Panda: Security Analysis of Algorand Smart Contracts

Zhiyuan Sun?, Xiapu Luo?, Yingian Zhang?

1The Hong Kong Polytechnic University,

2Southern University of Science and Technology

THE HONG KONG
Q' POLYTECHNIC UNIVERSITY H m %#ﬁ% é

ﬁ ?& fl;l 1)\)’}" \ iwi !‘\f SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY

B ntroduction

What is Algorand?

Algorand is proposed to overcome the blockchain trilemma, Outline
or the three fundamental difficulties that blockchain system
faces today: security, scalability, and decentralization by
adopting a new consensus protocol. As a new
permissionless blockchain system, Algorand uses

Pure Proof-of-Stake (PPoS) consensus protocol based

on Byzantine agreement protocol and is scalable to a
number of users, enabling consensus to be reached

with low latency.

Intro to Algorand smart contract
Vulnerabilities in Algorand smart contract
Automated detection tool

Evaluation results

o K~ 0D~

Case study

N
U Algorand Smart Contract

def clear_state_program():

1
2 return Approve ()

3 1
4+ def approval_program(): 2
5 on_c = Txn.on_completion() 5
6 appID = Txn.application_id()

G on_update = Seq([4
8 5
9 1) 6
10 on_delete = Reject() 2
11 ... # define on_creation

12 ... # define on_call 8
13 program = Cond (9
14 [appID == Int(0), on_creation], 10
15 [on_c == OnComplete.NoOp, on_call], 1
16 [on_c == OnComplete.UpdateApplication, on_update],

17 [on_c == OnComplete.DeleteApplication, on_delete], 12
18 a5 & 13
19 # handle OptIn and CloseOut

20) 14
21 return program

Stateful smart contract (Application)

def smart_signature():

params_conds = And(
Txn.type_enum() == TxnType.Payment,
Txn.fee() == Int(1000),
Txn.receiver() == Addr (" ... "),
Txn.amount () == Int (10000)

)

safety_conds = And(

Txn.close_remainder_to() == Global.zero_address(),
Txn.rekey_to() == Global.zero_address|()

)

recurring_conds = And(...)

program = And(params_conds, safety_conds,
< recurring_conds)
return program

Smart Signature

—
U V/uinerability discovery

We analyze the semantics of Algorand smart contracts and find
9 generic vulnerabilities which can be categorized into 5 types.

Unchecked Transaction Fee
Unchecked Transaction Parameters
Unexpected Delete and Update Operation

Unchecked Transaction Receiver

oA W N o

Local State Dependency

—
U V/uinerability discovery

Unchecked Transaction Fee

On Algorand, the sender of the transaction pays the transaction fees.

A user can also choose to increase fees to give the transaction a higher
priority to be accepted by the blockchain. However, this feature may be
exploited for launching attacks. If a smart signature is used as a signature
account and does not restrict the transaction fees, then anyone can use this
account to send a transaction with huge fees, and this transaction will wipe
out all of its balance.

Unchecked Transaction Parameters

There are three important optional parameters in transactions:
CloseRemainderTo, CloseAssetTo and RekeyTo. The format of these
parameters is the Algorand address. If one of these parameters is set, the

transaction will perform some crucial operations.

—
U V/uinerability discovery

Unexpected Delete and Update Operation

If an attacker initiates an application update transaction (OnComplete equals to UpdateApplication)
and attaches a malicious application in this transaction, then the current application will be replaced
by the malicious one after the transaction is recorded in the blockchain.

Note that anyone can send application update transactions and application delete transactions, and
whether the transaction is approved depends on the program logic. For example, the program can
only allow the application creator to modify the application by comparing the transaction sender's
address and the application creator's address. However, things may not always go well, and bad
program logic (e.g., a programming mistake) may allow anyone to delete or update applications.

—
U V/uinerability discovery

Application

-
-
-
-
-
-

Unchecked Transaction Receiver

Payment Application Call — f 4, If a smart contract does not check the transaction
ransaction Transaction . .
receiver of the payment transaction or the asset
. transfer transaction, an attacker can specify the
receiver as himself to break the program logic.

