
Analysis of the
Threema
Secure Messenger

Kenny Paterson, Matteo Scarlata, Kien Tuong Truong

What is Threema?

- An “end-to-end encrypted instant messaging

application” for Android and iOS

- 11 million private users worldwide

2

3

Part I
Threema, the Protocol

Bird’s Eye View of the Threema Protocol

Two layers of encryption

E2E

C2S C2S

4

👨👩
(sk

A
, pk

A
) (sk

B
, pk

B
)

E2E Protocol

(sk
A
, pk

A
) (sk

B
, pk

B
)

No Forward Secrecy ❌
No Post-Compromise Security ❌

5

👨👩 msg

DH(sk
A
,pk

B
) = DH(sk

B
,pk

A
)

Encryption key

C2S Protocol

6

👨👩
(sk

A
, pk

A
) (sk

B
, pk

B
)

Establishes a client-server session key
through an authenticated key exchange

KS
A-S

 KS
B-S

C2S: Client Authentication

👩 (sk
A
, pk

A
) (sk

S
, pk

S
)

7

vouch ← epk
A

m

Handshake Sub-protocol

Transport Sub-protocol

Auth key

(esk
A
, epk

A
)←KeyGen() (esk

S
, epk

S
)←KeyGen()

Traffic key

ID
A
, vouch

…

…

epk
A
,

8

Part II
Attacks on Threema

Attacks Found

9

Attack: C2S Ephemeral Key Compromise

Attack: Vouch Box Forgery

Attack: Message Reordering/Omission

Attack: Message Replay/Reflection

Attack: Kompromat

Attack: Compression-Side
Channel on Threema Safe

Attack: Threema ID Export

External/Network Attacker

Compromised Threema Server

Physical Device Access
(“Compelled Access”)

#
#
#
#
#
#

👩
(sk

S
, pk

S
)

10

(sk
A
, pk

A
) (sk

B
, pk

B
)

👨
Deja-vu?

Deja-vu?

👩
(sk

S
, pk

S
)

11

(sk
A
, pk

A
)

😈

(N/A, pk
S
)

(sk
B
, pk

B
)

These two keys end up being the same!

Assume we managed to make and collide. What can we do now?

E2EC2S👩
vouch = epk

A 👩
msg

😈

Key collision to Protocol Confusion

12

E2E C2S

= vouch

👩
epk*

😈
epk*, ID

A
, vouch

- C2S x E2E cross-protocol attack

- Sending a text message… compromises client authentication forever!

13

Two issues to still discuss

Loose Ends

😈
(N/A, pk

S
)

(sk
B
, pk

B
)

Claim the server’s public key as ours
Task 2: The Bamboozling

E2E

= vouch

👩
epk*

😈
Find a suitable ephemeral key epk*

Task 1: Getting That Key

14

Task 1: Getting that Key

- Problem: getting a valid epk* turns out to be computationally intensive!

- Requires randomly sampling 251 keys!

15

Task 1: Getting that Key

16

Some optimizations and 8100 core-days later…

esk = 504ac13e00000000003000336d612d322d3232313231392d30332d3030323000

epk = 0175396a36df93276a6ae0a496d4bb5edf8331d79b573a2dcc813bdca1524101

u9j6�'jjखԻ^1כ�W:-́;ܡRA

Task 1: Getting that Key

Task 2: The Bamboozling

- Threema Gateway: paid API

- Can register accounts with arbitrary

public keys

- Without proof of possession of the

corresponding private key!

17

18

Part III
Conclusion

Mitigations

19

Attack: C2S Ephemeral Key Compromise

Attack: Vouch Box Forgery

Attack: Message Reordering/Omission

Attack: Message Replay/Reflection

Attack: Kompromat

Attack: Compression-Side
Channel on Threema Safe

Attack: Threema ID Export

Change vouchbox derivation

Metadata box mandatory
Better key separation

Disable compression in backups
Track ephemeral keys

#
#
#
#
#
#
#

Lessons Learnt: Rolling your Protocol

20

“[Threema has] a client-server protocol modelled after CurveCP, an end-to-end

encryption protocol based on the NaCl library [...]”

…?

“Matrix’s encryption is based on the Double Ratchet
Algorithm popularised by Signal”

21

Lessons Learnt: Cross-Protocol Interactions

Olm x Megolm

Confidentiality break!
⇓

Lessons Learnt: Proactive Security

22

E2E

C2S

IBEX

PCS??

Lessons Learnt

- Don’t roll your own crypto protocols

- But if you do:

- Beware of cross-protocol interactions

- You need provable and proactive security

23

Thank you for listening!
Questions?

kitruong@ethz.ch
https://breakingthe3ma.app

https://breakingthe3ma.app

