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Abstract
Depth estimation-based obstacle avoidance has been widely

adopted by autonomous systems (drones and vehicles) for
safety purpose. It normally relies on a stereo camera to auto-
matically detect obstacles and make flying/driving decisions,
e.g., stopping several meters ahead of the obstacle in the path
or moving away from the detected obstacle. In this paper, we
explore new security risks associated with the stereo vision-
based depth estimation algorithms used for obstacle avoid-
ance. By exploiting the weaknesses of the stereo matching in
depth estimation algorithms and the lens flare effect in optical
imaging, we propose DoubleStar, a long-range attack that
injects fake obstacle depth by projecting pure light from two
complementary light sources.

DoubleStar includes two distinctive attack formats: beams
attack and orbs attack, which leverage projected light beams
and lens flare orbs respectively to cause false depth percep-
tion. We successfully attack two commercial stereo cam-
eras designed for autonomous systems (ZED and Intel Re-
alSense). The visualization of fake depth perceived by the
stereo cameras illustrates the false stereo matching induced
by DoubleStar. We further use Ardupilot to simulate the at-
tack and demonstrate its impact on drones. To validate the
attack on real systems, we perform a real-world attack towards
a commercial drone equipped with state-of-the-art obstacle
avoidance algorithms. Our attack can continuously bring a
flying drone to a sudden stop or drift it away across a long
distance under various lighting conditions, even bypassing
sensor fusion mechanisms. Specifically, our experimental re-
sults show that DoubleStar creates fake depth up to 15 meters
in distance at night and up to 8 meters during the daytime. To
mitigate this newly discovered threat, we provide discussions
on potential countermeasures to defend against DoubleStar.

1 Introduction

Obstacle detection and avoidance are widely adopted in
autonomous systems, such as autonomous driving vehi-
∗Corresponding author: Dr. Qiben Yan (qyan@msu.edu)

Figure 1: An attacker uses two projectors to launch
DoubleStar at 7m away on a flying DJI drone. A fake depth
of 0.5m is created by the attack and detected by the DJI drone
as a real obstacle during the daytime.

cles [52, 55, 57], robotic vehicles [32, 36], and drones [10, 45].
Generally, Obstacle Avoidance (OA) system detects the obsta-
cles in the surroundings via different sensors, e.g., cameras,
radars, LiDARs, and ultrasonic sensors, and converts the per-
ceived data into obstacle information (e.g., obstacle distance,
obstacle type). The autonomous systems then make an ap-
propriate driving/flying decision, such as raising the alarm,
braking in front of the obstacle, or moving away from it.

The recent rise in the popularity of drones and self-driving
vehicles helps drive OA’s prevalence, while the potential risks
of OA algorithms warrants further research. Although the
community produced a wealth of security research on au-
tonomous systems over the years [5, 29, 35, 43, 44, 47, 50, 64],
one sensing modality that is nearly omnipresent in modern
OA, the stereo camera [61] (a.k.a., 3D depth camera), has
mostly been overlooked. In this work, we expose the security
risk of stereo cameras for the first time and propose a new
attack, DoubleStar, which targets the depth estimation — one
of the core functionalities of stereo cameras. DoubleStar al-
lows an attacker to launch long-range and continuous attacks
towards depth estimation by creating fake obstacles optically.
Since the estimated depth is an essential input parameter to the
OA systems, DoubleStar has profound implications towards
the functional safety of autonomous systems.
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DoubleStar builds upon a rich body of research on camera
sensor security. Earlier studies that feature denial-of-service
(DoS) attacks [41,54,64] can be detected easily by tamper de-
tection mechanisms [42]. DoubleStar draws inspiration from
other recent studies that have overcome such a limitation. One
such attack, GhostImage [29], utilizes lens flare effect to de-
ceive the image classification systems in autonomous vehicles
into misperceiving actual objects or perceiving non-existent
objects. However, GhostImage is limited by the inability to
sustain a continuous attack due to the pixel-level position
aiming issue arisen from the white-box attack design. Our ex-
periments further show that GhostImage is more challenging
to realize against cameras with commonly used anti-reflection
coatings [59]. More importantly, all existing attacks target
monocular cameras. To date, DoubleStar is the first to exploit
stereo cameras’ vulnerabilities on autonomous systems.

