SHELTER

@

SHELTER: Extending Arm CCA with Isolation in User Space

Yiming Zhang!?*, Yuxin Hu'", Zhenyu Ning3!, Fengwei Zhang!

Xiapu Luo?, Haoyang Huang!, Shoumeng Yan#, Zhengyu He#*

1Southern University of Science and Technology, 2The Hong Kong Polytechnic University,
3Hunan University, 4Ant Group

6 Southern University

SUST of Science and T H 7 ~ K - ~
L7 eC h fecnolosy QQ‘b l)OI{Ili’TPcI‘\II(IJNIE‘) IEIJ(IJ\HVERSITY
@ COMPASS Lab

HHEH TR
COMPuter And System Security Lab

Confidential Computing

* Hardware-assisted security design
L1 1]

-

[TTTI
Data in Use

* Cloud and Edge devices

* [ntel TDX, AMD SEV, Arm CCA

Arm Confidential Compute Architecture (CCA)

Realm Normal
4 |
VM1
Ao Avp Ao | | App
© OSKemel 05 Kernel
RSI
. |
4 T Hypervisor
Root
Monitor

Hardware

RME: Realm Management Extension RMM: Realm Management Monitor RMI: Realm Management Interface RSI: Realm Services Interface

ELO

EL1

EL2

EL3

Introduced as supplement to Armv9.2-A

Two added additional worlds
- Secure -> Secure & EL3 Root
-Normal -> Normal & Realm

CCA is implemented in hardware and firmware

Arm Confidential Compute Architecture (CCA)

The current version of CCA :
* Early Stage

e Construction of Realm VMs b—
 Hypervisor-based Virtualization

Motivation

* Cooperating with CCA hardware to provide user-level isolation

e Complement to CCA’s Realm VM architecture

App

Host Kernel

- Mem Alloc.| | Syscall serv. Sched.

Shelter Monitor

ELO

EL1

EL3

Threat Model & Assumptions

* An attacker can compromise Host OS, hypervisor, or privileged software in
Secure, and Realm world (e.g., SPM or RMM)

 The Monitor is trusted and the hardware is correctly implemented

* Physical/Side-channel/denial-of-service attacks are out of scope

e Assuming remote attestation support and secure boot

Shelter

SHELTER App (SApp) Normal Secure Realm
* Running on Normal World ELO ____fp_pS_____;___-_;_-__i L™ i £ £
Host OS %5 [Novoar| [t [Qomme] | 1 [ros] [ros] 1 7T
* Non-security responsibilities Hypervisor l SPM | RMM

Monitor |

Shelter Monitor

* |n Root world

e Security responsibilities
CCA hardware feature

Hardware |

CPU Cores RME Root of Trust

Higher Privilege

 Realm Management Extension (RME)

Granule Protection Check (GPC)

 RME enforced isolation is managed through a new Granule Protection Table (GPT)
e GPTis controlled by the Monitor in EL3

* GPT specifies what physical address spaces (PAS) a memory page belongs to

Security state Normal PAS Secure PAS Realm PAS Root PAS

Normal v X X X
Secure v v X X
Realm v X v X
Root v v v v
___ELO _ _ ________ Bl _ _ _ _______EL2__________ EL3 _ __
T ' V, H v,
vV, ! vV, ,

A P e
) | Stage-1 MMU Stage-1 MMU | Stage-1 MMU | Stage-1 MMU
! | | ! .

I

I AR .
: Stage-2 MMU :
l I PA I
. PA
|
|

Granule Protection +«—— Security State
RME enforced Check < _ GPT

Granule Protection Check (GPC)

It is not satisfied with the goal of isolating memory between SApps

and other privileged software in Normal, Secure, and Realm worlid.

