W

Place Your Locks Well:
Understanding and Detecting Lock Misuse Bugs

Yuandao Cai, Peisen Yao, Chengfeng Ye, Charles Zhang
The Hong Kong University of Science and Technology

NN
Increasingly Complex Modern Software

* Massive codebases and high concurrency

Mac OS X "Tiger"

Facebook

Microsoft Visual Studio 2012
Windows Vista

Microsoft Office 2013
Firefox

Google Chrome

Photoshop C.S. 6

Lmux Kernel 2.2.0

MLoC (Millions of Lines Of Code) 0 20 40 60 80 100

* Poor software quality costs the US economy $2.41 trillion annually

Cost of Poor

Software

Quality
Report 2022

: o an [-
Update 0 1 e :v A
it-cisq.org L ? £ e ;
: WU EEnR NN - LL00h ¥ s i . n(
e 1o DIRTY COW

2

Synchronization Primitives against Harmful Races

Concurrency bugs are hard-to-avoid and extremely harmful!

Synchronization primitives are in place to synchronize concurrent code roami!
* preventing various concurrency bugs and vulnerabilities DIRTY COW

Existing works focus on concurrency bug detection (insufficient synchronization)
e data races[Al Thokair POPL’23] [chabbi et.al., PLDI’22]...
e concurrency memory corruption bugs [Yuan et.al., Security’23] [Cai et.al., PLDI’21]...
e concurrency typestate bugs [ASPLOS’11]...

Our work focuses on the misuses of synchronization APIs themselves
* currently focusing on locks
 also causing serious reliability and security issues

Research Goal and Contributions

1. Understanding the common misuses of locks
* through a CVE-ID-based empirical study

2. Designing techniques to detect the lock misuses

3. Evaluating and advancing the state-of-the-art bug-finding tools

g & @

An Empirical Study: Setup

Locks are common synchronization primitives

* with explicit disciplines for initialization, use, and destruction.
Study Question 1: What are the common lock misuses?
Study Question 2: What are the common causes of those lock misuses?

y

Study Dataset: 32 CVE IDs assigned between 2010-2021

» search keywords: ¢.g., mutex, lock @
>

* manual validation for CVE ID description

Keyword Description %
searching analysis n .

A

Lock Misuses

4
/e
f—

AN

NN
An Empirical Study: Finding I

1. Identifying five general locking discipline violations
under both sequential and concurrent circumstances
covering a single thread and multiple threads

2. Defining the bug patterns by revealing their characteristics

No. Misuse Pattern Bug Description Concurrency

@® Missing lock releases A lock is not released after its effective lifetime.

@ Double locking A lock is acquired twice.

® Using uninitialized locks A lock is not 1n1t1allze.d F)e:.ff)rej using it. A concurrency error Y

occurs when the lock is initialized non-deterministically.
. . A lock is released without acquiring it first. A concurrency error
@ Releasing unacquired locks occurs when there is another thread holding the lock. v
® Cyclic lock acquisitions Different locks are not acquired in the same order. A concurrency error Y

occurs when each thread in a set waits for the other to release a lock.

NN
An Empirical Study: Five General Lock Misuses

373 static int open_console (UI *ui){

; ; s 82 CEN64_THREAD_RETURN_TYPE gdb_thread(...
8re if (!CRYPTO_THREAD_write_lock(ui->lock)) i - - gab- () { 330 ret_t cherokee_collector_rrd_new (...){

376 return 0; 85 pthread_mutex_lock(&gdb->client_mutex) ; o YR ko amc. 1)
483} ss if (gdb->flags & GDB_FLAGS_INITIAL) { o 12 _ e _func, n);
552 static int close_console (UI *ui){ 89 pthread_cond_wait (..., &gdb>c_mutex); a70 1.'<;.= pthread_mitex_init (n->mutex, NULL);
- if (status != SS$_NORMAL) { 90 } else { 380 if (re != 0)_{) ’ ,
o ER_zeiss._dabal.z. status); 91 pthread_mutex_lock(&gdb->client_mutex) ; 382 return ret error:
563 return O; = - H
564 } 92 ¥ 383 }
thread_mutex_unlock(&gdb->client_mut ;

s66 CRYPTO_THREAD_unlock(ui->lock); or P - - (&g _mutex) ; 380 }

143 }
368 return 1;
369 F

(1) Missing lock releases (OpenSSL) (2) Double locking (Cen64) (3) Using uninitialized locks (Cherokee)

. 5
130 BIO *0SSL_trace_begin(int category){ 381 static void *extract_worker_thread_func(...){

_ . 385 pthread_mutex_lock(ctxt->mutex) ;
465 category = ossl_trace_get_category(category) ; >
166 if (category < 0) 431 pthread_mutex_lock(&entry->mutex) ;
e return NULL; 433 pthread_mutex_unlock(ctxt->mutex) ;
473 if (!CRYPTO_THREAD_write_lock(trace_lock)) 442 _if (chunk.type == XB_CHUNK_TYPE_EOF) {
A7 return NULL; 443 pthread_mutex_lock(ctxt>mutex) ;
491 } 444 pthread_mutex_unlock(&entry->mutex) ;
493 void 0SSL_trace_end(int category, BID * channel){ 445 my_hash_delete(ctxt->filehash,...);
498 category = ossl_trace_get_category(category); 446 pthread_mutex_unlock(ctxt->mutex) ;
516 CRYPTO_THREAD_unlock(trace_lock); 470 }
519 } 478 }

(4) Releasing unacquired locks (OpenSSL) (5) Cyclic lock acquisitions (MariaDB)

NN
An Empirical Study: Finding 11

* Wreaking severe havoc by triggering lock misuses

* denial-of-service with system hang (concurrent cyclic acquisitions, double locking)
 CVE-2013-4553, CVE-2014-8131, CVE-2019-14763, CVE-2021-41213,...

 memory exhaustion with memory leak (missing lock releases)
 CVE-2004-2650, CVE-2018-14660, CVE-2020-12658,...