Stereo cameras are widely available on robotic vehicles1,
which have been used for navigation and 3D tracking appli-
cations [17, 32, 36]. Drones, on the other hand, are smaller in
scale with less functional demands, whose navigation usually
requires the depth information. Since LiDARs and Radars are
not favorable on drones due to their form factors and high
costs, the stereo camera becomes the de-facto sensor to per-
ceive accurate depth information. Almost all the high-end
drones are equipped with stereo cameras, such as DJI Phan-
tom series [10], DJI Mavic series [9], Skydio R1 [46], Yuneec
Typhoon series [68], and Autel Evo II series [3]. Previous
studies [7, 34, 47] investigated the security of drones. They
either launched DoS attacks on the drone by injecting ultra-
sound into the IMU [47,56,65] in a close attack range (around
10cm), or aimed at controlling the drone in an indoor environ-
ment with a limited attack range (≤ 3m) [7]. “How to control
the drone over a long range” is still an open problem. In this
work, we demonstrate the capability of DoubleStar in con-
trolling drones continuously over a long range. As shown in
Fig. 1, an attacker uses two projectors to launch DoubleStar
at 7m away on a flying DJI drone. In doing so, we expose the
new threats against the stereo cameras in OA systems.

DoubleStar consists of two attack formats: the beams at-
tack and orbs attack. They mainly exploit the false stereo
matching in depth estimation algorithms and the lens flare
effects in optical imaging. Beams attack exploits the stereo
matching process, in which an attacker injects two different
light sources into each camera. The injected light source will
become brighter and more prominent in one camera than the
other. Since stereo matching tries to find the pixels in images
corresponding to the same point, it recognizes the injected
strong light sources in left and right images as the same ob-
ject, resulting in a faked object depth. Orbs attack leverages
lens flare effect, a phenomenon that strong light beams are re-
fracted and reflected multiple times, which creates green-color
polygon-shape artifacts in camera images [14, 27]. When two

1Robotic vehicle refers to the unmanned robot vehicle used in manufac-
turing, transport, military, etc.

light sources are injected into each camera, a green orb will
be created for each image. The depth estimation algorithms
falsely match two orbs in two images as the same object,
resulting in a fake obstacle depth.

There are two major challenges in realizing DoubleStar:
(1) How to design the attacks that can induce variable fake
obstacle depths? (2) How to estimate the artificial obstacle’s
position without accessing the stereo camera? To address
these challenges, we design 3 different attack patterns for
both the orbs and beams attacks, totaling 6 attack patterns.
We launch different types of attacks in tandem to complement
each other in extending the attack range while maintaining
high attack success rate.

We verify the efficacy of DoubleStar both in simulation
and in real-world experiment. We run the simulation on one
of the most popular unmanned vehicle projects, Ardupilot [2],
to demonstrate the potential attacks on drones and vehicles.
For the proof-of-concept experiments, we conduct our attacks
on two commercial stereo cameras designed for autonomous
systems (e.g., robotic vehicles, drones, robots), ZED [69] and
Intel RealSense D415 [16], and one popular drone, DJI Phan-
tom 4 Pro V2 [10]. Evaluation results show that our attacks
can achieve up to 15m distance at night and up to 8m distance
during daytime with fake obstacle distance ranging from 0.5m
to 16m, which covers the whole range of the obstacle depth
in the OA system on the DJI drone. Both the simulation and
physical world experiments demonstrate that the devices un-
der attack run out of control as soon as our attacks are turned
on. We set up a website2 to show the simulation results and
demo videos.

In summary, this paper makes the following contributions:

• We propose DoubleStar, the first attack against stereo
vision-based depth estimation in OA systems on robotic
vehicles and drones.

• We are the first to launch a long-range and continuous
attack towards autonomous systems. Through simula-
tion, we show that DoubleStar achieves a fine-grained
trajectory manipulation of drones.

• We successfully launch DoubleStar on two commercial
stereo cameras designed for robotic vehicles and drones
(ZED and Intel RealSense D415) and one of the most
advanced drones (DJI Phantom 4 Pro V2) in different
ambient light conditions.

2 Background

In this section, we briefly introduce the preliminary back-
ground knowledge of DoubleStar, including the foundation
of depth estimation from stereo vision and the lens flare effect
in optical imaging.

2https://fakedepth.github.io/.

https://fakedepth.github.io/.


(a) Human binocular vision (b) Camera stereo vision (c) Triangulation in depth estimation

Figure 2: Depth estimation in stereo vision.

