ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED

REPRODUCED

CAPSTONE: A Capability-based Foundation for
Trustless Secure Memory Access

32" USENIX Security Symposium

Jason Zhijingcheng Yu, Conrad Watt*, Aditya Badole,
Trevor E. Carlson, Prateek Saxena

National University of Singapore
University of Cambridge™

57 UNIVERSITY OF

B & I
NUS Computing 4% CAMBRIDGE

World of Security Extensions

Pointer Integrity [ARMv8 Pointer Authentication Code]
Spatial Memory Safety Intel MPK, x86/64 DEP/NX][Intel MPX, RISC-V/ARM CHERI]

Temporal Memory Safety 'None]
Concurrent Thread Safety Intel TSX —Transactional Synchronization Extensions]
Intra-process Sandboxing Intel SGX] [x86 Segmentation]

Process Sandboxing x86/64 Privilege Rings]

Virtualization AMD SEV] [Intel VI-x] [Intel TDX] [ARM CCA]

Red-Green Secure Worlds ARMTZ] [Intel TXT]
Nested / App Virtualization Intel VT-x] [Intel SGX]

https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/pointer-auth-v7.pdf
https://en.wikipedia.org/wiki/Intel_MPX
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/
https://arxiv.org/pdf/1811.07276v1.pdf
https://en.wikipedia.org/wiki/Executable_space_protection
https://en.wikipedia.org/wiki/Software_Guard_Extensions
https://developer.amd.com/sev/
https://en.wikipedia.org/wiki/Protection_ring
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-vmcs-shadowing-paper.pdf
https://en.wikipedia.org/wiki/Transactional_Synchronization_Extensions
https://sefcom.asu.edu/publications/trustzone-explained-cic2016.pdf
https://en.wikipedia.org/wiki/X86_memory_segmentation
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-vmcs-shadowing-paper.pdf
https://en.wikipedia.org/wiki/Software_Guard_Extensions
https://en.wikipedia.org/wiki/Trusted_Execution_Technology
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture

Problems with Security Extensions

|. Unreliable availability of security features 2. Poor interoperability for multiple security goals

flags : fpu vme de pse tsc msr pae mce cx8 apic sep mirr pge mca cmov pat pse3
6 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpelgb rdtscp lm constant_
tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni p MPK
clmulgdq dtes64 monitor ds_cpl vmx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid ssed4_1 sse
4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c¢ rdrand lahf_1lm abm 3dnowpr

efetch cpuid_fault epb invpcid_single pti ssbd ibrs ibpb stibp tpr_shadow vnmi flexprior
ity ept vpid ept_ad fsgsbase tsc_adjust sgx bmil avx2 smep bmi2 erms invpcid mpx rdseed
adx smap clflushopt intel_pt xsaveopt xsavec xgetbvl xsaves dtherm ida arat pln pts hwp
hwp_notify hwp_act_window hwp_epp sgx_lc md_clear flush_l1d arch_capabilities

SGXBounds
[2]

Deprecated Technologies SGXLock

The processor has deprecated the following technologies and they are no longer supported:

¢ Intel® Memory Protection Extensions (Intel® MPX)

Branch Monitoring Counters

Hardware Lock Elision (HLE), part of Intel® TSX-NI
Intel® Software Guard Extensions (Intel® SGX)
Intel® TSX-NI

Power Aware Interrupt Routing (PAIR)

Source: https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/ | 2th-generation-intel-core-processors-datasheet-volume- | -of-
2/010/deprecated-technologies/ accessed 30 July 2023

[T Y.Chen et al.,'SGXLock:Towards Efficiently Establishing Mutual Distrust Between Host Application and Enclave for SGX, in 3 Ist USENIX Security Symposium, 2022

[2] D. Kuvaiskii et al.,'SGXBOUNDS: Memory Safety for Shielded Execution’, in Proceedings of the Twelfth European Conference on Computer Systems

https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/010/deprecated-technologies/
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/010/deprecated-technologies/

Is there a unified foundation for multiple security goals?

https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/010/deprecated-technologies/
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/010/deprecated-technologies/

Traditional Architectures Rely on Access Control

Allow/disallow

Physical
memory

Trust
OS kernel

Hypervisor

Relies on explicit security policies
Assumes a central trusted authority
- limiting in expressiveness

Can we make memory access trustless!?

Contributions

Pointer Integrity

Unified Foundation for >patial Memory Safety

Trustless Memory Access Temporal Memory Safety

CAPSTONE
Concurrent Thread Safety
Minimal set of properties Intra-process Sandboxing
Pl: Exclusive Access Process Sandboxing
P2: Revocable Delegation Virtualization
P3: Extensible Hierarchy Red-Green Secure Worlds
P4: Secure Domain Switching / K Nested / App Virtualization

Threat Model: Benign Scenario

Domain A

Physical
memory

Domain B

Lo

Domain A

)

A invokes B

Domain B

)

B returns

Domain A

Domain B

)

Threat Model: Malicious Scenario

Domain A

Physical
memory

Domain B

Lo

A invokes B

Domain Ail

Secret leakage

Broken integrity
TOCTTOU

Threat Model: Malicious Scenario

Domain A Domain A Domain A

Denial-of-service

Physical
memory

)

A invokes B

Domain B Domain B Domain Bi

to t %)

)

B returns

Minimal set of
properties for a unified
foundation

Property |: Exclusive Access

Domain A Domain A
Domain C

Physical
memory

)

A delegates
memory to B

Domain B Domain B

RGN YAREYE

Lo 1

exclusive access!

