
EPFL, UC Berkeley

EOS: Efficient Private
Delegation of zkSNARK provers

Alessandro Chiesa Ryan Lehmkuhl
MIT

Aleo, UPenn

Pratyush Mishra Yinuo Zhang
UC Berkeley

zkSNARKs
Goal: Prove that a private value satisfies some property

[]Mic94, Groth10, GGPR13, Groth16…
…, GWC19, CHMMVW20, …

1

Prover Verifier

zkSNARKs

I know w s.t. SHA256(w) = x

Goal: Prove that a private value satisfies some property

[]Mic94, Groth10, GGPR13, Groth16…
…, GWC19, CHMMVW20, …

1

Prover Verifier

public hash: x

zkSNARKs

I know w s.t. SHA256(w) = x

Goal: Prove that a private value satisfies some property

[]Mic94, Groth10, GGPR13, Groth16…
…, GWC19, CHMMVW20, …

1

Prover Verifier

public hash: x

π zkSNARK proof

zkSNARKs

I know w s.t. SHA256(w) = x

Goal: Prove that a private value satisfies some property

[]Mic94, Groth10, GGPR13, Groth16…
…, GWC19, CHMMVW20, …

1

Prover Verifier

Zero Knowledge: Verifier learns nothing about w except that SHA256(w) = x

public hash: x

π zkSNARK proof

I know w s.t. SHA256(w) = x

2

Prover Verifier

public hash: x

π zkSNARK proof

Problem: Proving is really slow

I know w s.t. SHA256(w) = x

2

Prover Verifier

public hash: x

π zkSNARK proof

Problem: Proving is really slow
~50KB

I know w s.t. SHA256(w) = x

2

Prover Verifier

public hash: x

π zkSNARK proof

Problem: Proving is really slow

~1 min runtime

~50KB

2

Prover Verifier

public hash: x

π zkSNARK proof

Problem: Proving is really slow

I know w s.t. SHA256(w) = x

~50KB

> 1 min runtime

Potential Solution: Delegate Proving!

w private witness

DIZK [WZCPS18]

π zkSNARK proof

3

Prover

Workers

Potential Solution: Delegate Proving!

w private witness

DIZK [WZCPS18]

π zkSNARK proof

3

This leaks the private
witness to the workers!

Prover

Workers

Goal: Delegate Proving with Privacy

4

π zkSNARK proof

w private witness

Prover

Workers

w private witness

π zkSNARK proof

Prover

Workers

Goal: Delegate Proving with Privacy

Goal 1: Efficiency Delegation should be faster than local proving

Goal 2: Privacy The witness should remain hidden from the
workers if at least one worker is honest

5

Our results

Private delegation of ‘algebraic’ zkSNARK provers* in the
presence of N-1 malicious workers.

Eos

*[MBKM19, GWC19, CHMMVW20, CFFQR21, BGH19]

6

Our results

Compared to local proving, running Eos on a mobile phone is:

Private delegation of ‘algebraic’ zkSNARK provers* in the
presence of N-1 malicious workers.

Eos

1) 26x faster
2) Uses 256x less memory

*[MBKM19, GWC19, CHMMVW20, CFFQR21, BGH19]

6

Contributions

 Efficient circuits for zkSNARK provers

 Prover-assisted MPC

 Lightweight techniques for malicious security

 Systems optimizations

7

Contributions

 Efficient circuits for zkSNARK provers

 Prover-assisted MPC

 Lightweight techniques for malicious security

 Systems optimizations

7

Starting point: MPC
Allows multiple parties to compute a function over their private inputsF

8

s1

s2

s3

N-1 Malicious Security:
Privacy + correctness holds if
at least one party is honest

Starting point: MPC
Allows multiple parties to compute a function over their private inputsF

8

s1

s2

s3
F(, ,)s1 s2 s3

N-1 Malicious Security:
Privacy + correctness holds if
at least one party is honest

Starting point: MPC
Allows multiple parties to compute a function over their private inputsF

8

s1

s2

s3
F(, ,)s1 s2 s3

N-1 Malicious Security:
Privacy + correctness holds if
at least one party is honest

Generic MPC is expensive!

