GAP: DIFFERENTIALLY PRIVATE GRAPH NEURAL NETWORKS WITH AGGREGATION PERTURBATION

Sina Sajadmanesh

Ali Shahin Shamsabadi The Alan Turing Institute

Aurélien Bellet

Daniel Gatica-Perez

32nd USENIX Security Symposium August 2023

- ► Graph Neural Networks (GNNs) are state-of-the-art algorithms for learning on graphs
 - Tasks: node classification, link prediction, ...
 - Applications: recommendation systems, credit issuing, traffic forecasting, drug discovery, ...

- ► Graph Neural Networks (GNNs) are state-of-the-art algorithms for learning on graphs
 - Tasks: node classification, link prediction, ...
 - Applications: recommendation systems, credit issuing, traffic forecasting, drug discovery, ...
- ► Graph data could be privacy-sensitive
 - e.g., users' personal attributes, financial transactions, medical/biological networks, . . .

- ► Graph Neural Networks (GNNs) are state-of-the-art algorithms for learning on graphs
 - Tasks: node classification, link prediction, ...
 - Applications: recommendation systems, credit issuing, traffic forecasting, drug discovery, ...
- ► Graph data could be privacy-sensitive
 - e.g., users' personal attributes, financial transactions, medical/biological networks, ...
- GNNs are vulnerable to privacy attacks
 - e.g., link stealing attack [He et al., 2021] or membership inference attack [Olatunji et al., 2021]

- ► Graph Neural Networks (GNNs) are state-of-the-art algorithms for learning on graphs
 - Tasks: node classification, link prediction, ...
 - Applications: recommendation systems, credit issuing, traffic forecasting, drug discovery, ...
- ► Graph data could be privacy-sensitive
 - e.g., users' personal attributes, financial transactions, medical/biological networks, ...
- GNNs are vulnerable to privacy attacks
 - e.g., link stealing attack [He et al., 2021] or membership inference attack [Olatunji et al., 2021]

How to preserve privacy of individuals when learning over graph data?

- ► GAP: a novel GNN with differential privacy (DP) guarantees
 - Aggregation Perturbation to preserve privacy of graph edges
 - Tailored Architecture to maintain privacy budget
 - Formal Privacy Analysis for both edge-level and node-level DP

GRAPH NEURAL NETWORKS

 Graph Neural Networks (GNNs) learn node representations based on node features and the graph structure

Differential Privacy [Dwork et al., 2006]

Randomized algorithm A is ϵ -DP if for all neighboring datasets $G \simeq G'$ and all sets of outputs S:

$$\frac{\Pr[A(G) \in S]}{\Pr[A(G') \in S]} \le e^{\epsilon}$$

Differential Privacy [Dwork et al., 2006]

Randomized algorithm A is ϵ -DP if for all neighboring datasets $G \simeq G'$ and all sets of outputs S:

 $\frac{\Pr[A(G) \in S]}{\Pr[A(G') \in S]} \le e^{\epsilon}$

Edge-Level DP

Neighboring graph datasets differ by at most one edge

Differential Privacy [Dwork et al., 2006]

Randomized algorithm A is ϵ -DP if for all neighboring datasets $G \simeq G'$ and all sets of outputs S:

 $\frac{\Pr[A(G) \in S]}{\Pr[A(G') \in S]} \le e^{\epsilon}$

Edge-Level DP

Neighboring graph datasets differ by at most one edge

Node-Level DP

Neighboring graph datasets differ by at most one node (and all adjacent edges)

Exploding Sensitivity

- With a K-layer GNN, each node affects the embedding of all the nodes in its K-hop neighborhood
- $O(D^K)$ gradient terms change at once (*D* is maximum degree)

CHALLENGES OF LEARNING GNNS WITH DP: WHY NOT DP-SGD?

Exploding Sensitivity

- With a K-layer GNN, each node affects the embedding of all the nodes in its K-hop neighborhood
- $O(D^K)$ gradient terms change at once (*D* is maximum degree)

Inference Privacy

- GNNs query the graph structure during inference
- Private information leaks at inference, even with a private model

CHALLENGES OF LEARNING GNNS WITH DP: WHY NOT DP-SGD?