J. Z.Yu, S. Shinde, T. E. Carlson, and P. Saxena, ‘Elasticlave: An Efficient Memory Model for Enclaves’, in 3 1st USENIX Security Symposium

Property 2: Revocable Delegation

| don't want B

Physical
memory

Domain A

Domain B

Domain A

)

A delegates
memory to B

to have access
anymore!

)

A revokes
access from B

Domain A

Domain B

)

J. Z.Yu, S. Shinde, T. E. Carlson, and P. Saxena, ‘Elasticlave: An Efficient Memory Model for Enclaves’, in 3 1st USENIX Security Symposium

Property 3: Extensible Hierarchy

Physical
memory

Domain A

Domain B

tq

)

B delegates
memory to C

Domain A

Domain C

Domain B

| can also delegate
access to other

domains!

)

A revokes
access from B

Domain A

Domain C

Domain B

J. Z.Yu, S. Shinde, T. E. Carlson, and P. Saxena, ‘Elasticlave: An Efficient Memory Model for Enclaves’, in 3 1st USENIX Security Symposium

Property 4: Secure Domain Switching

Domain A Domain A Domain A

Physical
memory))
A pre-empts B * B resumes
execution
Domain B DIRTiED Lo Domain B
(switched out) M)’ data is
secured when |
t1 t, am switched ts

out.

J. Cui,). Z.Yu, S. Shinde, P. Saxena, and Z. Cai, ‘SmashEx: Smashing SGX Enclaves Using Exceptions’, in Proceedings of the 202 | ACM SIGSAC Conference on

Computer and Communications Security

Properties for a Trustless Unified Foundation

. Pl: Exclusive Access i How to enforce those

" P2: Revocable Delegation i properties through 2
___ | unified interface?

P3: Extensible Hierarchy

P4: Secure Domain Switching

Architectural Capabilities: A Baseline

Physical Memory
AL Unforgeability

Monotonicity
E . = (cursor, base, end, perms, ..)
Capability
LD/ST agfr,

LD/ST ﬁﬁﬁ,

R.N. M.Watson et al.,‘Capability Hardware Enhanced RISC Instructions: CHERI Instruction-Set Architecture (Version 8)’. 17

Enforcing Property |:Exclusive Access

Domain A
@‘“

Domain A
@"‘
Physical
memory
Domain B
to
&

. Capability

A delegates
memory to B

Domain B

1

 Time 2

A delegates same

memory to C

Domain A
@"‘

o

N
Domain C

Domain B

ty

We need something more to enforce exclusive access!

Exclusive Access: Linear Capabilities

Linear
capability

~ Exclusive access

Linear Capability Operations

LocA
~.
Loc B move f
to tq
\ 4
Deli § E— \E
¥ delinearize
to tq

Memory Delegation with Linear Capabilities

Physical
memory

Domain A

Domain B

to

o Non-linear
Y capability

Linear capability

)

A splits
capability

Domain A

Domain B

tq

 Time 2

)

A delegates
capability
toB

Domain A
| want B to

return the

capability!

B
Domain B

ty

21

Enforcing Property 2: Revocable Delegation

Domain A Domain A Domain A Domain A

Physical

memory E—))
A mints a A delegates A performs
revocation capability revocation
capability to B

Domain B Domain B Domain B Domain B
ty %) t3 Ly
o Non-linear Revocation

Y capability capability m
Linear capability

22

Problem: Secret Leakage Can Happen

Domain A

Domain A

A performs
revocation

Physical

memory
B writes
secrets

Domain B Domain B
L3 Ly
£ Non-linear Revocation
Y capability capability

Linear capability

Domain A

Domain B

ts

23

How to prevent secret leakage while allowing revocation!?

Solution: Uninitialized Capabilities

Domain A

Domain A i

Physical
memory
B writes A performs
secrets revocation
Domain B Domain B
L3 Ly
£ Non-linear Revocation
S capability capability
Uninitialized

Linear capability

capability

Domain A

i &

write-only

Domain B

ts

25

Properties for a Trustless Unified Foundation

P|: Exclusive Access
P2:Revocable Delegation

P3: Extensible Hierarchy

P4: Secure Domain Switching

Please see paper!