Efficient Circuits for zkSNARK Provers

MPC Protocol [SPDZ]
1) Express function as an arithmetic circuit
2) All parties execute circuit gate-by-gate

s1

s2

s3

+
×

+ × +

9

Efficient Circuits for zkSNARK Provers

MPC Protocol [SPDZ]
1) Express function as an arithmetic circuit
2) All parties execute circuit gate-by-gate

s1

s2

s3

+
×

+ × +

9

Circuit for zkSNARK prover
is large! Need to support

polynomial arithmetic, group
operations, and random

oracle calls

Add gates for -ops and
random oracle calls

New, efficient subcircuits
for polynomial arithmetic

𝔾

Efficient Circuits for zkSNARK Provers

1) Express function as an arithmetic circuit
2) All parties execute circuit gate-by-gate

9

s1

s2

s3

+𝔾×𝔾

+𝔽
ρ +𝔽

MPC Protocol [SPDZ]

Idea: Extend the circuit
model [SA19, OB22]!

Using the Asymmetric Threat Model

MPC for
zkSNARK

10

π zkSNARK proof

w private witness

Prover

Workers

Using the Asymmetric Threat Model

MPC for
zkSNARK

10

π zkSNARK proof

w private witness

Prover

Workers

Prover is always
honest and knows the

witness!

Idea: Use the weaker
prover to ‘assist’ the MPC

Using the Asymmetric Threat Model

MPC for
zkSNARK

10

π zkSNARK proof

w private witness

Prover

Workers

Prover-assisted MPC
MPC Protocol [SPDZ]

1) Express function as an arithmetic circuit
2) All parties execute circuit gate-by-gate

11

s1

s2

s3

+𝔾×𝔾

+𝔽
ρ +𝔽

Prover-assisted MPC
MPC Protocol [SPDZ]

1) Express function as an arithmetic circuit
2) All parties execute circuit gate-by-gate

11

s1

s2

s3

+𝔾×𝔾

+𝔽
ρ +𝔽

Computing multiplications and
random oracles is expensive in

MPC but cheap in plaintext

s1

s2

s3

+𝔾×𝔾

+𝔽
ρ +𝔽

MPC Protocol [SPDZ]
1) Express function as an arithmetic circuit
2) All parties execute circuit gate-by-gate Workers share subcircuit

input wires with prover

Delegator executes
subcircuit in plaintext

Delegator sends subcircuit
output wires to workers

11

Prover-assisted MPC

MPC Protocol [SPDZ]
1) Express function as an arithmetic circuit
2) All parties execute circuit gate-by-gate Workers share subcircuit

input wires with prover

Prover executes the
subcircuit in plaintext

Delegator sends subcircuit
output wires to workers

11

s1

s2

s3

+𝔾×𝔾

+𝔽
ρ +𝔽

Prover-assisted MPC

MPC Protocol [SPDZ]
1) Express function as an arithmetic circuit
2) All parties execute circuit gate-by-gate Workers share subcircuit

input wires with prover

Prover executes the
subcircuit in plaintext

Prover sends subcircuit
output wires to workers

11

s1

s2

s3

+𝔾×𝔾

+𝔽
ρ +𝔽

Prover-assisted MPC

Achieving Malicious Security
Standard techniques for malicious

security incur a large overhead

12

MPC for
zkSNARK

π zkSNARK proof

w private witness

Prover

Workers

Achieving Malicious Security
Standard techniques for malicious

security incur a large overhead

12

MPC for
zkSNARK

π zkSNARK proof

w private witness

Prover

Workers

zkSNARKs are “error-detecting”:
an incorrectly-generated proof will

fail to verify

Achieving Malicious Security
Standard techniques for malicious

security incur a large overhead

12

Idea: Use the “error-detecting”
property of zkSNARKs to reduce
the overhead of malicious security