I —
B The Panda Tool

custom settings runtime data

User

Interface

User

vl v

Unexpected delete operation
. Unexpected update operation
t TEAL F t
ot Bl |_TEAL_{ cro | LCFO) Symbole Juneten |t | Ui s prametrs
filename P program andle 9 Unchecked transaction fee
A formatted T
I global state Z3 array | path constraints |
....................... - treeesmneeatiianmamanereoi e iiiiiimeieiiieneessseesseessseessseesseesseessseessseessseesseesssesssneess]
|
bytecode and!
1 Memory . .
-—>
global state | Modeler Interactions with external components

—»Interactions within the Panda tool

Z3

Z3 Theorem Prover

Algorand Blockchain

The figure above depicts the workflow and architecture of Panda, which consists of six major components, i.e. User Interface,
Blockchain Explorer, CFG Builder, Memory Modeler, Symbolic Executor and Analysis Plugins.

The project is open sourced at: https://github.com/Sun-COffee/Panda

https://github.com/Sun-C0ffee/Panda

I —
B Difiiclities

global Gr global Gr global F
intc_1 . intc_1 | intc_1
Handling Smart Signatures with Validators
&& @ | && | &&
bz labell .—____. bz sig_labell | bz sig_labell
| s | | s | | e | The left graph illustrates the merging process of a smart
.- inte2 | inte_2 | | inte2 signature and a validator. It is consist of four steps.
E bnz label2 }—@> bnz sig_label2 | | bnz sig_taber 1. Identify the application ID and fetch its bytecode from the
E I | I blockchain.
E return | return l'-——r—bt bnz app_|
~~~~~~~~~~~~ --» ol 2. Rename jump labels to avoid name conflicts.
@ ; @ | e
I I > endienes 3. Substitute return instructions to bnz instructions which
5 "f'c‘é 1o | '"f‘f—° d / °‘ jump to the application entry.
e e , , = 4. Concatenate the smart signature and the application into
bz label | —— a new smart signature.




I —
B Difiiclities

Since Algorand has two different data types (the
Uint type and the Bytes type), we need to adopt
some new techniques to deal with data type-related

issues. Recognizing Data Types

Runtime Type Checking | .-

Most of the opcodes in Algorand distinguish the two a:::,.okba.get Modelor

data types explicitly. Thus, We use a Python Tnts gl EE — —
dictionary to store data type and value separately. + sttextint | | stte:yes
Asynchronous Type Binding P Stack N
To determine the type of the symbolic variables, we Vatue vl satt-price) [ Vel 5. Vanun: 105

propose a new technique named asynchronous
type binding. The right picture illustrates the specific
process.

4 Type: Uint
1 Value: 100 <




I —
U Detection Rules

To accurately express the vulnerability detection rules,
we define the following 4 predicates:

P(constraints) is true if the path constraint set
is solvable after adding the new path constraints.

Q(variables) holds if none of the variables in the
parameter set (i.e. variables) are contained in the
current path constraint.

R(opcodes) holds if at least one opcode in the
parameter set is used in the current execution trace.

I(txn, type) checks the implicit type of the transaction

and returns true if the type of the transaction is the
same as that specified in the second parameter

Index & Mode & 7

Vulnerability Type Detection Rules

(1) [SIG] 'Q({currentTxn.Fee}) A (*P({GroupSize > |groupTxns|}) V 3txn € groupTxns,
Unchecked 3Q({txn.Fee}) AN*P({txn.Sender = LogicAddr,txn.Index = currentTxn.Index})\

transaction fee

g NtegroupTsns—{1xn} P({t.Sender = RandomAddrV t Sender = ZeroAddr}))

Wersion >=2 A\ Q({currentTxn.RekeyTo}) A\
2P({currentTxn.CloseRemainderTo = ZeroAddr, currentTxn.AssetCloseTo = ZeroAddr}) A

831(:[:61((::(]& (*P({GroupSize > |groupTxns|}) V 3txn & groupTxns,* Q({txn.RekeyTo})\

RekeyTo SP({txn.Sender = LogicAddr,txn.CloseRemainderTo = ZeroAddr,
txn.AssetCloseTo = ZeroAddr,txn.Index = currentTxn.Index})\
0 Nicgrouptns—{1xn} P({t Sender = RandomAddr V't .Sender = ZeroAddr}))
