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REST API is popular in cloud service but not secure.

REST API



POST /groups

GET /groups/{id}

POST /groups?

name=abc&path=abc

GET /groups/{id}?

with_projects=true

POST /groups?

name=abc&path=abc

HTTP/1.1

Host: 10.214.241.134

Response: 201{“id”: 23}

GET /groups/23?

with_projects=true 

HTTP/1.1

Host: 10.214.241.134

Response: 200 OK
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RESTler[1], the first stateful REST API fuzzer.

REST API Fuzzing

[1] Atlidakis, Vaggelis, Patrice Godefroid, and Marina Polishchuk. "Restler: Stateful rest api fuzzing."
2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE, 2019.



Insight

¤  Parameters in a REST API request have explicit/implicit relations. 

¤  Requests could be easily rejected irrespective of relations.

• updated_before and order in GitLab Project API are compulsory.

• import_url and initialize_with_readme in GitLab Project API are contradicting.

¤  Some parameter combinations could lead to server errors.

• The co-existence of requirements_access_level, auto_cancel_pending_pipelines

and initialize_with_readme in GitLab Group API could raise a server error.



Insight

• Low-quality Requests • Short Sequences
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Gitlab API Validation

/projects 72.01%

/groups 65.01%

/commits 53.52%



How to automatically enhance testcases to pass 
syntax/sematic check and test deep logic?



Design



MINER: a hybrid data-driven framework to fuzz REST APIs in cloud services

and discover the corresponding logic vulnerabilities.

Overview of MINER



¤  Requests Collection

• Filter the requests through corresponding responses.

• Collect effective request sequences (20X, 50X).

• Collect param-value pairs from effective requests (20X, 50X).

Collection Module



Training Module

¤ Attention Model Training

• Learn the implicit relations among  the parameters from history.

• Transform param-value pair generation into text generation.

• Embed the param-value pair lists into vectors and train the model.



¤ Attention Model Usage

• Produce a set of lists of param-value pairs in which pairs are interrelated.

• The predicted pairs serve as candidates when MINER mutates requests.

• Training module is invoked periodically to update the model.

Training Module



¤ DataDriven Checker

• Target at the undefined parameter violation.

• The parameters are sampled from the collected pairs.

• Inject undefined parameters into the requests. 

• Bug oracle: whether the mutate requests lead to error code.

¤ Sequence Template Selection

• Prioritize the sequence templates 

whose lengths are longer

where l is the sequence length.

DataDriven Checker & Sequence Template Selection



Evaluation



• Baselines includes RESTler, MINER_PART(without DataDriven Checker)

• Each evaluation lasts 48 hours.

• We evaluate MINER on GitLab, Bugzilla and WordPress with 11 APIs.

Experiment Settings



Fuzzing Performance Analysis

¤ Results

• MINER_PART and MINER achieve 23% higher pass rate and covers 7% more

unique request templates than RESTler.

• MINER discovers 15.27 unique errors while MINER_PART only discovers 9.91 and

RESTler discovers 7.73 unique errors on average.

• MINER also uniquely finds 5.45 unique errors caused by misuse of undefined

parameters using DataDriven Checker.



¤ Four variations: RESTler+Seq, RESTler+Rec1, RESTler+RecList, RESTler+Model

¤ Results

Significance of Designs

• Both the model and the sequence

construction improve pass rate 

and generate longer sequences.

• The model can improve the ability 

of error discovery. 

• Recording and replaying the history

mechanically  are low efficiency.



¤ Hook GitLab’s source code to trace line coverage using Coverband[2].

¤ Results

Coverage Analysis

[2] Coverband. https://github.com/danmayer/coverband

• Both the model and the 

sequence construction 

improve the line coverage.

• MINER_PART achieves the 

most line coverage due to 

the data-driven designs.



¤ Collect 4 published serious bugs manually as the ground truth.

¤ Results

• MINER can reproduce all the bugs

more effectively and efficiently

compared to RESTler.

• MINER not only finds relatively

shallow bugs, but also specializes in

constructing complex sequences.

Analysis on Reproducing Published Serious Bugs



Real Bug Analysis

¤ Results

• MINER finds all the bugs discovered by RESTler, and also find 10 extra bugs,

including 4 parameter misuse bugs.

• MINER could discover bugs effectively, especially the ones require long request

sequences and specific parameter combinations due to data-driven designs.

• Example:  The third request updates a hook with three undefined 

parameters "requirements_access_level", "auto_cancel_pending_pipelines" and 

"initialize_with_readme“ will raise a server error.



Analysis with Different Training Duration

¤ Evaluate the impact of different schedules of the Training Module.

¤ Results

• The training overhead increases when using

a larger iteration duration.

• The pass rate slightly decreases when using

a longer iteration duration.

• MINER’s data-driven approaches have

minimal extra costs.



¤ A novel data-driven REST API fuzzer named MINER, with 3 designs 

against low-quality requests, short sequences and parameter misuse.

¤ Evaluate MINER on three cloud services via 11 REST APIs. MINER 

achieves 23% higher pass rate, find 100% more reproducible errors than 

RESTler. 17 new bugs are found by MINER(4 from DataDriven Checker).

¤ Conduct comprehensive to demonstrate the outstanding performance 

of MINER.

Summary
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