Forming Faster Firmware Fuzzers

Lukas Seidel, Qwiet Al and TU Berlin
Dominik Maier, TU Berlin
Marius Muench, VU Amsterdam and University of Birmingham

The 32nd USENIX Security Symposium

27 UNIVERSITYOF
VU 5 BIRMINGHAM

Our Goal:
Re-Think Firmware Emulation
for Fuzzing

Firmware Fuzzing

Firmware

CPU

External Peripherals
e.g., WiFi Antenna

A

Firmware Fuzzing

Firmware
(lifted by emulator)

Firmware Fuzzing

(lifted by emulator) Fuzzing Engine

Observations

1) Full Binary lifting / rewriting (even if heavily cached) is expensive.
QEMU’s advantage is executing diverse architectures but most embedded

work focuses on ARM.

2) QEMU was developed for more complex systems, deploying a SoftMMU
which dispatches all memory accesses and introduces significant overhead

For more roadblocks that we addressed, please refer to our paper.

Near-Native Rehosting

Core Idea:

a) A lot of embedded firmware runs on ARMv7-M chips

b) Certain ARMv8-A cores provide compatibility with AArch32 and Thumb instruction
set variants

= Execute binaries for small embedded devices on their “bigger brothers”!

By this, we

Heavily reduce the amount of code which needs lifting / rewriting
[]

outperform rehosting approaches built on top of general-purpose emulators

Reduced Memory Access Overhead
e Mirror memory layout of the embedded device in userspace

= rewritten instructions do not need extra logic to dispatch memory
accesses

e Use your usual MMU to detect memory violations

= no need for overhead-inducing SoftMMU

The Framework

SAFIREFUZZ

Userspace

LibAFL @

Basic Blocks

]

HAL Layer Abstractions

C_ I
—
L]

Rehosted Binary

Dynamic
Rewriting

Basic Blocks

& Instrumentation

()]
[
L]

Firmware Binary
(Target)

fn f_open(file_ptr: u32, _path_ptr: u32, _mode_byte: u32) —

" ety CURTEN
High-Level -
let buf ptr: u32 = crate::handlers::malloc(size: FUZZ LEN);
. if FUZZ_INDEX = 0 |
l I l a Ion ptr::copy_nonoverlapping(src: FUZZ_INPUT.as_ptr(), dst: buf_ptr

t u8, count: FUZZ LEN usize);
FUZZ_INDEX += FUZZ_LEN;

e Search for functions accessing o ey
MMIQ peripherals (HAL) o L
Emulate their behavior in a S
high-level language (handler) let nut dummy_obj: FOID = FDID:: default();
Insert hooks to your handler L T

obj: dummy obj,
flag: 0x1,
err: 0,

fptr: 0,
cliistanl
sect: 0,

while rewriting

= Eliminate problematic MMIO g

ptr:: copy_nonoverlapping(src: &new_file const _, dst: file ptr

Basic Block Rewriting

Rewritten Basic Block

Original Basic Block Rewritten Basic Block sfteE ELPst Erecition
/;;;0000: movs r0, #0 ///’ movs ro, #0 ///>movs ro, #0
0x10002: movs rl, #0 movs rl, #0 movs ri, #0
0x10004: PC-relative: movt r3, #0x1 movt r3, #0x1
1dr r3, [pc, #0x30] | P movw r3, #0x34 movw r3, #0x33
0x10006: cmp r3, #1 rewrite to {ldr ¥3; [x3] ldr x3, [x3]
0x10008: begq #0x20e load from cmp r3, #1 cmp r3, #1
absolute = 5
addrass push {r0-r12, 1lr} [> b #12
mov r0, #SUCC_O_ADDR mov r0, #SUCC_O_ADDR
blx rewrite_bb blx rewrite_bb
mov r0, #SUCC_1_ADDR mov r0, #SUCC_1_ADDR
blx rewrite_bb blx rewrite_bb
blx resolve_branch blx resolve_branch
pop {rO0-r12, 1r} pop {rO0-ri12, 1lr}
/ nop / beq #RESOLVED ADI,)y

Evaluation

e 12 targets previously fuzzed by
other firmware fuzzing work, e.g.,

o STM32-based PLC firmware

o HTTP Server for Atmel SAM R21
microcontrollers

o Contiki OS-based WiFi
Receiver/Transmitter

o Afuzzing benchmark firmware
with artificial vulnerabilities (What
You Corrupt Is Not What You
Crash)

12

Evaluation

e 12 targets previously fuzzed by e 4 baseline configurations
other firmware fuzzing work, e.g.,

o STM32-based PLC firmware o HALucinator (state-of-the-art

o HTTP Server for Atmel SAM R21 HLE-based)
microcontrollers o HALucinator-LibAFL

o Contiki OS-based WiFi o FuzzWare (state-of-the-art
Receiver/Transmitter symbolic execution-based)

o Afuzzing benchmark firmware o FuzzWare-NoHAL

with artificial vulnerabilities (What
You Corrupt Is Not What You
Crash)

13

— Fuzzware —— Fuzzware-NoHAL —— HALucinator —— HALucinator-libafl —— SAFIREFuzz

6LoWPAN Transmitter NXP HTTP SAMR21 HTTP
3000 ' L= — | -
—_— 2000 4
2500 : i 2000 o1 7
a5 I ’ ‘ 1500 '
1500 1000
1000
500
500
0 0
10° 10! 10? 103 10* 10° 10! 102 103 10% 10° 10! 102 10° 10%
P2IM Drone STM PLC WYCINWYC
3500
600
3000
500
2500
400
2000
400
300 — j_ 1500
300
200 1000
200
= 100 500
0 0 0
100 10! 10? 10? 104 10° 10! 10?2 10° 10* 10° 10! 10?2 10° 104

Basic Block Coverage

14

Performance |

CLLILT]

690x faster than HALucinator

145x faster than FuzzWare

15

New Targets
e 2 previously unfuzzed targets

o Sine: open-source firmware for
electric motor inverters

o STMicroelectronics firmware
example for image processing

(libjpeg)

3 new Bugs

©)

O

Sine:

m Arbitrary write by
corrupted config value
(probably not
exploitable)

Libjpeg:

m Segfault after accessing
uninitialized struct

m Out-of-bounds write

16

Conclusion

= Near-native execution, minimal rewriting

= Rehosting of embedded firmware in Linux
userspace

= Vastly increased execution speeds

= Less time to achieve (more) coverage

ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED
a "=coition o Fscctition o ot

REPRODUCED

SCAN ME

prOme

17

