

Password Guessing Using Random Forest

Ding Wang, Yunkai Zou

Nankai University {wangding, zouyunkai}@nankai.edu.cn Zijian Zhang Peking University zhangzj@pku.edu.cn

Kedong Xiu Nankai University kedongxiu@nankai.edu.cn

The 32nd USENIX Security Symposium

Passwords are ubiquitous

- "Our dataset currently contains 953,894 incidents, of which 254,968 are confirmed breaches" [DBIR 2023].
- About **86%** of basic web application attacks were due to **stolen passwords**.
- Poorly picked (weak) and protected passwords continue to be one of the major sources of breaches.

The network of Colonial Pipeline breach

The celebrity photos leakage

5.6 million users' fingerprint data breach

Password strength: resistance to guessing attempts

How much <u>security strength</u> can passwords actually provide?

How to guess the user's password with the least number of guesses?

Password: <u>the first line</u> of defense against cyber attacks on a system.

Password guessing scenarios

• Trawling guessing

Ę

The attacker generates the same password guessing dictionary for all target users.

Password guessing scenarios

Targeted guessing

Ę

 The attacker generates a corresponding attack dictionary for each target user.

Where is classical machine learning?

- 2005 Markov [Narayanan-Shmatikov, ACM CCS 2005]
- 2009 PCFG [Weir et al., IEEE S&P 2009]
- robabilisti 2014 Smoothing and regularization techniques [Ma et al., IEEE S&P 2014]

- 2016 RNN [Melicher et al., USENIX Security 2016]
- eep-learning 2019 PassGAN [Hitja et al., ACNS 2019]

.

- 2021 AdaMs [Pasquini et al., USENIX Security 2021]
- 2021 CPG/DPG [Pasquini et al., IEEE S&P 2021]
- 2021 Chunk-level [Xu et al. ACM CCS 2021]

Research on password guessing

Types of password models and typical representatives	Success rate	Efficiency	Interpre- tability	Proposed time
Statistical-based (PCFG, Markov)	Mid	High	High	2009-
Deep learning-based (RNN)	Mid	Low	Low	2016-
Classical machine learning (SVM)	Unknown	Mid?	Mid?	Yet to be studied

Research questions

- Can classical machine learning techniques be used to design password models?
- If it is possible, how can these techniques be used for typical guessing scenarios?
- Whether password guessing models based on classical machine learning techniques can improve the guessing success rate?

Design challenges

 Password guessing is different from traditional NLP tasks. E.g., il0veu4ever (with the semantic love you forever);
Cracking passwords requires an exact match: Any vagueness will not succeed. E.g., P@sswor123 and p@ssword123;
How to construct and select features to ensure the effectiveness of machine learning algorithms?

Password guessing modeling

Modeling password generation as a Multi-Classification problem

Our work makes the same assumption with the well-known Markov model: Each character in the password is only related to the previous characters.

Password feature construction

Feature construction method

- Each character is represented by 4-dimensional features: (Character type, Character serial number, Row number of the keyboard, Column number of the keyboard)
- The entire n-order string uses additional 2 dimensions to represent the current length feature:

(position of the character in a password, position of the character in the current segment)

Each 6-order string is represented as a 26 (=6×4+2) dimensional feature vector

(7, 3) = (length(qwer654), length(654))

RFGuess: a trawling password model

□ Use the decision tree for password prefix classification.

RFGuess: a trawling password model

□ Vote on character classification results with random forest.

Ę

□ The remaining password generation process is the same as the Markov model.

Experimental setup

□ 13 password datasets: 5 Chinese datasets and 8 English datasets

- Small-scale training set: 10,000, 100,000, and 1 million Rockyou
- Large-scale training set: 75% of 000Webhost (~10 million)

