
MINER: A Hybrid Data-Driven Approach for REST API Fuzzing

Chenyang Lyu†, Jiacheng Xu†, Shouling Ji†,B, Xuhong Zhang†, Qinying Wang†, Binbin Zhao
∗
, Gaoning

Pan†, Wei Cao‡, Peng Chen‡, and Raheem Beyah
∗

†Zhejiang University, ∗Georgia Institute of Technology, ‡Ant Group

Abstract
In recent years, REST API fuzzing has emerged to explore

errors on a cloud service. Its performance highly depends
on the sequence construction and request generation. How-
ever, existing REST API fuzzers have trouble generating long
sequences with well-constructed requests to trigger hard-to-
reach states in a cloud service, which limits their performance
of finding deep errors and security bugs. Further, they cannot
find the specific errors caused by using undefined parameters
during request generation. Therefore, in this paper, we pro-
pose a novel hybrid data-driven solution, named MINER, with
three new designs working together to address the above limi-
tations. First, MINER collects the valid sequences whose re-
quests pass the cloud service’s checking as the templates, and
assigns more executions to long sequence templates. Second,
to improve the generation quality of requests in a sequence
template, MINER creatively leverages the state-of-the-art neu-
ral network model to predict key request parameters and pro-
vide them with appropriate parameter values. Third, MINER
implements a new data-driven security rule checker to capture
the new kind of errors caused by undefined parameters. We
evaluate MINER against the state-of-the-art fuzzer RESTler
on GitLab, Bugzilla, and WordPress via 11 REST APIs. The
results demonstrate that the average pass rate of MINER is
23.42% higher than RESTler. MINER finds 97.54% more
unique errors than RESTler on average and 142.86% more
reproducible errors after manual analysis. We have reported
all the newly found errors, and 7 of them have been confirmed
as logic bugs by the corresponding vendors.

1 Introduction

Cloud services have experienced significant growth over
the last decade. They provide software-as-a-service appli-
cations that can be programmatically accessed through REST

Shouling Ji is the corresponding author.

APIs [22], without the requirement for local software installa-
tions. In a shared cloud service architecture, multiple users
can access the same application through separate processes.
In this manner, incorrect REST API access may result in a
crash of a process, which can finally lead to cloud service
collapse, broken access control, and private data leakage.

Therefore, to explore potential errors of cloud services
via REST APIs, early works [1, 6, 7] leverage previously-
captured API traffic and manually-defined rules to generate
testing requests. Recently, to better automatically infer the
dependencies among request types and construct request se-
quences, REST API fuzzing is proposed to test cloud ser-
vices [12–14, 27]. Typically, 1) the generation strategies of a
REST API fuzzer handle two main problems, i.e., how to con-
struct a sequence template and how to generate each request
in a template. After generation, the fuzzer sends the ready-
to-use request sequences to test a target cloud service; 2)
For each request in a sequence, the cloud service first checks
whether the request conforms to the syntax and semantics. If
not, it returns a response in 40× Range. On the contrary, the
cloud service performs a behavior according to the request,
e.g., the cloud service deletes a resource when receiving a
DELETE request. If the cloud service behaves normally, e.g.,
it successfully deletes the specified resource according to
the request, it returns a response in 20× Range. Otherwise,
the cloud service behaves abnormally, e.g., it tries to delete
a non-existent resource and results in an error state. Then,
it returns a response in 50× Range; 3) The fuzzer analyzes
the response to each request and infers the triggered states
of a cloud service; 4) The fuzzer collects the unique request
sequences triggering error states, e.g., the sequences having
responses in 50× Range or violating security rules. Following
the above steps, a REST API fuzzer explores reachable cloud
service states with generated request sequences.

However, we find that existing REST API fuzzers cannot
efficiently generate long request sequences to test cloud ser-
vices. As a result, existing fuzzers have trouble finding deep
errors hidden in hard-to-reach states of cloud services. In par-
ticular, it is hard for existing fuzzers to find security bugs like

use-after-free bugs and resource-hierarchy bugs as introduced
in [14], which need to be triggered with a request sequence of
no less than 3 in length. The underlying reason is that secu-
rity bugs on cloud services often require complex execution
logic to trigger. We summarize two main reasons, correspond-
ing to the sequence construction and request generation, that
the state-of-the-art REST API fuzzers fail to generate long
request sequences. 1) Existing fuzzers often fail to extend
request sequence templates. Their sequence extension pro-
cess frequently abandons the constructed sequence templates
and starts with an empty template, making it challenging to
construct sequences of larger lengths; 2) When generating
a request in a sequence template, existing fuzzers randomly
select values for the request’s parameters. They cannot figure
out which parameter should be mutated or what parameter
value should be assigned, i.e., the key mutation on a request.
As a result, they have trouble generating valid requests that
can pass a cloud service’s checking.

To overcome the above two limitations and improve er-
ror discovery, in this paper, we present a hybrid data-driven
fuzzing solution named MINER with the following three im-
portant designs. 1) Length-orientated sequence construction:
MINER leverages the historical data to guide the sequence gen-
eration. Specifically, MINER collects the sequence templates,
whose requests have been successfully generated and have
passed the cloud service’s checking in the past fuzzing pro-
cess, as the initial templates of the sequence extension process.
Then, MINER leverages a probability function to assign more
selection times to the sequence templates with large lengths
in the extension process; 2) Attention model-based request
generation: To improve request generation quality, for each
valid request that passes the checking, MINER first collects its
parameters and the used values as the key mutations. Second,
MINER constructs an attention model, which is one of the
state-of-the-art neural network models, to learn the implicit
relationship among the key mutations. Then, MINER uses the
model to generate more diverse combinations of desirable key
mutations, which can construct high-quality requests to pass
the checking and explore different states of a cloud service; 3)
Request parameter violation checking: MINER implements
an extra security rule checker to capture incorrect parameter
usage errors. By using this checker, MINER generates a new
request with an undefined parameter to test a cloud service.
For instance, MINER can construct a PUT request containing
the undefined parameter, which comes from a POST request. If
the request gets a response in 50× Range, MINER infers that
an incorrect parameter usage error is triggered, and records the
used request locally for further analysis. The above three core
designs are compatible with each other, and work together in
the fuzzing process to improve the fuzzing performance.

Our approach is a generic data-driven framework that does
not require initial training data before fuzzing. Instead, it
automatically collects training data during the fuzzing process.
It can be applied to most REST API fuzzers, and improves

their performance under the same experimental condition. In
this paper, we implement a prototype of MINER based on
the state-of-the-art fuzzer RESTler [12]. Then, we evaluate
the performance of MINER and RESTler on 3 open-sourced
cloud services GitLab [5], Bugzilla [2] and WordPress [8]
via 11 representative REST APIs. The average pass rate of
MINER is 23.42% higher than RESTler, which indicates that
MINER significantly improves the request generation to pass
the cloud service’s checking. The evaluation also shows that
our designs significantly improve the sequence construction
of MINER, which assigns most executions to the sequences of
length greater than 4. Furthermore, MINER discovers 142.86%
more reproducible errors than RESTler, including 5 security
bugs that access deleted resources.

In summary, we make the following main contributions.
• We find that REST API fuzzers have trouble generating

long sequences containing high-quality requests and cannot
find incorrect parameter usage errors. Motivated by our find-
ings, we propose a new solution named MINER with three
novel data-driven designs, i.e., 1) leveraging the history data
to guide the sequence construction, 2) improving the request
generation with desirable parameter values by constructing an
attention model for prediction, and 3) exploring a new kind
of errors by generating requests with undefined parameters.

• We evaluate MINER and RESTler on 3 open-sourced
cloud services, and show the significant performance of
MINER on sequence construction, request generation and
error discovery. Furthermore, we utilize the published bugs
of GitLab as the ground truth to demonstrate that MINER
performs better than RESTler on serious bug discovery. The
stepwise analysis shows the contribution of our designs to
pass rate and error discovery. We conduct extensive analysis
to show high code line coverage, low time overhead, and di-
verse execution distribution of requests achieved by MINER1.

2 Background

2.1 REST API for Cloud Services

Most cloud services can be accessed via REST APIs to
provide various functionalities. In implementation, different
types of requests can be sent to trigger different behaviors
of a cloud service. For instance, a client 1) can send a GET
request to GitLab, in order to get a list of visible projects with
the selected parameters after authentication; 2) can send a
POST request to create a new project with the specified param-
eters; 3) is able to update the parameters of a specified project
by sending a PUT request; and 4) can delete a project with a
DELETE request. These behaviors can explore different states
of a cloud service. Similarly, by automatically generating and
sending request sequences via a cloud service’s REST API, a
fuzzer can explore errors hidden in different states.

1We open source MINER at https://github.com/puppet-meteor/MINER to
facilitate future research on REST API fuzzing.

GET /groups/{id}

Parameters Types Required

id integer/string yes

with_custom_attributes boolean no

with_projects boolean no

(a) An example description of
"GET /groups/{id}" on the web.

/groups/{id}:
get:
parameters:
-name: id

required: yes
type: integer

-name: with_custom_attributes
required: no
type: boolean

-name: with_projects
required: no
type: boolean

(b) The corresponding
Swagger specification.

generated_request = Request(
static(“GET /api/v4/groups/”),
consumer(“{id}”),
static(“?with_custom_attributes

=”),
fuzzable(“boolean”),
static(“&with_projects=”),
fuzzable(“boolean”),
static(“HTTP/1.1”),
static(“Accept:application/json”),
……

)

(c) The request template for
"GET /groups/{id}".

GET /api/v4/groups/{id}?
with_custom_attributes=true
& with_projects=false
HTTP/1.1
Accept: application/json
Host: 10.214.241.134
PRIVATE-TOKEN: {token}
Content-Length: 0
User-Agent: restler/7.3.0

(d) The generated request
example.

HTTP/1.1 200 OK
Server: nginx
Date: {date}
Content-Type:
application/json
Content-Length: 848
Connection: keep-alive
Vary: Accept-Encoding
Cache-Control: max-age=0,
private, must-revalidate
......

(e) The corresponding re-
sponse.

Figure 1: An example to convert the description of a request on the web into a request template, and what a generated request
and its corresponding response look like.

2.2 REST API Fuzzing

Two of the main challenges to fuzz cloud services are as
follows: How to construct sequences composed of different
requests to trigger a series of behaviors and explore deep
states of a cloud service, and how to construct high-quality
requests to pass the cloud service’s checking. Towards this,
REST API fuzzing is proposed to explore errors hidden in the
reachable execution states of a cloud service [12–14, 27]. A
REST API fuzzer automatically generates request sequences
to test a target cloud service, and is guided by the request
responses. If a request in the generated sequence triggers a
response in 50× Range, the fuzzer considers that an error
is triggered and stores the sequence for future analysis. The
main modules of a REST API fuzzer are as follows.
Compiler Module: A REST API fuzzer implements the
Compiler Module to generate a fuzzing grammar and con-
struct request templates, whose procedures are as follows.
First, the fuzzer requires the Swagger specification for each
request type. As shown in Fig. 1, to obtain the Swagger spec-
ification, a user 1) can read the description for each request
type published on the web page by vendors, and 2) manually
transforms the description into the Swagger specification as
shown in Fig. 1a and Fig. 1b. Then, based on the Swagger
specification, the fuzzer performs a lightweight static analysis
to construct request templates as shown in Fig. 1c. To be
specific, it 1) infers the dependencies among different request
types; 2) constructs a template for each request type; and
3) manually constructs a dictionary of alternative values for
each parameter in a request template. For instance, as shown
in Fig. 1b, a user can provide {"3", "true", "false"} as the
dictionary for the parameter "with_projects", where "3" is the
default value that does not match the parameter type.

