg.c Fixed - -
BGP OpenBGPD Undefined behavior, an incorrect bitwise shift in imsg.c Fixed - -
QUIC mvfst Heap buffer overflow in the EchoServerTransportFactory::make function in EchoServer.h Requested - -

SUM 15 10 CVEs -

this bug because they have a small probability of success in
entering this deep protocol state. Instead, our approach resorts
to the packets provided by the SUT parties and applies guided
fuzzing, thus can easily satisfy (i) and (iii), allowing for more
efforts in the exploration of (ii).

We responsibly disclosed the vulnerabilities we found. Be-
fore publicly disclosing our findings, we reported the vul-
nerabilities to the respective vendors following their security
procedures and coordinated appropriate disclosure periods
with them, which aligns with industry standards. No vendor
required us to redact our results prior to paper submission.

D Enumeration-Type State Variable and Field

For BoringSSL, SGFuzz recognizes several state variables, in-
cluding tls12_server_hs_state_t and ssl_shutdown_t
as follows. These variables encode fine-grained program
processing actions, including protocol-state-related (e.g.,
tls12_server_hs_state_t) and implementation-logic-
related (e.g., ssl_shutdown_t). For example, the server
program uses the tls12_server_hs_state_t to repre-
sent the protocol handshake state. It sets this variable to
state12_send_server_hello when generating and send-
ing a Server Hello packet. Meanwhile, it uses the variable
ssl_shutdown_t to represent the program shutdown state
for the read half of the connection. If the server is configured
not to send a close_notify packet, it sets this variable to
ssl_shutdown_close_notify, indicating doing nothing.

enum tls12_server_hs_state_t {
state12_start_accept = 0,
state12_read_client_hello ,
state12_read_client_hello_after_ech ,
state12_select_certificate ,
state12_select_parameters ,
state12_send_server_hello ,
...

};

enum ssl_shutdown_t {
ssl_shutdown_none = 0,
ssl_shutdown_close_notify = 1,
ssl_shutdown_error = 2,

};

Version

Length

Content Type
Change Cipher Spec (20)

Alert (21)

Handshake (22)

Application Data (23)

Handshake Type

Other Fields

Server Hello (2)

Client Hello (1)

Hello Request (0)

Certificate (11)

…

Value of the enum field in the packet Other valid values of the enum field

Figure 11: Enumeration fields in an SSL Server Hello packet

SGFuzz directly uses the different values of the state vari-
ables to identify different program states and captures state
transitions by monitoring the assignment of recognized state
variables based on instrumentation.

Correspondingly, Figure 11 shows an SSL Server Hello
packet. The Content Type and Handshake Type fields are
of type enumeration, and the Version and Length fields are
of type number and length, respectively. These enumeration-
type fields determine the packet type and indicate the protocol
state. Specifically, the Content Type field, with four valid
values, is set to Handshake (22), and the Handshake Type
field is set to Server Hello (2), indicating this is a Server
Hello packet exchanged during the handshake phase. Other
fields, such as Version and Length, own low association
with the protocol state. Hence, BLEEM abstracts this packet
to Handshake[Server_Hello] by omitting other fields. Ac-
tually, from the program’s perspective, when a client or server
receives a packet, it also first determines the packet type by
parsing these fields and then takes corresponding actions (in-
cluding setting state variables) according to the state machine.

Without instrumentation, BLEEM utilizes an on-the-fly ap-
proach. Since the enumeration fields typically identify the
packet type and thus indicate the protocol state, BLEEM uses
this key information to abstract concrete packets and con-
structs the SUT States by combining the abstract packets with
bi-directional communication information, as shown in §4.

	Introduction
	Protocol Fuzzing
	Mutation-based Fuzzers
	Generation-based Fuzzers.
	Challenges

	System Overview
	Feedback Collector
	Guided Fuzzing
	Mutation Operators
	System State Tracking Graph
	Guided Sequence Generation
	Packet Instantiation

	Evaluation
	Implementation
	Experiment Setup
	Coverage Analysis
	Bug-Detection Capability
	Effectiveness of Sequence Generation

	Related Work
	Discussion
	Conclusion
	Implementation Details
	Packet-Level Mutation Operators
	Packet Instantiation Sub-Module
	Monitors

	Selected Targets in Evaluation
	Bug Case Study and Coordinated Disclosure
	Enumeration-Type State Variable and Field

