

Subverting Website Fingerprinting Defenses with Robust Traffic Representation

Meng Shen¹, <u>Kexin Ji¹</u>, Zhenbo Gao¹, Qi Li², Liehuang Zhu¹, and Ke Xu² ¹Beijing Institute of Technology (BIT), China ²Tsinghua University, China

{shenmeng, jikexin, liehuangz}@bit.edu.cn, gaozhenbo07@foxmail.com, {qli01, xuke}@tsinghua.edu.cn

Aug. 9, 2023

Anonymous communication aims to hide the identity or communication relationship of both parties in an open network environment, such as Anonymous Browsing, Secure Communication, and File Sharing.

Anonymous Communication through Tor

Tor has been **widely used** as an anonymous communication tool to prevent users from being tracked, monitored and censored

Tor routes traffic across a path of **three volunteer-operated nodes** (called **circuits**) with layered encryption

Website Fingerprinting (WF)

WF Attackers try to infer the website that a user is visiting without breaking the encryption

Existing WF Attacks

Category	Feature Granularity	Attacks	Traffic Representation
		k-NN ^[1]	Statistical Feature Collection:
Traditional Machine Learning	Coarse-grained Statistical Feature	CUMUL ^[2]	Mean, Median, Sum, Maximum,, Minimum
		k-FP ^[3]	of Packet Sizes, Packet Intervals,
	Fine-grained Per-packet Feature	AWF ^[4]	
		DF ^[5]	Packet Direction: +1, -1, -1, -1, +1, -1,
Deep Learning		Var-CNN ^[6]	Packet Timing: 0.13, 0.22, 0.24, Timing with Direction: +0.13, -0.22, -0.24, Inter-Packet Time: 0.13, 0.09, 0.02,
		Tik-Tok ^[7]	

- [1] Wang, et al. Effective attacks and provable defenses for website fingerprinting. USENIX 2020.
- [2] Panchenko, et al. Website fingerprinting at internet scale. NDSS 2016.
- [3] J. Hayes, et al. k-fingerprinting: A robust scalable website fingerprinting technique. USENIX 2016.
- [4] Rimmer, et al. Automated website fingerprinting through deep learning. NDSS 2018.
- [5] Sirinam, et al. Deep fingerprinting: Undermining website fingerprinting defenses with deep learning. CCS 2018.
- [6] Bhat, et al. Var-cnn: A data-efficient website fingerprinting attack based on deep learning. PETS 2019.
- [7] Rahman, et al. Tik-tok: The utility of packet timing in website fingerprinting attacks. PETS 2020.

WF Defense

WF Defense

Disturbing Traffic

- Tamaraw [Wang, USENIX'14]
- WTF-PAD [Juarez, ESORICS'16]
- Walkie-Talkie [Wang, USENIX'17]
- FRONT [Gong, USENIX'20]
- Blanket [Nasr, USENIX'21]
- RegulaTor [Holland, PETS'22]

Splitting Traffic

• TrafficSliver [la Cadena, CCS'20]

Goal: Fingerprint the Tor traffic accurately even under existing WF defenses

Challenges:

• Is there a robust traffic representation that can less affected by existing traffic disturbing or splitting strategies?

• How to design an effective WF attack achieving high accuracy against existing defenses?

- Propose a robust traffic representation called Traffic Aggregation matrix (TAM)
- Present a novel WF attack Robust Fingerprinting (RF)
- Demonstrate RF is superior to SOTA WF attacks in closed- and open-world scenarios
- Develop a countermeasure against RF which more effective to reduce its accuracy

Feature Spaces Exploration

Information Leakage Analysis

- Measure the amount of information attackers can learn from the key feature to fingerprint the Tor traffic
- Typical defenses: WTF-PAD, Front and Walkie-Talkie

Feature Spaces Exploration

Information Leakage Analysis

- Measure the amount of information attackers can learn from the key feature to fingerprint the Tor traffic
- Typical defenses: WTF-PAD, Front and Walkie-Talkie

Coarse-grained statistical features

- The information leakage is hidden by different defenses
- Trivial contributions to website fingerprinting

Feature Spaces Exploration

Information Leakage Analysis

- Measure the amount of information attackers can learn from the key feature to fingerprint the Tor traffic
- Typical defenses: WTF-PAD, Front and Walkie-Talkie

Coarse-grained statistical features

- The information leakage is hidden by different defenses
- Trivial contributions to website fingerprinting

Fine-grained per-packet feature sequences

• Affected by defenses due to the randomness in packets padding and delaying

A feature with an intermediate granularity?