In particular, some request templates require target object
ids of target resources, e.g., the "{id}" as shown in Fig. 1d. If
we provide static alternative values for these object ids, the
fuzzer may suffer from the following two situations. 1) The
fuzzer can only test the same resources on a cloud service,
which limits the exploration space; 2) The resources can be
deleted by DELETE requests, which hinders other requests for
access to these resources. Therefore, the REST API fuzzer

solves the problem by reading the target object id from the
response of the previous request in a sequence. Specifically, it
constructs special request templates to produce and consume
target object ids. To produce a target object id, the fuzzer ana-
lyzes the response of a request like GET and POST, and stores
the target id in memory, which will be freed when the test of
the current request sequence ends. Then, if a latter request
template needs a target object id, the fuzzer generates it by
reading the stored id from memory. In general, a request that
provides a target object id is named producer, and a request
that requires a target object id is named consumer.
Sequence Module: A fuzzer combines different requests
to construct different test sequences, e.g., it can send a se-
quence containing POST and PUT requests to create a resource
and then modify this resource. To achieve this, it imple-
ments the Sequence Module to dynamically extend request
sequence templates started from an empty one, whose details
are as follows. 1) When entering the Sequence Module, a
fuzzer starts with an empty sequence template; 2) It main-
tains a set of successfully extended sequence templates, and
performs the extension process to construct new sequence
templates based on these successfully extended templates.
Specifically, it adds each candidate request at the end of the
current sequence template and constructs new candidate se-
quence templates. Then, the fuzzer empties the set and waits
for the new successfully extended sequence templates; 3)
For each candidate sequence template, the fuzzer utilizes the
Generation Module, which will be introduced later, to gen-
erate each request in the sequence template and then tests a
target cloud service; 4) It analyzes the response of each re-
quest to infer the triggered behavior. For instance, a response
of 400 Bad Request, 200 OK or 500 Internal Error represents
that the cloud service performs the following behavior, respec-
tively: The cloud service refuses to execute the request which
does not pass the checking, the cloud service executes the
request normally, or it executes the request abnormally which
results in an unexpected error; 5) Generally, the fuzzer checks
the response of the last request in each candidate sequence
to infer whether the sequence is valid. If the last request gets
a response in 20× Range from the cloud service, the fuzzer
considers the candidate sequence successfully extended and

adds it to the set of successfully extended sequence templates;
6) If the set is not empty, the fuzzer goes to step 2) to per-
form the next extension process based on the newly collected
sequence templates. Otherwise, it goes to step 1) to restart
the extension process with an empty sequence template. Note
that in the Sequence Module, the constructed sequence tem-
plates always satisfy the dependencies between producers and
consumers.

Generation Module: A REST API fuzzer implements
this module to generate each request in a sequence template.
Specifically, the fuzzer assigns a value for each parameter in
the request, and constructs a complete request that is ready
to be sent to a cloud service. There are two methods to ob-
tain a parameter value, which are 1) selecting an alternative
value from the dictionary or 2) reading a target object id
from a response of a previous request. The following instance
shows how the fuzzer obtains parameter values using the
above two methods. As shown in Fig. 1, the request tem-
plate GET /groups/{id} contains 3 parameters needed to
be set. To generate a ready-to-use request, the fuzzer selects
"true" and "false" as the values of "with_custom_attributes"
and "with_projects", respectively. As for the parameter "id",
the fuzzer will read a target object id from the response of a
producer like POST, which provides an object id after creation.

Checker Module: To improve error discovery of REST
API fuzzing, Atlidakis et al. introduced several rule checkers
to capture specific security rule violations [14], which are im-
plemented as the Checker Module in the REST API fuzzer.
For instance, a fuzzer implements a use-after-free rule checker
to find the request sequences triggering use-after-free bugs,
which access deleted resources in the cloud service scenario
and can lead to private data leakage. An example process
is as follows. The rule checker first sends a POST request to
create a resource on a cloud service. Then, it sends a DELETE
request to delete this resource. Finally, the fuzzer sends an
access request, like GET, to access this deleted resource. If the
cloud service does not return a response in 40× Range, the
fuzzer considers that the use-after-free violation is triggered
and saves the used request sequence locally for future anal-
ysis. Therefore, a REST API fuzzer tries to trigger specific
rule violations in the Checker Module.

By utilizing the above main modules, existing REST API
fuzzers automatically generate request sequences to test a
cloud service via its REST APIs, and record the request se-
quences locally that trigger unique errors hidden in differ-
ent states. However, they still have limitations in sequence
extension and request generation, resulting in slow state ex-
ploration progress. On the contrary, we observe that multiple
kinds of historical data collected during the fuzzing process
are valuable to guide REST API fuzzing and solve the above
limitations, which is the main focus of this paper.

2.3 Neural Network Model

As marked by the red boxes in Fig. 1d, a request consists of
an endpoint/name, several parameters and their values. In-
tuitively, we can regard these elements in the red boxes as
words and transform a request into a word sequence. Then, a
request generation can be transformed into a sequence gen-
eration, which is one of the common applications for neural
network models [20,31]. Specifically, a neural network model
leverages neurons to construct complex computational net-
works [17,19]. During training, the model adjusts the weights
between neurons to fit the implied relationship between words
in each sequence. Given an input word, the model improves
the prediction probability of the ideal output word. After train-
ing, the model predicts words one by one, which follows the
implied relationship learned from the training set.

In our application, we collect the parameters and their val-
ues used in the valid requests, which pass the checking of a
cloud service, as the key mutations. Then, we leverage a neu-
ral network model to learn the implied relationship between
these key mutations, i.e., which key mutations should be used
together on a request. After training, the model predicts the
key parameters to be mutated and their appropriate values for
request generation. More details are shown in Section 3.3.

3 Design of MINER

3.1 Why Valid Long Sequence Matters

As previously mentioned, different requests can be sent in a
sequence to a cloud service to trigger a series of behaviors
and further explore unique errors hidden in deep states. For
instance, in a sequence, POST, PUT, and DELETE requests can
be sent orderly via GitLab Projects API. Then, GitLab will
create a new project, modify this project’s parameters, and
delete this project, respectively. We can conclude from the
above instance that a long sequence covers the possible re-
quest combinations used in a short sequence, as does the range
of states that can be reached. Therefore, to explore the errors
hidden in hard-to-reach states, an ideal REST API fuzzer is
expected to send long sequences more times, and should not
always test a cloud service using short sequences.

To further motivate our research, we analyze the REST
API-related issues on GitLab. To be specific, we collect the
error issues related to the available resources for GitLab REST
APIs, and count the number of issues triggered by a request
sequence or a singular request, respectively. Then, we realize
that the issues caused by a request sequence account for the
majority. In all 56 issues, the proportion of the issues caused
by request sequences is 76.79%. For instance, a published
error is triggered by the following steps. 1) Create a GitLab
project; 2) Delete this project; 3) Access this deleted project
with a GET request. Since the last request achieves to access
a deleted resource, this error is considered a use-after-free

1 2 3 4 5 6 7 8 9 >=10
Length

0

10

20

30

40

50

60

Ra
tio
(%

)

Figure 2: The distribution of request sequence length sent by
RESTler when fuzzing GitLab Projects API.

bug in the cloud service scenario and is confirmed by the
vendors of GitLab. It takes at least 3 requests in a sequence to
reproduce this published error. The case study demonstrates
that a REST API fuzzer is expected to test a target cloud
service with long request sequences.

However, we find that existing REST API fuzzers cannot
effectively generate long sequences to test a cloud service. To
illustrate this, we conduct the following case study to show
the proportion of request sequence length executed in the
fuzzing process. We utilize RESTler [12], which is one of the
most famous REST API fuzzers and implements the main
modules as shown in Section 2.2, to fuzz GitLab Projects API.
Then, we construct the length distribution of the generated
request sequences. The evaluation lasts for 12 hours, and the
proportion of each sequence length is shown in Fig. 2, from
which we can learn that the length of most request sequences
generated by RESTler is less than 3. The proportion of the
sequences with lengths of 1 and 2 is around 85%.

These results demonstrate that existing REST API fuzzers
hardly generate long sequences to trigger series of behaviors
on cloud services. Especially, it is hard for them to trigger
security bugs explored by long request sequences as shown
in [14]. We infer the reasons as follows. First, existing fuzzers
cannot effectively generate valid requests that can pass a cloud
service’s syntax and semantic checking. For each parame-
ter in a request template, they cannot figure out the appro-
priate parameter value, but randomly select an alternative
value from a preset dictionary, e.g., {"3", "true", "false"} for
"with_projects" as exemplified in Section 2.2. Thus, their gen-
erated requests are more likely to receive responses in 40×
Range from the cloud service. This fact is also confirmed by
the results in Section 4.2, which demonstrate the low pass
rate of the requests generated by existing REST API fuzzers.
Then, due to the lack of a proper mechanism to generate valid
requests, existing fuzzers are difficult to extend a sequence
template to form a long one. As shown in Section 2.2, the
fuzzers frequently restart the sequence extension process with
an empty sequence template, if the last request in a sequence
fails to pass the checking. Moreover, the kinds of request com-
binations in a short sequence template are limited, which can
be fully explored by existing fuzzers in the fuzzing process.
Therefore, most of the time, existing REST API fuzzers tend
to test a cloud service with short and already-used request

sequence templates.
Motivation. Based on the above analysis, we discover that
most published errors are triggered by request sequences.
While existing REST API fuzzers are hard to generate long
sequences with acceptable request generation quality. Most of
the time, existing fuzzers test target cloud services with repeti-
tive short request sequences, limiting their performance of dis-
covering unique errors. In particular, it is hard for them to ex-
plore security bugs triggered by long request sequences [14].
Therefore, to improve security bug discovery on cloud ser-
vices, a new fuzzing solution is demanded to improve the
sequence construction and request generation.

3.2 Framework of MINER

Motivated by the above findings, we propose a hybrid data-
driven solution named MINER as follows. 1) MINER imple-
ments the length-orientated sequence construction, and lever-
ages the used request sequences as seed sequence templates
to guide sequence construction; 2) MINER implements the
attention model-based request generation, and utilizes an at-
tention model to provide proper values for the key parameters,
which increases the pass rate to the cloud service’s checking;
3) To find errors caused by incorrect parameter usage, MINER
implements the request parameter violation checking, and
constructs a new security rule checker named DataDriven
Checker to generate requests with undefined parameters. The
above three designs work together to improve the fuzzer’s
performance on cloud services.

