MorFuzz: Fuzzing Processor via
Runtime Instruction Morphing enhanced
Synchronizable Co-simulation

Jinyan Xu!, Yiyuan Liu?, Sirui He?, Haoran Lin?,
Yajin Zhou?, and Cong Wang?

1 Zhejiang University
2 City University of Hong Kong
August, 2023
B Th K2

City University of Hong Kong

Motivation

* Even the most advanced commercial processor is not perfect

Product Last Update #Errata #Fixed
Intel 13t Generation 2023 42 2
Intel 12t Generation 2023 56 10
Intel 11t Generation 2023 36 10

Intel 10*" Generation 2023 85+145 27+12
AMD EPYC 9004 Series 2023 40 0
AMD EPYC 7002 Series 2023 39 0
AMD EPYC 7003 Series 2022 62 0
AMD 15t/2nd Ryzen Series 2019 45/60 0

Motivation

* Even the most advanced commerc @75 o -

XA Translate

PSA: EPYC 7002 CPUs may hang after 1042 days of

uptime
Product Last Update The April 2023 Epyc 2nd gen revision guide has errata #1474:
Description
th i
I ntel 13 Ge ne ratlo n 2023 A core will fail to exit CC6 after about 1044 days after the last system reset. The time of failure may vary depending on the
h . spread spectrum and REFCLK frequency.
Intel 12" Generation 2023 .
Potential Effect on System
Intel 11t Generation 2023 A core will hang,
h . Suggested Workaround
Intel 10™" Generation 2023

Either disable CC6 or reboot system before the projected time of failure.

AMD EPYC 9004 Series 2023

| AMD EPYC 7002 Series | 2023
AMD EPYC 7003 Series 2022
AMD 15t/2nd Ryzen Series 2019

Despite what they say, the problem actually manifests at 1042 days and roughly 12 hours. The TSC ticks at 2800 MHz, and
2800 * 10**6 * 1042.5 days almost equals 0x380000000000000, which has too many zeros not to be a coincidence.

Note that your server will almost definitely hang, requiring a physical (or IPMI) reboot, because no interrupts, including

Read more v

e [Jeo T, share

Pentium FDIV bug

From Wikipedia, the free encyclopedia

The Pentium FDIV bug is a hardware bug affecting the floating-point unit
(FPU) of the early Intel Pentium processors. Because of the bug, the
processor would return incorrect binary floating point results when dividing
certain pairs of high-precision numbers. The bug was discovered in 1994 by
Thomas R. Nicely, a professor of mathematics at Lynchburg College.["!
Missing values in a lookup table used by the FPU's floating-point division
algorithm led to calculations acquiring small errors. While these errors |
would in most use-cases only occur rarely and result in small deviations
from the correct output values, in certain circumstances the errors can
occur frequently and lead to more significant deviations.[2]

ABRSEI-64
SX837

e

INTEL 1992

66 MHz Intel Pentium 2
(sSpec=5X837) with the FDIV bug 1

The severity of the FDIV bug is debated. Though rarely encountered by
most users (Byte magazine estimated that 1 in 9 billion floating point
divides with random parameters would produce inaccurate results),[*] both
the flaw and Intel's initial handling of the matter were heavily criticized by the tech community.

ETECH EEEE— i

Computing Phones Security Gaming Science Space Deep Dives Deals Shop

EYTrDeEnMm

(=728 B 39 =) M |

HOME EXTREME

AMD Phenom, Barcelona Chips Hit By Lock-up Bug

By Mark Hachman on December 5, 2007 at 4:54 pm

This site may earn affiliate commissions from the links on this page.
AMD has confirmed a bug that can cause its new Phenom and existing Barcelona processors to lock up.

Specifically, AMD has found a bug in the translation-lookaside buffer, which can impact some of AMD's quad-core chips. AMD will
rework bath chips and provide a new stepping, sources said, but in the meantime motherboard manufacturers are being asked to
distribute a BIOS patch that, unfortunately, cuts performance by about 10 percent.

“You may remember that during our Q3 earnings call, AMD acknowledged that our initial ramp of Barcelona had been slower than
anticipated,” AMD spokesman Phil Hughes said in an emailed statement. “However we did say during that call that we would ship
‘hundreds of thousands of quad-core processors’ into the server and desktop segments during Q4. AMD is tracking to this
guidance. Quad Core AMD Opteron processor is the most advanced x86 processor ever introduced to the market and as such
there are design and process tuning steps that will take longer than expected.