MPC for
zkSNARK

π zkSNARK proof

w private witness

Prover

Workers

Achieving Malicious Security

𝖵𝖾𝗋𝗂𝖿𝗒(π) ?= 1

13

MPC for
zkSNARK

π zkSNARK proof

w private witness

Prover

Workers

Achieving Malicious Security

𝖵𝖾𝗋𝗂𝖿𝗒(π) ?= 1

If a worker deviates from the honest
protocol, then the end proof will fail to

verify
13

MPC for
zkSNARK

π zkSNARK proof

w private witness

Prover

Workers

Achieving Malicious Security
…

14

𝖵𝖾𝗋𝗂𝖿𝗒(π) ?= 1
Prover

Workers

MPC for
zkSNARK

π zkSNARK proof

w private witness

Achieving Malicious Security
…

14

𝖵𝖾𝗋𝗂𝖿𝗒(π) ?= 1
Prover

Workers

MPC for
zkSNARK

π zkSNARK proof

w private witness

π

Achieving Malicious Security
…

14

𝖵𝖾𝗋𝗂𝖿𝗒(π) ?= 1
Prover

Workers

MPC for
zkSNARK

π zkSNARK proof

w private witness

π

Achieving Malicious Security
…

14

𝖵𝖾𝗋𝗂𝖿𝗒(π) ?= 1
Prover

Workers

MPC for
zkSNARK

π zkSNARK proof

w private witness

π

Achieving Malicious Security
… If workers see the proof, then

selective-failure attacks are possible
=> leaks one bit of the witness

14

𝖵𝖾𝗋𝗂𝖿𝗒(π) ?= 1
Prover

Workers

MPC for
zkSNARK

π zkSNARK proof

w private witness

π

Achieving Malicious Security
… If workers see the proof, then

selective-failure attacks are possible
=> leaks one bit of the witness

Idea:
Use additional

properties of algebraic
zkSNARKs to eliminate

these attacks*

14

𝖵𝖾𝗋𝗂𝖿𝗒(π) ?= 1
Prover

Workers

MPC for
zkSNARK

π zkSNARK proof

w private witness

π

Experimental Setup

• We implemented Eos as a Rust library in the arkworks ecosystem

• Eos produces a delegation protocol for any “algebraic” zkSNARK

15

• We evaluated our protocols for the Marlin zkSNARK [CHMMVW20]

• 2 workers (AWS c5.24xlarge) in us-west-1 and us-east-1 regions

Implementation

Eos speeds up proving time by 26x for mobile-phones

Prover Network
Throughput Speedup Memory

reduction

r4.xlarge (AWS) 3 Gbps 9x 256x

r4.xlarge (AWS) 350 Mbps 6x 256x

Pixel 4A 350 Mbps 26x 256x

Eos vs. local proving for 220 constraints
16

Eos is 8x faster than existing techniques

100

101

102

103

104

215 216 217 218 219 220 221 222 223 224 225

Ti
m
e
(s
)

Number of constraints

Eos
OB22

8x

17

Eos is only 10% slower than insecure delegation
Eos vs. worker local proving time

18

Eos is only 10% slower than insecure delegation

100

101

102

103

104

215 216 217 218 219 220 221 222 223 224 225

Ti
m
e
(s
)

Number of constraints

Wᴏʀᴋᴇʀ
Eos

Eos vs. worker local proving time

18

Eos is only 10% slower than insecure delegation

100

101

102

103

104

215 216 217 218 219 220 221 222 223 224 225

Ti
m
e
(s
)

Number of constraints

Wᴏʀᴋᴇʀ
Eos

Eos vs. worker local proving time

18

Privacy costs $0.03
and 10% increased

latency

Thank You!

Ryan Lehmkuhl
ryanleh@mit.edu

Paper/code: www.usenix.org/conference/usenixsecurity23/presentation/chiesa

 

(Updated version coming soon to ePrint)

https://www.usenix.org/conference/usenixsecurity23/presentation/chiesa