Exploding Sensitivity

- With a K-layer GNN, each node affects the embedding of all the nodes in its K-hop neighborhood
- $O(D^K)$ gradient terms change at once (*D* is maximum degree)

Inference Privacy

- GNNs query the graph structure during inference
- Private information leaks at inference, even with a private model

DP-SGD cannot be directly applied to GNNs

OUR APPROACH: AGGREGATION PERTURBATION

- Aggregation Perturbation: adding noise to output of the aggregation step
 - Prevents the exploding sensitivity problem by composing differentially private aggregation steps
 - Ensures inference privacy

OUR APPROACH: AGGREGATION PERTURBATION

• Aggregation Perturbation: adding noise to output of the aggregation step

- Prevents the exploding sensitivity problem by composing differentially private aggregation steps
- Ensures inference privacy
- Applying aggregation perturbation to the conventional GNNs is costly
 - Every forward pass of the model consumes privacy budget
 - The excessive noise results in poor performance

OUR APPROACH: AGGREGATION PERTURBATION

• Aggregation Perturbation: adding noise to output of the aggregation step

- Prevents the exploding sensitivity problem by composing differentially private aggregation steps
- Ensures inference privacy
- Applying aggregation perturbation to the conventional GNNs is costly
 - Every forward pass of the model consumes privacy budget
 - The excessive noise results in poor performance

We decouple the aggregation operations from the model parameters to maintain the privacy budget

GNN with Aggregation Perturbation (GAP)

✓ Edge-level DP

- ✓ Edge-level DP
- $\checkmark~$ Node-level DP through combination with DP-SGD
 - For bounded-degree graphs

- ✓ Edge-level DP
- $\checkmark~$ Node-level DP through combination with DP-SGD
 - For bounded-degree graphs
- ✓ Multi-hop aggregations

- ✓ Edge-level DP
- \checkmark Node-level DP through combination with DP-SGD
 - For bounded-degree graphs
- ✓ Multi-hop aggregations
- $\checkmark~$ Zero-cost inference privacy

- ► Task: Node Classification
- ► Baselines: MLP, GraphSAGE

DATASET	Classes	Nodes	Edges	Features	Med. Degree	
Facebook	6 Year	26,406 User	2,117,924 Friendship	501	62	
Reddit	8 Community	116,713 Ро <mark>зт</mark>	46,233,380 Mutual User	602	209	
Amazon	10 Category	1,790,731 Ргодист	80,966,832 Mutual Purchase	100	22	

Accuracy of Non-Private Methods

Method	Facebook	Reddit	Amazon	
GAP- ∞	80.0 ± 0.48	99.4 ± 0.02	91.2 ± 0.07	
SAGE- ∞	83.2 ± 0.68	99.1 ± 0.01	92.7 ± 0.09	

EDGE-LEVEL DP ACCURACY-PRIVACY TRADE-OFF

NODE-LEVEL DP ACCURACY-PRIVACY TRADE-OFF

Mean AUC of node-level membership inference attack.

DATASET	Method	$\epsilon = 1$	$\epsilon = 2$	$\epsilon = 4$	$\epsilon = 8$	$\epsilon = 16$	$\epsilon = \infty$
Facebook	GAP-NDP						81.67
Reddit	GAP-NDP	50.04	50.39	51.20	52.23	52.54	54.97
Amazon	GAP-NDP	50.06	50.23	50.54	51.53	51.72	66.68

CONCLUSION

- ► GNNs leak private information
 - They are vulnerable to privacy attacks
- ► Implementing DP in GNNs is challenging
 - Exploding sensitivity
 - Inference privacy
- ► Our Differentially Private GNN: GAP
 - Ensures both edge-level and node-level DP
 - Supports multi-hop aggregations
 - Provides inference privacy

THANK YOU!

Questions: ⊠ sina.sajadmanesh@epfl.ch Code: ♀ github.com/sisaman/GAP

- Dwork, C., McSherry, F., Nissim, K., and Smith, A. (2006).
 Calibrating noise to sensitivity in private data analysis.
 In Theory of cryptography conference, pages 265–284. Springer.
- He, X., Jia, J., Backes, M., Gong, N. Z., and Zhang, Y. (2021).
 Stealing links from graph neural networks.
 In 30th {USENIX} Security Symposium ({USENIX} Security 21).
- Olatunji, I. E., Nejdl, W., and Khosla, M. (2021). Membership inference attack on graph neural networks. arXiv preprint arXiv:2101.06570.

EFFECT OF THE NUMBER OF HOPS

EFFECT OF THE ENCODER MODULE

EFFECT OF THE MAXIMUM DEGREE

