GAP: DIFFERENTIALLY PRIVATE GRAPH NEURAL
NETWORKS WITH AGGREGATION PERTURBATION

Sina Sajadmanesh Ali Shahin Shamsabadi Aurélien Bellet Daniel Gatica-Perez
Idiap & EPFL The Alan Turing Institute Inria Idiap & EPFL
. . 1 The . -

32nd USENIX Security Symposium },lelalD EPFL InsAtE?l?‘;urlng &z ~

August 2023
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INTRODUCTION & MOTIVATION

» Graph Neural Networks (GNNs) are state-of-the-art algorithms for learning on graphs

® Tasks: node classification, link prediction, ...
® Applications: recommendation systems, credit issuing, traffic forecasting, drug discovery, ...

» Graph data could be privacy-sensitive

® g, users personal attributes, financial transactions, medical/biological networks, ...

» GNNs are vulnerable to privacy attacks

® eg, link stealing attack [He et al,, 2021] or membership inference attack [Olatunji et al,, 2021]

How to preserve privacy of individuals when learning over graph data?
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OUR CONTRIBUTIONS

> GAP: a novel GNN with differential privacy (DP) guarantees

® Aggregation Perturbation to preserve privacy of graph edges
® Tailored Architecture to maintain privacy budget
® Formal Privacy Analysis for both edge-level and node-level DP
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GRAPH NEURAL NETWORKS

» Graph Neural Networks (GNNs) learn node representations based on node features and the
graph structure
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DIFFERENTIAL PRIVACY FOR GRAPHS

Differential Privacy [Dwork et al., 2006]
Randomized algorithm A is e-DP if for all neighboring datasets G ~ G’ and all sets of outputs S:
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DIFFERENTIAL PRIVACY FOR GRAPHS

Differential Privacy [Dwork et al., 2006]
Randomized algorithm A is e-DP if for all neighboring datasets G ~ G’ and all sets of outputs S:

Pr[A(G) € 9] < o

e
PrlA(G") € S] —
>
/\/ » »
» Edge-Level DP U~ III'I
Neighboring graph datasets differ by at most ‘ ; ‘
one edge Neighboring DP Algorithm Similar Output
Graphs (Randomized) Distributions
> Node-Level DP 1 f f

Neighboring graph datasets differ by at most

one node (and all adjacent edges) (¢ I
. G == Ll

414



CHALLENGES OF LEARNING GNNS wITH DP: WHY NoT DP-SGD?

» Exploding Sensitivity

® With a K-layer GNN, each node affects the embedding of all the nodes in its K-hop neighborhood
e O(DX) gradient terms change at once (D is maximum degree)
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» Exploding Sensitivity

® With a K-layer GNN, each node affects the embedding of all the nodes in its K-hop neighborhood
e O(DX) gradient terms change at once (D is maximum degree)

» Inference Privacy

® GNNs query the graph structure during inference
® Private information leaks at inference, even with a private model

DP-SGD cannot be directly applied to GNNs
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OUR APPROACH: AGGREGATION PERTURBATION

» Aggregation Perturbation: adding noise to output of the aggregation step

® Prevents the exploding sensitivity problem by composing differentially private aggregation steps
® Ensures inference privacy
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OUR APPROACH: AGGREGATION PERTURBATION

» Aggregation Perturbation: adding noise to output of the aggregation step
® Prevents the exploding sensitivity problem by composing differentially private aggregation steps
® Ensures inference privacy

> Applying aggregation perturbation to the conventional GNNs is costly

® Every forward pass of the model consumes privacy budget
® The excessive noise results in poor performance

We decouple the aggregation operations from the model parameters
to maintain the privacy budget
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GNN WITH AGGREGATION PERTURBATION (GAP)
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GAP’s ADVANTAGES
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GAP’s ADVANTAGES

v Edge-level DP
v~ Node-level DP through combination with DP-SGD

® For bounded-degree graphs

V" Multi-hop aggregations

v Zero-cost inference privacy
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EXPERIMENT SETTINGS

» Task: Node Classification

> Baselines: MLP, GraphSAGE

DATASET CLASSES  NODES EDGES FEATURES MED. DEGREE
FACEBOOK 6 26,406 217,924 501 62
YEAR USER FRIENDSHIP
REDDIT 8 116,713 46,233,380 602 209
COMMUNITY PosT MUTUAL USER
AMAZON 10 1,790,731 80,966,832 100 2
CATEGORY PrODUCT MUTUAL PURCHASE
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COMPARISON OF NON-PRIVATE METHODS

Accuracy of Non-Private Methods

METHOD FACEBOOK REDDIT AMAZON

GAP-00 80.0 £ 0.48 99.4+0.02 912 4+0.07
SAGE-co  83.2+0.68 99.14+0.01 92.7 £ 0.09
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EDGE-LEVEL DP ACCURACY-PRIVACY TRADE-OFF

GAP-o0 == MLP —0— GAP-EDP —4— SAGE-EDP
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Accuracy (%)
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RESILIENCY TO MEMBERSHIP INFERENCE ATTACK

Mean AUC of node-level membership inference attack.

DATASET METHOD e=1 e=2 e=4 €=8 €=16 e=x

FACEBOOK ~ GAP-NDP ~ 50.16 50.25 5061 5111 52.66 81.67
REDDIT GAP-NDP  50.04 5039 51.20 5223 5254 54.97
AMAZON GAP-NDP  50.06 50.23 5054 5153 51.72 66.68
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CONCLUSION

» GNNs leak private information

® They are vulnerable to privacy attacks

» Implementing DP in GNNSs is challenging
® Exploding sensitivity
® |nference privacy

» Our Differentially Private GNN: GAP

® Ensures both edge-level and node-level DP
® Supports multi-hop aggregations
® Provides inference privacy
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THANK You!

Questions: & sina.sajadmanesh@epfl.ch

Code:  © github.com/sisaman/GAP


mailto:sina.sajadmanesh@epfl.ch
https://github.com/sisaman/GAP
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EFFECT OF THE NUMBER OF HOPS

GAP-EDP Accuracy (%)
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EFFECT OF THE ENCODER MODULE

GAP-EDP Accuracy (%)
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EFFECT OF THE MAXIMUM DEGREE
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