
MINER: A Hybrid Data-Driven Approach
for REST API Fuzzing

Chenyang Lyu1 Jiacheng Xu1 Shouling Ji1 Xuhong Zhang1 Qinying Wang1

Binbin Zhao2 Gaoning Pan1 Wei Cao3 Peng Chen3 Raheem Beyah2

1Zhejiang University 2Georgia Institute of Technology 3Ant Group

REST API is popular in cloud service but not secure.

REST API

POST /groups

GET /groups/{id}

POST /groups?

name=abc&path=abc

GET /groups/{id}?

with_projects=true

POST /groups?

name=abc&path=abc

HTTP/1.1

Host: 10.214.241.134

Response: 201{“id”: 23}

GET /groups/23?

with_projects=true

HTTP/1.1

Host: 10.214.241.134

Response: 200 OK

Swagger
Spec

Request
Grammar

Extend &
Render

Tests &
Bugs

RESTler[1], the first stateful REST API fuzzer.

REST API Fuzzing

[1] Atlidakis, Vaggelis, Patrice Godefroid, and Marina Polishchuk. "Restler: Stateful rest api fuzzing."
2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE, 2019.

Insight

¤ Parameters in a REST API request have explicit/implicit relations.

¤ Requests could be easily rejected irrespective of relations.

• updated_before and order in GitLab Project API are compulsory.

• import_url and initialize_with_readme in GitLab Project API are contradicting.

¤ Some parameter combinations could lead to server errors.

• The co-existence of requirements_access_level, auto_cancel_pending_pipelines

and initialize_with_readme in GitLab Group API could raise a server error.

Insight

• Low-quality Requests • Short Sequences

Swagger
Spec

Request
Grammar

Extend &
Render

Tests &
Bugs

Gitlab API Validation

/projects 72.01%

/groups 65.01%

/commits 53.52%

How to automatically enhance testcases to pass
syntax/sematic check and test deep logic?

Design

MINER: a hybrid data-driven framework to fuzz REST APIs in cloud services

and discover the corresponding logic vulnerabilities.

Overview of MINER

¤ Requests Collection

• Filter the requests through corresponding responses.

• Collect effective request sequences (20X, 50X).

• Collect param-value pairs from effective requests (20X, 50X).

Collection Module

Training Module

¤ Attention Model Training

• Learn the implicit relations among the parameters from history.

• Transform param-value pair generation into text generation.

• Embed the param-value pair lists into vectors and train the model.

¤ Attention Model Usage

• Produce a set of lists of param-value pairs in which pairs are interrelated.

• The predicted pairs serve as candidates when MINER mutates requests.

• Training module is invoked periodically to update the model.

Training Module

¤ DataDriven Checker

• Target at the undefined parameter violation.

• The parameters are sampled from the collected pairs.

• Inject undefined parameters into the requests.

• Bug oracle: whether the mutate requests lead to error code.

¤ Sequence Template Selection

• Prioritize the sequence templates

whose lengths are longer

where l is the sequence length.

DataDriven Checker & Sequence Template Selection

Evaluation

• Baselines includes RESTler, MINER_PART(without DataDriven Checker)

• Each evaluation lasts 48 hours.

• We evaluate MINER on GitLab, Bugzilla and WordPress with 11 APIs.

Experiment Settings

Fuzzing Performance Analysis

¤ Results

• MINER_PART and MINER achieve 23% higher pass rate and covers 7% more

unique request templates than RESTler.

• MINER discovers 15.27 unique errors while MINER_PART only discovers 9.91 and

RESTler discovers 7.73 unique errors on average.

• MINER also uniquely finds 5.45 unique errors caused by misuse of undefined

parameters using DataDriven Checker.

¤ Four variations: RESTler+Seq, RESTler+Rec1, RESTler+RecList, RESTler+Model

¤ Results

Significance of Designs

• Both the model and the sequence

construction improve pass rate

and generate longer sequences.

• The model can improve the ability

of error discovery.

• Recording and replaying the history

mechanically are low efficiency.

¤ Hook GitLab’s source code to trace line coverage using Coverband[2].

¤ Results

Coverage Analysis

[2] Coverband. https://github.com/danmayer/coverband

• Both the model and the

sequence construction

improve the line coverage.

• MINER_PART achieves the

most line coverage due to

the data-driven designs.

¤ Collect 4 published serious bugs manually as the ground truth.

¤ Results

• MINER can reproduce all the bugs

more effectively and efficiently

compared to RESTler.

• MINER not only finds relatively

shallow bugs, but also specializes in

constructing complex sequences.

Analysis on Reproducing Published Serious Bugs

Real Bug Analysis

¤ Results

• MINER finds all the bugs discovered by RESTler, and also find 10 extra bugs,

including 4 parameter misuse bugs.

• MINER could discover bugs effectively, especially the ones require long request

sequences and specific parameter combinations due to data-driven designs.

• Example: The third request updates a hook with three undefined

parameters "requirements_access_level", "auto_cancel_pending_pipelines" and

"initialize_with_readme“ will raise a server error.

Analysis with Different Training Duration

¤ Evaluate the impact of different schedules of the Training Module.

¤ Results

• The training overhead increases when using

a larger iteration duration.

• The pass rate slightly decreases when using

a longer iteration duration.

• MINER’s data-driven approaches have

minimal extra costs.

¤ A novel data-driven REST API fuzzer named MINER, with 3 designs

against low-quality requests, short sequences and parameter misuse.

¤ Evaluate MINER on three cloud services via 11 REST APIs. MINER

achieves 23% higher pass rate, find 100% more reproducible errors than

RESTler. 17 new bugs are found by MINER(4 from DataDriven Checker).

¤ Conduct comprehensive to demonstrate the outstanding performance

of MINER.

Summary

Contact: puppet@zju.edu.cn
& stitch@zju.edu.cn

