
Minimalist: Semi-automated
Debloating of PHP Web Applications

through Static Analysis

Rasoul Jahanshahi Babak AminAzad

Nick Nikiforakis Manuel Egele

Code bloat

● What is code bloat?

○ It is the sum of all unused pieces of code in an application

● Why is it bad?

● What can we do about it?

2

Unused code contains vulnerabilities

3

18 CVEs
 have been reported for

phpMyAdmin affecting the export
functionality.

Debloating: Identifying and removing unused code

● Less is More (LIM) - Usenix Security 2019 [3]

● Simulate user behavior
● Use dynamic traces to determine file and

function usage
● Debloat the unused portion of code

4

Results

47%
Smaller Apps

60%
Less CVEs

Sad reality: Dynamic instrumentation does not scale

● Can be miserably slow

○ 2x to 17x increase page load time

● Strictly tied to an instance of an application
○ A change in user input or state of the database can trigger an error due to removed code

5

Let’s fix it!

Requirements
● No instrumentation overhead
● Reusable analysis

Introducing Minimalist (& AnimateDead - next presentation)

● Static reachability analysis on the web server logs

6

Minimalist - Overview

Minimalist proposes a semi-automated static approach to debloat web apps

7

Reachability
analysisDebloating

Minimalist - Call Graph

8

Minimalist – Generate call graph

Not always easy to generate call-graph
○ Variable script inclusion
○ Variable function call
○ Object oriented programming

test.php

1. define (’classpath’ , __DIR__);
2. $included = classpath ."/Class";
3. include_once $included . ’.php’;
4. $type = "ChildClass" ;
5. $obj = new $type ;
6. $method = "call";
7. $obj->$method();

9

Class.php

1. class ParentClass {
2. public $feature = 0;
3. public function __construct () {
4. $this->feature = 1;
5. }
6. public function Cprint (){
7. echo $this->feature."\n";
8. }
9. }

10. class ChildClass extends ParentClass {
11. public function call() {
12. call_user_func (array($this, ’Cprint’));
13. }
14. }

Minimalist - Call Graph

● Minimalist performs three analyses before generating the call-graph
○ Class Hierarchy

■ Identify the inheritance relationship
○ Script Inclusion

■ Generate the script dependency graph
○ Variable Analysis

■ Determine the assigned values to variables

● Generate the call-graph of the web app
○ Use prior analysis when necessary

10

Minimalist – Custom Static Analysis
● Web applications could use certain

dynamic code structures pose a
challenge for static analysis

11

1.function test () {
2.// Retrieve the callable action from the database
3.$query = “SELECT * FROM actions WHERE “ .$conds;
4.$result_db = mysql_query($query);
5.// Assign the value to the variable action
6.
7.$action = mysql_fetch_row ($result_db);
8.// Invoke the retrieved function name
9.// from the database

10.$result = $action();
11.}

● Minimalist provide a plugin API for analysts

○ Written in Go

○ Write analysis snippet (CSA)

○ Update the call graph

1. list_actions = Get the list of function calls
2. foreach list_actions.Next() {
3. // grab items from the list of actions
4. var item = list_actions.Scan(&item)
5. // update the call-graph of function test
6. // with the retrieved function name
7. update_callgraph("test", "actions.php" , item)
8. }

Minimalist - Evaluation

● Evaluated on 4 popular web applications
WordPress, Joomla, Drupal, and phpMyAdmin

● Mapped 45 CVEs to their source code

12

Minimalist
+ 18% size reduction
+ 38% removal of vulnerabilities
+ No breakage after debloating

LIM
 + 53% size reduction
 + 73% removal of vulnerabilities
 + Likely to result in breakage

Conclusion

● Minimalist
○ Analyzes PHP application to generate the call-graph

○ Integrates information collected from web server

○ Debloating functions/file from the PHP application

● Takeaway
○ We can debloat web applications without incurring performance overhead while

maintaining the usability

● Our artifacts are open-source and available at:

13
https://debloating.com

https://debloating.com

References
[1] Amin Azad, Babak, and Nick Nikiforakis. Role Models: Role-based Debloating for Web Applications. In Proceedings
of the 13th ACM Conference on Data and Application Security and Privacy. 2023.

[2] https://www.imperva.com/blog/the-resurrection-of-phpunit-rce-vulnerability/

[3] Babak Amin Azad, Pierre Laperdrix, and Nick Nikiforakis. Less is more: Quantifying the security benefits of
debloating web applications. In Proceedings of the 28th USENIX Conference on Security Symposium, 2019.

[4] https://www.liquidweb.com/kb/exporting-databases-and-tables-with-phpmyadmin/

[5] Illustrations from: https://refactoring.guru/

14

https://www.imperva.com/blog/the-resurrection-of-phpunit-rce-vulnerability/
https://www.liquidweb.com/kb/exporting-databases-and-tables-with-phpmyadmin/
https://refactoring.guru/