“There has been some talk about an erratum relative to our TLB cache in Barcelona as well as Phenom processors resulting in
delays,” Hughes added. “AMD notified customers of this erratum and released a BIOS fix prior to the Nov. 19th launch that resolves
it. We are experiencing strong AMD Phenom demand and are shipping parts to channel, system builders and OEM customers.”

LWN
.net

User: [:] Password: [

Intel Skylake/Kaby Lake processors:
broken hyper-threading

][Log inJ | [SubscribeJ | [Register}

i)
g
v

—d

News from the source

Content

Weekly Edition

?:;T:I:es Henrique de_Moraes Holschuh has pgsted an advisory about a

(e processor/ml_crocode defect r_ecently identified on Intfel Skylake and Intel Kaby Lake

Security processors with hyper-threading enabled. "TL;DR: unfixed Skylake and Kaby Lake m
processors could, in some situations, dangerously misbehave when hyper-threading

Events calendar

Unread comments is enabled. Disable hyper-threading immediately in BIOS/UEF| to work around the

problem. Read this advisory for instructions about an Intel-provided fix."

LWN FAQ
Write for us From: Henrique de Moraes Holschuh <hmh-AT-debian.org> ays Of
Edition _ To: debian-user-AT-lists.debian.org, debian-devel-AT-lists.debian.org
Return to the Briefs gypject: [WARNING] Intel Skylake/Kaby Lake processors: broken hyper-
FERE threading
Date: Sun, 25 Jun 2017 09:19:36 -0300
Message- <20170625121936.GA7714@khazad-dum.debian.net>
ID:
he
HK e
= D3YouTube o a &8 @ o
The Memory Sinkhole d

The Memory Sinkhole - Unleashing An X86 Design Flaw Allowing Universal Privilege Escalation

@ @ o o

Black Hat N
) N =
19.9 5T THEE 4078 -

Processor Fuzzing

ISA
simulator

Processor RTL
[
RTL code = simulator @

I I Host s,
i

Seed Mutator | Input_| executable -—| Comparator

corpus binary
T Coverage Coverage Bug

Instrument

Input Generation Hardware Simulation State Verification

Processor Fuzzing

Seed Mutator 1P
corpus T

T Cover

Input Generation

“19111111 s1li a2,a2,ox4

0000010109 1i ad,0
011100111 lui a2,oxefl

0l1110...”
seed assembly

0612
4501

elf/bin

Processor Fuzzing

Seed Mutator 1P
corpus T

T Cover

Input Generation

’@2-1@111111 *@;111 a2,a2,ox4
001101010 :> or al,al,a2 :> 0612 \
911100101 lui a2,0xefl 8dd1
0l1110...”

seed assembly elf/bin

Processor Fuzzing

Processor
RTL code

0612
8dd1

elf/bin

RTL
simulator

- U

Host

S

C

pPut | executable

—

binary
arage Coverag

Instrume

Hardware Simulation

CPU

Mem

_/—

DUT Software
Model

—> i

Coverage

Processor Fuzzing

ISA
simulator

! ref
>DUT

P —| Comparator
)

Y ge Bu
ent J

State Verification

DUT Side Ref Model Side
slli a2,a2,0x4 B RegFlle RegFlle _ slli a2,a2,o0x4
or al,al,a2 T or al,al,a2

State al | 9x0123456789abcdef | mEp 4mm | 0x0123456789abcdef | a1 B Stat
DUT | a2 | oxOFFFFFFFFFFfrfef OXOFFFFFFFFFFFFFFF | A2 AlCRer
lui a2,oxefl \“\\,,, //,,/—"”Iﬂi a2,oxefl

Challenges of Processor Fuzzing

DifuzzRTL: "
. tart: ’ .
1| start: ’ arcall init_regs p— IU1.X4’ Ox40052
2 call init regs call init_page table cleleh s 26 2l SR
ST g — — 1w x2, 0(x4)
3 call init page table
4111: = la x2, 186
5 lui x4, 0x40052 jalr x20, 0(x2)
6 addi x4, x4, -768 1
7 lw x2, 0(x4) e
8|12: > csrrw x6, satp, x5
9 1.a x2, 186 i
10 Jall" X2@, @(XZ) blt x25, x6, exit
11
12| 186:
187:

13 csrrw x6, satp, x5 b1t x25, X6, exit
14 | 187:
15 blt x25, x6, exit /
16 ”

exit:
17 | exit: call signature
18 call signature

Challenges of Processor Fuzzing

11:

~
~

lui x4, 0x40052
addi x4, x4, -768
1w x2, 0(x4)

12:

la x2, 186
jalr x20, 0(x2)

!

