
Yudi Zhao, Yuan Zhang, Min Yang

Fudan University

Remote Code Execution from SSTI in the Sandbox:

Automatically Detecting and Exploiting Template Escape Bugs

1

2

Agenda
• Background

• Problem

• Approach

• Evaluation

• Conclusion

3

Template Engine (TE)
• Template engines help web applications generate dynamic HTML

views from the template.

• Template engines are widely used in CMS applications.
• More than 65% of popular PHP applications on GitHub use TEs to generate

front-end views.

How do TEs work?
• TEs render input data into HTML documents according to a pre-

defined template.

SSTI and Sandbox Mode
• New Injection Vectors in TE: server-side template injection (SSTI)
• abuse the TE capabilities by controlling the template

• can be used to achieve high-risk exploit primitives, e.g., LFI, XSS, and RCE

• TE Sandbox Mode
• defeat SSTI attacks by restricting the TE capabilities given to a template

TE Sandbox Bypass (Template escape bug)

• A kind of TE bug that can bypass the sandbox and gain RCE with SSTI

Research Problem
• This work: an indepth study on template escape bugs
• What is the cause of the template escape bug?

• How to automatically detect and exploit template escape bugs?

• What is the severity and prevalence of template escape bugs in real world?

Challenges
• Challenge-I: It requires a fine-grained analysis of the template input.

• different TEs have their specific grammar

• it is hard to learn the syntax of the template input

• Challenge-II: It requires a specific payload to trigger and exploit such bug.
• only carefully-constructed payloads could trigger a template escape bug

• synthesizing an exploit is also quite challenging

• Challenge-III: There lacks an oracle for identifying template escape bugs.
• even if an input successfully exploits a template escape bug, it is hard to judge whether the

generated PHP file has been injected with executable code

Approach Overview
• TEFuzz
• a testing framework for different TEs
• create testcases to discover and exploit template escape bugs

• Design Principles
1. Balancing Exploration and Exploitation

• Probing-based Interesting Testcase Identification
• PHP Syntax-Guided PoC Generation

2. Improving Code Coverage while Avoiding Redundant Testing
• Testcase Adaption by Leveraging Error Feedback
• Testcase Clustering by Leveraging Runtime Information

Approach Overview

{block name="Un1QuEtitle" append}Page Title{/block}

{block name="title" append}Page Title{/block}

Escape Point (EP)

Testcase

Interesting Testcase

Probe each location to find interesting points

<?php
$_smarty_tpl->inheritance->instanceBlock($_smarty_tpl,

'Block_440558559642af93c8ee782_96314246', "Un1QuEtitle");

/* {block "Un1QuEtitle"} */
class Block_440558559642af93c8ee782_96314246 extends Smarty_Internal_Block
{

public $subBlocks = array (
'Un1QuEtitle' => array (

0 => 'Block_440558559642af93c8ee782_96314246‘,
),);

Escape Context (EC): comments

a testcase contains at least one EP

Approach Overview
{block name="Un1QuEtitle" append}Page Title{/block}Interesting Testcase

{block name="*/title" append}Page Title{/block}PoC
<?php
$_smarty_tpl->inheritance->instanceBlock($_smarty_tpl,

‘Block_440558559642af93c8ee782_96314246’, “*/title");

/* {block “*/title"} */
class Block_440558559642af93c8ee782_96314246 extends Smarty_Internal_Block
{
...

{block name="*/phpinfo();/*title" append}Page Title{/block}

<?php
$_smarty_tpl->inheritance->instanceBlock($_smarty_tpl,

‘Block_440558559642af93c8ee782_96314246’, “*/phpinfo();/*title");

/* {block “*/phpinfo();/*title"} */
class Block_440558559642af93c8ee782_96314246 extends Smarty_Internal_Block
{
...

Exploit

Use PHP syntax string to
replace the payload

Wrap the payload according
to the escape context

Approach Overview (Workflow)

• Step 1: Seed Collection

• Step 2: Interesting Testcase Identification

• Step 3: PoC Generation

• Step 4: Exploit Synthesis

①

② ③

④

Experimental Setup
• TE Dataset

• Seed Collection
• Collected 1,728 testcases as the initial seeds from official documents and the testing

files in its source code

Research Questions
• RQ1: How prevalent are template escape bugs?

• RQ2: How severe are template escape bugs?

• RQ3: How does TEFuzz compare to SSTI scanners?

• RQ4: How feasible is exploiting template escape bugs in real-world
applications?

• RQ5: How helpful are the internal designs of TEFuzz?

RQ1: Prevalence
• Almost every TE has template escape bugs.

RQ2: Severity
• TEFuzz successfully generates RCE exploits for 55 template escape

bugs.

RQ3: Comparison
• Baseline: tplmap[1]

• We have enhanced tplmap to support TEs in our dataset.

• Results
• Tplmap only discovers template injection points, but fails to bypass the TE sandbox.

• With the RCE payloads generated by TEFuzz, tplmap successfully breaks the TE sandbox.

[1] https://github.com/epinna/tplmap

RQ4: Full Exploitation
1. Searching Known Vulnerabilities
• Search keywords in the CVE database, and read security blogs and

vulnerability reports.

• Find 5 vulnerabilities that use a vulnerable TE in our dataset.

• Achieve the full exploitation on all of them:
• Smarty: CVE-2020-35625 ,CVE-2017-16783, CVE-2017-6070, CVE-2020-15906

• ThinkPHP: CVE-2020-25967

RQ4: Full Exploitation
2. Discovering 0-day Vulnerabilities
• Collect 18 PHP applications that use a vulnerable TE in our dataset.
• Experiment-I: tplmap + carwlergo + TEFuzz

• find 0 vulnerability

• Experiment-II: manual discovery
• find 6 vulnerabilities

RQ5: Internal Results
• Testcase Probing

• Collect 1,728 seeds

• Creates 63,975 new testcases

• Identify 5,070 unique
interesting testcases

• PoC Generation
• Create 630,518 new testcases

• Identify 170 unique PoCs

• Report 135 bugs

These modules help TEFuzz avoid redundant testing and detect real vulnerabilities.

RQ5: Internal Results
• Testcase Adaption

• Testcase Fix Rate: 69.4%

• Meets TE errors in 63,576 testcases and fixes 44,103 testcases

• Help to collect 6.7% more seeds, discover 21.6% more bugs, and synthesize 31.0%
more exploits.

• Exploit Synthesis
• Synthesize 135 exploits, of which 55 ones are useful.

• Failed exploits:

1) The payloads used to wrap the escape context in the PHP file make the TE fail to parse
the template code.

2) TE raises errors when checking the format of the exploit.

Conclusion
• We study an overlooked and severe sandbox bypass vulnerability in

template engines and demonstrate its root cause.

• We present an automatic tool to detect and exploit template
escape bugs and introduce several new techniques.

• We discover 135 bugs in seven PHP template engines and
construct 55 exploits that enable RCE attacks.

Thanks
Q&A