Multi-GPT Memory Isolation

Maintain multiple GPTs in EL3 Monitor
Divide the physical address space (PAS) for different programs

REE memory

: (MREeE)

Memory Isolation Enforced by RME > Shared
Memory (Ms)

Multi-GPT Permission Configuration
GPTs MsaApp | MsSApps Ms MREE Mm SApP (Msapp)
Host -- -- Normal | Normal Root

SApp | Normal - Normal - Root Other SApps

(Msapps)

Monitor (Mw)

10

Multi-GPT Memory Isolation

e Establishing address-space-per-core for each SApp and other code region

Memory

App SApp1 SApp2
(0K
Hypervisor/SPM/RMM
CPU Core 1 CPU Core 2 CPU Core 3 CPU Core 4
SApps | Normal Secure Realm Root
PAS PAS PAS PAS PAS ERLERE SApp2 PAS
=
o NI N
o N N
I3 G 0]
3 o 0
No-access Normal RAM Secure RAM Realm RAM Root RAM

11

Multi-GPT Memory Isolation

 The Monitor dynamically controls the access permissions of different programs

Host OS

Monitor

SApp

Processor Core

Creation
>

Exception Hanging

Destruction>

Host GPT

S.GPT

Host GPT

S.GPT

---» Host GPT

Execution

Execution

---» GPT Swapping

12

Performance Optimization

 New GPT construction causes long startup latency for SApps

* Root cause: Shelter needs to add granule information containing a layout of the entire main memory
for the new GPT and measure each GPT entry

13

Performance Optimization

New GPT construction causes long startup latency for SApps

Root cause: Shelter needs to add granule information containing a layout of the entire main memory

for the new GPT and measure each GPT entry

Multi-GPT Management

GPTs MsApp MsApps Ms MREE Mm
Host - - Normal | Normal Root
SApp [Normal - Normal - Root

Copy to create new SApp GPT

*

Template GPT

*Using shadow GPT, a template with copy and update to speed up SApp creation

13

TLB-based GPT attack

Core O Core 1l Core N
GPT entries are permitted to be cached in ; |
TLB as part of TLB entry SApp | Access Access
Memory Memory
GPT information in a TLB is permitted to Page O’ Page 1’

be shared across multiple CPU cores ;
GPT Page I

GPT Page 0’ GPT Page 1’ N i

~.
~
~
~
~
~
~
~
~
~
~
~o
~

v W Bypass GPC

Core O TLB Core 1 TLB Core N TLB

Different GPTs are shared across CPU cores

14

Defend against TLB-based GPT attacks

TLB invalidation during switches and
GPT modifications

Disable the shareable property of TLB

Core N

Core 0O Corel
EAccess
Memory Memory
Page 0 Page 1’

GPT Page 0’ GPT Page 1’

~
~
~
~
~
~
~
~
~
~
~
SS
~

Core O TLB

Core 1 TLB

X

GPT Page
NI

| Access

Core N TLB

shared across multiple CPU cores

15

Some Execution Features

* Memory management
* Contiguous physical memory pool
* Ensure multiple SApps do not have memory overlap
 SApp Page table is isolated

16

Some Execution Features

* Memory management
* Contiguous physical memory pool
* Ensure multiple SApps do not have memory overlap
 SApp Page table is isolated

» Syscall & lago attack checks
* Interrupt & Signal

* Multi-threaded synchronization primitive

SHELTER: Extending Arm CCA with Isolation in User Space

Yiming Zhang!-23:*, Yuxin Hu!2*, Zhenyu Ning*!, Fengwei Zhang?!-*, Xiapu Luo?,
Haoyang Huang'2, Shoumeng Yan’, Zhengyu He’

1 Research Institute of Ty 1y

Systems, South Uniy

ity of Science and Technology

2Department of Computer Science and Engineering, Southern University of Science and Technology
3Department of Computing, The Hong Kong Polytechnic University
4 College of Computer Science and Electronic Engineering, Hunan University
SAnt Group

Abstract

The i ing adop of confidential computing is pro-
viding individual users with a more seamless interaction with
numerous mobile and server devices. TrustZone is a promis-
ing security technology for the use of partitioning sensitive
private data into a trusted execution coa . Un-
fortunately, third-party devel,

such security applicatj

hardware-based isol

privileged software (e.g.,
sor). We have implemented and ev:
results demonstrated that SHELTER guarantees the security
of applications with a modest performance overhead (<15%)
on real-world workloads.

