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Hello, everyone! I’m Yunkai Zou, a Ph.D student at Nankai University. I’m going to give you a presentation. The topic is Password Guessing Using Random Forest. This is a joint work of our collaboration with Peking University.


Passwords are ubiquitous
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Passwords are ubiquitous in our daily digital lives, and password-based authentication will remain the most widely used authentication method in the foreseeable future


Billions of passwords leaked

* “Our dataset currently contains 953,894 incidents, of which 254,968 are confirmed

breaches” [DBIR 2023].
* About 86% of basic web application attacks were due to stolen passwords.

« Poorly picked (weak) and protected passwords continue to be one of the major

sources of breaches.

PIPELINE e 9.6 MILLION

Federal Employees’
Fingerprints Stolen

The network of Colonial Pipeline breach The celebrity photos leakage 5.6 million users’ fingerprint data breach
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However, billions of passwords have been leaked. Particularly, poorly picked and protected passwords continue to be one of the major sources of breaches.
For example, in June 2021, hackers utilized leaked passwords to breach the network of Colonial Pipeline. 
In September 2014, a bug in Find my iPhone allowed attackers to guess weak passwords and leak celebrity photos.
In September 2015, hackers exploited leaked passwords to gain unauthorized access to the department's system and obtain the fingerprint data of 5.6 million users.





Password strength: resistance to
guessing attempts

How much security strength
can passwords actually provide?

A more
fundamental
guestion

How to guess the user's password with
the least number of guesses?

Password: the first line of defense against
cyber attacks on a system.
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In practice, guess number is found to be a good metric to evaluate password strength. Those easily guessed by an attacker are considered weak passwords. Thus, it is imperative to study password strength from the attacker’s perspective. How much security strength can passwords actually provide? It relates to a more fundamental question:  How to guess the user's password with the least number of guesses?


Password guessing scenarios

* Trawling guessing

- The attacker generates the same password guessing
dictionary for all target users.

123456
alz23456
123456789
111111
5201314
123123
a321654
12345
000000

10 123456a
11 12345678
12 1314520
13 aaaaaa
14egl23456
15 7758521
16 woainil3l4
17 123321

Lo WP

If (ID,PW)#(ID,PW).
failed_num++; E

If failed num>thd i B it cTso
]

lock_account(); 19 1234567
--------------------- 20 gqglz23456
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Before starting, I will introduce the two most typical guessing scenarios. The first is the trawling guessing scenario. In this scenario, the attacker generates the same password guessing dictionary for all attack targets.


Password guessing scenarios

« Targeted guessing

* The attacker generates a corresponding attack dictionary
for each target user.
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The second is the targeted guessing scenario. In this scenario, The attacker generates a corresponding attack dictionary for each target user. Here, the label on the right represents the personal information label of the target user. For example, B_0 represents the birthday of the target user.


Where is classical machine learning?

« 2005 Markov [Narayanan-Shmatikov, ACM CCS 200535]
« 2009 PCFG [Weir et al., IEEE S&P 2009]
+ 2014 Smoothing and regularization techniques [Ma et al., IEEE

S&P 2014]

onsijiqeqo.d

« 2016 RNN [Melicher et al., USENIX Security 20106]

« 2019 PassGAN [Hitja et al., ACNS 2019]

- 2021 AdaMs [Pasquini et al., USENIX Security 2021]
« 2021 CPG/DPG [Pasquini et al., IEEE S&P 2021]

» 2021 Chunk-level [Xu etal. ACM CCS 2021]

Buluisea|-daag
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Next, let's discuss the research advance on password guessing. In general, password guessing can be categorized into two technical approaches: statistical-based and deep learning-based guessing methods. Despite numerous similar studies, we find that there are no password guessing methods based on classical machine learning techniques.


Research on password guessing

Types of password models | Success . . Interpre- | Proposed
: : Efficiency o1 .
and typical representatives rate tability time
Statistical-based (PCFG, Markov) Mid High High 2009-
Deep learning-based (RNN) Mid Low Low 2016-
Classical machine learning (SVM) Unknown Mid? Mid? Yet to be studied

] Research questions

B Can classical machine learning techniques be used to design password models?

W [fitis possible, how can these techniques be used for typical guessing scenarios?

