# Temporal CDN-Convex Lens A CDN-Assisted Practical Pulsing DDoS Attack

Run Guo, Jianjun Chen, **Yihang Wang**, Keran Mu, Baojun Liu, Xiang Li Chao Zhang, Haixin Duan, Jianping Wu















- Background
- Attacks
- Mitigations
- Conclusion

# A warm-up wargame



- 1 artilleries
- 1 shell per minute per unit



- Blast Resistance
  - < 5 shells within 1 minute







# Multiple Round Simultaneous Impact (MRSI)

 MRSI is when a single gun fires multiple shells so all arrive at the same target simultaneously

A variation of military tactic "Time on Target (TOT)" in World War I





# Advantages of MRSI

### **Efficiency**

- Attacker
  - just fire the shells slowly
- Victim
  - receive all shells instantly

### **Stealth**

- Observe one of the attacker's artilleries alone, the rate of fire is pretty low
- The alarm won't be triggered

### **Prime Target**

"Moments to go down, hours to recover"

### When World War I meets the Internet

DoS a target with a limited bandwidth?



# Previous Attack: Abusing DNS Infrastructure [1]



DNS queries with IP Source Spoofing

**Properties** 

Trajectories

Flight time of payload

**Bandwidth Concentration Ratio** 





≥ Thousands of Open DNS

 $\leq$  700 milliseconds





Reflected DNS responses



Global Open DNS Servers

Value

≈ 14





### Our Work: CDN-Convex Lens Attack



| Properties                    | Value                           |
|-------------------------------|---------------------------------|
| Trajectories                  | ≥ Millions of CDN edge servers  |
| Flight time of payload        | ≥ <b>5,400,000</b> milliseconds |
| Bandwidth Concentration Ratio | ≥ 1000                          |

# What is a Content Delivery Network (CDN)?

- Globally Distributed: a large volume of servers on Internet backbone
- Cache then Forward: act as the Reverse Proxy to the website
- Proximity Service: redirect the user's request to the nearest server
- DDoS Protection: off-load traffic from botnet-based DDoS attack



### What is a Pulse Wave DDoS attack?

- Efficiency: Periodical Saturation of Bottleneck Resources
- Stealthy: High-rate, short-lived bursts
- Unusual on Internet
  - Require a botnet
  - Botnet is preferably used to launch simple flooding attack











- Background
- Attacks
- Mitigations
- Conclusion

# Concept of CDN-Convex Lens Attack



# Attack Steps

- Step I: CDN Node Harvest
- Step II: Configure CDN to Point to the Victim
- Step III: Measure the flight time (latency)
- Step IV: Bypass the cache mechanism
- Step V: Send the requests on time

# Step I: CDN Node Harvest

- collect IP addresses of global CDN edge servers by
   Internet-wide scanning / fingerprinting



# CDN Edge Servers can be abused by the Attacker

- Tons of edge servers can be abused by the attacker
  - CDN edge servers are allowed to forward HTTP requests with a valid host header



# Step II: Configure CDN to Point to the Victim

• Register CDN services, then config the victim website as a origin server



# CDN Lacks of Origin Ownership Verification

- CDN lacks of ownership verification for the Origin Server
  - CDN can be configured to fetch resource from any IP and any port



# Step III: Measure the flight time (latency)

• Measure latencies of CDN forwarding paths and filter stable ones



**CDN Global Edge Servers** 

# Step IV: Bypass CDN cache mechanism

Craft request to bypass CDN cache and saturate the bottleneck resources



# Step V: Send the requests on time

• Send low rate of the HTTP requests in accord with path latencies



**CDN Global Edge Servers** 

# The Pulsing-Wave is Coming!

 Requests converged as a high-rate, short-lived pulse burst to saturate target



### Result of the Basic CDN-Convex Attack



Use native path latency to arrange all HTTP requests

Max Bandwidth Concentration Ratio

~ 6

#### Attack's **out-bound** bandwidth



#### Victim's in-bound bandwidth



| CDN                           | Akamai | Azure | CloudFront | Cloudflare | Fastly |
|-------------------------------|--------|-------|------------|------------|--------|
| Bandwidth Concentration Ratio | 5.46   | 4.66  | 6.42       | 3.73       | 1.49   |

# Why did we obtain a low concentration ratio?

### Concentration ratio is limited by

- diversity of path latencies
- the longest forwarding time (latency) of CDN global paths

### Challenges

• How can we **Enlarge / Control** the forwarding time to allow more requests being buffered in CDN global paths?

### Our Attacks: Exploit CDN Features to Enlarge / Control the forwarding time



Incomplete packets being **buffered** at CDN servers for a period of time

Attack #3 IP-Fragmentation Convex Attack

Attack #4 Request-Pending Convex Attack

### Attack #1 Extend CDN Paths: Cascaded CDN Convex Attack

Core Concept
Chain more CDNs
to enlarge the flight time



### Attack #2 Extend DNS Resolving time: DNS-holdon Convex Attack

Core Concept
Use DNS query by edge servers
to control flight time



### Attack #3 IP-Fragmentation Convex Attack

### **Core Concept**

Use incomplete **fragmented IP packages** 

to control flight time



| CDN                           | Akamai | Azure  | CloudFront | Cloudflare | Fastly |
|-------------------------------|--------|--------|------------|------------|--------|
| IP Fragmentation Timeout      | ~ 30s  | ~ 30s  | ~ 30s      | ~ 15s      | ~ 10s  |
| Bandwidth Concentration Ratio | 142.23 | 118.35 | 72.62      | 48.66      | 21.63  |

### Attack #4 Request-Pending Convex Attack

Core Concept
Use incomplete HTTP requests
to control flight time



| CDN                           | Akamai  | Azure   | CloudFront | Cloudflare | Fastly |
|-------------------------------|---------|---------|------------|------------|--------|
| HTTP Forwarding Timeout       | ~ 16s   | ~ 1600s | ~ 12s      | ≥ 3600s    | ~ 16s  |
| Bandwidth Concentration Ratio | 1426.38 | 4842.69 | 31.3       | 1786.37    | 988.48 |

## Real-World Demonstration Video

### **Experiment Setup**

- Only 32 edge servers were used
- Only 16MB × 32 = 512MB data were sent
- No impact on other websites
  - the victim website is under our control
- Attacker Outbound-Bandwidth: ~7Mbps
- Victim Inbound-Bandwidth: ~100Mbps
  - Limited by the cloud provider (100Mbps at max)

### Demo



The targeted website server is directly out of service "Out of memory: Killed process apache2"







- Background
- Attacks
- Mitigations
- Conclusion

# Mitigations

#### For CDN

- Validate the ownership of customer-supplied origin configuration
  - Stop CDN being abused to attack 3rd party targets
  - Can still attack websites hosted on CDN
- Fast forwarding of requests (#enhancement 4)
  - Forward on each byte of received request
- Standardizing a unified head field to expose client IP
  - Filter or limit attacking traffic based on client IP

#### For Victim

limit the request rate from the same client IP







- Background
- Attacks
- Mitigations
- Conclusion

### Conclusion

- We present a novel the CDN-Convex attack which uses CDN-Introduced delay distribution to launch a pulsing DDoS attack against any 3rd party TCP service
- 4 novel enhancement for the impact from 2 aspects
  - Increasing network pathways (Cascaded CDN)
  - Controlling network latency (DNS-Holdon, IP-Fragmentation, HTTP-Holdon)
- Bandwidth Concentration Ratio ≥ 1000

# Thank you for listening! Q & A











<u>Lab</u>