CAPSTONE: Putting It Together

ISA with capability types and instructions

revoke
Sealed-return Revocation Uninitialized

call retseal mint revoke initialize

rev

seal delinearize
Sealed — Linear A

https://capstone.kisp-lab.org/

Non-linear

27

https://capstone.kisp-lab.org/

Implementation and
Evaluation

Functional Prototype

CapstonelLib

C-like code

/~ Case studies

Full memory safety (Rust-like semantics)
Untrusted memory allocator

Untrusted scheduler

Nestable enclaves

CapstoneCC

Machine
configurations

CAPSTONE instructioni

CapstoneEmu

Output

——

29

Case Study: Memory Safety (Rust-like Semantics)

Spatial Memory Safety } Architectural capabilities

Temporal Memory Safety

Linear capabilities + revocation
Concurrent Thread Safety

Move let a = b; mov ra, rb;
b; delin rb; 1i r0
Immutable Rt / ’
let a = &b; 0; tighten rb, r0; mov ra, rb;
borrow (use ra) revoke rr; mov rb, rr

mrev rr, rb; mov ra, rb; (use

Mutable borrow let a = &mut b; ra) revoke rr; mov rb, rr

30

Case Study: Trustless Memory Allocator

Allocatable
memory

)

igi P

Allocator code

2 .

Allocated
memory
Allocator
data
Non-linear Revocation Sealed capability
Y capability capability
[Uninitialized

Linear capability

)y capability

<
)

31

Case Study: Trustless Scheduler

Thread A's context

Thread B's E====

context T

Thread C's E

context

7Je]

Scheduler
data

2

N

Non-linear
capability

Linear capability

r

Revocation
capability
Uninitialized
capability

Sealed capability

Scheduler code

J

2
<

7

J

~

32

Case Study: Nestable Enclaves

Domain A

Domain A

Physical \\§
memory &
Split, mint rey, x
and
delinearize
Domain B
to ty
£ Non-linear Revocation Sealed capability
Y capability capability
o Uninitialized

Linear capability

capability

)

A passes
capabilities
toB

Domain A

e

N

A\ 4 ‘* \ 4

shared B'S/A‘\I;N
buffe

memory memory

.........
2

| X

Domain B

)

 Time

33

Case Studies

Pointer Integrity

Spatial Memory Safety h
Temporal Memory Safety > Rust-like semantics
Concurrent Thread Safety y h

Intra-process Sandboxing Trustless memory allocator

Process Sandboxing Trustless scheduler

> Nestable enclaves
Virtualization

Red-Green Secure Worlds

Nested / App Virtualization Y

Takeaway: CAPSTONE is highly expressive

34

Preliminary Performance Evaluation

pointers to heap allocations 2
non-linear capabilities
Map to CAPSTONE

free = revoke

SPEC CPU 2017 intspeed :

‘ Workload

5 R S(® ' Modified SimpleTimingCPU
g : 4 I - model with revocation &

cemd SimpleTimingCPU model validity metadata maintenance

Results: within ~50% run time overhead

35

Conclusion

Goal: unified foundation for trustless memory access
Required properties

* Exclusive access

* Revocable delegation

* Extensible hierarchy

* Secure domain switching
CAPSTONE https://capstone.kisp-lab.org/

* Capability-based architecture
Core ideas: linear capabilities, revocation, uninitialized capabilities
Prototype implementations with emulator, compiler, and library
Case studies: CAPSTONE is highly expressive

Thanks for listening!

36

https://capstone.kisp-lab.org/

	Slide 1
	Slide 2: World of Security Extensions
	Slide 3: Problems with Security Extensions
	Slide 4: Problems with Security Extensions
	Slide 5: Traditional Architectures Rely on Access Control
	Slide 6: Traditional Architectures Rely on Access Control
	Slide 7: Contributions
	Slide 8: Threat Model: Benign Scenario
	Slide 9: Threat Model: Malicious Scenario
	Slide 10: Threat Model: Malicious Scenario
	Slide 11: Minimal set of properties for a unified foundation
	Slide 12: Property 1: Exclusive Access
	Slide 13: Property 2: Revocable Delegation
	Slide 14: Property 3: Extensible Hierarchy
	Slide 15: Property 4: Secure Domain Switching
	Slide 16: Properties for a Trustless Unified Foundation
	Slide 17: Architectural Capabilities: A Baseline
	Slide 18: Enforcing Property 1: Exclusive Access
	Slide 19: Enforcing Property 1: Exclusive Access
	Slide 20: Exclusive Access: Linear Capabilities
	Slide 21: Memory Delegation with Linear Capabilities
	Slide 22: Enforcing Property 2: Revocable Delegation
	Slide 23: Problem: Secret Leakage Can Happen
	Slide 24: Problem: Secret Leakage Can Happen
	Slide 25: Solution: Uninitialized Capabilities
	Slide 26: Properties for a Trustless Unified Foundation
	Slide 27: Capstone: Putting It Together
	Slide 28: Implementation and Evaluation
	Slide 29: Functional Prototype
	Slide 30: Case Study: Memory Safety (Rust-like Semantics)
	Slide 31: Case Study: Trustless Memory Allocator
	Slide 32: Case Study: Trustless Scheduler
	Slide 33: Case Study: Nestable Enclaves
	Slide 34: Case Studies
	Slide 35: Preliminary Performance Evaluation
	Slide 36: Conclusion