® Whether password guessing models based on classical machine learning techniques can

improve the guessing success rate?
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Now, I will summarize the existing password guessing methods. It seems that classical machine learning techniques may have a performance somewhere between deep learning and statistical methods, but there is a lack of relevant. To address this gap, we have raised the following questions: Can classical machine learning techniques be used to design password models? If it is possible, how can these techniques be applied to typical guessing scenarios? Can password models based on classical machine learning techniques improve the guessing success rate?




Design challenges

[0 Password guessing is different from traditional NLP tasks.
E.g., il0veudever (with the semantic love you forever),

[0 Cracking passwords requires an exact match: Any vagueness
will not succeed. E.g., P@sswor123 and p@ssword123;

[0 How to construct and select features to ensure the
effectiveness of machine learning algorithms?
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Although applying classical machine learning techniques to password guessing may seem simple, it is actually quite challenging. First, passwords are essentially short texts and have some characteristics that differ significantly from traditional NLP tasks. Second, cracking passwords requires an exact match; any vagueness will not succeed. Additionally, determining how to construct and select features to ensure the effectiveness of machine learning algorithms is not straightforward. Next, I will explain in detail how classical machine learning techniques can be applied to password guessing.



Password guessing modeling

[0 Modeling password generation as a Multi-Classification problem

B Our work makes the same assumption with the well-known Markov model:
Each character in the password is only related to the previous characters.

I‘ Correct category
The string to be classified

p aSSWQO —/— -+ 94 character categories

Classification model
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We first model the password guessing task as a classification problem. It should be noted that our work makes the same assumption as the well-known Markov model: each character in the password is only related to the previous characters. Based on this assumption, we can perform password guessing tasks. Here we provide a toy example. In this figure, "p a s s w o" is a 6-order string to be classified, and we use a classification model to predict the correct label "r". A key issue here is how to construct password character features.




Password feature construction

] Feature construction method

W Each character is represented by 4-dimensional features: (Character type, Character serial
number, Row number of the keyboard, Column number of the keyboard)

B The entire n-order string uses additional 2 dimensions to represent the current length feature:
(position of the character in a password, position of the character in the current segment)

W Each 6-order string is represented as a 26 (=6x4+2) dimensional feature vector

qiwer654i321
// / \-\\ Length feature

[ (3, 23, 2, 2) (3,5,2,3) (3,18, 2,4) (@(1,6,1,6) (1,5,1,5) (1,4,1,4) (7, 3)1]

(3, 23, 2, 2) = (Letter, w ranks 23rd among a~z, w is at row 2 of the keyboard, w is at column 2 of the keyboard)

(7, 3) = (length(gwer654), length(654))
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We mainly consider four types of password features. Specifically, each character is represented by a 4-dimensional feature vector 
The entire 6-order string uses 2 dimensions to represent the current length feature.
 
Finally, each 6-order string is represented as a 26-dimensional feature vector. 
For example, the character "w" in the 6-order string "w e r 6 5 4" is represented by the vector (3, 23, 2, 2), where "3" represents “w” is a lowercase letter, "23" represents that "w" ranks 23rd among a~z, "2" represents that "w" is at row 2 of the keyboard, and the last "2" represents that "w" is at column 2 of the keyboard.
The length feature (7,3) means that the last character 4 in this 6-order string is located in the seventh position of the entire password qwer654321, and the character 4 is located in the third position of the number segment 654321.
Considering that when the data dimension is
low and the task accuracy required is high, ensemble
learning methods generally performs well.

In what follows, we take Random Forest as a typical case study.



RFGuess: a trawling password model

] Use the decision tree for password prefix classification.

123abc, aaa765, _
efg123, Loveyo, | 6-order string

102455, --- to be classified

Yes No

Rule 1:
123abc, Loveyo,
dearbo, -

Trained length > 7
{efg123, asswor]

aaar65, -
Yes Yes N
Rule 2. o Rule 3: %
Type of 6th char is digit Type of 6th char is digit

Yes
Type of 2th char is letter
efg123, bnm444 333abc, 678ddd
vbn333, aaa765 666qas, 788asd

Class = ‘4 Class = ‘d’
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The decision tree is the basic unit of the random forest.
Here is a high-level example of a decision tree for password prefix classification. The node division is determined through if-else logic based on corresponding rules, and each prefix is ultimately divided into the character category. 