2.1 Depth Estimation from Stereo Vision
Stereo vision-based depth estimation transforms 2D images
into the perception of the 3D depth map, which contains in-
formation related to the distance of the scene objects from the
stereo camera [62]. Depth estimation algorithms are mostly
used in autonomous systems to detect and avoid obstacles.
The main idea of depth estimation using a stereo camera
involves the concept of stereo matching and triangulation.

In essence, stereo camera resembles human binocular vi-
sion shown in Fig. 2a, which is composed of two lenses with
a separate image sensor for each lens, i.e., left image and right
image in Fig. 2b [61]. Binocular disparity in Fig. 2a refers
to the difference in the image location of an object seen by
the left and right eyes, resulting from the eyes’ horizontal sep-
aration. Binocular disparity is the basis for extracting depth
information from 2D retinal images in stereopsis [60]. For
example, in Fig. 2a, PL and PR represent the corresponding
images of P shown on the left and right retinas, while QL
and QR are the corresponding images of Q. The binocular
disparities introduce a difference in the sensed depth of P and
Q. Likewise, the disparity in the stereo camera refers to the
difference in the coordinates of similar features in two images,
e.g., PL and PR in Fig. 2b.

Triangulation method is used by stereo vision to calculate
depth [4]. For example, in Fig. 2c, OL and OR represent the left
and right optical centers in the stereo camera. The intersection
points PL and PR are on the left and right images, respectively.
The depth of point P is calculated using similar triangles,
4PLPPR and 4OLPOR, donated as 4PLPPR ∼ 4OLPOR.
Suppose the horizontal axis values of PL and PR are pl and pr,
respectively. Since the ratio of corresponding sides is equal
in similar triangles, we have:

b
z
=

b+ pr− pl

z− f
, (1)

where z is the depth of point P, f is the focal length of the
camera, b is the baseline (distance between the two camera
optical centers), pl − pr is the disparity between PL and PR.
Therefore, we can derive the depth of point P as:

z =
f ·b

pl− pr
. (2)

Triangulation relies on the stereo matching, which establishes
the pixel correspondence between primitive factors in images,

e.g., PL in the left image corresponds to PR in the right image
in Fig. 2b. Once the stereo correspondence is established, we
can compute each pixel’s disparity in the images to form a
disparity map, which can be converted into a 3D depth map
using Eq. (2). However, certain interference factors, such as
illumination, noise, and surface physical characteristics, could
induce ambiguous correspondence between points in the two
images, e.g., the depth estimation algorithm falsely takes PL
in the left image as the correspondence of QR in the right
image in Fig. 2b. Such ambiguous correspondence caused by
stereo mismatching may lead to inconsistent interpretations
of the same scene, aggravating the false depth calculation.

2.2 Lens Flare Effect

Lens flare effect [14, 29] is a phenomenon caused by the
scattering and reflection of a bright light through a non-ideal
lens system, where several undesirable artifacts appear on
an image (Fig. 3a). Ideally, all light beams should pass di-
rectly through the lens to reach the image sensor, and they
will form a bright glare in the image. However, due to lens
imperfections, a small portion of the light will be reflected
several times within the lens system before reaching the im-
age sensor. Such reflections will result in multiple artifacts on
the image. Under normal light conditions, these artifacts are
usually invisible. However, when a strong light source (e.g.,
sun, light bulb, projector) is present, the lens flare becomes
more visible and washes out the entire image.

Anti-reflection coatings on the lenses of the commercial
cameras are often used to mitigate the lens flare effect by
filtering out most reflections [22], but these lenses still suffer
from the green-color flare orb if a strong white-light source
is present. Note that, according to our experiments, the rela-

(a) (b)

Figure 3: (a) Lens flare effect; (b) the relationship between
the light source and the orb’s position.



(a) Left and right images (b) Depth map (c) 3D point cloud

(d) Left and right images (e) Depth map (f) 3D point cloud

Figure 4: DoubleStar on ZED stereo camera during the daytime. (a) to (c) shows the example of X-shape beams attack from 9m
away, and (d) to (f) showcase the trapezoid-shape orbs attack from 2m away. In the depth map, 100% white means the closest
distance and black means the furthest. The 3D point cloud is the reconstruction of the 3D scene based on the depth map.

tionship between the green-color orb’s position and the white-
light source is centrosymmetric as illustrated in Fig. 3b3. In
fact, most of commercial cameras nowadays have applied the
anti-reflection coatings [12].

