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Our Goal:
Re-Think Firmware Emulation
for Fuzzing
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Observations

1) Full Binary lifting / rewriting (even if heavily cached) is expensive.
QEMU’s advantage is executing diverse architectures but most embedded

work focuses on ARM.

2) QEMU was developed for more complex systems, deploying a SoftMMU
which dispatches all memory accesses and introduces significant overhead

For more roadblocks that we addressed, please refer to our paper.



Near-Native Rehosting

Core Idea:

a) A lot of embedded firmware runs on ARMv7-M chips

b) Certain ARMv8-A cores provide compatibility with AArch32 and Thumb instruction
set variants

= Execute binaries for small embedded devices on their “bigger brothers”!

By this, we

Heavily reduce the amount of code which needs lifting / rewriting
[ ]

outperform rehosting approaches built on top of general-purpose emulators



Reduced Memory Access Overhead
e Mirror memory layout of the embedded device in userspace

= rewritten instructions do not need extra logic to dispatch memory
accesses

e Use your usual MMU to detect memory violations

= no need for overhead-inducing SoftMMU



The Framework
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fn f_open(file_ptr: u32, _path_ptr: u32, _mode_byte: u32) —

" ety CURTEN
High-Level -
let buf ptr: u32 = crate::handlers::malloc(size: FUZZ LEN);
. if FUZZ_INDEX = 0 |
l I l a Ion ptr::copy_nonoverlapping(src: FUZZ_INPUT.as_ptr(), dst: buf_ptr

t u8, count: FUZZ LEN usize);
FUZZ_INDEX += FUZZ_LEN;

e Search for functions accessing o ey
MMIQ peripherals (HAL) o L
Emulate their behavior in a S
high-level language (handler) let nut dummy_obj: FOID = FDID:: default();
Insert hooks to your handler L T

obj: dummy obj,
flag: 0x1,
err: 0,

fptr: 0,
cliistanl
sect: 0,

while rewriting

= Eliminate problematic MMIO g

ptr:: copy_nonoverlapping(src: &new_file const _, dst: file ptr




Basic Block Rewriting

Rewritten Basic Block

Original Basic Block Rewritten Basic Block sfteE ELPst Erecition
/;;;0000: movs r0, #0 ///’ movs ro, #0 ///>movs ro, #0
0x10002: movs rl, #0 movs rl, #0 movs ri, #0
0x10004: PC-relative: movt r3, #0x1 movt r3, #0x1
1dr r3, [pc, #0x30] | P movw r3, #0x34 movw r3, #0x33
0x10006: cmp r3, #1 rewrite to {ldr ¥3; [x3] ldr x3, [x3]
0x10008: begq #0x20e load from cmp r3, #1 cmp r3, #1
absolute = 5
addrass push {r0-r12, 1lr} [> b #12
mov r0, #SUCC_O_ADDR mov r0, #SUCC_O_ADDR
blx rewrite_bb blx rewrite_bb
mov r0, #SUCC_1_ADDR mov r0, #SUCC_1_ADDR
blx rewrite_bb blx rewrite_bb
blx resolve_branch blx resolve_branch
pop {rO0-r12, 1r} pop {rO0-ri12, 1lr}
/ nop / beq #RESOLVED ADI,)y




Evaluation

e 12 targets previously fuzzed by
other firmware fuzzing work, e.g.,

o STM32-based PLC firmware

o HTTP Server for Atmel SAM R21
microcontrollers

o Contiki OS-based WiFi
Receiver/Transmitter

o Afuzzing benchmark firmware
with artificial vulnerabilities (What
You Corrupt Is Not What You
Crash)
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Evaluation

e 12 targets previously fuzzed by e 4 baseline configurations
other firmware fuzzing work, e.g.,

o STM32-based PLC firmware o HALucinator (state-of-the-art

o HTTP Server for Atmel SAM R21 HLE-based)
microcontrollers o HALucinator-LibAFL

o Contiki OS-based WiFi o FuzzWare (state-of-the-art
Receiver/Transmitter symbolic execution-based)

o Afuzzing benchmark firmware o FuzzWare-NoHAL

with artificial vulnerabilities (What
You Corrupt Is Not What You
Crash)
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Performance |

CLLILT]

690x faster than HALucinator

145x faster than FuzzWare
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New Targets
e 2 previously unfuzzed targets

o Sine: open-source firmware for
electric motor inverters

o  STMicroelectronics firmware
example for image processing

(libjpeg)

3 new Bugs

©)

O

Sine:

m Arbitrary write by
corrupted config value
(probably not
exploitable)

Libjpeg:

m Segfault after accessing
uninitialized struct

m Out-of-bounds write
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Conclusion

= Near-native execution, minimal rewriting

= Rehosting of embedded firmware in Linux
userspace

= Vastly increased execution speeds

= Less time to achieve (more) coverage
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