RFGuess: a trawling password model

1 Vote on character classification results with random forest.
] The remaining password generation process is the same as the Markov model.

X dataset
N, features N, features N, features N, features
Tree #1 Tre(i #2 Tre? #3 Trela 4
|
Class C Class C Class B
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Then, we vote on character classification results with the Random Forest. The remaining password generation process is the same as the Markov model.



] Two test scenarios: intra-site guessing and cross-site guessing scenarios

Experimental setup

] 13 password datasets: 5 Chinese datasets and 8 English datasets

® Small-scale training set: 10,000, 100,000, and 1 million Rockyou
® [arge-scale training set: 75% of 000Webhost (~10 million)

Table 1: Basic information about our 13 password datasets. "

[ Dataset [[  Web service Language When leaked Total PWs Length> 50 Removed % Unique PWs With PIT |
Taobao E-commerce Chinese Feb., 2016 15,072,418 38 0.01% 11,633,759
126 Email Chinese Oct., 2015 6,392,568 621 0.23% 3,764,740
Dodonew E-commerce Chinese Dec., 2011 16,283,140 13,4758 0.15% 10,135,260
CSDN Programmer Chinese Dec., 2011 6,428,632 0 0.01% 4,037,605
Wishbone Social English Jan., 2020 10,092,037 250 0.01% 5,933,902
Matel Dating website English Mar., 2016 27,401,505 12,430 0.06% 11,916,080
000Webhost Web hosting English Oct., 2015 15,299,907 4,159 0.76% 10,526,769
Yahoo Web portal English July, 2012 453,491 0 2.35% 342,510
LinkedIn Job hunting English Jan., 2012 54,656,615 17,162 0.22% 34,282,741
Rockyou Social forum English Dec., 2009 32,603,387 3,140 0.07% 14,326,970
12306 Train ticketing Chinese Dec., 2014 129,303 129,303 0 117,808 v
ClixSense Paid task platform English Sep., 2016 2,222,045 0 0 1,628,018 v
Rootkit Hacker forum English Feb., 2011 69,330 5 0.01% 56,835 v

"PW stands for password, and PII for personally identifiable information. We clean up passwords longer than 30 and containing non-ASCII codes.
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Next, let's move on to the experimental setup. We used 13 password datasets. We set up both large-scale and small-scale training scenarios, as well as intra-site and cross-site testing scenarios. The dataset used is shown in this table.



Experimental results

-
o
I
=}

1.0

-
=}
[
o

== Min_auto (ideal attack) g ==== Min_auto (ideal attack) — ===+ Min_auto (ideal attack) ‘__ _____ -«=+ Min_auto (ideal attack) -« Min_auto (ideal attack) Lot .
° = RFGuess py 3 = RFGuess . .-, 2 = RFGuess o e = = .
9] ] . it 1] . . ° — T —
f‘g; 0.8] —. FLA-small Lo $ 08| —- FLA-small RO et . € 08| —- FLAsmall 9 RFGuess o g RFGuess
5 -=- Markov_3order R . 5 ==+ Markov_3order oS 5 === Markov_3order Ryt o 0.8] == FLA-small ‘,"' © 0.8) —. FLA-small
. Ry .
=:0.6 ==+ Markov_4order "/ %0.6 ==+ Markov_4order . g «:_/ %0.6 ==+ Markov_4order o / _____ S5 ===: Markov 3order ‘ 5 ===: Markov 3order
H % S == PCFG Ry L b == PCFG ol - -
g 0 g Ry Lttel g e 2‘0 | ==* Markov_dorder é‘o g == Markov_dorder . A0 s
3 R4 ] . £ 3 % 2 0. 20
204 204 A —————— 204 9] - PCFG 9] == PCFG
o ° B _’./?‘ © [v] o
s S 7 5 E 5
8 S 24 S
= T 'l B wn [}
S02{ 0 e 802 / ®0.2 « 0.4 « 0.4
i I e o o
.- . S s
0'900 102 10% 10° 108 10%° 1012 10t O'Y‘Oﬁ 102 104 10° 108 1010 10?2 1014 DRUO 102 10* 10° 108 10%° 102 10 i3] 0.2 k] 0.2
Guess Number Guess Number Guess Number (L oY
(a) 0.01M Rockyou — Rockyou_rest (b) 0.1M Rockyou — Rockyou_rest (¢) IM Rockyou — Rockyou_rest w w
1.0 1.0 1.0 L S o st
== Min_auto (ideal attack) ===+ Min_auto (ideal attack) ===+ Min_auto (ideal attack) 0.0 s B == 0 2=
2 = RFGuess 2 —— RFGuess 2 = RFGuess '900 10?2 10* 10° 108 1010 1012 10 '900 102 104 106 108 10%° 1012 101
$0-8) —. FLA-small G 08 = FLA-small G 08 —. FLA-small Guess Number Guess Number
5 ==: Markov_3order ] ==: Markov_3order S ==: Markov_3order . b 1
S arkov.. 4 - {2 - (a) 75% 000Webhost—25% 000Webhost (b) 75% 000Webhost— Wishbone
=06l T arkov_4order Zo06 77 Markov_4order ‘.‘-/ =06l 7" Markov_4order ‘,"/
2 —= PCFG 5 —— PCFG P a :
g 8 ] &
204 204 ¢ 2oa
o o 1=}
s s 8 - :
= b= b=
uess achieves a guesSing SuccCesSs
i I fre
0'900 102 10% 108 108 10%° 1012 10 0'?0° 102 104 10° 108 1010 1012 10 0'9 ° 102 10* 10° 108 10%° 10%2

