
Automatic Exploitable Heap Layout
Generation for Heap Overflows Through
Manipulation Distance-Guided Fuzzing

Bin Zhang Jiongyi Chen Runhao Li

Chao Feng Ruilin Li Chaojing Tang

National University of Defense Technology

Sean Heelan, Tom Melham, and Daniel Kroening. Gollum: Modular and greybox exploit generation for heap overflows in interpreters. CCS 2019.

Introduction

Heap-based buffer overflows (heap overflows) are

becoming one of the most prevailing threats to software.

PoC EXP
Heap Layout Manipulation

SHRIKE/GOLLUM/MAZE

Previous HLM work depend on explicit, powerful and easy-to-trigger heap primitives.

And the input generation for exploit code is simple.

$var = str_repeat("STR", x)

$var = 0

p = malloc(x)

free(p)

Works on Interpreters/Kernel

Sean Heelan, Tom Melham, and Daniel Kroening. Gollum: Modular and greybox exploit generation for heap overflows in interpreters. CCS 2019.

Introduction

Heap-based buffer overflows (heap overflows) are

becoming one of the most prevailing threats to software.

PoC EXP
Heap Layout Manipulation

SHRIKE/GOLLUM/MAZE

Previous HLM work depend on explicit, powerful and easy-to-trigger heap primitives.

And the input generation for exploit code is simple.

$var = str_repeat("STR", x)

$var = 0

p = malloc(x)

free(p)

Works on Interpreters/Kernel

General purpose programs (such as image parsers, executable parsers, word processors)

are lack of explicit, powerful and easy-to-trigger heap primitives, and the side effect

introduced by the heap managers makes HLM more complicated.

Motivating Example

PoC

Motivating Example

PoC:

ePoC:
home entry file information pure data

0xF0 0x20 0xF0

Arbitrary Read/Write

Motivating Example

PoC:

ePoC:
home entry file information pure data

0xF0 0x20 0xF0

Arbitrary Read/Write

It is difficult to extract precise heap layout primitives!

Motivating Example

PoC:

ePoC:
home entry file information pure data

0xF0 0x20 0xF0

Arbitrary Read/Write

It is difficult to extract precise heap layout primitives!

Transforming the initial PoC to ePoC by manipulation
distanced guided fuzzing!

Technical Challenges

Challenge 1: How to specify a desired exploitable layout?

• Gollum & Maze flexibly specify a victim object or a desired as their input.

• It is difficult to specify desired layouts for general-purpose programs without using

powerful primitives, because the creation of victim objects is highly dependent on

the program’s execution logic.

c_file is created only when the input contains
the optional file information block.

Technical Challenges

Challenge 2: How to improve the efficiency of the

fuzzing-based approach?

• The mutation in the program input is to eventually control the heap operations.

• The metrics used in prior fuzzing-based approaches are coarse grained, as they

measure the manipulation objective using the distance in the memory space.

It seems that layout A is better than layout B since dA

< dB . However, layout B is supposed to be better
because it only needs one more allocation but A needs
three more allocations to occupy the target chunk.

target chunk

Technical Challenges

Challenge 3: How to model the side effects brought by

complex heap behaviors so as to precisely control the

manipulation?

• Chunk split/merge mechanism.

• Early Occupation Problem.

e.g., Target chunk c is allocated by operation m1 but then

is never freed before operation mv which allocates

memory for vulnerable object. In this case, c is early

occupied and leads the manipulation to fail.

Overview

Challenge 1

Challenge 2

Challenge 2 & 3

SCATTER

Tech 1: Victim Objects Identification

SCATTER focuses on the following 3 types of sensitive structures:

• A structure that contains pointers.

• A structure that has no pointers but contains a member that can affect a buffer’s

access.

• A union structure that contains previous two types of structures and is accessed as its

structure type.

SCATTER hooks all bitcast instruction on LLVM IR to identify victim object and collects a

victim object os information as:

allocation index in the execution trace

heap address of this object

static sensitive structure ID

Tech 2: Pinpointing Critical Input Bytes

 Identifying Mutable Operations

• A mutable heap operation is an operation whose parameter(s) as well as execution

times can be affected by input.

• We constructs and leverages the Layout Dependence Graph (LDG) built from heap-

operation-guided fuzzer to identify mutable operations.

• Each vertex is represent as , where o is the operation

type, and sc is the call stack.

• Whether the parameters are mutable is determined by dynamic

taint analysis.

• Whether the execution times are mutable is determined by

checking LDG’s back edges’ hit times.

both parameter and execution times of m1 are mutable

execution times are mutable of f1 is mutable

Tech 2: Pinpointing Critical Input Bytes

 Identifying Mutable Operations

• A mutable heap operation is an operation whose parameter(s) as well as execution

times can be affected by input.

• We constructs and leverages the Layout Dependence Graph (LDG) built from heap-

operation-guided fuzzer to identify mutable operations.

• Each vertex is represent as , where o is the operation

type, and sc is the call stack.

• Whether the parameters are mutable is determined by dynamic

taint analysis.

• Whether the execution times are mutable is determined by

checking LDG’s back edges’ hit times.

both parameter and execution times of m1 are mutable

execution times are mutable of f1 is mutable
Use a lightweight “mutate-check” strategy to locate input bytes
that can affect mutable heap operations.