[1] Shuai Li, et al. Measuring information leakage in website fingerprinting attacks and defenses. CCS 2018.

Feature Spaces Exploration (Cont'd)

Packet-per-second

- Uncovered by WTF-PAD and Front
- A potential **robust representation** which is cannot be easily disturb by defenses

Deeper Look at Packet-per-second

Accommodate the changes in the total number of packets by multiple intervals

Deeper Look at Packet-per-second (Cont'd)

Packet Delaying

Resist moderate changes in time series

Traffic Aggregation Matrix

Definition

• TAM $M = \{m_{ij} \mid i \in \{1, 2\}, j \in [1, N]\}$

Construction

- Divide the entire traffic into N small fixed-length time slots s
 - Reduce the information loss
 - Tolerate packet padding and delaying
- Counts the number of outgoing and incoming packets per time slot
- Merges the values into the $2 \times N$ matrix.

time slot s

Analysis of the Robustness Against Padding and Delaying

- Undefended Dataset^[1] (randomly select 100 traces from 1000 traces for each of the 95 websites)
- Representations to compare: **Direction, Time with Direction**
- Intra-class distance metric: Maximum Mean Discrepancy (MMD)^[2]

A robust representation should keep the intra-class distance between F and F' as short as possible

[1] Payap Sirinam, et al. Deep fingerprinting: Undermining website fingerprinting defenses with deep learning. CCS 2018.[2] Arthur Gretton, et al. A Kernel Two-Sample Test. JMLR 2012.

Analysis of the Robustness Against Padding and Delaying (Cont'd)

- Undefended Dataset^[1] (randomly select 100 traces from 1000 traces for each of the 95 websites)
- Representations to compare: **Direction, Time with Direction**
- Intra-class distance metric: Maximum Mean Discrepancy (MMD)^[2]

TAM is a more robust traffic representation under large bandwidth and moderate time overhead

[1] Payap Sirinam, et al. Deep fingerprinting: Undermining website fingerprinting defenses with deep learning. CCS 2018.[2] Arthur Gretton, et al. A Kernel Two-Sample Test. JMLR 2012.

Design of Robust Fingerprinting

Robust Traffic Representation

- Aggregates multi-dimensional information: packet direction, number, and time.
- Tolerate packet padding and delaying

Effective CNN-based Classifier

• Extract robust discriminative features automatically

Public datasets:

- Undefended Dataset [Sirinam, CCS'18]:
- Walkie-Talkie Dataset [Rahman, PETS'20]:

WF attacks:

- ML-based: k-NN [Wang, USENIX'14], CUMUL [Panchenko, NDSS'16], and k-FP [Hayes, USENIX'16]
- DL-based: AWF [Rimmer, NDSS'18], DF [Sirinam, CCS'18], Tik-Tok [Bhat, PETS'19] and Var-CNN [Rahman, PETS'20]

WF defenses:

• Traffic Disturbing: WTF-PAD [Juarez, ESORICS'16], Front [Gong, USENIX'20], RegulaTor [Holland, PETS'22]

Tamaraw [Wang, USENIX'14], Blanket [Nasr, USENIX'21], and Walkie-Talkie [Wang, USENIX'17]

- Traffic Splitting: Traffic-Sliver [la Cadena, CCS'20]
 - By Direction (BD)
 - Batch Weighted Random (BWR)

	Monitored		Unmonitored
	95 websites × 1000	+	40,000 websites × 1
]:	100 websites × 400	+	10,000 websites × 4