186:

csrrw x6, satp, x5

187:

blt x25, x6, exit

~
~

.. 1. Complex Input Grammar

~
~
~

11:

Cl: Processor State
lui x4, 0x40052
addi x4, x4, -768 x4 € {memory range}
lw x2, 0(x4)

187:
blt x25, x6, exit

—

exit:

call signature

Read the base address from x4

Calculate the effective address by adding x4 to the offset
Load different length of value from the effective address
Save the value from memory to x2

C2: Instruction Field

1b, 1h, 1w, 1d,
lbu, lhu, lwu, Reserved

C3: Program Semantic

(x4 + offset) % 4 ==

Challenges of Processor Fuzzing

11: . . .
BT R 2. Deceptive Mutation Guidance
— .
addi x4, x4, -768
w x2, e(x4) | T 12:
TR - la x2, 186 Generated Instructions
a x2, .
jalr x20, 0(x2) jalr x20, 0(x2) ;
1 _______________________________)
186: 1. T Executed Instructions
csrrw x6, satp, x5 ° :
Xori x23, x22, -2047 i
187: :
blt x25, x6, exit :
|
|
|
|

187:

Unexecuted valuable
mutations will be discarded

blt x25, x6, exit

/"’/ csrrw x6, satp, x5
exit:

call signature

Challenges of Processor Fuzzing

11:

lui x4, 0x40052
addi x4, x4, -768
1w x2, 0(x4)

12:

la x2, 186
jalr x20, 0(x2)

!

‘ 186:

csrrw x6, satp, x5 ‘

‘ 187:

blt x25, x6, exit

187:
blt x25, x6, exit

—

exit:

call signature

"1186:

csrrw x6, satp, x5

|

187:

blt x25, x6, exit

—

DUT Ref Model

X6

X25

3. Model Implementation Differences

CSR satp has WARL(Write Any
Values, Reads Legal Values) fields

DUT Side Ref Model Side
OX00000VRRRFff T OXOFfFFffEffEFfffef
/\ V
0x0000000010000000 Ox0000000010000000

Branch Not Taken

Divergent control flows
make subsequent execution
meaningless

Branch Taken

Insight

Mutating those instructions that are going to be executed
 all mutations are executed, yielding effective coverage

* use runtime context to simplify input generation

=

il

it

%>

il

Stimulus Template Generation

DifuzzRTL:
1(11:
2 lui x4, 6x40052 Magic Instruction
3 addi x4, x4, -768 _ _ _ .
a 1w x2, 0(x4) * load a random value with desired type into target register
* processor state mutation primitive
MorFuzz: .
1 [fuzztext 1s 27: Template Instruction
2 | # magic inst * blank instruction with dummy fields
3 1d x1, RDM_DATA_ADDR(x®) * instruction field & program semantic mutation primitive
4 | # template inst
5 1h x??, ??(x??)

Runtime Instruction Morphing

imm rs1 funct3 rd opcode
00?7?77 2?7?77 001 ??°7?7?7 0000011
lh x??, ?2?(x??) i

Field Level Mutation

 identify instruction format
* mutate instruction opcode field

???°°°°°°°7?7 ?°?°°7°7 O1OZ& ?°?°7°7°7 0000011 i ,O 5 ,O
[[= [°
Semantic Level Mutation || 2] |FBrecue
* select register with desired type l_éJ réj l“l’ !
« calculate the other fields WWW WWWW i V‘y jﬁﬁ
000000000100 00001pg] 010 00010 0000011 2ol || IFmf
1w x2, 4(x1) l l l L 1
: 2 3 1

ddAaul oL

ddaul oL
uj oL
ddaul oL

Synchronizable Co-simulation

DUT ISA Simulator

instruction d commit commit pc, inst k
/‘ record ref wdata @ Commit Pass

execute one step
and check pc, insn

instruction A write
back data ready - judge wdata

Judge Pass

instruction D commit commit pc, inst R
- -
/‘ record ref wdata | Commit Pass

instruction b write l
back data ready judge wdata ° Judge Fail

>

— Allow ? Yes
Simulation Exit E ® \/ ® . sync ;l:;st;natch

False Positive
Simulation Continue

Commit Stage

DUT commits control flow info
REF execute one step

cross-check control flow info
* match, continue
* mismatch, report as bug

REF commits reference write-back data

Judge Stage

DUT finally commits write-back data

cross-check wdata
* match, continue
* mismatch, analysis committed info
* sync DUT state to REF if permitted
» otherwise report as bug

MorFuzz

Input Generation Hardware Simulation & State Verification
Stimulus Template Smrlig tor — State Sync