□ Two test scenarios: intra-site guessing and cross-site guessing scenarios

Table 1: Basic information about our 13 password datasets. [†]								
Dataset	Web service	Language	When leaked	Total PWs	Length>30	Removed %	Unique PWs	With PII
Taobao	E-commerce	Chinese	Feb., 2016	15,072,418	88	0.01%	11,633,759	
126	Email	Chinese	Oct., 2015	6,392,568	621	0.23%	3,764,740	
Dodonew	E-commerce	Chinese	Dec., 2011	16,283,140	13,4758	0.15%	10,135,260	
CSDN	Programmer	Chinese	Dec., 2011	6,428,632	0	0.01%	4,037,605	
Wishbone	Social	English	Jan., 2020	10,092,037	250	0.01%	5,933,902	
Mate1	Dating website	English	Mar., 2016	27,401,505	12,430	0.06%	11,916,080	
000Webhost	Web hosting	English	Oct., 2015	15,299,907	4,159	0.76%	10,526,769	
Yahoo	Web portal	English	July, 2012	453,491	0	2.35%	342,510	
LinkedIn	Job hunting	English	Jan., 2012	54,656,615	17,162	0.22%	34,282,741	
Rockyou	Social forum	English	Dec., 2009	32,603,387	3,140	0.07%	14,326,970	
12306	Train ticketing	Chinese	Dec., 2014	129,303	129,303	0	117,808	\checkmark
ClixSense	Paid task platform	English	Sep., 2016	2,222,045	0	0	1,628,018	\checkmark
Rootkit	Hacker forum	English	Feb., 2011	69,330	5	0.01%	56,835	\checkmark
[†] PW stands for password, and PII for personally identifiable information. We clean up passwords longer than 30 and containing non-ASCII codes.								

Experimental results

Table 7: Performance of different models. [†]							
ModelRFGuessPCFG [69]3-order Markov [42]FLA [43]							
Training time	Training time 0.3h 24s 102s 16h						
Model size 4.5G 93.2M 1.4G 5.8M							
Generated PW/s 130 82,372 13,303 2,500							
[†] CPU: Xeon silver 4210R 2.4GHz; GPU: GeForce RTX 3080 (5M dataset).							

- RFGuess achieves a guessing success rate comparable to deep learning-based methods (FLA) and outperforms other statistical-based guessing methods.
- RFGuess suffers from the drawbacks of slow password generation speed and high memory consumption.

More suitable for online password guessing

RFGuess-PII: a targeted password model

PII matching disambiguation

ID: wang123@foo.com ; name: Wang Lei; birthday: 1980.01.23

 $N_1 123B_2$ or U_1B_2 or N_1B_7 Which one to choose? wang1231980

Optimized PII matching algorithm

We propose a PII matching algorithm based on the principle of minimum information entropy

- PW1: R1 R2 R3 1. Exhaustively enumerate all possible representations for all passwords;
- PW2: R1 R2 R4 2. Count all representations, sort globally by frequency, and take out the representation
- with the most frequency as the priority representation (**such as R1**); PW3: R1 R5
- 3. Update the frequency, and then take out the representation with the most **PW4: R2 R3 frequency** among the remaining representations, as the second priority representation PW5: R1 R8 R9 (such as R2), and iterate until the frequency of all representations is 1.

Password feature construction (PII)

□ The feature construction method is similar to RFGuess

□ The **differences** lies:

- A string containing personal information is regarded as a **PII segment**.
- E.g., Wang.1980: Wang and 1980 are each regarded as a complete segment, represented by four-dimensional features: (personal information type, personal information serial number, 0, 0).
- Here the last two 0s are to align with the feature of ordinary characters.

Datasets and experimental setup (PII)

Dataset: 6 password datasets, including 4~6 kinds of PII

Table 2: Basic information about our PII datasets.					
Dataset	Language	Items num	Types of PII useful for this work		
12306	Chinese	129,303	Email, User name, Name, Birthday, Phone		
CSDN	Chinese		Email, User name, Name, Birthday, Phone		
Dodonew	Chinese	-	Email, User name, Name, Birthday, Phone		
ClixSense	English	2,222,045	Email, User name, Name, Birthday		
000Webhost	\mathcal{O}	-	Email, User name, Name, Birthday		
Rootkit	English	69,418	Email, User name, Name, Birthday		

Desig information about any DII dataget

Experimental setup

- Intra-site guessing scenarios: e.g., 50% PII-12306 \rightarrow 50% PII-12306 •
- Cross-site guessing scenarios: e.g., 50% PII-12306→50% PII-Dodonew •

Experimental results (PII)

Within 100 guesses, the guessing success rate of RFGuess-PII is 20%~28%;
RFGuess-PII outperforms existing models by 7%~13% within 1,000 guesses.