As shown in Fig. 3, the framework of MINER contains
5 main components: Sequence Template Selection,
Generation Module, Fuzzing Module, Collection
Module, and Training Module. The basic workflow is that
MINER continuously generates request sequences to test
a cloud service via its REST API. Before fuzzing, like
existing fuzzers, MINER constructs request templates for a
target REST API with the Compiler Module as described in
Section 2.2. For each test, MINER 1) utilizes the Sequence
Template Selection to probabilistically select request
sequence templates according to their lengths and then extend
sequences; 2) uses the Generation Module to generate each
request in sequence templates and constructs ready-to-use
request sequences; and 3) utilizes the Fuzzing Module to
test a cloud service with generated request sequences. During
the execution of the above modules, the Collection Module
collects the following historical data: First, MINER collects
the valid request sequences, all of whose requests pass the
cloud service’s checking, to enrich the sequence template set.
Second, if a request passes the checking, MINER collects the
mutated parameter values that are not the default ones. For
clarity, we use "param-value pair" to represent the mutated
parameter and its used value in request generation, e.g.,
<"with_projects", "false"> as shown in Fig. 1. Then, MINER
periodically invokes the Training Module to train an

Security Rule Checker

Traditional
Checker

DataDriven
Checker

Generation Module

Generated Request
Sequences

Request Generation

Traditional Generation

Generation based on
Param-Value Lists

Fuzzing Module

Collection Module

Training Data for
Attention Model

Request Sequence
Template

Error
Collection

Generation Request
Sequence Testing

Start

Training Module

Attention Model
Training

Param-Value Lists
for Requests

Sequence Template Selection

Length Orientated
Selection

Request Sequence
Extension

Figure 3: The framework of MINER.

attention model with the collected param-value pairs. After
training, MINER uses the model to generate lists of desirable
param-value pairs for each request template to enhance the
request generation. In the following, we use "param-value
list" to represent a list of generated param-value pairs. The
details of each module are as follows.

Sequence Template Selection: In this component,
MINER constructs candidate sequence templates based on
the seed sequence templates collected from the Collection
Module. Specifically, MINER first assigns a different selec-
tion probability to each seed sequence template according to
its length. The longer a sequence template is, the larger its
selection probability is. Thus, MINER obtains a set of selected
sequence templates that tend to have larger lengths. Second,
for each selected sequence template, MINER performs the
extension process to construct a candidate sequence template.
In other words, MINER adds a new request template at the end
of the selected template. Based on the above design, MINER
implements the length-orientated sequence construction. In
implementation, we use log10(l + 1), where l is the length
of a sequence template, as the probability function for the
Sequence Template Selection.

After finishing all the extension processes, MINER ob-
tains a set of candidate sequence templates and enters the
Generation Module.

Generation Module: In this component, MINER gen-
erates each request in a candidate sequence template, i.e.,
MINER assigns a value for each parameter excluding a target
object id in a request. As shown in Fig. 3, MINER implements
two methods to generate requests. The first one is the tra-
ditional generation method as described in Section 2.2, i.e.,
randomly selecting an alternative value for each parameter.
On the other hand, the procedure of the second method is
as follows. To generate a request, MINER 1) selects the de-
fault value for each parameter; 2) finds the set of param-value
lists, each of which contains a list of param-value pairs for
mutation, generated by the attention model for this request
template; 3) probabilistically selects a candidate param-value
list from the set according to a uniform distribution; and 4)
uses the specified values to modify the parameters according
to the param-value pairs in the selected list. For the param-
eters that are not in the selected param-value list, MINER
remains their default values in request generation. By per-
forming the above procedure, MINER achieves the attention

model-based request generation.
In implementation, to generate a sequence containing n

requests, MINER uses param-value lists to generate the first
n−1 requests, and uses the traditional generation method to
generate the last request. The reasons are as follows. When
generating the first n−1 requests, MINER would like to lever-
age param-value lists to improve the generation quality. This
helps trigger normal executions of a target cloud service, and
obtain a target object id if there is a producer in the request
sequence. Then, MINER utilizes the traditional generation
method to generate the last request, in order to increase the
probability of triggering an abnormal behavior, e.g., tries to
create a resource with the parameter value that does not con-
form to the defined type.

After generating all the requests, MINER obtains ready-to-
use request sequences, and enters the Fuzzing Module.
Fuzzing Module: In this component, MINER performs
the following process to explore unique errors. First, MINER
sends a generated request sequence to a cloud service via its
REST API, and analyzes the corresponding response to each
request. If MINER receives a response in 50× Range, MINER
thinks that the corresponding request triggers an error, and
stores the generated sequence among with their responses
locally for future analysis. Second, MINER leverages each
security rule checker to mutate the current request sequence,
in order to trigger specific rule violations. In particular, we
propose the request parameter violation checking, and imple-
ment a new security rule checker named DataDriven Checker
to find the errors caused by incorrect parameter usage, whose
target rule violation is as follows.

In general, vendors define specific parameters for each
request to trigger specific behaviors of a cloud service. If a
user adds an undefined parameter to a request and sends it
to a cloud service, generally the cloud service ignores the
incorrect usage of the undefined parameter, and performs
behaviors according to the values of the defined parameters.
However, a cloud service may perform unexpected behaviors
according to the undefined parameters due to unexpected
conditions, e.g., parameter definition update and incorrect
code implementation. The unexpected behaviors can trigger
security-related exceptions, e.g., a cloud service may access
a non-existent resource. As a result, the process of a cloud
service can crash and return a response in 50× Range due to
undefined parameters.

To capture this kind of rule violation, the DataDriven
Checker adds an undefined param-value pair to a request
during the generation process. Specifically, for the last re-
quest in a sequence, MINER randomly selects an undefined
param-value pair collected in the Collection Module. Then,
MINER adds the selected pair into the last request of the se-
quence, e.g., adds <"min_access_level", "1"> in the request
shown in Fig. 1d. Finally, MINER sends the sequence with
the newly constructed request to a cloud service via its REST
API. If the cloud service returns a response in 50× Range,
MINER considers that the new request triggers an incorrect
parameter usage error, and stores the sequence locally for
further analysis.

After executing the above process for all the generated
request sequences, MINER enters the Sequence Template
Selection to start the next iteration.
Collection Module: In the fuzzing process, MINER
first collects the valid request sequences, in which all the
requests pass the cloud service’s checking in the Fuzzing
Module. These sequences are used as the seed sequence tem-
plates in the Sequence Template Selection to guide the
sequence construction. Second, MINER analyzes the response
of each generated request from a cloud service, and extracts
the param-value pairs used in the valid requests that pass the
checking. Specifically, if a request gets a response in 20× and
50× Range, which means that the request passes the checking
and triggers a behavior of the cloud service, MINER analyzes
the used value for each parameter in the request. If the used
value is not the default one for a parameter, MINER regards the
value as a key mutation on this parameter, and stores them as a
param-value pair. Thus, MINER collects a list of param-value
pairs for each valid request, which contains the valid muta-
tions to help pass the cloud service’s checking. For instance,
MINER will collect [<"with_custom_attributes", "true">,
<"with_projects", "false">] for the example in Fig. 1d. The
collected lists are used to 1) train the attention model in the
Training Module, and 2) provide undefined param-value
pairs for the DataDriven Checker to trigger incorrect parame-
ter usage errors.
Training Module: MINER periodically invokes the
Training Module to train an attention model with the param-
value pairs collected in the Collection Module. After train-
ing, MINER utilizes the model to generate the param-value
lists for each request template, which will be used in the
Generation Module to generate requests. In the following,
we describe the detailed usage of the attention model.

3.3 Attention Model used in MINER

In this paper, we utilize a customized attention model, which
is one of the most powerful machine learning models for se-
quence generation, to learn the implicit relationship between
param-value pairs. Then, we utilize the model to explore
more ideal combinations of param-value pairs, which are de-

Figure 4: The structure of the attention model used in MINER.

noted as param-value lists. To achieve this, in the Training
Module, MINER trains the attention model using the lists of
param-value pairs as the training data, which are collected
from the requests triggering responses in 20× Range. The
process is as follows.

1) MINER adds the corresponding request name in the
front of each list of param-value pairs, and regards each
list as a word sequence, e.g., ["GET /api/v4/groups/{id}",
"<with_custom_attributes, true>", "<with_projects, false>"]
for the example as shown in Fig. 1. Then, we follow the com-
mon processing of the machine learning model and embed
all the words into vectors, e.g., "<with_projects, false>" is
represented by a unique vector in matrix form. Thus, the lists
collected in the Collection Module are transformed into
a set of vector sequences (similar to the input sequence as
shown in Fig. 4); 2) MINER randomly divides the vector se-
quences into the training set and the validation set, which are
used to train the model and verify the prediction performance
of the model, respectively; 3) In each set, MINER utilizes a
vector sequence to train/verify the attention model. Specif-
ically, MINER uses the previous n vectors in the sequence
as the input and the n+ 1 th vector as the expected output
as shown in Fig. 4. During the training process, the model
adaptively adjusts the weights between neurons and increases
the prediction probability of the expected output vector. For
instance, assuming the ideal output is <pair T+2> as shown
in Fig. 4, the model will adjust the weights to improve the
prediction probability of <pair T+2> and lower others’ predic-
tion probabilities; 4) After MINER finishes a certain number
of training epochs and improves the prediction accuracy to a
stable level, the training process ends.

After the training process, MINER utilizes the attention
model to generate the param-value lists for the request tem-
plates, which provide the param-value pairs as the training
data. To be specific, MINER employs the vector of a request
name as the first input of the attention model, and predicts
a param-value pair as the output. Next, the predicted pair is
appended to the previous input as the new input to predict
the next pair. The end conditions for the generation of param-
value pairs are as follows. 1) The attention model thinks that
the sequence generation finishes and outputs a terminator
(generally the terminator is a null vector that does not repre-
sent any word); 2) The list of param-value pairs reaches the

Collection Module

Set of Request
Sequences

Param-Value Pairs from
Requests with Responses

in 50X Range

Param-Value Pairs from
Requests with Responses

in 20X Range

DataDriven Checker

Set of Param-
Value Pairs

Training Module
Set of Param-
Value Pairs

Generated
Param-Value Lists

Sequence Template Selection
Sequence

Template Set
Length Orientated

Selection

Request Generation

Traditional Generation

Generation based on
Param-Value Lists

Figure 5: The data flow of the three new designs in MINER.

preset maximum length, which is significantly greater than
the sequence length in the training set. Then, the generated
list is stored locally, and will be used as a param-value list in
the Generation Module as described in Section 3.2.

In implementation, we use a lightweight attention model,
which contains a Gated Recurrent Unit (GRU) neural net-
work [17, 19], an attention layer [36] and a linear layer as
shown in Fig. 4, to handle our generation problem. MINER
invokes the Training Module every two hours and retrains
the model from scratch based on the newly discovered train-
ing data. The training and generation process of the attention
model runs in parallel with the fuzzing process, which will
not affect the fuzzing performance of MINER. Contributed
by the above settings, the time cost to train our model is less
than 500 seconds as shown in Section 5.5.

3.4 Data Flow of MINER

In this subsection, we illustrate how the three core data-driven
designs work together in MINER from the perspective of
data flow. As shown in Fig. 5, in the Collection Module,
MINER mainly collects three datasets: 1) the set of request
sequences whose requests successfully pass the checking of a
cloud service; 2) the param-value pairs from the requests with
responses in 50× Range; and 3) the param-value pairs from
the requests with responses in 20× Range. In the following,
we illustrate which design in MINER utilizes these datasets.

For the set of request sequences, MINER uses it to guide se-
quence construction in the Sequence Template Selection.
Since MINER mainly deals with sequence template construc-
tion in this design, the other two datasets are not used.

The param-value pairs from the valid requests, which pass
the cloud service’s checking and have responses in 50× and
20× Range, are used in the DataDriven Checker to explore in-
correct parameter usage errors. Since a request should pass the
checking before triggering a potential error, in the DataDriven
Checker MINER does not use the param-value pairs from
the requests having the responses in 40× Range, which may
cause the generated request to be rejected by a cloud service
and reduces the error discovery efficiency.

