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I know w s.t. SHA256(w) = x

~50KB

> 1 min runtime



Potential Solution: Delegate Proving!
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w private witness

π zkSNARK proof

Prover

Workers

Goal: Delegate Proving with Privacy

Goal 1: Efficiency Delegation should be faster than local proving

Goal 2: Privacy The witness should remain hidden from the 
workers if at least one worker is honest
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Our results

Private delegation of ‘algebraic’ zkSNARK provers* in the 
presence of N-1 malicious workers.

Eos

*[MBKM19, GWC19, CHMMVW20, CFFQR21, BGH19]
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Our results

Compared to local proving, running Eos on a mobile phone is:

Private delegation of ‘algebraic’ zkSNARK provers* in the 
presence of N-1 malicious workers.

Eos

1) 26x faster
2) Uses 256x less memory

*[MBKM19, GWC19, CHMMVW20, CFFQR21, BGH19]
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 Efficient circuits for zkSNARK provers 

 Prover-assisted MPC 

 Lightweight techniques for malicious security 

 Systems optimizations
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Starting point: MPC
Allows multiple parties to compute a function  over their private inputsF
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N-1 Malicious Security:    
Privacy + correctness holds if 
at least one party is honest 

Generic MPC is expensive!
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Circuit for zkSNARK prover 
is large! Need to support 

polynomial arithmetic, group 
operations, and random 

oracle calls



Add gates for -ops and 
random oracle calls 

New, efficient subcircuits 
for polynomial arithmetic 

𝔾

Efficient Circuits for zkSNARK Provers

1) Express function as an arithmetic circuit 
2) All parties execute circuit gate-by-gate
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MPC Protocol [SPDZ]

Idea: Extend the circuit 
model [SA19, OB22]!



Using the Asymmetric Threat Model

MPC for 
zkSNARK
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Prover is always  
honest and knows the 

witness!



Idea: Use the weaker  
prover to ‘assist’ the MPC 

Using the Asymmetric Threat Model

MPC for 
zkSNARK
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Prover-assisted MPC
MPC Protocol [SPDZ]

1) Express function as an arithmetic circuit 
2) All parties execute circuit gate-by-gate
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2) All parties execute circuit gate-by-gate
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random oracles is expensive in 

MPC but cheap in plaintext
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MPC Protocol [SPDZ]
1) Express function as an arithmetic circuit 
2) All parties execute circuit gate-by-gate Workers share subcircuit 

input wires with prover 

Delegator executes 
subcircuit in plaintext 

Delegator sends subcircuit 
output wires to workers
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security incur a large overhead

12

MPC for 
zkSNARK

π zkSNARK proof

w private witness

Prover

Workers



Achieving Malicious Security
Standard techniques for malicious 

security incur a large overhead

12

MPC for 
zkSNARK

π zkSNARK proof

w private witness

Prover

Workers

zkSNARKs are “error-detecting”: 
an incorrectly-generated proof will 

fail to verify



Achieving Malicious Security
Standard techniques for malicious 

security incur a large overhead
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Idea: Use the “error-detecting” 
property of zkSNARKs to reduce  
the overhead of malicious security 
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𝖵𝖾𝗋𝗂𝖿𝗒(π) ?= 1
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Achieving Malicious Security

𝖵𝖾𝗋𝗂𝖿𝗒(π) ?= 1

If a worker deviates from the honest 
protocol, then the end proof will fail to 

verify
13
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…
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Achieving Malicious Security
… If workers see the proof, then 

selective-failure attacks are possible  
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Achieving Malicious Security
… If workers see the proof, then 

selective-failure attacks are possible  
=> leaks one bit of the witness

Idea:  
Use additional 

properties of algebraic 
zkSNARKs to eliminate 

these attacks* 
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Experimental Setup

• We implemented Eos as a Rust library in the arkworks ecosystem 

• Eos produces a delegation protocol for any “algebraic” zkSNARK
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• We evaluated our protocols for the Marlin zkSNARK [CHMMVW20] 

• 2 workers (AWS c5.24xlarge) in us-west-1 and us-east-1 regions

Implementation



Eos speeds up proving time by 26x for mobile-phones

Prover Network 
Throughput Speedup Memory 

reduction 

r4.xlarge (AWS) 3 Gbps 9x 256x

r4.xlarge (AWS) 350 Mbps 6x 256x

Pixel 4A 350 Mbps 26x 256x

Eos vs. local proving for 220 constraints
16



Eos is 8x faster than existing techniques
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Eos is only 10% slower than insecure delegation
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Privacy costs $0.03 
and 10% increased 

latency



Thank You!

Ryan Lehmkuhl 
ryanleh@mit.edu

Paper/code: www.usenix.org/conference/usenixsecurity23/presentation/chiesa

 

(Updated version coming soon to ePrint)

https://www.usenix.org/conference/usenixsecurity23/presentation/chiesa