3 Vulnerability in Depth Perception

In this section, we first present the vulnerabilities of depth
perception in computer vision exploited by DoubleStar, and
then we illustrate the main experimental observations that
lead to the design of DoubleStar.

The main root cause of the vulnerabilities in depth esti-
mation algorithms is their lack of higher-order perceptions.
Unlike human perception, such algorithms do not base their
decisions on personal experience. Instead, they aim to match
similar features (e.g., shapes, colors) with high confidence
as stereo correspondence, as long as they are in relatively
reasonable positions in the left and right images. Therefore,
most depth estimation algorithms can be affected by physical
perturbations. Our experiments demonstrate that strong light
beams and lens flare orbs can induce wrong depth perception
due to the light beams mismatching and false orbs matching.

Light Beams Mismatching. As shown in Fig. 4a, an at-
tacker injects the light beams with the same projection inten-
sity using two projectors (i.e., P and Q) into the right and
left cameras, respectively. It can be observed that one of the
injected light sources is brighter than the other one when
received by the camera, which becomes a more prominent
feature in the image. For example, Q is targeting the left cam-
era, so the light source shown on the left image from Q is
brighter than that from P. Such phenomenon causes the depth

3In crystallography, a centrosymmetric point group contains an inversion
center as one of its symmetry elements. For example, points M and N in Fig.
3b are centrosymmetric to each other, i.e., if the coordinate of M in the 2D
image is (a,b), the coordinate of N will be (−a,−b).

estimation algorithms to mismatch the two highlighted light
sources in the images as the same object due to the afore-
mentioned weakness in depth perception. As a result, a fake
near-distance depth is created in the depth map (Fig. 4b) and
visualized in the 3D point cloud (Fig. 4c). By adjusting the
distance between projectors and the stereo camera, as well as
the distance between two projectors, different fake obstacle
depths can be created.

False Orbs Matching. Fig. 4d shows an example that the
two orbs generated by the strong light sources in the stereo
images can mislead the depth perception to falsely identify
them as a 3D obstacle. By matching them as the stereo cor-
respondence of one another, the targeted depth estimation
algorithm outputs a fake depth in depth map (Fig. 4e) and a
corresponding 3D fake obstacle in 3D point clouds (Fig. 4f).
Due to the centrosymmetry of the light source and the orb,
the attacker is able to adjust the angle of the injected light
to control the orb’s position. Exploiting such a phenomenon,
theoretically, an attacker could adjust the positions of the two
orbs in the stereo camera to manipulate the fake depth values.

4 Threat Model

In this section, we present the threat model of this work, in-
cluding the attack goal, the attacker’s capability, and the attack
scenarios. The attacker’s goal is to disrupt regular operations
of autonomous systems by injecting fake depth, and further
lead to unintended system behaviors. For example, an attacker
can force a drone into a severe crash, e.g., hitting a tree, by
changing the depth of a real obstacle.

Our attack is a fully black-box attack against general stereo
vision based depth estimation algorithms used in OA systems.
An attacker has no physical access to the hardware or firmware
of the attack target, nor does he/she have access to the camera
images. An attacker also has no prior knowledge about the



(a) X-shape attack (b) Trapezoid-shape attack (c) Triangle-shape attack

Figure 5: Three different attack patterns are used in beams and orbs attacks. The orange circle represents the appearance of the
injected light (glare) in the image, and the dotted white circle stands for the position of the light source which is not aiming at the
camera. Green small circles stand for the orbs.

depth estimation algorithms used in the OA system.
We consider an attack target is equipped with a stereo cam-

era for OA. For drone attacks, we further assume the drones
operate in a flying mode, such as Positioning (P) Mode in DJI
drones [8] or Loiter Mode in Ardupilot [2], where a human
operator controls the drone with the assistance of the OA.
However, once an obstacle is detected within its OA range,
the OA in the autonomous system makes decisions preceding
any human input, i.e., it takes precedence over the pilot/driver.
As an example, when an obstacle is detected in front of the
drone within the safety margin of OA, the drone will stop
moving forward even if the pilot pushes forward the throttle.

5 DoubleStar

This section introduces the design of DoubleStar, including
the beams attack and orbs attack, and analyzes these attacks
via mathematical models.