The param-value pairs from the requests, whose responses
are in 20× Range, are also used in the Training Module as
the training data of the attention model. Thus, the attention
model tends to generate the param-value lists that help pass
the checking of a cloud service. Since 1) the requests having
responses in 50× Range are pretty rare in the fuzzing process

Table 1: The target cloud services and 11 REST APIs used in
the experiments.

Cloud
Service

REST
API

Request
Templates

Request
Parameters Description

GitLab
14.1.0-ce.0.

Projects 29 304 API to interact with projects
Groups 13 293 API related to groups
Issues 23 89 API to interact with issues
Commits 14 59 API related to commits
Branches 8 28 API to interact with branches

Bugzilla
5.0.4

Comments 8 26 API to maintain comments
Bugs 11 89 API to maintain bug reports

Groups 6 29 API to maintain user groups

WordPress
5.8.1

Categories 5 20 API to maintain categories
Posts 10 42 API to interact with posts

Comments 8 40 API to maintain comments

and 2) not all types of requests can get the responses in 50×
Range, their number is not sufficient as the training data of a
model. Thus, we do not include their param-value pairs as the
training data in our application scenario. On the contrary, if
we collect sufficient requests with responses in 50× Range in
the application scenarios like continuous fuzzing for a cloud
service, we can utilize a machine learning model to learn how
to generate a request triggering a response in 50× Range, and
utilize the model to generate requests on demand.

Based on the above illustration from the perspective of
data flow, we can learn that all the datasets for MINER can
be automatically collected during the fuzzing process. All
the three designs rely on the datasets from the Collection
Module, and are able to work together. Our hybrid data-driven
approach is compatible with the fuzzing process, which can
be deployed in general REST API fuzzers.

4 Evaluation

4.1 Experiment Setup

In implementation, in order to measure the error discovery
performance of our checker, we construct two prototypes
without and with the DataDriven Checker, which are named
MINER_PART and MINER, respectively.
Compared fuzzer. We evaluate MINER_PART and MINER
against the state-of-the-art open-sourced fuzzer RESTler [12],
which is the first REST API fuzzer proposed in 2019 to ex-
plore errors on a cloud service automatically. Since another
REST API fuzzer Pythia is not open-sourced, we cannot com-
pare our fuzzers with it [13].
Target cloud services. We evaluate the above fuzzers on Git-
Lab [5], Bugzilla [2] and WordPress [8] via 11 REST APIs as
shown in Table 1, and the reasons to select these targets are
as follows. First, GitLab, Bugzilla and WordPress are widely-
used cloud services. Evaluating their security is meaningful
for vendors and users. Second, the request templates for the
REST APIs of GitLab contain many parameters to support a
wide variety of functionalities. On the contrary, the request
templates of Bugzilla and WordPress are relatively simple
ones with fewer parameters, which limits the place that can

Table 2: The fuzzing performance of RESTler, MINER_PART and MINER on 3 cloud services.

Cloud
Service

REST
API

Total Request
Templates

RESTler MINER_PART MINER
Pass
Rate

Unique
Request Templates Errors Pass

Rate
Unique

Request Templates Errors Pass
Rate

Unique
Request Templates Errorsa

GitLab

Projects 29 72.01% 22 7 95.77% 26 17 95.78% 26 21 (9)
Groups 13 65.01% 10 21 92.37% 12 26 92.28% 12 33 (10)
Issues 23 86.56% 21 7 96.13% 21 7 95.42% 21 15 (6)
Commits 14 53.52% 12 16 86.65% 12 20 86.70% 12 37 (12)
Branches 8 81.10% 8 2 89.91% 8 3 89.31% 8 9 (6)

Bugzilla
Comments 8 88.79% 7 8 89.74% 8 8 90.23% 8 8 (0)
Bugs 11 45.03% 4 7 91.05% 4 7 93.16% 4 14 (6)

Groups 6 54.88% 4 5 74.01% 5 6 72.85% 5 11 (5)

WordPress
Categories 5 75.33% 4 8 91.96% 4 10 92.64% 4 13 (4)
Posts 10 94.06% 10 4 95.13% 10 5 95.56% 10 7 (2)

Comments 8 96.61% 4 0 99.65% 4 0 99.43% 4 0 (0)
Average 73.90% 9.64 7.73 91.12% 10.36 9.91 91.21% 10.36 15.27 (5.45)

aThe number of unique errors found by MINER is presented in two parts: the total number of all the unique errors as shown in front of the parentheses, and the
number of unique errors found by the DataDriven Checker as shown in the parentheses.

be mutated. Thus, in the evaluation, we can analyze the per-
formance of fuzzers on the targets with different functional
complexity. Third, each REST API interacts with different
kinds of resources on a cloud service. Fuzzing via these REST
APIs, the evaluated fuzzers can execute different code lines
and explore different states of a cloud service, which can
examine their fuzzing performance more comprehensively.

To construct the targets, we deploy an open-sourced version
of each cloud service on our server, and construct request
templates with the Compiler Module for all the REST APIs,
which is a one-shot effort and costs us about 1 hour.
Experiment settings. Each evaluation lasts for 48 hours on a
docker container configured with 8 CPU cores, 20 GB RAM,
Python 3.8.2, and the OS of Ubuntu 16.04 LTS. We run eval-
uations on 3 servers, each of which has two E5-2680 CPUs,
256GB RAM and a Nvidia GTX 1080 Ti graphics card.
Evaluation metrics. To measure the performance of each
fuzzer on request generation and error discovery, we evaluate
the fuzzers with the following three metrics. First, to evaluate
the request generation quality, we measure the pass rate of
each fuzzer to the syntax and semantic checking of a cloud
service, which is calculated by dividing the number of the
responses in 20× and 50× Range by the number of total
responses. Second, to measure how many unique request tem-
plates are successfully generated by each fuzzer, we count the
types of generated requests that get responses in 20× Range.
The more unique request templates are successfully generated
and sent to a cloud service, the more kinds of behaviors are
triggered by a REST API fuzzer. Third, we count the number
of unique errors, which trigger the responses in 50× Range
or violate the defined security rules, reported by each fuzzer.

4.2 Fuzzing Performance Analysis
In this subsection, we analyze the fuzzing results reported by
each fuzzer. The details are shown in Table 2, from which we
have the following conclusions.

• As shown in Table 2, the new designs implemented in
our fuzzers significantly improve the pass rate on a cloud
service. For instance, the average pass rate of MINER_PART

and MINER is 28.65% and 28.28% higher than RESTler on
GitLab, respectively. The average pass rate of MINER_PART
is 35.03% higher than RESTler on Bugzilla. Although the
request templates of several APIs, e.g., WordPress Posts API,
are easy-to-construct ones containing few parameters, our
fuzzers still achieve higher pass rate compared to RESTler.
The experimental results confirm the pass rate improvement
contributed by our hybrid data-driven approach.

• MINER_PART and MINER can generate high-quality re-
quests for more unique request templates than RESTler. For
instance, the average number of unique request templates
covered by MINER_PART is 8.22% larger than RESTler on
GitLab. The number of unique request templates covered by
MINER is 20.00% larger than RESTler on GitLab Groups API.
We analyze the executions of each request template and have
the following conclusions. Our hybrid data-driven approach
significantly improves the complexity of generated request
sequences. First, the length-orientated sequence construction
implemented in MINER increases the executions of long re-
quest sequences, and increases the attempts on the consumers
which require target object ids. Second, MINER’s attention
model-based request generation significantly improves re-
quest generation quality. In particular, MINER improves the
producers’ pass rate and obtains target object ids, which can
serve as the key parameter values for consumers. As a result,
MINER successfully sends more types of requests to a cloud
service. Since the only difference between MINER_PART and
MINER is that MINER contains a new security rule checker
DataDriven Checker, they perform the same on the number
of covered request templates.

• Both MINER_PART and MINER find more unique errors
than RESTler on most targets. For instance, MINER_PART
finds 37.74% and 25.00% more unique errors than RESTler
on GitLab and WordPress, respectively. We analyze the rea-
sons as follows. As indicated in Section 3.1, the kinds of
request combinations generated by RESTler are limited due
to the short generated request sequences. On the contrary,
contributed by our approach, MINER_PART and MINER can
generate long sequences containing high-quality requests to
test a cloud service. The kinds of request combinations cover

Table 3: The real errors found by RESTler, MINER_PART and MINER on GitLab, Bugzilla and WordPress.
Target No. Endpoints of Used Requests Responses Description RESTler MINER_PART MINER

GitLab

1 1. POST /api/v4/projects
2. GET /api/v4/projects/:id/fork

1. 201 Created
2. 500 Internal Error

Use <"namespace_id", "-1"> pair in the
second request.

2 1. POST /api/v4/projects
2. PUT /api/v4/projects/:id

1. 201 Created
2. 500 Internal Error

The second request updates a project with the
undefined parameter "initialize_with_readme".

3
1. POST /api/v4/projects
2. GET /api/v4/projects/:id/custom_attributes
3. DELETE /api/v4/projects/:id
4. GET /api/v4/projects/:id/custom_attributes

1. 201 Created
2. 200 OK
3. 202 Accepted
4. 500 Internal Error

Use after free a. The fourth request tries
to access the attributes of a deleted project.

4 1. GET /api/v4/projects/:id/custom_attributes 1. 500 Internal Error Using string or invlaid number as :id.

5 1. POST /api/v4/projects
2. POST /api/v4/projects/:proj_id/hooks
3. PUT /api/v4/projects/:proj_id?/hooks/:hook_id

1. 201 Created
2. 200 OK
3. 500 Internal Error

The third request updates a hook with 3
undefined parameters "requirements_
access_level", "auto_cancel_pending_

pipelines" and "initialize_with_readme".
6 1. GET /api/v4/groups 1. 500 Internal Error List groups with 2 parameters "statistics"

and "min_access_level".
7 1. GET /api/v4/groups 1. 500 Internal Error Use <"per_page", "0"> pair in the request.
8 1. POST /api/v4/groups 1. 500 Internal Error Error when the parameter "praent_id" is set

to be a special number like 2, -1, -2.
9 1. POST /api/v4/groups 1. 500 Internal Error Create group with the undefined parameter

"shared_runners_setting".

10 1. POST /api/v4/groups
2. DELETE /api/v4/groups/:id
3. GET /api/v4/groups/:id/descendant_groups

1. 201 Created
2. 202 Accepted
3. 200 OK

Use after free. The third request successfully
accesses the descendant groups of a
deleted group. Private data leakage.

11 1. POST /projects/:id/issues
2. PUT /projects/:id/issues/:issue_iid

1. 201 Created
2. 500 Internal Error

Update issue with an extra-long label.

12 1. POST /api/v4/groups
2. DELETE /api/v4/groups/:id
3. GET /api/v4/groups/:id

1. 201 Created
2. 202 Accepted
3. 200 OK

Use after free. The third request lists a group
with the parameters "with_custom_attributes"

and "with_projects". Private data leakage.

13
1. POST /projects/:id/repository/branches
2. DELETE /projects/:id/repository/branches/:Br
3. GET /projects/:id/repository/branches/:Br
4. POST /projects/:id/repository/branches

1. 201 Created
2. 204 No Content
3. 404 Not Found
4. 201 Created

Use after free. The fourth request
successfully creates a branch while its
"ref" refers to the name of the deleted

branch. Private data leakage.

