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Code bloat

e What is code bloat?
o Itis the sum of all unused pieces of code in an application
e Whyis it bad?

e What can we do about it?




Unused code contains vulnerabilities
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Debloating: Identifying and removing unused code

e Lessis More (LIM) - Usenix Security 2019 31

e Simulate user behavior Ij
=]
e Use dynamic traces to determine file and 4
function usage

e Debloat the unused portion of code

Results

47% 60%
Smaller Apps Less CVEs



Sad reality: Dynamic instrumentation does not scale

e (Can be miserably slow
o 2xto 17xincrease page load time
e Strictly tied to an instance of an application

o Achange in user input or state of the database can trigger an error due to removed code




Let’s fix it!

Requirements
e No instrumentation overhead
e Reusable analysis

Introducing Minimalist (& AnimateDead - next presentation)
e Static reachability analysis on the web server logs




Minimalist - Overview

Minimalist proposes a semi-automated static approach to debloat web apps
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Minimalist - Call Graph
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Minimalist - Generate call graph

Not always easy to generate call-graph
o Variable script inclusion

1 .ph
o Variable function call Class.php
o Object oriented programming 1. class ParentClass ({
2. public S$feature = 0;
3. public function _ construct () {
test.php 4. Sthis->feature = 1;
5. }
1. define ( ’'classpath’, DIR  ); 6. public function Cprint () {
2. included = classpath ."/Class"; 7. echo S$this->feature."\n";
3. include once $included . ' .php’ 8. }
4. Stype = "ChildClass"; 9. }
5. Sobj = new Stype 10. class ChildClass extends ParentClass {
6. Smethod = "call"; 11. public function call () {
7. |$obj ->$method () ; | 12. |call_user_func (array (Sthis, ’'Cprint’ ))l‘
13. }
14. }



Minimalist - Call Graph

e Minimalist performs three analyses before generating the call-graph
o Class Hierarchy
m Identify the inheritance relationship
o Script Inclusion
m  Generate the script dependency graph
o Variable Analysis
m Determine the assigned values to variables

e Generate the call-graph of the web app
o Use prior analysis when necessary
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Analysis

>

Variable Analysis
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Minimalist - Custom Static Analysis

e Web applications could use certain L. function test () {
. 2.// Retrieve the callable action from the database
dynam|c code structures pose a 3.$Squery = “SELECT * FROM actions WHERE “ .$conds;
. . 4.Sresult db = mysgl query(Squery);
Cha”enge for Statlc ana|y5|s 5.// Assign the value to the variable action
6.
| 7.%action = mysgl fetch row ($result db);
8. Invoke the retrieved function name
9.// from the database
e Minimalist provide a plugin API for analysts |i§-fresult ~ action();
o  Written in Go
1. 1list actions = Get the list of function calls
o Write ana|ysis Snippet (CSA) 2. foreach list actions.Next () ({
3. // grab items from the 1list of actions
4. var item = list actions.Scan(&item)
o Update the Ca” graph 5. // update the call-graph of function test
6. // with the retrieved function name
7. update callgraph( "test", "actions.php", item)
8. }
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Minimalist - Evaluation

e Evaluated on 4 popular web applications
WordPress, Joomla, Drupal, and phpMyAdmin
e Mapped 45 CVEs to their source code

Minimalist LIM
18% size reduction + 53% size reduction
38% removal of vulnerabilities + 73% removal of vulnerabilities
+ No breakage after debloating Likely to result in breakage
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Conclusion

e Minimalist

ARTIFACT ARTIFACT ARTIFACT
. . EVALUATED EVALUATED EVALUATED
O  Analyzes PHP application to generate the call-graph ¢ usenix ¢ usenix ¢ usenix

O Integrates information collected from web server VAILABLE REPRODUCED

O  Debloating functions/file from the PHP application

e Takeaway

o  We can debloat web applications without incurring performance overhead while
maintaining the usability

e Our artifacts are open-source and available at:

https://debloating.com
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https://debloating.com
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