TQ({currentTxn.CloseRemainderTo}) A

(3) [SIG] iP({currenthn.TypeEnumf l,currenfon.Type ="pay”’})A

Unchecked ‘I(currentTxn, Payment) A (“P(GroupSize > |groupTxns|)V

CloseRemainderTo

Jtxn € groupTxns, P({txn.TypeEnum = 1,txn.Type = "pay” txn.Sender = LogicAdadr,
txn.Index = currentTxn.Index}) A °Y(txn, Payment) A" Q({txn.CloseRemainderTo})\
¥ Nvegrouptns—{1ny P({t Sender = RandomAddr V t Sender = ZeroAddr}))




I —
B Performance of Panda

105 §

104 .

103 g

107 7

Number of Smart Contracts

10! 7

100 7

A Application
* Smart Signature

Es
A
YN

A & *

Ax A & A
* a A w&“

y - AAM A A .
.
L 'Y B
A N Asa, A
Q. ‘
A A
> A
" A
A
A
<
- A Ad
* * AA
200 400 600 800

Analysis Time

The left figure reports the analysis time by running Panda.
The median and average analysis times for applications
are 15 seconds and 67 seconds, while the results for
smart signatures are 19 seconds and 35 seconds,
respectively.

The analysis time of applications and smart signatures.
A point is taken at an interval of 15 seconds.



W cvaluation
on-chain
Type Vulnerable (%*) | Unique (%*)
Arbitrary update 1,420 (1.43%) 147 (1.04%)
Arbitrary delete 2,590 (2.61%) 167 (1.18%)
Force clear state 1,360 (1.37%) 141 (0.99%)
Unchecked payment receiver | 710 (0.72%) 48 (0.34%)
Unchecked asset receiver 123 (0.12%) 60 (0.42%)
Total 4,008 (4.04%) 364 (2.57%)

Evaluation results for on-chain applications

off-chain
Type Vulnerable (%*) Unique (%*)
Arbitrary update 91,246 (16.79%) 454 (0.69%)
Arbitrary delete 97,908 (18.02%) 437 (0.67%)
Force clear state 10,749 (1.98%) 441 (0.67%)
Unchecked payment receiver | 1,570 (0.29%) 98 (0.15%)

Unchecked asset receiver

43,066 (7.93%)

141 (0.21%)

Total

150,676 (27.73%)

987 (1.50%)

Evaluation results for off-chain applications

We used Panda to conduct a vulnerability assessment on all
smart contracts on the Algorand blockchain and found 80,515
(10.38%) vulnerable smart signatures and 150,676 (27.73%)
vulnerable applications. Of the vulnerable applications, 4,008

(4.04%) are still on the blockchain and have not been deleted.

Whether contain Validator
YES NO

Type Vulnerable (%*) | Vulnerable (%*)
Unchecked transaction fees 15,539 (3.03%) 23,251 (8.83%)
Unchecked rekey_to 751 (0.15%) 8,713 (3.31%)
Unchecked close_remainder_to | 42,084 (8.21%) 4,509 (1.71%)
Unchecked asset_close_to 900 (0.18%) 3,206 (1.22%)
Total 57,120 (11.14%) | 23,395 (8.89%)

Evaluation results of smart signatures



I —
B Case Study (Unchecked group size)

......

global GroupSize

intco//2 | | .
- sig_label1:
global GroupSize | | ... ] ]
Lessons learned: We have to specify the group size
intc_1// 6 global GroupSize explicitly and check all the parameters of each of

these transactions in smart signatures or in the

- int 3
|:> Validator.
&& -

bz sig_label1 assert

Vulnerable code snippet Fixed version



|
B Case Study (Unexpected Delete and
Update Operation)

txn OnCompletion
““““ intc_2 // 4
txn OnCompletion S
intc_2 // a4 => txn OnCompletion
intc_3 // 5 intc_3 // 5 Impact: This vulnerable example has a
I - duplicate of 333 on the blockchain.
bnz label4 bnz label4
Vulnerable code snippet Fixed version



|
B Case Study (Validator can be

gtxno txn OnCompletion
ApplicationlD '
pushint 808867994 intc_O // 1
bnz label2 bnz label2
label2: label2:
intc_O // 1 intc_O // 1
return return

Smart signature

Validator

Impact: Panda has reported a large number of smart
signatures with this vulnerability pattern which includes more
than 40,000 vulnerable escrow accounts of ALGOXNFT (the
total trade volume exceeds 2 million Algos) and a vulnerable
liquidity pool of FXDX with a deposit of more than 500,000
Algos. We reported these vulnerabilities to the corresponding
developers and helped them to fix the vulnerabilities. We also
received a bug bounty of 10,000 Algos from ALGOXNFT.



Thanks for listening!