Intra-site guessing scenarios

Cross-site guessing scenarios

RFGuess-Reuse: a reuse model

Username	Password	
zhangsan	abc334bca Abc334bca123	
lisi001	Qwerdf 123456qwerdf	
•••		

Users' password pairs

Count the **structure-level** operations of password pairs in the train set (e.g., L8D5→L7S2)

Predicting the segment-level operations using the random forest model

(e.g., passwor→password)

Guesses	Prob.	
abc334bca1	0.6	
abc334bca123	0.2	
abc34	0.1	
	•••	

$$\mathbf{Pr}(pw_1 \to pw_2) = \left(\prod_{i=1}^n \mathbf{Pr}(Pt_{pw_1 \to pw_2}^i)\right) * p_n$$

Datasets and experimental setup (Reuse)

Dataset: 8 datasets containing **password pairs** (obtained through **email** match)

Table 4: Basic information about password reuse datasets.						
Dataset	Longuaga	Items	# Same	# Similar		
Dataset	Language	nems	password pair	password pair [†]		
$CSDN \rightarrow 126$	Chinese	195,832	62,686	47,690		
$CSDN \rightarrow 12306$	Chinese	12,635	7,079	2,815		
$12306 \rightarrow \text{Dodonew}$	Chinese	49,775	35,395	9,386		
CSDN→Dodonew	Chinese	5,997	2,040	1,597		
000Webhost→Clixsense	English	150,273	35,470	41,731		
000Webhost→LinkedIn	English	231,452	50,875	52,731		
000Webhost→Yahoo	English	36,936	5,960	6,303		
000Webhost→Mate1	English	51,942	7,613	25,504		
[†] Similar means the similarity score is within [0.5, 1.0], and it is calculated as						

 $s = 1 - \text{EditDistance}(pw1, pw2) / \max(|pw1|, |pw2|).$

Experimental setup

- $A \rightarrow B$ means that: A user's password at service A can be used by an attacker to help attack this user's account at service B.
- **CSDN** \rightarrow 126 is the training set for Chinese attack scenarios.
- 000Webhost \rightarrow ClixSense is the training set for English attack scenarios.

Experimental results (Reuse)

RFGuess-Reuse is comparable to existing leading models within 1,000 guesses

Table 5: Comparison of three password reuse models. [†]					
Experimental s	RFGuess -	Pass2-	TarGuess-		
Guessing scenario	Guess number	Reuse	path [45]	II [64]	
	10	68.41%	68.80%	68.13%	
$CSDN \rightarrow 12306$	100	73.09%	70.72%	73.19%	
	1,000	75.86%	72.16%	75.57%	
	10	48.59%		48.44%	
$CSDN \rightarrow Dodonew$	100	53.86%	51.79%	54.56%	
	1,000	57.71%	53.84%	57.58%	
	10	84.14%	83.44%	84.11%	
$12306 \rightarrow \text{Dodonew}$	100	86.00%	85.69%	86.34%	
	1,000	87.65%	86.78%	87.58%	
	10	27.70%	25.11%	30.17%	
000webhost \rightarrow Mate1	100	31.29%	26.42%	32.14%	
	1,000	33.77%	27.73%	34.37%	
	10	35.67%	32.65%	36.17%	
000 webhost \rightarrow LinkedIn	100	37.77%	34.06%	38.16%	
	1,000	39.52%	35.69%	39.72%	
000 webhost \rightarrow Yahoo	10	26.53%	24.84%	27.12%	
	100	28.59%	25.87%	28.69%	
	1,000	30.13%	26.99%	30.19%	
$^{\dagger}A$ value with dark gray (resp. light gray) represents the highest one (resp. 2nd one).					

General applicability

- Our password character encoding method is applicable to a series of supervised algorithms that can tackle multi-classification problems.
- □ Among these supervised algorithms, **boosting method** performs well.

Ę

Thank you!

Password Guessing Using Random Forest

Ding Wang, Yunkai Zou Nankai University {wangding, zouyunkai}@nankai.edu.cn

> ALUNIVERSET 人 1919

Zijian Zhang Peking University zhangzj@pku.edu.cn

Kedong Xiu Nankai University kedongxiu@nankai.edu.cn

The 32nd USENIX Security Symposium