5.1 Attack Overview
DoubleStar exploits the vulnerabilities in the depth percep-
tion. Certain interference factors can cause ambiguous cor-
respondences between points in the two images, which can
lead to alternative interpretations of the scene. We design
the beams attack using two light sources to form glares on
the images which can cause false stereo correspondence in
depth estimation algorithms and further lead to fake depth
creation. Besides, when a light source is targeting the camera,
the lens flare effect will bring in an orb in the image which is
centrosymmetric to the injected light source. The orbs attack
mainly utilizes this phenomenon to fool the depth estimation
algorithms by matching the two generated orbs in two images
as the stereo correspondence. Fig. 5 presents the design of the
beams attack and orbs attack with three attack patterns. P and
Q are the light sources, e.g., projectors. Their corresponding
position in the left and right image in the stereo cameras are
PL, QL, PR, QR, respectively. A green orb is centrosymmetric
to the injected light source in each image.

We design three different patterns for both beams and orbs
attacks, as shown in Fig. 5: 1) X-shape attack (Fig. 5a): P is

pointing to the right camera while Q is aiming at the left cam-
era. Trapezoid-shape attack (Fig. 5b): P is targeting the left
camera whereas Q is pointing to the right camera. Triangle-
shape attack (Fig. 5c): P and Q are covering the left and right
cameras at the same time. Here, we define the depth of near-
distance fake obstacles as the one smaller than the true depth
of the light source, and define the depth of far-distance fake
obstacles as the one greater than the true depth.

5.2 Beams Attack

5.2.1 Attack Design

X-shape Attack. Using X-shape attack pattern (Fig. 5a), P
and Q form the corresponding glares PR and QL, respectively.
With certain constraints on the perpendicular distance and
included angle between the light sources and the stereo cam-
era, the targeted depth estimation algorithm falsely takes PR
as the stereo correspondence of QL. As a result, it outputs a
near-distance fake depth since the disparity becomes larger
than the real one. Fig. 4a illustrates a real-world scenario of
the X-shape beams attack which produces a near-distance
fake depth (Fig. 4b), when the real depth of the projectors are
9m away from the stereo camera.

Trapezoid-shape Attack. As shown in Fig. 5b, by using
the trapezoid-shape attack pattern, the glares PL and QR are
generated by P and Q. Similarly, with certain constraints
on the distance and angle, the depth estimation algorithm
matches PL and QR as the same object. However, it only
works when the glares approach the center of the image, oth-
erwise, no fake depth can be generated, the reason of which
is explained in Section 5.2.2. Since the glares cover multiple
pixels, the algorithm will output a far-distance fake depth,
overshadowing the real obstacle depth. The generated fake
depth merges into the background depth, which cannot be
identified by human eyes. However, we confirm that the fake
depth can be perceived by the stereo cameras.

Triangle-shape Attack. Fig. 5c shows the triangle-shape
beams attack where the two light beams cover both the left
and right cameras. Hypothetically, when the injected light
intensities from P and Q reflected on both left and right images



(a) Beams attack: b > d (b) Beams attack: b < d (c) Orbs attack: b > d (d) Orbs attack: b < d

Figure 6: Obstacle positions in beams attack (a-b) and orbs attack (c-d) in two attack scenarios. b is the baseline of the stereo
camera, and d is the distance between the two light sources. P and Q represent the positions of the two light sources, and OL
and OR represent the left and right optical centers of the stereo camera. z is the true depth of the light sources, corresponding
to the perpendicular distance between the projectors and the stereo camera. PL and QL are the intersections of P and Q on the
left image, while PR and QR are the intersections on the right image. Q′L, Q′R, P′L and P′R are the location of the orbs. FX and FT
represent the fake obstacle positions corresponding to the X-shape and trapezoid-shape attack, where the red color implies the
existence of fake obstacles while blue implies their non-existence in theory.

are equal to each other, the depth estimation algorithm will
match PL and PR as the same object. Similarly, QL and QR
will also be matched as the stereo correspondence. Thus, the
algorithm outputs the true depths of P and Q. However, in a
real-world attack, when the injected light intensities on the left
and right cameras slightly differ, the triangle-shape attack will
be transformed into the X-shape or trapezoid-shape attack.

5.2.2 Mathematical Modeling and Analysis

Since the triangle-shape attack is essentially the X-shape or
trapezoid-shape attack, we conduct a mathematical analysis of
these two most basic attack patterns. Figs. 6a and 6b present
the mathematical model for beams attacks.

