
TRIDENT: Towards Detecting and Mitigating 
Web-based Social Engineering Attacks 

Zheng Yangƚ, Joey Allenƚ, Matthew Landenƚ, Roberto Perdisciƚǂ, Wenke Leeƚ

ƚGeorgia Institute of Technology
ǂUniversity of Georgia



Web-based Social Engineering Attacks



Prior State-of-the-art Solution: Tech-support Scam

Miramirkhani et al.

 (NDSS’17)



Prior State-of-the-art: Directly Detect SE Attacks

Notification Spam

Subramani et al.

(ACM IMC’20)

Unwanted-

software Download

DeKoven et al.

(Usenix’17)

Tech-support Scam

Miramirkhani et al.

 (NDSS’17)

Dating Scam

Suarez-Tangil et al.

(TIFS’19)

Prize Scam

Kharraz et al. 

(IEEE S&P’18)

Scareware

Nelms et al.

(Usenix’16)



Prior State-of-the-art: Directly Detect SE Attacks

Notification Spam

Subramani et al.

(ACM IMC’20)

Unwanted-

software Download

DeKoven et al.

(Usenix’17)

Tech-support Scam

Miramirkhani et al.

 (NDSS’17)

Dating Scam

Suarez-Tangil et al.

(TIFS’19)

Prize Scam

Kharraz et al. 

(IEEE S&P’18)

Scareware

Nelms et al.

(Usenix’16)

Directly detecting social engineering websites/attacks is unrealistic and not scalable!



Key Idea: Indirectly Detect and Block SE Attacks

Low-tier Ad Networks

Ad Publishers SE Attacks

Navigation Blocked



Generic Ad Blockers Are Ineffective

Blocklist-based Solution

• Brave Shield [49]
• Ad-blocking module for Brave Browser.

• 14.74% false negative rate on 1,479 
social engineering attacks.

ML-based Solution

• AdGraph [19]

Model Accuracy Precision Recall F1

Original 90.52% 88.32% 88.33% 88.32%

Retrained 83.25% 80.12% 81.65% 80.88%

SE-Ads 81.51% 71.34% 75.33% 73.28%

Social engineering “ads” can evade state-of-the-art ad blocking tools 
easily!



• Invisible on the DOM or misleading content.

• Obfuscated JavaScript code from low-tier ad networks.

• Frequently updated URLs.

Tech Challenges: SE Ads Are Not Traditional Ads

Invisible Obfuscated CodeMisleading Content



Design Overview

Navigation

SE Attacks



Design: Monitor JavaScript Actions

• JavaScript function calls

• Callbacks

• Event listeners

• …

• DOM manipulation

• Create/modify/remove nodes

• Open new tabs

• …

• Network communications

• Request resources

• Navigation requests

• …



Design: Web Action History Graph



Design: Navigation Initiator

Initiated by Anchor LinksInitiated by A Mouse Event Listener



Design: Social Engineering Features

• Describe what the code is.

Property Features

• Monitor what the code does.

Action Features

• Observe what the code causes.

Consequence Features

script

execution context

script type

…

requestor

register
script callback

open

window

webpagewindow
load

# of redirects

domains



Design: Block The Navigation

Ad Publisher

Inline ad script

3rd-party script

setTimeout

“Skip Ad” SE Website

setTimeout

event listener

#document

compile

include

register

create

register

register

listenremove

TRIDENT



Evaluation
Oct. 2021

Started crawling 100,000+ ad 

publishers using low-tier ad networks 

to distribute social engineering 

ads/attacks.

Jan. 2022

• Collected 259,487 navigation events.

• 1,479 were labeled as social engineering 

attacks.

• Obtained 92.63% accuracy and 93.37% F1 

score with a Random Forest classifier with 10-

fold cross validation.

Oct. 2022

• Crawled another batch of 

testing data.

• Achieved 97.37% accuracy 

and 97.81% F1 score.



• Training in Jan. 2022
• Covered more than 10 low-tier ad networks (e.g., AdSterra, PopCash) and top-tier ad networks 

(e.g., Google, Facebook, Amazon).

• Found 6 types of social engineering attacks with a semi-auto labeling technique.
• 857 Unwanted-software Download

• 222 Dating Scam

• 177 Prize Scam

• 148 Push Notification Spam

• 51 Scareware

• 24 Tech-support Scam

Evaluation: Training with A Diverse Dataset



• Testing in Oct. 2022
• 2.57% false positive rate.

• Inject DOM elements for benign purpose such as AddThis.

• Inject social engineering ads, but do not take the user to social engineering websites.

• Inject social engineering ads and take the user to adult websites which do not launch social 
engineering attacks immediately when labeling.

• 0.13% false negative rate.
• Only 1 case that embedded a malicious link as an image in the first party website. That link leads to 

a malicious software download website.

• Detected social engineering attacks distributed by two unseen low-tier ad networks.
• PopAds – 2 SE attacks out of 296 navigation events.

• PopMyAds – 2 SE attacks out of 349 navigation events.

Evaluation: Performance Over Time



Why The Performance Went Up?
Poor 

performance

Overfitting

We choose a conservative model for focusing on data points near the 

borderline. More details are available in the paper.



Feature Importance

• Evaluated by the Leave-One-Group-Out approach
• Action + Consequence feature groups perform the best (AUC=0.9867)

• Property + Action + Consequence features groups perform more robust (AUC= 0.9864).

Feature Importance by Groups Feature Importance within Action Feature Group



• Include the malicious script as the first-
party script.

• Put the malicious script as an inline script 
(implying first-party).

• Directly take the user to social engineering 
websites without redirects.

• Behave as benign scripts while stealing 
clicks.

Evaluation: Evasion Attempts



• Event monitoring agent implemented in 
Chrome DevTools Protocol with <800 
lines of C++ code.

• 2.13% runtime overhead when browsing 
the Internet.

• Negligible resource overhead.

Runtime Overhead

Runtime Overhead



• A novel online system for indirectly detecting and blocking social engineering 
attacks.

• 92.63% accuracy, which outperforms the state-of-the-art generic ad-blocking 
tools by more than 10% with negligible runtime overhead.

• Robust to evasion attempts.

Conclusion



Q & A
Zheng Yang

ianyang@gatech.edu

https://ian.yang.bio

mailto:ianyang@gatech.edu

	Default Section
	Slide 1: TRIDENT: Towards Detecting and Mitigating Web-based Social Engineering Attacks 
	Slide 2: Web-based Social Engineering Attacks
	Slide 3: Prior State-of-the-art Solution: Tech-support Scam
	Slide 4: Prior State-of-the-art: Directly Detect SE Attacks
	Slide 5: Prior State-of-the-art: Directly Detect SE Attacks
	Slide 6: Key Idea: Indirectly Detect and Block SE Attacks
	Slide 7: Generic Ad Blockers Are Ineffective
	Slide 8: Tech Challenges: SE Ads Are Not Traditional Ads
	Slide 9: Design Overview
	Slide 10: Design: Monitor JavaScript Actions
	Slide 11: Design: Web Action History Graph
	Slide 12: Design: Navigation Initiator
	Slide 13: Design: Social Engineering Features
	Slide 14: Design: Block The Navigation
	Slide 15: Evaluation
	Slide 16: Evaluation: Training with A Diverse Dataset
	Slide 17: Evaluation: Performance Over Time
	Slide 18: Why The Performance Went Up?
	Slide 19: Feature Importance
	Slide 20: Evaluation: Evasion Attempts
	Slide 21: Runtime Overhead
	Slide 22: Conclusion
	Slide 23