1014 [ ]
(d) 0.0IM Rogﬁ;séuNlﬂbabOWebhost (e) 0.1IM ROCE‘;’ESISJ Nim())e(ﬁOWebhost ) 1M Rock?/lglisgjn&%(r)Webhost ra te Co m p a ra b I e to d ee p I e a rn I n g - ba Sed

Table 7: Performance of different models.” met.ho.ds (FLA) and _OUtperforms other
Model RFGuess | PCFG [69] | 3-order Markov [42] [ FLA [43] statistical-based guessing methods.

Training time 0.3h 24s 102s 16h
Model size 135G 03 AM TG =1 O RFGuess suffers from the drawbacks of

Generated PW/s || 130 82,372 13,303 2,500 slow password generation speed and high
T CPU: Xeon silver 4210R 2.4GHz; GPU: GeForce RTX 3080 (5M dataset). memory consumption.

More suitable for online password guessing
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Overall, RFGuess achieves a cracking success rate comparable to deep learning-based methods (FLA) and outperforms other statistical-based guessing methods. However, RFGuess suffers from slow password generation speed and high memory consumption. This makes RFGuess particularly suitable for online password guessing attacks where the number of guesses allowed is small. Next, I will introduce our targeted guessing algorithm, RFGuess-PII.



.

RFGuess-PlI: a targeted password model

[0 PIl matching disambiguation ID: wang123@foo.com ;

name: Wang Lei; birthday: 1980.01.23

wang1231980 ==) N.123B, or U,B, Or N;B; Which one to choose?

] Optimized PII matching algorithm

® We propose a Pll matching algorithm based on the principle of minimum information entropy

PW1: R1 R2 R3
PW2: R1 R2 R4
PW3: R1R5
PW4: R2 R3
PW5: R1 R8 R9

1. Exhaustively enumerate all possible representations for all passwords;

. Count all representations, sort globally by frequency, and take out the representation

with the most frequency as the priority representation (such as R1);

. Update the frequency, and then take out the representation with the most

frequency among the remaining representations, as the second priority representation

(such as R2), and iterate until the frequency of all representations is 1.
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In targeted guessing scenarios, we first need to solve the disambiguation problem of PII matching. For example, the password "wang1231980" has three possible representations. Which one should we choose? To address this issue, we propose a PII matching algorithm based on the principle of minimum information entropy. The core idea is to systematically enumerating all potential representations of passwords, sorting them by frequency, and identifying the representation with the highest frequency as the priority representation, this process continues until the frequency of all representations becomes 1.


Password feature construction (PIl)

1 The feature construction method is similar to RFGuess
1 The differences lies:

® A string containing personal information is regarded as a Pll segment.

