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What is Threema?

- An “end-to-end encrypted instant messaging 

application” for Android and iOS

- 11 million private users worldwide

2



3

Part I
Threema, the Protocol



Bird’s Eye View of the Threema Protocol

Two layers of encryption

E2E

C2S C2S
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E2E Protocol
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No Forward Secrecy ❌
No Post-Compromise Security ❌
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C2S Protocol
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Establishes a client-server session key 
through an authenticated key exchange
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C2S: Client Authentication
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Transport Sub-protocol

Auth key

(esk
A
, epk

A
)←KeyGen() (esk

S
, epk

S
)←KeyGen()

Traffic key

ID
A
, vouch

…

…

epk
A
,



8

Part II
Attacks on Threema



Attacks Found
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Attack: C2S Ephemeral Key Compromise

Attack: Vouch Box Forgery

Attack: Message Reordering/Omission

Attack: Message Replay/Reflection

Attack: Kompromat

Attack: Compression-Side 
Channel on Threema Safe

Attack: Threema ID Export

External/Network Attacker

Compromised Threema Server

Physical Device Access 
(“Compelled Access”)

#
#
#
#
#
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Deja-vu?
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These two keys end up being the same!

Assume we managed to make          and          collide. What can we do now?

E2EC2S👩
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Key collision to Protocol Confusion
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E2E C2S

= vouch

👩
epk*
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epk*, ID

A
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- C2S x E2E cross-protocol attack

- Sending a text message… compromises client authentication forever!
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Two issues to still discuss

Loose Ends

😈
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Claim the server’s public key as ours 
Task 2: The Bamboozling

E2E

= vouch

👩
epk*

😈
Find a suitable ephemeral key epk* 

Task 1: Getting That Key
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Task 1: Getting that Key

- Problem: getting a valid epk* turns out to be computationally intensive!

- Requires randomly sampling 251 keys!
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Task 1: Getting that Key
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Some optimizations and 8100 core-days later…

esk = 504ac13e00000000003000336d612d322d3232313231392d30332d3030323000

epk  = 0175396a36df93276a6ae0a496d4bb5edf8331d79b573a2dcc813bdca1524101

u9j6�'jjखԻ^1כ�W:-́;ܡRA

Task 1: Getting that Key



Task 2: The Bamboozling

- Threema Gateway: paid API

- Can register accounts with arbitrary 

public keys

- Without proof of possession of the 

corresponding private key!
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Part III
Conclusion



Mitigations
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Attack: C2S Ephemeral Key Compromise

Attack: Vouch Box Forgery

Attack: Message Reordering/Omission

Attack: Message Replay/Reflection

Attack: Kompromat

Attack: Compression-Side 
Channel on Threema Safe

Attack: Threema ID Export

Change vouchbox derivation

Metadata box mandatory
Better key separation

Disable compression in backups
Track ephemeral keys

#
#
#
#
#
#
#


Lessons Learnt: Rolling your Protocol 
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“[Threema has] a client-server protocol modelled after CurveCP, an end-to-end 

encryption protocol based on the NaCl library [...]”

…?



“Matrix’s encryption is based on the Double Ratchet 
Algorithm popularised by Signal”
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Lessons Learnt: Cross-Protocol Interactions

Olm   x  Megolm 

Confidentiality break!
⇓



Lessons Learnt: Proactive Security
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E2E

C2S

IBEX

PCS??



Lessons Learnt

- Don’t roll your own crypto protocols

- But if you do:

- Beware of cross-protocol interactions

- You need provable and proactive security
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Thank you for listening!
Questions?

kitruong@ethz.ch
https://breakingthe3ma.app

https://breakingthe3ma.app

