Minimalist: Semi-automated
Debloating of PHP Web Applications
through Static Analysis

Rasoul Jahanshahi Babak AminAzad

Nick Nikiforakis Manuel Egele

G \
C@iseCLAB) PraS eLCb &) Oxvensiny ‘\\\\ Stony Brook

University

Code bloat

e What is code bloat?
o Itis the sum of all unused pieces of code in an application
e Whyis it bad?

e What can we do about it?

Unused code contains vulnerabilities

oEoNGe) Databases [SQL (g Status =7 U - fommm s S -
w 18 CVEs
4 . information_schema | —ESvforMSExee—————
G | son have been reported for
+- . performance_schema T . .
—— o phpMyAdmin affecting the export
Jlct 107 - —OpenDecument Spreadsheet—— . :
-Il-— - wordpressdb 4 _fffngeeumem_re*g— fu n Ctl O na | Ity.
vsaL
s ‘

Debloating: Identifying and removing unused code

e Lessis More (LIM) - Usenix Security 2019 31

e Simulate user behavior Ij
=]
e Use dynamic traces to determine file and 4
function usage

e Debloat the unused portion of code

Results

47% 60%
Smaller Apps Less CVEs

Sad reality: Dynamic instrumentation does not scale

e (Can be miserably slow
o 2xto 17xincrease page load time
e Strictly tied to an instance of an application

o Achange in user input or state of the database can trigger an error due to removed code

Let’s fix it!

Requirements
e No instrumentation overhead
e Reusable analysis

Introducing Minimalist (& AnimateDead - next presentation)
e Static reachability analysis on the web server logs

Minimalist - Overview

Minimalist proposes a semi-automated static approach to debloat web apps

Original Web App -

Server
</ > Access-log

L —
Debloated
Web App

Debloating > B

Minimalist - Call Graph

Class Hierarchy

()
Analysis Generate CG CSA

Script Inclusion
Analysis

e =

Variable Analysis

Minimalist - Generate call graph

Not always easy to generate call-graph
o Variable script inclusion

1 .ph
o Variable function call Class.php
o Object oriented programming 1. class ParentClass ({
2. public S$feature = 0;
3. public function _ construct () {
test.php 4. Sthis->feature = 1;
5. }
1. define (’'classpath’, DIR); 6. public function Cprint () {
2. included = classpath ."/Class"; 7. echo S$this->feature."\n";
3. include once $included . ' .php’ 8. }
4. Stype = "ChildClass"; 9. }
5. Sobj = new Stype 10. class ChildClass extends ParentClass {
6. Smethod = "call"; 11. public function call () {
7. |$obj ->$method () ; | 12. |call_user_func (array (Sthis, ’'Cprint’))l‘
13. }
14. }

Minimalist - Call Graph

e Minimalist performs three analyses before generating the call-graph
o Class Hierarchy
m Identify the inheritance relationship
o Script Inclusion
m Generate the script dependency graph
o Variable Analysis
m Determine the assigned values to variables

e Generate the call-graph of the web app
o Use prior analysis when necessary

Class Hierarchy
Analysis

Script Inclusion
Analysis

>

Variable Analysis

10

Minimalist - Custom Static Analysis

e Web applications could use certain L. function test () {
. 2.// Retrieve the callable action from the database
dynam|c code structures pose a 3.$Squery = “SELECT * FROM actions WHERE “ .$conds;
. . 4.Sresult db = mysgl query(Squery);
Cha”enge for Statlc ana|y5|s 5.// Assign the value to the variable action
6.
| 7.%action = mysgl fetch row ($result db);
8. Invoke the retrieved function name
9.// from the database
e Minimalist provide a plugin API for analysts |i§-fresult ~ action();
o Written in Go
1. 1list actions = Get the list of function calls
o Write ana|ysis Snippet (CSA) 2. foreach list actions.Next () ({
3. // grab items from the 1list of actions
4. var item = list actions.Scan(&item)
o Update the Ca” graph 5. // update the call-graph of function test
6. // with the retrieved function name
7. update callgraph("test", "actions.php", item)
8. }

11

Minimalist - Evaluation

e Evaluated on 4 popular web applications
WordPress, Joomla, Drupal, and phpMyAdmin
e Mapped 45 CVEs to their source code

Minimalist LIM
18% size reduction + 53% size reduction
38% removal of vulnerabilities + 73% removal of vulnerabilities
+ No breakage after debloating Likely to result in breakage

12

Conclusion

e Minimalist

ARTIFACT ARTIFACT ARTIFACT
. . EVALUATED EVALUATED EVALUATED
O Analyzes PHP application to generate the call-graph ¢ usenix ¢ usenix ¢ usenix

O Integrates information collected from web server VAILABLE REPRODUCED

O Debloating functions/file from the PHP application

e Takeaway

o We can debloat web applications without incurring performance overhead while
maintaining the usability

e Our artifacts are open-source and available at:

https://debloating.com

13

https://debloating.com

References

[11 Amin Azad, Babak, and Nick Nikiforakis. Role Models: Role-based Debloating for Web Applications. In Proceedings
of the 13th ACM Conference on Data and Application Security and Privacy. 2023.

[2] https://www.imperva.com/blog/the-resurrection-of-phpunit-rce-vulnerability/

[3] Babak Amin Azad, Pierre Laperdrix, and Nick Nikiforakis. Less is more: Quantifying the security benefits of
debloating web applications. In Proceedings of the 28th USENIX Conference on Security Symposium, 2019.

[4] https://www.liquidweb.com/kb/exporting-databases-and-tables-with-phpmyadmin/

[5] Illustrations from: https://refactoring.guru/

14

https://www.imperva.com/blog/the-resurrection-of-phpunit-rce-vulnerability/
https://www.liquidweb.com/kb/exporting-databases-and-tables-with-phpmyadmin/
https://refactoring.guru/