® E.g., Wang.1980: Wang and 1980 are each regarded as a complete segment,
represented by four-dimensional features: (personal information type,
personal information serial number, 0, 0).

® Here the last two 0s are to align with the feature of ordinary characters.

O S B B BN BN BN BN O EEE BN BN M D B E Em E

7— > _“\ Length feature

0550202002500 20::05:0)::5010:::3000:::05 005500 5 18 1) 05 20005 0 2) 030012 3) 3042 3) )
Bs = Beginning symbol A Pll segment An ordinary character
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The feature extraction method for RFGuess-PII is similar to the trawling guess method RFGuess. The difference lies in treating a string containing personal information as a PII segment. Each PII segment is represented by a four-dimensional feature vector: (PII type, PII behavior serial number, 0, 0). Here, the last two 0s are used to align with the feature of ordinary characters. Here is a toy example. w a n g is a PII segment.



Datasets and experimental setup (Pll)

[0 Dataset: 6 password datasets, including 4~6 kinds of PII

Table 2: Basic information about our PII datasets.

Dataset LLanguage | Items num Types ot Pl usetul for this work
12306 Chinese 129,503 | Email, User name, Name, Birthday, Phone
CSDN Chinese /7,216 | Email, User name, Name, Birthday, Phone
Dodonew Chinese [61,5T7 | Email, User name, Name, Birthday, Phone
ClixSense English | 2,222,045 | Email, User name, Name, Birthday
000Webhost | English /9,580 [ Email, User name, Name, Birthday
Rootkit English 69,418 | Email, User name, Name, Birthday

[0 Experimental setup

 Intra-site guessing scenarios: e.g., 50% PII-12306—50% P11-12306
« Cross-site guessing scenarios: e.g., 50% PI11-12306—50% PIlI-Dodonew
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Moving on to the datasets and experimental setup for RFGuess-PII. We used 6 password datasets. Similarly, we set up intra-site and cross-site guessing scenarios.



Experimental results (PII
1 Within 100 guesses, the guessing success rate of RFGuess-Pll is 20%~28%:;

[0 RFGuess-Pll outperforms existing models by 7%~13% within 1,000 guesses.
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Now, let's discuss the experimental results. Overall, RFGuess-PII outperforms existing models by 7% to 13% within 1,000 guesses.



RFGuess-Reuse: a reuse model

X dataset
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Next is the RFGuess-Reuse. It is a targeted password model based on password reuse. It involves two main steps: the first step is to count the structure-level operations of password pairs in the train set, and the second step is to predict the segment-level operations using the Random Forest model. Then we can use PW1 to generate a number of reused passwords.



.

Datasets and experimental setup (Reuse)

] Dataset: 8 datasets containing password pairs (obtained through email match)

Table 4: Basic information about password reuse datasets.

# Same # Similar
Dataset Language| Items password pair | password pair"'
CSDN—126 Chinese [195,832 62,686 47,690
CSDN— 12306 Chinese | 12,635 7,079 2,815
12306— Dodonew Chinese | 49,775 35,395 9,386
CSDN—Dodonew Chinese 5,997 2,040 1,597
000Webhost—Clixsense| English [150,273 35,470 41,731
000Webhost—LinkedIn | English [231,452 50,875 52,731
000Webhost— Yahoo English | 36,936 5,960 6,303
000Webhost—Mate 1 English | 51,942 7,613 25,504

" Similar means the similarity score is within [0.5, 1.0], and it is calculated as
s = 1 — EditDistance(pwl, pw2) /max(|pwl|, | pw2|).

[ Experimental setup

B A — B means that: A user’s password at service A can be used by an attacker to
help attack this user’s account at service B.

® CSDN — 126 is the training set for Chinese attack scenarios.

B 000Webhost — ClixSense is the training set for English attack scenarios.
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Now, let's discuss the datasets and experimental setup for RFGuess-Reuse. We used 8 datasets containing password pairs obtained through email matching. For example, "A right arrow B" means that a user's password at service A can be used by an attacker to help attack the same user's account at service B. 


Experimental results (Reuse)

[0 RFGuess-Reuse is comparable to existing leading models within 1,000 guesses

o
=
o

Table 5: Comparison of three password reuse models.”