Generation _ .
[Template Instruction | Runtime Ins.,tructlon Synchronizable
\ Generation) Morphmg Co-simulation

(N - -
([Magic Instruction Field Level Mutation ||—» Stat § Compatible
Generation L) ate Co-simulation
_ J > _ J
e —— S Stimulus a Semantic Level) MorphSed Instruction - N
xecution Environment {1 1o mp)ate Mutation treams State Synchronization
L Packaging) \ / l L)
A
Y

< Coverage 3 Processor
Seed < Under Test
corpus

Bug Report

Bug Detected

MorFuzz detected 19 bugs including 17 new bugs, 13 CVEs

Processor Bug Description CVE/Issue ID CWE New Bug Confirmed Fixed
B1: Treat aes64ks1i with rcon greater than 0xA as valid CVE-2022-34632 CWE-327 v v v

Rocket B2: Error in condition of the rocc_illegal signal Issue #2980 CWE-1281 v v v
B3: The vsstatus.xs is writable CVE-2022-34627 CWE-732 v v v
B4: Incorrect exception type when a PMA violation CVE-2022-34636 CWE-1202 v v

BOOM BS: Incorrect exception type when a PMP violation CVE-2022-34641 CWE-1198 v v
B6: Floating-point instruction with invalid rm field does not raise exception Issue #458 CWE-391 v
B7: Floating-point instruction with invalid frm does not raise exception Issue #492 CWE-391 v
B8: Crafted or incorrectly formatted sfence.vma instructions are executed CVE-2022-34633 CWE-1242 v v v
B9: Crafted or incorrectly formatted dret instructions are executed CVE-2022-34634 CWE-1242 v v v
B10: Non-standard fence instructions are treated as illegal CVE-2022-34639 CWE-1209 v v v
B11: The mstatus. sd field does not update immediately CVE-2022-34635 CWE-1199 v v

CVAG B12: The value of mtval/stval after ecall/ebreak is incorrect CVE-2022-34640 CWE-755 v v
B13: Incorrect exception type when a PMA violation CVE-2022-34636 CWE-1202 v v
B14: Incorrect exception type when a PMP violation CVE-2022-34641 CWE-1198 v v v
B15: Incorrect exception type when accessing an illegal virtual address CVE-2022-34637 CWE-754 v v
B16: Improper physical PC truncate Issue #901 CWE-222 v v
B17: Incorrect 1r exception type CVE-2022-37182 CWE-754 v v

Spike B18: The component mcont. ro} .action conta.ins the incorrect mask CVE-2022-34642 CWE-787 v v v
B19: Incorrect exception priotrity when accessing memory CVE-2022-34643 CWE-754 v v v

Coverage

4.4x than DifuzzRTL, 3.1x than riscv-torture, 1.6x than riscv-dv

2.25M

2.00M A

1.75M A

1.50M -

e — MorFuzz
R ——=~ DifuzzRTL
fffffff riscv-dv
--=- riscv-torture

1.25M -

1.00M -

Coverage

0.75M -

0.50M 4 [

e T e e e e e e e e e

- ——
- —
.- ———————
——— —
- ——
- —
pmn—" —
- ——
- —— -
-

0.25M

-
-
-
-

—— — -
—

0hAL . 4h 8h 12h 16h 20h 24h

Conclusion

MorFuzz is a novel Processor Fuzzer

e detect architecture functional bugs automatically
* instruction morphing effectively guides fuzzing
» state synchronization eliminates false positive
* thorough evaluation on real world processors
e faster & higher coverage than SOTA
* detected 19 bugs with 13 CVEs assigned
* battle-hardened and open-source

* deployed in a undergraduate CPU design course (50+ students) E E
e 15tPlace in HACK@DAC 2023
e https://github.com/sycuricon/MorFuzz

https://github.com/sycuricon/MorFuzz

Thank You!

Jinyan Xu

phantom@zju.edu.cn

	MorFuzz: Fuzzing Processor via �Runtime Instruction Morphing enhanced �Synchronizable Co-simulation
	Motivation
	Motivation
	Motivation
	Processor Fuzzing
	Processor Fuzzing
	Processor Fuzzing
	Processor Fuzzing
	Processor Fuzzing
	Challenges of Processor Fuzzing
	Challenges of Processor Fuzzing
	Challenges of Processor Fuzzing
	Challenges of Processor Fuzzing
	Insight
	Stimulus Template Generation
	Runtime Instruction Morphing
	Synchronizable Co-simulation
	MorFuzz
	Bug Detected
	Coverage
	Conclusion
	 Thank You!

