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Anonymous Communication

Anonymous communication aims to hide the identity or communication 
relationship of both parties in an open network environment, such as 
Anonymous Browsing, Secure Communication, and File Sharing.

https://theconversation.com
https://www.slideshare.net
https://www.filecloud.com
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Anonymous Communication through Tor

Tor has been widely used as an anonymous communication tool to 
prevent users from being tracked, monitored and censored

Guard

Middle

Exit

Tor routes traffic across a path of three volunteer-operated nodes 
(called circuits) with layered encryption
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Website Fingerprinting (WF)

Train a Classifier

Attacker

High Accuracy
> 90%

WF Attackers try to infer the website that a user is visiting without breaking the encryption

Traffic Representation

Packet sizes,
direction, and 
timestamps

Eavesdropper/ISPs/ 
Autonomous Systems/
Malicious Guard Nodes
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Existing WF Attacks

[1] Wang, et al. Effective attacks and provable defenses for website fingerprinting. USENIX 2020.
[2] Panchenko, et al. Website fingerprinting at internet scale. NDSS 2016.
[3] J. Hayes, et al. k-fingerprinting: A robust scalable website fingerprinting technique. USENIX 2016.
[4] Rimmer, et al. Automated website fingerprinting through deep learning. NDSS 2018.
[5] Sirinam, et al. Deep fingerprinting: Undermining website fingerprinting defenses with deep learning. CCS  2018.
[6] Bhat, et al. Var-cnn: A data-efficient website fingerprinting attack based on deep learning. PETS 2019.
[7] Rahman, et al.  Tik-tok: The utility of packet timing in website fingerprinting attacks. PETS 2020.

Category Feature Granularity Attacks Traffic Representation

Traditional 
Machine Learning

Coarse-grained
Statistical Feature

k-NN[1]
Statistical Feature Collection: 

Mean, Median, Sum, Maximum, ..., Minimum

of Packet Sizes, Packet Intervals, ...

CUMUL[2]

k-FP[3]

Deep Learning
Fine-grained

Per-packet Feature

AWF[4]

Packet Direction: +1, -1, -1, -1, +1, -1, ...

Packet Timing: 0.13, 0.22, 0.24, …

Timing with Direction: +0.13, -0.22, -0.24, ...

Inter-Packet Time: 0.13, 0.09, 0.02,...

DF[5]

Var-CNN[6]

Tik-Tok[7]
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Traffic Distortion

WF Defense

Attacker

Train a Classifier Low Accuracy

Obfuscate

Traffic Representation

Undermine

Packet sizes,
direction, and 
timestamps
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WF Defense

• WTF-PAD [Juarez, ESORICS’16]

• FRONT [Gong, USENIX’20]

• Walkie-Talkie [Wang, USENIX’17]

• RegulaTor [Holland, PETS’22]

• Blanket [Nasr, USENIX’21]

Disturbing Traffic

Splitting Traffic

• TrafficSliver [la Cadena, CCS’20]

• Tamaraw [Wang, USENIX’14]

Delay Real Packets

Inject dummy packets

Guard

Guard

Guard

Guard

Middle

Distribute packets to 
different guard nodes

Introduce bandwidth or time overhead

Introduce implementation overhead
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Goal and Challenges

Fingerprint the Tor traffic accurately even under existing WF defensesGoal:

Challenges:
 • Is there a robust traffic representation that can less affected by existing traffic 

disturbing or splitting strategies? 

• How to design an effective WF attack achieving high accuracy against existing 
defenses?
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Contribution

• Propose a robust traffic representation called Traffic Aggregation matrix (TAM)

• Present a novel WF attack Robust Fingerprinting (RF)

• Demonstrate RF is superior to SOTA WF attacks in closed- and open-world scenarios

• Develop a countermeasure against RF which more effective to reduce its accuracy
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Feature Spaces Exploration

Information Leakage Analysis

• Measure the amount of information attackers can learn 
from the key feature to fingerprint the Tor traffic

• Typical defenses: WTF-PAD, Front and Walkie-Talkie

[1] Shuai Li, et al. Measuring information leakage in website fingerprinting attacks and defenses. CCS 2018. 10



Coarse-grained statistical features

Feature Spaces Exploration

• The information leakage is hidden by different defenses 

• Trivial contributions to website fingerprinting

• Measure the amount of information attackers can learn 
from the key feature to fingerprint the Tor traffic

• Typical defenses: WTF-PAD, Front and Walkie-Talkie

Information Leakage Analysis

[1] Shuai Li, et al. Measuring information leakage in website fingerprinting attacks and defenses. CCS 2018. 10



Fine-grained per-packet feature sequences
• Affected by defenses due to the randomness in packets 
padding and delaying

Feature Spaces Exploration

Coarse-grained statistical features

• Trivial contributions to website fingerprinting

• Measure the amount of information attackers can learn 
from the key feature to fingerprint the Tor traffic

• Typical defenses: WTF-PAD, Front and Walkie-Talkie

Information Leakage Analysis

[1] Shuai Li, et al. Measuring information leakage in website fingerprinting attacks and defenses. CCS 2018.