- . [ A - _ 078] — RFGuess
Experimental setup RFGuess-| Pass2- |TarGuess- $0.90] — $:f§jjjjf“se 8 . $§rGGuf§§Sﬁfuse . o —_ Ta,Guj§§5_||euse
Guessing scenario Guess number|| Reuse |path [45] II [64] > N T—— _;0'54 ——- PassoPath e nmm=="" :;’0.72 ==+ Pass2Path " ___--
10 68.41%| 68.80%| 68.13% 20.84 3 - g |\ T
CSDN — 12306 100 73.09%| 70.72% [73119% 504 £ 066
1,000 75.86%| 72.16%| 75.57% S0.78 §o.42 g
10 48.59%| 48.82%| 48.44% S s 5060
CSDN — Dodonew 100 53.86%| 51.79% [1154156% 8077 £ §036 s
1,000 57.71%| 53.84%| 57.58% Eoes / 8 50.54 !
10 8414% 83.44%) 84.11% R TL 1%1 bloz 13 030 107 107 109 10° 1%1uess numb;gz 10°
12306 — Dodonew 11 880 gggggf ggggg 3?23‘2? () 12306 — Dodonew. (b) CSDN < Dodonew: (¢) CSDN = 12306,
: -02%0 0% D670 ©0.40 <0.45 50.36
10 277.70% ] 25.11% 30.17% % == RFGuess-Reuse % —+- RFGuess-Reuse % —-- RFGuess-Reuse
000webhost — Matel 100 31.29%| 26.42%| 32.14% So3s) - Torsuess S040) - Torsuess _—— | 5oz T Tercuessd
1,000 33.77%)| 27.73%| 34.37% s | T == £ _— =
‘ : ‘ %0.30 %035 7 e %0.28
10 35.67%| 32.65%| 36.17% - Y & | 7 T g
000webhost — LinkedIn 100 37.77%| 34.06%| 38.16% S 0.25 £0.30 S 0.24
1,000 39.52%| 35.69%| 39.72% h 5 e
10 26.53%] 24.84% 27.12% 5020 5025 §0.20
000webhost — Yahoo 100 28.59%| 25.87%| 28.69% 8 3 ®
1,000 30.13%| 26.99%| 30.19% * 015940 10T 107 17 020 107 107 103 “ 0169y 101 102 10°

A value with dark gray (resp. light eray) represents the highest one (resp. 2nd one). (d) ()()owe%l}]]%ssst “ﬁ)m&%[tel, (e) ()OOWeb}G18§tS S—r;ulzniggedln. (f) OOOWeg}lilggf E%‘ﬂoo,
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The experimental results show that RFGuess-Reuse is generally comparable to existing SOTA models within 1,000 guesses.



General applicability

O Our password character encoding method is applicable to a series of supervised
algorithms that can tackle multi-classification problems.
0 Among these supervised algorithms, boosting method performs well.

5 0.30 - 0.45
S| e Xgboost B —-= RFGuess-Pll
50.24{ — - RFGuess .--' Co0.36 Targeted-Markov-4order
> === PCFG > === Targeted-DecisionTree e
2 9.1g/ — DecisionTree 2 0.27] == Targeted-Xgboost _,ﬂo',"_"‘f‘: .....
. (¥3] . t‘
E = Markov_4order a — TarGuess-| _,.--“.:'-'-"*"
U U PraThod
=) ] .
50.12 7 0.18
© ©
c c
50.06 50.09
[ v
© o
u_ T T T T
000G —1pr 15z 1o 167 105 0907ee 167 162 153

Guess Number Guess number

(a) 0.5M CSDN — CSDN_rest (b) 50% PII-CSDN — 50% PII-CSDN
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Finally, it’s the general applicability of our password character encoding method. It is applicable to a series of supervised algorithms that can tackle multi-classification problems, among which Boosting methods perform well.



Thank you!
Password Guessing Using Random Forest

Ding Wang, Yunkai Zou Zijlan Zhang Kedong Xiu
Nankai University Peking University Nankai University
{wangding, zouyunkai}@nankai.edu.cn zhangzj@pku.edu.cn kedongxiu@nankai.edu.cn

The 32nd USENIX Security Symposium
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Thank you for your listening! Please feel free to ask me if you have any questions.
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