Attacks Comparison in the Closed-world Scenario

Attacks	Undefended	Disturbing Traffic Defenses					Splitting Traffic Defenses	
		WTF-PAD	Front	RegulaTor	Blanket	Walkie- Talkie	BD	BWR
k-FP	94.45	68.33	52.66	49.27	-	39.81	77.39	36.35
DF	98.40	90.85	76.85	20.96	98.00	71.02	20.69	19.99
Tik-Tok	98.45	93.80	84.79	47.07	98.13	72.85	92.74	57.63
Var-CNN	98.87	94.70	79.24	47.68	98.49	87.53	95.50	31.09
RF	98.83	96.58 ↓2.25	93.34 ↓5.49	67.43↓ 31.4	98.62 ↓ 0.21	93.87↓ 4.96	95.70↓ 3.13	79.68 ↓19.15

• RF has the slightest decrease in accuracy on all defenses, especially for WTF-PAD, Front, Blanket, Walkie-Talkie and TrafficSliver-BD, which decrease by less than 6%

Attacks Comparison in the Closed-world Scenario (Cont'd)

Attacks	Undefended	Disturbing Traffic Defenses					Splitting Traffic Defenses	
		WTF-PAD	Front	RegulaTor	Blanket	Walkie- Talkie	BD	BWR
k-FP	94.45	68.33	52.66	49.27	-	39.81	77.39	36.35
DF	98.40	90.85	76.85	20.96	98.00	71.02	20.69	19.99
Tik-Tok	98.45	93.80	84.79	47.07	98.13	72.85	92.74	57.63
Var-CNN	98.87	94.70	79.24	47.68	98.49	87.53	95.50	31.09
RF	98.83↑ 0.38	96.58↑2.78	93.34↑ 8.55	67.43 ↑20.36	98.62 ↑0.49	93.87 ↑21.02	95.70 ↑2.96	79.68 ↑22.05

 RF outperforms all other WF attacks. Particularly, RF achieves a best accuracy improvement of 22.05% and an average accuracy improvement of 8.9% over the SOTA attack Tik-Tok

Attacks Comparison in the Open-world Scenario

RF consistently and significantly outperforms other SOTA attacks on all defenses

Countermeasure

Design Goals

- Effective: Effectively reduce the accuracy of WF attacks.
- Lightweight: Introduces moderate bandwidth and time overhead.
- Practical: Can be applied to live traffic.

Basic Idea

- Informative Region Extraction: Use *Class Activation Mapping (CAM)* to learn packet sequences containing informative features from historical traffic of a collection of websites
- **Traffic Morphing:** Morph the original traffic from a certain website by packet padding and delaying to mimic multiple packet sequences from another website.

Performance Evaluation

Defense	Overhead	d (%)	Accuracy (%)		
Delense	Bandwidth	Time	RF	Var-CNN	
BD	0	0	95.70	95.50	
BWR	0	0	79.68	31.09	
WTF-PAD	63	0	96.58	94.70	
Front	103	0	93.34	79.24	
Walkie-Talkie	31	34	93.87	87.53	
RBB	43	14	97.63	86.35	
Blanket	47	23	98.62	98.49	
RegulaTor	77	5	67.43	47.68	
Our Defense	73	14	52.59	27.65	

- Our defense has the **best performance** and **moderate overhead** in defeating RF
- A zero-delay defense with better performance against RF is more desirable

Conclusion

Contributions

- Propose a robust traffic representation called Traffic Aggregation matrix (TAM)
- Present a novel WF attack Robust Fingerprinting (RF)
- Demonstrate RF is superior to SOTA WF attacks in closed- and open-world scenarios
- Develop a countermeasure against RF which more effective to reduce its accuracy

Future Work

- Explore more robust traffic representations
- Evaluate WF attacks against more real-world deployed defenses
- Investigate more effective zero-delay defenses against RF

Thank You!

Kexin Ji

jikexin@bit.edu.cn

Beijing Institute of Technology, China

Source Code and Datasets Available:

https://github.com/robust-fingerprinting/RF