14 1. POST
/api/v4/projects/:proj_id/repository/branches 1. 500 Internal Error Create a new branch with

the undefined parameter "sort".
Bugzilla 15 1. POST /rest/bugs 1. 500 Internal Error Use invalid datetime value in the request.

Word-
Press

16
1. POST /categories ⇒ Category id: (cid)
2. POST /categories
3. DELETE /categories(cid)
4. POST /categories

1. 201 Created
2. 201 Created
3. 200 OK
4. 500 Internal Error

Use after free. The parent of both the second
and forth requests refers to the same id of the
category (cid). However, the fourth request

triggers an error after (cid) gets deleted.
17 1. POST /wp/v2/posts 1. Timeout Connections get closed after timeout.

Total 7 13 17
aA use-after-free error on cloud services means that the request accesses a deleted resource, leading to bypassing resource quotas and corrupting service state.

and far exceed those generated by RESTler. Thus, they can
trigger more kinds of the cloud service’s behaviors in a sin-
gle request sequence test, followed by finding more errors
than RESTler. In addition, since MINER_PART and MINER
can successfully generate requests for more unique request
templates as shown in Table 2, they can trigger more and
different behaviors of a target cloud service compared to
RESTler. Thus, they can trigger more unique errors based
on these unique request templates. Due to the randomness in
fuzzing, the number of unique errors found by MINER_PART
and MINER is slightly different, if we do not count the errors
found by the DataDriven Checker for MINER.
• The DataDriven Checker of MINER finds many unique

errors caused by misuse of undefined parameters. For instance,
MINER finds 43 unique errors in total with the DataDriven
Checker on GitLab via the 5 REST APIs. MINER also finds 6
unique errors that misuse undefined parameters on Bugzilla
Bugs API. The results demonstrate that 1) incorrect parameter
usage errors commonly exist in various cloud services, and
2) MINER can effectively discover this kind of unique errors
with our data-driven designs.

4.3 Real Error Analysis

To further evaluate the performance of each fuzzer on real
error discovery, we manually analyze all the errors on GitLab,
Bugzilla and WordPress reported by each fuzzer. Specifically,
we filter out the errors that cannot be reproduced due to the
change of server states as discussed in Section 6.2. Then, we
deduplicate the errors that are caused by the same reason. The
details of real errors on three cloud services found by each
fuzzer are shown in Table 3.
• The exploration space of real errors triggered by RESTler

is fully covered and exceeded by MINER_PART and MINER.
After error filtering and deduplicating, MINER_PART finds all
the errors discovered by RESTler, and finds 6 more unique
errors missed by RESTler, from which we can have the follow-
ing conclusions. 1) Since RESTler’s possible request combi-
nations are covered by MINER_PART, the real errors triggered
by RESTler also can be found by MINER_PART; 2) Thanks to
the length-orientated sequence construction implemented in
MINER_PART, MINER_PART assigns more execution times
to long request sequences. As a result, MINER_PART finds

Table 4: The pass rate and the number of unique errors found by RESTler, RESTler+Seq, RESTler+Rec1, RESTler+RecList,
RESTler+Model, and MINER_PART, respectively.

Cloud Service REST API RESTler RESTler+Seq RESTler+Rec1 RESTler+RecList RESTler+Model MINER_PART
Pass Rate Errors Pass Rate Errors Pass Rate Errors Pass Rate Errors Pass Rate Errors Pass Rate Errors

GitLab
Projects 69.48% 7.00 89.57% 7.50 66.10% 7.50 65.66% 7.25 87.11% 9.00 94.70% 9.75
Groups 60.28% 16.00 94.67% 19.50 65.22% 19.00 65.56% 17.00 94.53% 19.00 94.66% 19.50
Issues 86.32% 6.50 89.06% 6.50 88.14% 7.00 90.38% 7.00 91.00% 7.50 94.31% 7.00

Bugzilla Comments 86.19% 8.00 89.05% 8.00 87.05% 8.00 89.05% 8.00 87.94% 8.25 89.36% 8.00
WordPress Categories 81.35% 9.00 86.40% 8.75 81.03% 9.00 81.44% 9.00 82.41% 9.50 90.53% 9.50

5 new unique errors triggered by the request sequences of
length greater than 2; 3) We find that RESTler cannot find the
No. 16 error triggered by 4 requests, but all four requests had
been successfully generated by RESTler, as the number of
unique request templates successfully generated by RESTler
is the same as MINER_PART and MINER on WordPress Cat-
egories API as shown in Table 2. Thus, either RESTler fails
to construct a sequence of sufficient length, or RESTler does
not generate high-quality requests to pass the checking of
WordPress. This case study demonstrates the motivation of
our paper, i.e., a new solution is demanded to improve the
sequence construction and request generation.

• The DataDriven Checker implemented in MINER can
efficiently find the unique errors caused by incorrect parame-
ter usage. For instance, as shown by the No. 2 error, MINER
adds an undefined parameter "initialize_with_readme" to the
PUT request, which is the parameter used in other requests
like POST. Violating the standard API specification, GitLab
executes the behavior of "initialize_with_readme". However,
this behavior is not compatible with the behavior of PUT, and
causes the response of 500 Internal Error. For another example
shown by the No. 9 error, MINER sends a POST request with
the undefined parameter "shared_runners_setting". When
creating a group, GitLab accesses a non-existent resource be-
cause of this parameter, which causes the crash of the creation
process. As a result, GitLab returns the response of 500 Inter-
nal Error. Although MINER finds several incorrect parameter
usage errors on Bugzilla and WordPress, we find that their
root causes are the same as the shown errors in Table 3. Thus,
these errors are not shown in Table 3.

Security bugs. Our fuzzers find 5 security bugs that allow at-
tackers to access resources that have been deleted, which may
cause the leakage of private user data. For instance, as shown
by the No. 13 error, the fourth request creates a new branch
referring to the deleted one, which copies the resource data
from the deleted one. Therefore, attackers can leverage the
No. 13 error to restore the deleted private data of users. These
cases demonstrate the significant performance of MINER in
constructing long request sequences to explore head-to-reach
states and find security bugs. On the contrary, RESTler hardly
generates a request sequence of length greater than 2, and
cannot trigger any of the 5 security bugs.

We have reported all the discovered unique errors on Git-
Lab, Bugzilla and WordPress, and 7 of them have already
been confirmed as logic bugs by vendors.

5 Further Analysis

5.1 Stepwise Analysis

In order to evaluate the contribution of our data-driven designs
to the pass rate and error discovery, we construct the follow-
ing 4 fuzzers with different designs. To be specific, we con-
struct RESTler+Seq by implementing the length-orientated
sequence construction in RESTler; RESTler+Rec1 is the one
that generates requests by randomly using a param-value pair
recorded in the Collection Module and using default val-
ues for other parameters; RESTler+RecList randomly uses a
list of recorded param-value pairs to generate requests, i.e.,
it reproduces and sends the same requests to trigger the same
behaviors of cloud services; and we combine RESTler with
the attention model-based request generation to construct
RESTler+Model. Then, we can measure the contribution of
the length-orientated sequence construction by comparing the
results of MINER_PART and RESTler+Model, and the results
of RESTler+Seq and RESTler. We can measure the contribu-
tion of the attention model-based request generation from the
results of MINER_PART and RESTler+Seq, and the results of
RESTler+Model and RESTler. Furthermore, we can evaluate
the contribution of different request generation algorithms on
pass rate and error discovery by comparing the performance
of RESTler+Rec1, RESTler+RecList and RESTler+Model.
Since the evaluation in Section 4 demonstrates the significant
performance of the DataDriven Checker on the discovery of
incorrect parameter usage error, we do not evaluate its perfor-
mance in this subsection. Each evaluation lasts for 12 hours
and is repeated 4 times. The experiment settings are the same
as in Section 4.1, and the results are shown in Table 4, from
which we have the following conclusions.

• The length-orientated sequence construction significantly
improves the pass rate of a REST API fuzzer, while it can-
not improve the error discovery on most evaluations. For
instance, the pass rate of MINER_PART is 9.85% higher than
RESTler+Model on WordPress Categories API, and the aver-
age pass rate of RESTler+Seq is 26.48% higher than RESTler
on GitLab. On the other hand, RESTler+Seq performs closely
to RESTler on error discovery. To figure out the reason, we
analyze the sequence templates constructed by RESTler+Seq,
and have the following conclusion. The sequence templates of
RESTler+Seq are mainly composed of easy-to-construct re-
quest templates, e.g., GET, which contain few parameters and
are easy to pass the cloud service’s checking. Because of the

Table 5: The published bugs found by RESTler and MINER on GitLab.

No. Endpoints of Used Requests Responses Description RESTler MINER

1

1. POST /api/v4/projects
2. GET /api/v4/projects/:id/custom_attributes
3. DELETE /api/v4/projects/:id
4. GET /api/v4/projects/:id/custom_attributes

1. 201 Created
2. 200 OK
3. 202 Accepted
4. 500 Internal Error

Use after free a. The fourth request
tries to access the attributes of a

deleted project.

2

1. POST /api/v4/projects
2. POST /api/v4/projects/:id_1/fork
3. POST /api/v4/projects
4. POST /api/v4/projects/:id_2/fork
5. POST /projects/:id_1/fork/:id_2

1. 201 Created
2. 201 Created
3. 201 Created
4. 201 Created
5. 500 Internal Error

Error when creating a forked
relationship between existing projects

that already have forks.

3 1. GET /api/v4/groups 1. 500 Internal Error List groups with 2 parameters "statistics"
and "min_access_level".

4 1. GET /api/v4/groups 1. 500 Internal Error Use <"per_page", "0"> pair in request.
Total 2 4

aA use-after-free error on a cloud service means that the request accesses a deleted resource.

Table 6: The average time spent by RESTler and MINER to
trigger the published bugs on GitLab, where N/A means that
the fuzzer fails to trigger the bug in 48 hours.

No. REST
API

Request
Templates

Minimum Length
to Trigger Bugs RESTler MINER

1 Projects 3 3 N/A 66.5 mins
2 Projects 4 5 N/A 142.6 mins
3 Groups 1 1 27.6 mins 26.6 mins
4 Groups 1 1 13.7 mins 14.2 mins

length-orientated sequence construction, RESTler+Seq tends
to generate sequences based on long sequence templates, in
which all the requests have passed the checking. However,
due to low request generation quality, RESTler+Seq rarely
stores hard-to-construct request templates within its sequence
templates, which often consist of easy-to-construct request
templates. As a result, the executions of easy-to-construct
requests increase by dozens of times, which results in a high
pass rate. On the contrary, MINER_PART improves the pass
rate of hard-to-construct requests with the help of the attention
model-based request generation, which improves the diversity
of sequence templates and error discovery.

• The attention model-based request generation can im-
prove the error discovery and pass rate of a REST API fuzzer.
For instance, RESTler+Model finds more errors than RESTler
on all 5 evaluations. MINER_PART also performs better than
RESTler+Seq on pass rate and error discovery with the help
of the attention model-based request generation. The results
demonstrate the contribution of our new design to the fuzzing
performance. Furthermore, MINER_PART performs the best
on pass rate and error discovery on most evaluations, which
implies that the two data-driven designs can be combined to
improve each other.