1 Introduction

The i ing adoption of confidential

ing is provid-

e B e s R e O e e S i R R

devices [14]. Meanwhile, as vast numbers of devices are being
widely deployed and connected, a host of new security vul-
nerabilities and attacks are breaking out [33]. It is critical that
these devices provide a high level of security and privacy to
protect sensitive data. On Arm platforms, TrustZone [26] sup-
ports such an ability that enforces system-wide isolation using
two different physical address spaces (PAS) named Normal
world and Secure world for untrusted and trusted software,
spectively.
ough TrustZone enables systems to protect sensitive
the TEE, there still exist two major limitations to
i) Third-party developers have limited accessibility
e. This is because TEE vendors need to rigor-
te such security applications to prevent the de-
Trusted Applications (TA) that may import ex-
erabilities [11]. These processes increase the
for deploying new TAs, conflicting with the
t trend of computing services [46]. (ii) The
for ial TrustZone-based sy is
e there are increasing vulnerabilities affecting
ted OSes, according to recent studies [33,34].
defense mechanism based on privilege division
hitecture called Exception Levels (ELO-EL3). For
e, in the Secure world, Secure Exception Level 0 (i.e.,
ns TAs, S.ELI runs the trusted OS, and S.EL3 runs
¢. However, once a vulnerability affecting
loited, the entire TrustZone-based sys-
be compromised [33].
anew system called Confidential
[23] to protect data in use on
tation in a new PAS named
ode and data from access
Management Monitor
hypervisor. RMM can
e Realm world enforced
led Real Management Ex-

by a new hardware primi

16

Shelter Implementation

* Functional prototype implementation
* FVP Base RevC-2xAEMVA with RME-enabled features
 TCB: ATF with 2k SLoCs additions

17

Shelter Implementation

* Functional prototype implementation
* FVP Base RevC-2xAEMVA with RME-enabled features
 TCB: ATF with 2k SLoCs additions
e Official CCA software stacks
 TCB: ATF + TF-RMM (released date 2022/11/09)
* TF-RMM(v0.2.0) is around 8.2k SLoCs
e TCB comparison with CCA
2k vs 8k SLoCs

17

Performance Evaluation

* No commercial hardware supporting CCA is available on the market
 FVP Simulator is not cycle accurate

18

Performance Evaluation

* No commercial hardware supporting CCA is available on the market
 FVP Simulator is not cycle accurate

 GPT-analogue in Armv8-A Juno Board
* Mimic all GPT in-memory operations
* Replace the GPT-related registers with idle EL3 registers
* Invalidate all TLBs instead of TLB GPT invalidation instructions (e.g., TLBI
PAALLOS)
 The other functionality are the same as those on the FVP

18

Application Benchmarks

Runtime Overhead on real-world programs

[E—
(\o
O

B Linux

FO 1 Shelter

S 1.15- —

= -

2 1.10

@)

3 1.05

N

= 1.00- - —

.

Z.

0.90 I T T T T T

N o%¥ ye Sope@'be“d pe™ we&c%@“eé Ng

[SHELTER incurs <15% runtime-overhead on real-world workloads compared with Linux]

Performance Optimization

Overhead in GPT construction

3.0 x10"

)5 B w/o shadow GPT 26,490
— | 1 w/shadow GPT
7 i
=3 2.0
N
g 1.5 13,269
e 1.0 1
- 05 6,658 5.812

Sl IR AR 2,953
1,503 2
0.0 J.ﬂ. lﬁ—| | |
2GB 4GB 8GB 16GB

[v With shadow GPT, reducing overhead on average of 77.5% in SApp Creation]

20

Comparison with CCA’s VM-based approach

* A basic CCA VM-based performance prototype with same GPT-analogue methodology and
a Realm-context simulation
Runtime Overhead on three large-scale applications

14] B 1inux Q
(D] 1.3 E Is:;?lfm \ §
Q Vanilla VM \ \ <
1.1 \ \ \
= \ \ \
T 1.0- N N \
: \ N\ \
0.9 - N § \
03 \ N N

Apache Memcached Nginx

|/ Avg. SHELTER 11.7% vs CCA Realm VM 32.0% |

21

Conclusion

Shelter leverages CCA hardware for a new creation of user-level isolated
environment

 complementary to CCA’s primary Realm VM-style architecture
e Asmaller TCB

* Lower performance overhead
 No hardware modification for compatible platforms, including mobile and

server
* Open Source
e https://github.com/Compass-All/Shelter —

@

22

https://github.com/Compass-All/Shelter

Thanks for listening!
Q&A

yming.zhang@connect.polyu.hk

23

mailto:yming.zhang@connect.polyu.hk