A feature with an intermediate granularity?

• The information leakage is hidden by different defenses 
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Packet-per-second

• A potential robust representation which is cannot be 
easily disturb by defenses

• Uncovered by WTF-PAD and Front

Feature Spaces Exploration (Cont’d)
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Packet Padding

Accommodate the changes in the total number of packets by multiple intervals

Deeper Look at Packet-per-second

The relative magnitude of
neighboring values remains unchanged 

4

6

4

2
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Original Traffic
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Deeper Look at Packet-per-second (Cont’d)

Packet Delaying

Resist moderate changes in time series

4

6

4

2

4

6

4

2

Original Traffic
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Incoming

Outgoing

Traffic Aggregation Matrix (TAM)

𝑀 ∈ ℝ!×#

Traffic Aggregation Matrix

Definition

1

2 0 2 2 1 0 1 2 2 2 1 00

1 1 2 1 3 2 2 3 3 1 21

• Counts the number of outgoing and incoming packets per time slot

• Divide the entire traffic into 𝑵 small fixed-length time slots 𝒔
- Reduce the information loss
- Tolerate packet padding and delaying

𝑡𝑖𝑚𝑒 𝑠𝑙𝑜𝑡 𝑠

Construction
• TAM𝑀 = 𝑚!" 𝑖 ∈ 1, 2 , 𝑗 ∈ [1, 𝑁]}

• Merges the values into the 2×𝑁 matrix.

2 0 2 2 … 0

1 1 2 1 … 1
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Packet
Padding:

Packet 
Delaying:

Random
WTF-PAD
FRONT

Random

A robust representation should keep the intra-class distance between 𝐹 and 𝐹′ as short as possible

𝑑𝑒𝑓𝑒𝑛𝑑𝑒𝑑 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 𝐹′𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 𝐹

• Undefended Dataset[1] (randomly select 100 traces from 1000 traces for each of the 95 websites)

• Intra-class distance metric: Maximum Mean Discrepancy (MMD) [2]

• Representations to compare: Direction, Time with Direction

[1] Payap Sirinam, et al. Deep fingerprinting: Undermining website fingerprinting defenses with deep learning. CCS 2018.

Analysis of the Robustness Against Padding and Delaying

[2] Arthur Gretton, et al. A Kernel Two-Sample Test. JMLR 2012.
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Vary bandwidth (fix time overhead to 10%) Vary time (fix bandwidth overhead to 30%) 

• Representations to compare: Direction, Time with Direction

TAM is a more robust traffic representation under large bandwidth and moderate time overhead

Analysis of the Robustness Against Padding and Delaying (Cont’d)

• Intra-class distance metric: Maximum Mean Discrepancy (MMD) [2]

[1] Payap Sirinam, et al. Deep fingerprinting: Undermining website fingerprinting defenses with deep learning. CCS 2018.
[2] Arthur Gretton, et al. A Kernel Two-Sample Test. JMLR 2012.

• Undefended Dataset[1] (randomly select 100 traces from 1000 traces for each of the 95 websites)
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Effective CNN-based Classifier

Design of Robust Fingerprinting

Traffic Aggregation Matrix

…

…

1D Conv La
yer

Batch
Norm

2D

ReLU
MaxPoolin

g 2D

MaxPoolin
g 1D

Batch
Norm

1D

ReLU 1D Conv La
yer

Output

2D Convolutional Block × 2 1D Convolutional Block × 2 Global Average Pooling Block

2D 
Conv 
Layer

Local Feature Extraction High-level Feature Extraction Overfitting Reduction

Global A
verage 

Poolin
g 1D

Batch
Norm

1D

ReLU

Robust Traffic Representation

•  Tolerate packet padding and delaying 

• Extract robust discriminative features automatically

• Aggregates multi-dimensional information: packet direction, number, and time.