• The attention model-based request generation can effec-
tively provide key param-value lists for request generation
and improve the fuzzing performance compared to straightfor-
ward algorithms. For instance, the pass rate and error discov-
ery of RESTler+Model is better than RESTler+Rec1 on most
evaluations. The error discovery of RESTler+Model is signifi-
cantly better than RESTler+RecList on all 5 evaluations. Thus,
neither randomly selecting a mutation nor simply reproducing
a well-constructed request can improve the performance of
a REST API fuzzer. The results demonstrate that our design

learns the implicit relations between key param-value pairs,
and generates diverse yet valid mutations as param-value lists.
Our design can serve as a new direction to improve request
generation quality for REST API fuzzing.

5.2 Performance on Reproducing Serious Bugs

To evaluate the performance of RESTler and MINER on seri-
ous bug discovery, we manually check the published issues of
GitLab, and collect 4 serious bugs that a REST API fuzzer can
reproduce as the ground truth. Then, we construct the fuzzing
grammar that only contains the relevant request templates for
each unique bug, as shown in Table 6. For instance, to repro-
duce the No. 2 bug, a fuzzer needs to correctly generate 5
requests in a reasonable order, which are based on 4 different
request templates in the grammar. Each evaluation lasts up
to 48 hours and is repeated 5 times to calculate the average
trigger time. The results are shown in Table 5 and Table 6,
from which we have the following observations.

• MINER can reproduce the serious bugs published on Git-
Lab more effectively and efficiently compared to RESTler.
MINER can reproduce all 4 bugs, while RESTler can repro-
duce two. Furthermore, it takes 142.6 mins on average for
MINER to construct a sequence with 5 requests in the correct
order as shown in Table 5, while RESTler cannot construct
the sequence within 48 hours. The results demonstrate the sig-
nificant performance of MINER on serious bug discovery, and
we analyze the reasons as follows. First, MINER can construct
long request sequences with the length-orientated sequence
construction, which increases the execution times on compli-
cated request combinations compared to RESTler. Second,
the attention model-based request generation implemented in
MINER improves the pass rate of hard-to-construct requests
to GitLab, which reduces the trigger time of bugs.

• Our designs will not prevent MINER from triggering
relatively simple bugs. As shown in Table 5, the No. 3 and No.
4 bugs are triggered by one request with incorrect parameters
and values. Both MINER and RESTler trigger the two bugs
by using the traditional generation method to generate the
corresponding request, and the average time spent by the two
fuzzers is close. In conclusion, MINER performs closely with

1 2 3 4 5 6 7 8 9 >=10
Length

0

20

40

60

80

100

Ra
tio
(%

)

RESTler
RESTler+Seq
RESTler+Model
MINER_PART

(a) GitLab Projects API.

1 2 3 4 5 6 7 8 9 >=10
Length

0

20

40

60

80

100

Ra
tio
(%

)

RESTler
RESTler+Seq
RESTler+Model
MINER_PART

(b) Bugzilla Comments API.

1 2 3 4 5 6 7 8 9 >=10
Length

0

20

40

60

80

100

Ra
tio
(%

)

RESTler
RESTler+Seq
RESTler+Model
MINER_PART

(c) Wordpress Categories API.
Figure 6: The distribution of sequence length sent by 4 fuzzers, where RESTler+Seq only implements the length-orientated
sequence construction and RESTler+Model only implements the attention model-based request generation.

RESTler on discovering this kind of bugs, which are triggered
by one incorrectly constructed request.

5.3 Sequence Length Analysis
To analyze the contribution of different designs to sequence
length, we conduct the experiments as follows. We evaluate
RESTler, RESTler+Seq, RESTler+Model, and MINER_PART
on GitLab Projects API, Bugzilla Comments API, and Word-
Press Categories API. Each evaluation lasts for 12 hours,
during which we count the executions of sequences with
different lengths. Based on the above settings, we can mea-
sure the contribution of the attention model-based request
generation to sequence length from the results of RESTler
and RESTler+Model, and the results of RESTler+Seq and
MINER_PART. We can measure the contribution of the length-
orientated sequence construction to sequence length from
the results of RESTler and RESTler+Seq, and the results of
RESTler+Model and MINER_PART. Since the DataDriven
Checker does not affect the sequence extension, we omit
MINER in the evaluation. The results are shown in Fig. 6,
from which we have the following conclusions.

• As shown in Fig. 6, the attention model-based request
generation can increase the executions of long request se-
quences. For instance, RESTler+Model assigns more exe-
cutions on longer request sequences than RESTler on all 3
targets. MINER_PART also generates more request sequences
with larger lengths compared to RESTler+Seq. The results
demonstrate the contribution of the attention model-based
request generation to sequence extension. By improving the
pass rate of requests with our design, a REST API fuzzer can
construct request sequences with larger lengths.

• The length-orientated sequence construction significantly
increases the executions of request sequences with large
lengths. Both MINER_PART and RESTler+Seq assign most
executions to the request sequences whose lengths are greater
than 10, demonstrating our design’s effectiveness.

5.4 Coverage Performance Analysis
To evaluate the coverage performance of each fuzzer, we hook
the source code of GitLab to trace the number of covered

code lines triggered by the incoming requests. Specifically,
we leverage a popular ruby gem named Coverband [3] to
trace the code lines executed in GitLab’s service/lib and
service/app folders. We also exclude the coverage statis-
tics for irrelevant behaviors like service boot. Then, we con-
duct the line coverage evaluation for RESTler, RESTler+Seq,
RESTler+Model, and MINER_PART, each of which lasts for
12 hours. Since the DataDriven Checker reuses the param-
value pairs collected from the used requests and triggers the
repeated code lines, it does not affect line coverage. Thus,
we omit MINER in the evaluation. The line coverage growth
of each fuzzer is shown in Fig. 7, from which we have the
following observations.

• Both the attention model-based request generation and
length-orientated sequence construction can improve line
coverage. For instance, the line coverage of RESTler+Model
and RESTler+Seq is better than RESTler on all the evalua-
tions. Furthermore, the line coverage of RESTler+Model is
better than RESTler+Seq on most targets, which implies that a
sequence with well-constructed requests triggers deeper states
of a cloud service than a long sequence with easy-to-construct
requests.

• MINER_PART performs the best on line coverage on all
the evaluations. For instance, MINER_PART covers the most
code lines at the end of each evaluation. The line coverage
triggered by MINER_PART grows rapidly on GitLab Groups
API and GitLab Issues API. The results demonstrate that our
data-driven designs can be combined to improve the coverage
performance of a REST API fuzzer.

5.5 Schedule of the Training Module

To evaluate the impact of different schedules of the Training
Module on fuzzing performance, we measure the average
time overhead and pass rate for MINER_PART when using
1 hour, 2 hours and 3 hours as the iteration duration of the
Training Module, respectively. Each evaluation lasts for 12
hours. Thus, the invocation times of the Training Module
are 12, 6 and 4 when using the above iteration durations, re-
spectively. For each evaluation, we 1) calculate the average
time overhead for each invocation of the Training Module

0 2 4 6 8 10 12
Time

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

N
ew

C

ov
er

ed

Li
ne

s

MINER_PART
RESTler+Model
RESTler+Seq
RESTler

(a) GitLab Projects API.

0 2 4 6 8 10 12
Time

0

500

1,000

1,500

2,000

2,500

N
ew

C

ov
er

ed

Li
ne

s

RESTler+Model
RESTler+Seq

MINER_PART

RESTler

(b) GitLab Groups API.

0 2 4 6 8 10 12
Time

0

500

1,000

1,500

2,000

2,500

3,000

3,500

N
ew

C

ov
er

ed

Li
ne

s

MINER_PART
RESTler+Model
RESTler+Seq
RESTler

(c) GitLab Issues API.
Figure 7: The line coverage growth of 4 fuzzers when fuzzing GitLab through 3 REST APIs, respectively.

Table 7: The average time overhead of the attention model and the pass rate of requests sent by MINER_PART when the iteration
duration of the Training Module is 1 hour, 2 hours and 3 hours, respectively.

Target 1 Hour 2 Hours 3 Hours
Time Overhead Pass Rate Time Overhead Pass Rate Time Overhead Pass Rate

GitLab Projects API 346.20s 92.78% 380.80s 91.54% 989.30s 89.55%
GitLab Groups API 318.90s 93.49% 386.90s 92.80% 1,002.67s 91.92%
GitLab Issues API 463.40s 90.90% 498.67s 90.67% 1,001.60s 90.23%

Bugzilla Comments API 97.60s 88.89% 117.30s 86.47% 143.70s 85.37%
WordPress Categories API 305.93s 91.02% 323.25s 90.84% 402.40s 90.14%

to train the attention model and generate the param-value
lists, and 2) calculate the pass rate of requests. The results
are shown in Table 7, from which we have the following con-
clusions. Note that due to the different number of request
templates and the different number of parameters in each
request template, the number of the collected param-value
pairs (i.e., the training data for the attention model) is dif-
ferent when using MINER_PART to fuzz a cloud service via
different REST APIs. Thus, the average time overhead to
train the attention model and generate param-value lists can
be different when fuzzing different targets.

• The average time overhead to train the attention model
and generate param-value lists increases when using a larger
iteration duration of the Training Module. For instance, as
shown in Table 7, the average time overhead of the Training
Module increases by 185.76% when using 3 hours as the it-
eration duration to fuzz GitLab Projects API compared to
1 hour. The average time overhead increases by 100.85%
when using 3 hours as the iteration duration to fuzz GitLab
Issues API compared to 2 hours. We analyze the reasons
for the results as follows. When the iteration duration of the
Training Module increases, the training data collected in
the Collection Module increases correspondingly. Thus,
the training set of the attention model increases, which re-
quires more time to finish the training.

• The pass rate of MINER_PART slightly decreases when
using a longer iteration duration to invoke the Training
Module. For instance, the pass rate of MINER_PART decreases
from 90.90% to 90.23% when using larger iteration durations
to fuzz GitLab Issues API. We infer the reasons for the results
as follows. The slight difference in pass rate is caused by the
request generation in the first period, in which MINER_PART
does not have the param-value lists generated by the attention

model and uses the traditional generation method to generate
requests with a low pass rate. Thus, the larger the iteration
duration is, the more times MINER_PART generates requests
with a low pass rate in the first period. After the first time
invoking the Training Module and obtaining param-value
lists, MINER_PART improves the generation quality of re-
quests and significantly increases the pass rate. As a result,
when using 3 hours as the iteration duration compared to
1 and 2 hours, MINER_PART generates more requests with
the traditional generation method, which results in a slightly
lower average pass rate.