Tech 3: Manipulation Distance

 Basic Manipulation Distance Definition

ov

os

R

: vulnerable object

: victim object

: heap operation trace

• For each victim object identified at runtime, we traverse the trace

of heap operations to locate all suitable free chunks for placing

the vulnerable object ov, and calculate the manipulation distances.

R
• freed before allocating ov

• has the same size with ov

• can overflow to os• Given a suitable free chunk c, and its position index in its

free list, we define the manipulation distance to occupy c

with ov as :

• nA and nF denote the number of allocation and free operations with the same size of c in

• = 0 if free list behaves FIFO, = 1 for FILO.

R.

Remove all the free chunks whose position index is before chunk c in c’s free list.

Tech 3: Manipulation Distance

 Handling Split-Merge Mechanism

• The side effect caused by the split-merge mechanism affects the accurate calculation

• We update of manipulation distance (i.e., nA and nF) according to different behaviors.

e.g., target chunk locates in free list Lx , for a free operation free(c) where c′s size is y:

Size Condition Merge Behavior Distance Updating

merges with one chunk in Lx

nA = nA + 1 if the merged chunk’s allocation
order is before the target free chunk c’s

merges with another chunk and the result
chunk’s size is x.

nF = nF + 1

merges with another chunk and the result
chunk’s size is not x.

N/A

merges with one chunk in Lx

nF = nF + 1
nA = nA + 1 if the merged chunk’s allocation
order is before chunk c’s

merges with chunk in another free list nF = nF - 1

act as an allocation operation

Tech 3: Manipulation Distance

 Handling Early Occupation Problem

Chunk c is early occupied by m2 and leads the manipulation to fail.

• We introduced overload factor to describe the overall changes. For ,

• The final extended manipulation distance is:

Let denotes accumulated changes of Lc until ,

After executing , the position index of chunk c is updated to:

negative means chunk c is already occupied!

Tech 4: Distance Guided Fuzzing

 How to determine a mutated PoC triggers the same

vulnerability as the initial PoC does?

Address Sanitizer? NO! It changes target’s heap layout!!!

• SCATTER disables ASAN and implements the following three instrumentation functions, to

determine whether the PoCs trigger the same bug.

• No affect to heap layout
• Less overhead since check happens only when

overflow writing occurs after vo is created

Advantages:

• Cannot detect discrete overflow writing

Short backs:

Tech 4: Distance Guided Fuzzing

 Which PoCs deserve higher priorities to fuzz and how much

mutation energy should be assigned?

• An interesting PoC that should be preserved for further fuzzing if it has:

 Shorter distance

 More victim objects

 More free chunks

 Diverse heap operation sequences

 New code coverage

• SCATTER adopts a greedy seed schedule strategy.

• For each scheduled test case, SCATTER generates an

expansion factor ε to adjust the mutation energy.

Evaluation

Benchmark Selection Rules:

• The vulnerabilities cause heap OOB-write overflows and their PoCs are public.

• The programs are open sourced general-purpose programs.

• The programs do not implement their customized heap managers.

We select 27 heap overflow vulnerabilities in 10 real-world general-purpose

programs as our benchmark. The input types include:

• executable files

• command line arguments

• images

• raw text files

 Ubuntu 18.04 LTS server (with default Glibc version

2.27) running with 128G RAM and Intel(R) Xeon(R)

Gold 6254 CPU @3.10GHz*70.

 Each case in our benchmark is fuzzed for 10 times,

and each fuzzing campaign lasts for 24 hours.
General-purpose programs

Evaluation

 successful cases: 18

 total ePoCs: 126

 ePoC generation result.

 Failure reasons:

• Limited number of victim objects

• Limited heap operations

• Limited explored paths

• Running failure

e.g., CVE-2018-15209 consumes 102

seconds to trigger the final crash, which

impedes fuzzing from running.

Evaluation

 Comparison with State-of-the-Art

 SCATTER generated the highest number of ePoCs among all the tools.

Compared to the other three tools, the number of ePoCs generated

by SCATTER is increased by 133.3%, 38.6%, 31.3% and 6.8%.

 Since the distance of Gollum less accurate, the number of ePoCs

found by SCATTERG decreases 30 when compared with SCATTER.

 After introducing the critical input bytes, AFLcrit. successfully

uncovers ePoCs in 18 cases. Since AFLcrit. schedules seeds based on

code coverage, it ignores the seeds that identify new heap operation

sequences. (The queue size of SCATTER is 7.3x than AFLcrit..)

Evaluation

 Time Consumption

Evaluation

 Time Consumption

 The average time to generate an ePoC for

SCATTER is around 1 hour.

 The total time consumed to generate all

ePoCs for SCATTER is decreased by 59.3%,

41.5%, 32.2%, 21.1%, when compared with

AFLcrash, AFLcrit., SCATTERG, and SCATTER*.

 SCATTER also shows a more stable

performance (the time to generate ePoCs is

less accidental).

Discussion

SCATTER generates exploitable heap layouts for heap overflows of general-purpose

programs, working in a primitive-free manner by adopting a fuzzing-based method.

• Automatically identifies potential victim objects at runtime by instrumentation.

• Defined a more accurate distance to measure heap layout manipulation result.

• Handled the side effects that popularly exist in heap managers.

Limitations:

• Implemented only for glibc (ptmalloc).

• Customized heap managers.

• Multi-threads programs.

Automatic Exploitable Heap Layout Generation for Heap

Overflows Through Manipulation Distance-Guided Fuzzing

Thanks / Questions?
b.zhang@nudt.edu.cn