* memory corruption; system crash (releasing unacquired locks, using uninitialized locks)
 CVE-2014-1453, CVE-2015-8767, CVE-2017-6353, CVE-2020-10573,...

* even privilege escalation and other unidentified issues
« CVE-2010-4210, CVE2014-9748, ...

. . 98 int search_makelist(search_t *results,...){
* Relating to other security bugs 145 pthread_mutex_unlock(&conn->lock) ;
. .« s . .)) 146 int tmp = conn_setup(conn);
atomicity violations (CVE-2020-10573) w47 pthread_mutex_anlock (&comn->1ock) ;
* use-after-free (CVE-2019-14034) 203 }

* double free (CVE-2017-6353) Releasing unacquired locks that

leads to atomicity violations (Axel)

Detecting the Five Lock Misuses with Lockpick

* Lock misuse formulation: characterizing lock misuses with a finite-state machine (FSM)

lock()

init_lock()
1. Model the states of lock objects using typestates
2. Capture the state transitions of lock objects with a new FSM
3. Capture the lock misuses by tracking the state transitions

* Lock misuse detection: detecting lock misuses with several customized techniques

1. Path-sensitively track the typestates of locks i %
2. Reason about the MHP relations of statements @ & Typestate Analysis
) L. o
3. Flag the lock misuses based on typestate violations Program | On-Demand /Oy ComumsncyAware Repor
Pointer Analysis O O Lock Misuse Detection

S

On-Demand
MHP Analysis

Implementation and Experiment Setup

* Lockpick 1s built upon the LLVM infrastructure and the Z3 SMT solver

* asoundy implementation to reach both high efficiency and precision

» unrolling loops twice, ignoring inline assembly, pointer arithmetic
* avalue-flow-based pointer analysis

* on-demand flow-, context-sensitive pointer analysis
* path conditions are encoded as first-order logic formulae over bit-vectors

* Question 1: How effective and practical 1s Lockpick at uncovering lock misuses in
mature open-source software systems?
* Question 2: How does Lockpick perform compared to the state-of-the-art tools?

(1) Highlights: Effectiveness on Bug Finding

* Finding 203 developer-confirmed bugs 1in over 80 well-checked software programs
* 184 of them have been fixed (at the time of publication)

* finding various kinds of bugs O en S S L
* hiding for an average of 7.4 years Qyptography and SSUITLS Toolki
o 2
= @ Missing lock releases = Y<I J
10 =@ Double locking = 1<Y<5 ' z ‘
©) Using uninitialized locks 1 ~
= (® Releasing unacquired locks P=Y=I0 M arid D B
® Cyclic Lock Acquisition = Y=10 | / FF
MPeg freeBsD
The distributions of bug type The distributions of hidden time (Year)

* 16 CVE IDs have been assigned for multiple bugs with high security impacts
« CVE-2021-41141, CVE-2021-43429, CVE-2022-31621, CVE-2022-31624, CVE-2022-31623,
CVE-2022-31622, CVE-2022-30027, CVE-2022-37869, CVE-2022-37868, CVE-2022-38791,
CVE-2022-37874, CVE-2022-37875, CVE-2022-37876, CVE-2022-37871, CVE-2022-37872...

(2) Highlights: Advancement over Previous Tools

* Baselines: SVF, L2D2 (built on Infer), Clang Static Analyzer
* Benchmarks: ten popular software programs with 35.8 MLoC
- Efficiency: being able to analyze big programs like Linux kernel in about five hours

* Precision: embracing better precision than other tools
* Recall: being able to discover 26 past CVE IDs in C/C++ programs (2010-2021)

e other tools cannot reach

Wolfssl \-

|

Linux e g s SVF L2D2 CSA LOCKPICK
CSA Wes O [TWFP #R | #FP #R | #FP #R | #FP #R
OpenSIPS i L.2D2 FreeBSD Cherokee | 55 3 6 | 99%' 483 | 22 26 | 1 5
= SVF R — Curl 135 3 4 0 0 0 0o | 0 2
. PISIP 434 32 43 | 8% 505 0 2 | 2 as
PJSIP — m Lockpick MariaDB — OpenSIPS | 477 25 55 0 0 0 0 5 40
OpenSSL | 490 66 68* 0 0 0 0| 2 6
WoIfSSL | 944 16 20 3 3 0 1 3 11
Curl h MySQL —_ MySQL | 4,152 0 0* | 100%" 1,157 95 99* | 3 10
MariaDB | 4,697 | 96%' 141* | 100%' 4,993 | 100%' 229* | 9 27
FreeBSD [8457 | 66 81 | NA NA 0 0 | 12 31
Cherokee b OpenSSL — : 15087880t 328+ | aa NA o o 19 57
| FPR — 85.1% 99.2% 93.7% 27.5%
Time(s) 0 500 750 0 10000 22000

NN
Thank you for your listening!

Questions & Answers

More details can be found in our paper:
https://www.usenix.org/system/files/sec23fall-prepub-298 cai-yuandao.pdf

Bug and CVE ID lists can be found:
https://drive.google.com/file/d/THY7PydeDga-850Z0n3 YPACnX7hRws8DG/view

https://www.usenix.org/system/files/sec23fall-prepub-298_cai-yuandao.pdf
https://drive.google.com/file/d/1HY7PydeDga-850ZOn3YPACnX7hRws8DG/view