5.6 Execution Distribution of Requests
In this subsection, we conduct the analysis to count the ex-
ecutions of different request templates sent by RESTler and
MINER. Each evaluation lasts for 12 hours, and the distri-
bution of the executions of different request templates is
shown in Fig. 8, from which we have the following con-
clusion. MINER assigns more executions to diverse request
templates than RESTler. For instance, as shown in Fig. 8,
MINER assigns most executions to 17 templates of requests
when fuzzing GitLab Projects API. On the contrary, RESTler
mainly tests GitLab with 4 request templates. When fuzzing
GitLab Groups API, MINER assigns significantly more ex-
ecutions to 5 extra request templates compared to RESTler.
Therefore, based on more different request templates, MINER
can generate more diverse requests with different parameter
values compared to RESTler. Then, MINER triggers more
kinds of behaviors of a target cloud service with these re-
quests, which can explore more and deeper states. Thus, the
aforementioned conclusion can serve as one of the reasons
that MINER performs better than RESTler on line coverage

50% 40% 30% 20 10% 0 10% 20% 30% 40% 50%

POST /projects/:pid/fork/:forked_from_id
DELETE /projects/:pid/share/:group_id;
POST /projects/:pid/uploads
POST /projects/:pid/restore
PUT /projects/:pid/hooks/:hook_id
GET /projects/:pid/hooks/:hook_id
POST /projects/:pid/star
GET /projects/:pid/forks
DELETE /projects/:pid/hooks/:hook_id
PUT /projects/:pid/transfer
POST /projects/:pid/unstar
POST /projects/:pid/housekeeping
POST /projects/:pid/share
POST /projects/:pid/language
POST /projects/:pid/archive
PUT /projects/:pid
POST /projects/user/:user_id
GET /projects/:pid
POST /projects/:pid/hooks
POST /projectsl:pid/unarchive
POST /projectsl:pid/fork
DELETE /projects/:pid/fork(*)
GET /projectsl:pid/hooks
DELETE /projects
POST /projects(*)
POST /users/:user_id/projects
GET /projects

MINER
RESTler

(a) GitLab Projects API.
50% 40% 30% 20 10% 0 10% 20% 30% 40% 50%

DELETE /groups/:group_id/share/:group_id

DELETE /groups/:group_id

POST /groups/:group_id/projects/:pid

POST /groups/:group_id/share

PUT /groups/:group_id

GET /groups/:group_id/descendant_groups

GET /groups/:group_id/subgroups

GET /groups;:group_id/projects/shared

GET /groups/:group_id/projects

GET /groups/:group_id

POST /groups(*)

GET /groups

MINER
RESTler

(b) GitLab Groups API.
50% 40% 30% 20 10% 0 10% 20% 30% 40% 50%

POST /projects/:pid/issues/:issue_iid/time_stats
POST /projects/:pid/issues/:issue_iid/metric_images
PUT /projects/:pid/issues/:issue_iid/order
GET /projects/:pid/issues/:issue_iid/metric_images
DELETE /projects/:pid/issues/:issue_iid
PUT /projects/:pid/issues/:issue_iid
POST /projects/:pid/issues/:issue_iid/reset_spent_time
POST /projects/:pid/issues/:issue_iid/move
POST /projects/:pid/issues/:issue_iid/add_spent_time
POST /projects/:pid/issues/:issue_iid/subscribe
POST /projects/:pid/issues/:issue_iid/unsubscribe
GET /issues/:issue_id
POST /projects/:pid/issues/:issue_iid/todo
GET /projects/:pid/issues/:issue_iid/related_merge_requests
POST /projects/:pid/issues/:issue_iid/time_estimate
GET /projects/:pid/issues/:issue_iid/participants
GET /projects/:pid/issues/:issue_iid/closed_by
POST /projects/:pid/issues/:issue_iid/reset_time_estimate
POST /projects/:pid/issues
GET /projects/:pid/issues/:issue_iid
GET /issues
GET /groups/:group_id/issues
GET /projects/:pid/issues

MINER
RESTler

(c) GitLab Issues API.
Figure 8: The distribution of executions of different request templates sent by RESTler and MINER, where the request template
with (∗) means that it has multiple versions to provide different target object ids or it contains different parameters.

and error discovery.

6 Discussion and Limitation

6.1 Data-Driven Sequence Generation
In this paper, MINER utilizes the attention model to learn and
generate param-value lists for each request, which improves
the request generation quality. In addition, the model can
also be used to explore the implicit relations across different
requests and provide key mutation strategies for a request
sequence. Due to not having enough training data collected
in the fuzzing process, it is hard for us to train an attention
model for sequence generation. However, there can be suffi-
cient training data for sequence generation in different scenar-
ios like continuous fuzzing and parallel fuzzing. Therefore,
utilizing a machine learning model to provide key mutation
strategies for a request sequence can be an interesting topic
in future work.

6.2 Error Reproduction Across Sequences
Due to the change in the server states, some unique errors
can only be triggered in a specific state of a cloud service,
while cannot be reproduced in future analysis. It is a common
problem in error reproduction for REST API fuzzing. For
instance, a fuzzer can trigger an error by accessing a resource,
which is created a few hours ago by other request sequences.
However, the fuzzer deletes this resource in the following
fuzzing process, making the error irreproducible. Thus, how
to analyze the correlation between request sequences that are
far apart and how to reproduce this kind of errors can be an
interesting research direction for REST API fuzzing.

7 Related Work

7.1 REST API Fuzzing
In 2019, Atlidakis et al. presented the first stateful REST
API fuzzer named RESTler to automatically fuzz a cloud
service via its REST API [12]. Then, Atlidakis et al. imple-
mented several security rule checkers in RESTler that can

automatically detect violations of these security rules [14].
Godefroid et al. defined differential regression testing for
REST APIs, which leveraged RESTler to construct network
logs on different versions of the target REST APIs and de-
tected service and specification regressions by comparing
these network logs [27]. Godefroid et al. also studied how to
generate data payloads learned from REST API specifications
and found data-processing bugs in cloud services [25]. Based
on RESTler, Pythia is presented to leverage a machine learn-
ing model to decide different mutation strategies on different
positions of a request. Pythia also leverages the code coverage
information to guide the fuzzing process, which needs manual
cost before fuzzing [13].

Different from existing REST API fuzzers, MINER utilizes
an attention model to locate the parameters to be mutated
and provide the appropriate values, which is implemented
by using the predicted param-value lists in request genera-
tion. Furthermore, MINER leverages the other two data-driven
designs to increase the execution times on long request se-
quences and explore incorrect parameter usage errors.

7.2 Generation-based Fuzzing

Similar to REST API fuzzing, most generation-based fuzzers
generate test cases with specific input formats to fuzz a target
program with syntax and semantic checking [4,21,26,32,50].
Wang et al. presented a novel data-driven seed generation
approach named Skyfire to learn the syntax and semantic rules
and generate the inputs with specific input formats, which are
used as the initial seeds for fuzzers [49]. Han et al. presented
a novel generation algorithm named semantics-aware assem-
bly to generate test cases with semantical and syntactical
correctness [30]. Nautilus combines the usage of grammars
with code coverage feedback, which generates the test cases
with a higher probability of having semantical and syntacti-
cal correctness [10]. Lee et al. presented a neural network
language model-guided fuzzer named Montage to explore
JavaScript engine vulnerabilities [35]. Fuzzilli utilizes a de-
signed Intermediate Representation (IR) to build syntactically
and semantically correct test cases [29].

7.3 Machine Learning-based Fuzzing
Multiple works focus on improving fuzzers with machine
learning techniques [16, 28, 37, 40, 42, 43, 46]. NEUZZ em-
ploys a neural network model to learn the real-world pro-
gram’s branching behaviors, and then utilizes the program
smoothing technique to locate the bytes in a test case that
influence the branching behaviors [45]. MTFuzz presented by
She et al. utilizes a multi-task neural network to learn a com-
pact embedding of program input spaces. The neural network
guides the mutation process by predicting which input bytes
with the highest likelihood to impact code coverage [44].

7.4 Mutation-based Fuzzing
Mutation-based fuzzing focuses on exploring unique bugs on
a target program without the input format requirement, which
is different from REST API fuzzing. However, the following
development directions of mutation-based fuzzing can still
inspire future REST API fuzzing.

Several studies make use of symbolic execution [18, 33,
34, 47, 53, 54] to solve difficult path constraints and improve
code coverage. Profuzzer includes a lightweight mechanism
to discover the relationship between input bytes and pro-
gram behaviors [51]. Aschermann et al. presented Redqueen
to solve magic bytes and checksums automatically with
input-to-state correspondence [11]. Gan et al. presented a
lightweight data flow-sensitive fuzzing solution named GREY-
ONE, which contains a taint-guided mutation strategy to mu-
tate a seed on appropriate positions with appropriate values
and a conformance-guided evolution solution to collect better
seeds in the queue [23].

Energy allocation strategies used in mutation-based fuzzing
assign more energy to explore low-frequency paths, un-
touched branches and effective mutations [15, 24, 38, 39, 52].
Several studies allocate energy based on multi-objective met-
rics [9, 41, 55]. AFL++HIER leverages a multi-armed bandit
model to allocate energy to different clusters of seeds with
multi-level coverage metrics [48].

Inspired by these state-of-the-art solutions, in future work,
REST API fuzzing can be further developed by 1) locating
request templates that are most relevant to error discovery and
2) assigning more mutation energy to the request sequences
with better error discovery and code coverage.

8 Conclusion

To solve the limitations of REST API fuzzers and improve
their error discovery performance, we present a hybrid data-
driven approach with three new designs, which help find se-
curity bugs triggered by long request sequences and explore
incorrect parameter usage errors. We implement the proto-
type MINER based on our approach, and evaluate MINER
against RESTler on 3 open-sourced cloud services via 11

REST APIs. The results show that MINER performs much
better than RESTler on request generation and error discovery.
Based on manual analysis, MINER also finds 10 more real er-
rors than RESTler, including 5 security bugs that try to access
deleted resources. Furthermore, using the published bugs of
GitLab as the ground truth, we demonstrate the significant
performance of MINER on serious bug discovery. In addition,
we conduct extensive analysis to demonstrate the outstanding
performance of MINER on the sequence extension, line cov-
erage and time overhead. Overall, our approach can serve as
a new direction to improve the sequence extension, pass rate,
and error discovery of REST API fuzzers.

Acknowledgments

We sincerely appreciate the guidance from the shepherd. We
would also like to thank the anonymous reviewers for their
valuable comments and input to improve our paper. This work
was partly supported by NSFC under No. U1936215, the State
Key Laboratory of Computer Architecture (ICT, CAS) under
Grant No. CARCHA202001, and the Fundamental Research
Funds for the Central Universities (Zhejiang University NG-
ICS Platform).

References

[1] APIFuzzer: HTTP API Testing Framework. https:
//github.com/KissPeter/APIFuzzer.

[2] Bugzilla. https://www.bugzilla.org.

[3] Coverband. https://github.com/danmayer/
coverband.

[4] Funfuzz. https://github.com/MozillaSecurity/
funfuzz.

[5] GitLab. https://gitlab.com/gitlab-org/gitlab.

[6] Qualys Web Application Scanning (WAS). https://
www.qualys.com/apps/web-app-scanning.

[7] TnT-Fuzzer: OpenAPI Fuzzer Written in Python.
https://github.com/Teebytes/TnT-Fuzzer.

[8] WordPress. https://wordpress.org.

[9] Nadia Alshahwan, Xinbo Gao, Mark Harman, Yue Jia,
Ke Mao, Alexander Mols, Taijin Tei, and Ilya Zorin.
Deploying Search based Software Engineering with
Sapienz at Facebook. In International Symposium on
Search Based Software Engineering, pages 3–45, 2018.

[10] Cornelius Aschermann, Tommaso Frassetto, Thorsten
Holz, Patrick Jauernig, Ahmad-Reza Sadeghi, and
Daniel Teuchert. NAUTILUS: Fishing for Deep Bugs
with Grammars. In Network and Distributed Systems
Security Symposium, 2019.

https://github.com/KissPeter/APIFuzzer
https://github.com/KissPeter/APIFuzzer
https://www.bugzilla.org
https://github.com/danmayer/coverband
https://github.com/danmayer/coverband
https://github.com/MozillaSecurity/funfuzz
https://github.com/MozillaSecurity/funfuzz
https://gitlab.com/gitlab-org/gitlab
https://www.qualys.com/apps/web-app-scanning
https://www.qualys.com/apps/web-app-scanning
https://github.com/Teebytes/TnT-Fuzzer
https://wordpress.org

[11] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko,
Robert Gawlik, and Thorsten Holz. Redqueen: Fuzzing
with Input-to-State Correspondence. In Network and
Distributed Systems Security Symposium, 2019.