17



WF attacks:      

WF defenses:

• ML-based: k-NN [Wang, USENIX’14], CUMUL [Panchenko, NDSS’16], and k-FP [Hayes, USENIX’16] 

• Traffic Splitting: Traffic-Sliver [la Cadena, CCS’20]

- By Direction (BD) 

- Batch Weighted Random (BWR)

• DL-based: AWF [Rimmer, NDSS’18], DF [Sirinam, CCS’18], Tik-Tok [Bhat, PETS’19] and Var-CNN [Rahman, PETS’20]

• Traffic Disturbing: WTF-PAD [Juarez, ESORICS’16], Front [Gong, USENIX’20], RegulaTor [Holland, PETS’22]

Tamaraw [Wang, USENIX’14], Blanket [Nasr, USENIX’21], and Walkie-Talkie [Wang, USENIX’17]

Experiment Setup

Public datasets:
•  Undefended Dataset [Sirinam, CCS’18]:        95 websites × 1000  +  40,000 websites × 1
•  Walkie-Talkie Dataset [Rahman, PETS’20]:   100 websites × 400 +  10,000 websites × 4

Monitored Unmonitored
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Attacks Undefended
Disturbing Traffic Defenses Splitting Traffic Defenses

WTF-PAD Front RegulaTor Blanket Walkie-
Talkie BD BWR

k-FP 94.45 68.33 52.66 49.27 - 39.81 77.39 36.35

DF 98.40 90.85 76.85 20.96 98.00 71.02 20.69 19.99

Tik-Tok 98.45 93.80 84.79 47.07 98.13 72.85 92.74 57.63

Var-CNN 98.87 94.70 79.24 47.68 98.49 87.53 95.50 31.09

RF 98.83 96.58 93.34 67.43 98.62 93.87 95.70 79.68

• RF has the slightest decrease in accuracy on all defenses, especially for WTF-PAD, Front, Blanket, 
Walkie-Talkie and TrafficSliver-BD, which decrease by less than 6%

Attacks Comparison in the Closed-world Scenario

↓2.25 ↓5.49 ↓31.4 ↓0.21 ↓4.96 ↓3.13 ↓19.15
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Attacks Undefended
Disturbing Traffic Defenses Splitting Traffic Defenses

WTF-PAD Front RegulaTor Blanket Walkie-
Talkie BD BWR

k-FP 94.45 68.33 52.66 49.27 - 39.81 77.39 36.35

DF 98.40 90.85 76.85 20.96 98.00 71.02 20.69 19.99

Tik-Tok 98.45 93.80 84.79 47.07 98.13 72.85 92.74 57.63

Var-CNN 98.87 94.70 79.24 47.68 98.49 87.53 95.50 31.09

RF 98.83 96.58 93.34 67.43 98.62 93.87 95.70 79.68

• RF outperforms all other WF attacks. Particularly, RF achieves a best accuracy improvement of 
22.05% and an average accuracy improvement of 8.9% over the SOTA attack Tik-Tok

Attacks Comparison in the Closed-world Scenario (Cont’d)

↑2.78 ↑8.55 ↑20.36 ↑0.49 ↑21.02 ↑2.96 ↑22.05↑0.38
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(a) WTF-PAD (b) Front (c) Walkie-Talkie

(d) RegulaTor (e) TrafficSliver-BD (f) TrafficSliver-BWR

• RF consistently and significantly outperforms other SOTA attacks on all defenses

Attacks Comparison in the Open-world Scenario

Large precision gap
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Countermeasure
Design Goals

• Effective: Effectively reduce the accuracy of WF attacks.

• Lightweight: Introduces moderate bandwidth and time overhead.
• Practical: Can be applied to live traffic.

Basic Idea
• Informative Region Extraction: Use Class Activation Mapping (CAM) to learn packet sequences
containing informative features from historical traffic of a collection of websites
• Traffic Morphing: Morph the original traffic from a certain website by packet padding and
delaying to mimic multiple packet sequences from another website.

Class Activation Mapping [Zhou, CVPR’16]

Class Activation Mapping Importance Score

𝝉

Informative Region

…

…

RF
…

…
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Performance Evaluation

Defense
Overhead (%) Accuracy (%)

Bandwidth Time RF Var-CNN

BD 0 0 95.70 95.50

BWR 0 0 79.68 31.09

WTF-PAD 63 0 96.58 94.70

Front 103 0 93.34 79.24

Walkie-Talkie 31 34 93.87 87.53

RBB 43 14 97.63 86.35

Blanket 47 23 98.62 98.49

RegulaTor 77 5 67.43 47.68

Our Defense 73 14 52.59 27.65

• Our defense has the best performance and moderate overhead in defeating RF

• A zero-delay defense with better performance against RF is more desirable 23



Contributions

Future Work

• Propose a robust traffic representation called Traffic Aggregation matrix (TAM)

• Present a novel WF attack Robust Fingerprinting (RF)

• Demonstrate RF is superior to SOTA WF attacks in closed- and open-world scenarios

• Develop a countermeasure against RF which more effective to reduce its accuracy

• Explore more robust traffic representations 

• Evaluate WF attacks against more real-world deployed defenses

Conclusion

• Investigate more effective zero-delay defenses against RF
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Source Code and Datasets Available:

https://github.com/robust-fingerprinting/RF

Kexin Ji

jikexin@bit.edu.cn

Beijing Institute of Technology, China

Thank You!
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