[12] V. Atlidakis, P. Godefroid, and M. Polishchuk. RESTler:
Stateful REST API Fuzzing. In Proceedings of the
41st International Conference on Software Engineering,
pages 748–758, 2019.

[13] Vaggelis Atlidakis, Roxana Geambasu, Patrice Gode-
froid, Marina Polishchuk, and Baishakhi Ray. Pythia:
Grammar-based Fuzzing of REST APIs with Coverage-
guided Feedback and Learning-based Mutations. arXiv
preprint:2005.11498, 2020.

[14] Vaggelis Atlidakis, Patrice Godefroid, and Marina Pol-
ishchunk. Checking Security Properties of Cloud Ser-
vice REST APIs. In 2020 IEEE 13th International Con-
ference on Software Testing, Validation and Verification,
pages 387–397, 2020.

[15] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoud-
hury. Coverage-based Greybox Fuzzing as Markov
Chain. In ACM SIGSAC Conference on Computer and
Communications Security, pages 1032–1043, 2016.

[16] Konstantin Böttinger, Patrice Godefroid, and Rishabh
Singh. Deep Reinforcement Fuzzing. In 2018 IEEE
Security and Privacy Workshops, pages 116–122, 2018.

[17] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning Phrase Repre-
sentations using RNN Encoder–Decoder for Statistical
Machine Translation. arXiv preprint:1406.1078, 2014.

[18] Mingi Cho, Seoyoung Kim, and Taekyoung Kwon.
Intriguer: Field-Level Constraint Solving for Hybrid
Fuzzing. In ACM SIGSAC Conference on Computer
and Communications Security, pages 515–530, 2019.

[19] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. Empirical Evaluation of Gated Re-
current Neural Networks on Sequence Modeling. arXiv
preprint:1412.3555, 2014.

[20] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: Pre-training of Deep Bidi-
rectional Transformers for Language Understanding.
arXiv preprint:1810.04805, 2018.

[21] Kyle Dewey, Jared Roesch, and Ben Hardekopf. Lan-
guage Fuzzing Using Constraint Logic Programming.
In International Conference on Automated Software En-
gineering, pages 725–730, 2014.

[22] Roy Thomas Fielding. Architectural Styles and the
Design of Network-based Software Architectures. Uni-
versity of California, Irvine, 2000.

[23] Shuitao Gan, Chao Zhang, Peng Chen, Bodong Zhao,
Xiaojun Qin, Dong Wu, and Zuoning Chen. GREYONE:
Data Flow Sensitive Fuzzing. In USENIX Security Sym-
posium, pages 2577–2594, 2020.

[24] Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu,
Kang Li, Zhongyu Pei, and Zuoning Chen. CollAFL:
Path sensitive fuzzing. In Symposium on Security and
Privacy, pages 679–696, 2018.

[25] Patrice Godefroid, Bo-Yuan Huang, and Marina Pol-
ishchuk. Intelligent REST API Data Fuzzing. In ACM
Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software
Engineering, pages 725–736, 2020.

[26] Patrice Godefroid, Adam Kiezun, and Michael Y Levin.
Grammar-based Whitebox Fuzzing. In ACM Sigplan
Notices, 2008.

[27] Patrice Godefroid, Daniel Lehmann, and Marina Pol-
ishchuk. Differential Regression Testing for REST APIs.
In International Symposium on Software Testing and
Analysis, pages 312–323, 2020.

[28] Patrice Godefroid, Hila Peleg, and Rishabh Singh.
Learn&Fuzz: Machine Learning for Input Fuzzing. In
International Conference on Automated Software Engi-
neering, pages 50–59, 2017.

[29] Samuel Groß. FuzzIL: Coverage Guided Fuzzing for
JavaScript Engines. Department of Informatics, Karl-
sruhe Institute of Technology, 2018.

[30] HyungSeok Han, DongHyeon Oh, and Sang Kil Cha.
CodeAlchemist: Semantics-Aware Code Generation to
Find Vulnerabilities in JavaScript Engines. In Network
and Distributed Systems Security Symposium, 2019.

[31] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-
Term Memory. Neural computation, 9:1735–1780,
1997.

[32] Christian Holler, Kim Herzig, and Andreas Zeller.
Fuzzing with Code Fragments. In USENIX Security
Symposium, pages 445–458, 2012.

[33] Heqing Huang, Peisen Yao, Rongxin Wu, Qingkai Shi,
and Charles Zhang. Pangolin: Incremental Hybrid
Fuzzing with Polyhedral Path Abstraction. In Sympo-
sium on Security and Privacy, pages 1613–1627, 2020.

[34] Kyungtae Kim, Dae R Jeong, Chung Hwan Kim,
Yeongjin Jang, Insik Shin, and Byoungyoung Lee. HFL:

Hybrid Fuzzing on the Linux Kernel. In Network and
Distributed Systems Security Symposium, 2020.

[35] Suyoung Lee, HyungSeok Han, Sang Kil Cha, and Sooel
Son. Montage: A Neural Network Language Model-
Guided JavaScript Engine Fuzzer. In USENIX Security
Symposium, pages 2613–2630, 2020.

[36] Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. Effective Approaches to Attention-based Neu-
ral Machine Translation. arXiv preprint:1508.04025,
2015.

[37] Chenyang Lyu, Shouling Ji, Yuwei Li, Junfeng Zhou,
Jianhai Chen, Pan Zhou, and Jing Chen. SmartSeed:
Smart Seed Generation for Efficient Fuzzing. arXiv
preprint:1807.02606, 2018.

[38] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-
Han Lee, Yu Song, and Raheem Beyah. MOPT: Opti-
mized Mutation Scheduling for Fuzzers. In USENIX
Security Symposium, pages 1949–1966, 2019.

[39] Chenyang Lyu, Shouling Ji, Xuhong Zhang, Hong Liang,
Binbin Zhao, Kangjie Lu, and Raheem Beyah. EMS:
History-Driven Mutation for Coverage-based Fuzzing.
In Network and Distributed Systems Security Sympo-
sium, 2022.

[40] Chenyang Lyu, Hong Liang, Shouling Ji, Xuhong Zhang,
Binbin Zhao, Meng Han, Yun Li, Zhe Wang, Wenhai
Wang, and Raheem Beyah. SLIME: Program-Sensitive
Energy Allocation for Fuzzing. In International Sympo-
sium on Software Testing and Analysis, pages 365–377,
2022.

[41] Ke Mao, Mark Harman, and Yue Jia. Sapienz: Multi-
objective Automated Testing for Android Applications.
In International Symposium on Software Testing and
Analysis, pages 94–105, 2016.

[42] Nicole Nichols, Mark Raugas, Robert Jasper, and Nathan
Hilliard. Faster Fuzzing: Reinitialization with Deep
Neural Models. arXiv preprint:1711.02807, 2017.

[43] Mohit Rajpal, William Blum, and Rishabh Singh. Not
All Bytes are Equal: Neural Byte Sieve for Fuzzing.
arXiv preprint:1711.04596, 2017.

[44] Dongdong She, Rahul Krishna, Lu Yan, Suman Jana,
and Baishakhi Ray. MTFuzz: Fuzzing with a Multi-task
Neural Network. In ACM Joint Meeting on European
Software Engineering Conference and Symposium on
the Foundations of Software Engineering, pages 737–
749, 2020.

[45] Dongdong She, Kexin Pei, Dave Epstein, Junfeng Yang,
Baishakhi Ray, and Suman Jana. NEUZZ: Efficient

Fuzzing with Neural Program Smoothing. In Sympo-
sium on Security and Privacy, pages 803–817, 2019.

[46] Suphannee Sivakorn, George Argyros, Kexin Pei, An-
gelos D Keromytis, and Suman Jana. HVLearn: Auto-
mated Black-box Analysis of Hostname Verification in
SSL/TLS Implementations. In Symposium on Security
and Privacy, pages 521–538, 2017.

[47] Nick Stephens, John Grosen, Christopher Salls, Andrew
Dutcher, Ruoyu Wang, Jacopo Corbetta, Yan Shoshi-
taishvili, Christopher Kruegel, and Giovanni Vigna.
Driller: Augmenting Fuzzing Through Selective Sym-
bolic Execution. In Network and Distributed Systems
Security Symposium, 2016.

[48] Jinghan Wang, Chengyu Song, and Heng Yin. Reinforce-
ment Learning-based Hierarchical Seed Scheduling for
Greybox Fuzzing. In Network and Distributed Systems
Security Symposium, 2021.

[49] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. Sky-
fire: Data-Driven Seed Generation for Fuzzing. In Sym-
posium on Security and Privacy, pages 579–594, 2017.

[50] Qinying Wang, Shouling Ji, Yuan Tian, Xuhong Zhang,
Binbin Zhao, Yuhong Kan, Zhaowei Lin, Changting Lin,
Shuiguang Deng, and Alex X Liu. Mpinspector: a sys-
tematic and automatic approach for evaluating the se-
curity of iot messaging protocols. In USENIX Security
Symposium, pages 4205–4222, 2021.

[51] Wei You, Xueqiang Wang, Shiqing Ma, Jianjun Huang,
Xiangyu Zhang, XiaoFeng Wang, and Bin Liang. Pro-
Fuzzer: On-the-fly Input Type Probing for Better Zero-
day Vulnerability Discovery. In Symposium on Security
and Privacy, pages 769–786, 2019.

[52] Tai Yue, Pengfei Wang, Yong Tang, Enze Wang, Bo Yu,
Kai Lu, and Xu Zhou. EcoFuzz: Adaptive Energy-
Saving Greybox Fuzzing as a Variant of the Adversarial
Multi-Armed Bandit. In USENIX Security Symposium,
pages 2307–2324, 2020.

[53] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and
Taesoo Kim. QSYM: A Practical Concolic Execution
Engine Tailored for Hybrid Fuzzing. In USENIX Secu-
rity Symposium, pages 745–761, 2018.

[54] Lei Zhao, Yue Duan, Heng Yin, and Jifeng Xuan. Send
Hardest Problems My Way: Probabilistic Path Prioriti-
zation for Hybrid Fuzzing. In Network and Distributed
Systems Security Symposium, 2019.

[55] Xiaoqi Zhao, Haipeng Qu, Wenjie Lv, Shuo Li, and Jian-
liang Xu. MooFuzz: Many-Objective Optimization Seed
Schedule for Fuzzer. Mathematics, 9:205, 2021.

	Introduction
	Background
	REST API for Cloud Services
	REST API Fuzzing
	Neural Network Model

	Design of Miner
	Why Valid Long Sequence Matters
	Framework of Miner
	Attention Model used in Miner
	Data Flow of Miner

	Evaluation
	Experiment Setup
	Fuzzing Performance Analysis
	Real Error Analysis

	Further Analysis
	Stepwise Analysis
	Performance on Reproducing Serious Bugs
	Sequence Length Analysis
	Coverage Performance Analysis
	Schedule of the Training Module
	Execution Distribution of Requests

	Discussion and Limitation
	Data-Driven Sequence Generation
	Error Reproduction Across Sequences

	Related Work
	REST API Fuzzing
	Generation-based Fuzzing
	Machine Learning-based Fuzzing
	Mutation-based Fuzzing

	Conclusion