Suppose the depth of FX and FT are zx and zt , respectively.
The corresponding coordinates of PL, PR, QL and QR are pl ,
pr, xl and xr. Based on Eq. (2), the disparity of point P is:
pl − pr =

f ·b
z . Moreover, since 4OLQP ∼ 4OLQLPL, we

have: z
f =

d
ql−pl

, ql =
f ·d
z + pl . The disparity of FX is:

ql− pr =
f ·d
z

+ pl− pr =
f · (d +b)

z
. (3)

Thus, from the Eqs. (2) and (3), we obtain the fake depth zx:

zx =
b

d +b
· z. (4)

Obviously, zx < z, which indicates that the fake obstacle FX
created by the X-shape attack is nearer to the stereo camera
than the light sources as shown in Figs. 6a and 6b. Note
that when 0 < zx < f , FX is non-existent. This follows the
optical imaging principle that the fake depth cannot be shorter
than the focal length f . Such scenario appears either when
the two projectors are too far away from each other or the
perpendicular distance between the projectors and the stereo
camera is too small. In other words, if d is too large or z
becomes too small, the fake obstacles may not be created.
The analysis of a failed attack scenario can be found in the
Appendix A.2.

Similarly, zt can be expressed as:

zt =
b

b−d
· z, (5)

where zt > z if b > d, and zt < 0 if b < d. Correspondingly,
as shown in Fig. 6a, when b > d, FT has a larger depth. Con-
versely, when b < d, FT appears on the opposite side of the
stereo camera, which is non-existent. However, the injected
light is not a single pixel, instead, it contains several blocks
with multiple pixels in the image. The depth estimation al-
gorithm will try to match these blocks in the left and right
images, which could result in a far-distance fake depth. This
special case is marked in blue in Fig. 6b.

5.3 Orbs Attack
5.3.1 Attack Design

X-shape Attack. Fig. 5a shows that the generated green orbs
are centrosymmetric to the glares QL and PR in the left and
right images (see Appendix A.1). Given proper attack dis-
tance/angle, the depth estimation will falsely match the two
orbs as the same object. However, the attack works only when
the orbs approach the image center, otherwise, no fake depth
is created (see Section 5.3.2 for the reason). Since orbs con-
sist of multiple pixels, the algorithm can output a far-distance
fake depth, whose exact value depends on the orbs’ positions.

Trapezoid-shape Attack. Since the orb and the glare are
centrosymmetric, the orb appears at the right of the PL in the
left image, and at the left of the QR in the right image (Fig.
5b). As mentioned before, due to the weakness of the depth
perception, the depth estimation algorithm matches the two
orbs as the same object and outputs a near-distance fake depth
since the disparity is larger than the real one. Fig. 4d shows
that a real-world trapezoid-shape orbs attack is able to create
a near-distance fake depth (Fig. 4e) by matching the two orbs
in the left and right images as the stereo correspondence.

Triangle-shape Attack. Since the projection from P and
Q covers both cameras, four glares PL, QL, PR, and QR appear



in the left and right images. Based on the centrosymmetric
relationship between the glare and orb, two orbs appear in
each image. The depth estimation matches the orbs in the left
and right image correspondingly. Due to the centrosymmetry,
the depth estimation outputs two fake obstacle depths that are
the same as the light source’s real depth. However, in practice,
since the attacker cannot precisely control every single pixel
in the image, the stereo correspondence will occur either like
Fig. 5a or Fig. 5b. As a result, the fake depth is still created.

5.3.2 Mathematical Modeling and Analysis

Figs. 6c and 6d show the mathematical modeling of orbs at-
tack. The corresponding horizontal coordinates of the orbs Q′L,
Q′R, P′L and P′R are q′l , q′r, p′l and p′r, respectively. In the orbs at-
tack, we also consider two scenarios based on the relationship
between b and d.

Since the orbs and their corresponding injected lights are
centrosymmetric, p′l , p′r, x′l and x′r have the exact opposite
value as pl , pr, xl and xr, respectively. Following the deriva-
tion in Section 5.2.2, zx and zt for orbs attack are:

zx =−
b

d +b
· z, (6)

zt =
b

d−b
· z. (7)

Since zx < 0, it means that FX is non-existent regardless of the
value of d. For the depth of FT , when b < d, zt < z, which in-
dicates that a near-distance depth can be created by trapezoid-
shape attack in Fig. 6d. When b > d, zt < 0, FT appears on the
other side of the stereo camera indicating the non-existence
of the FT . However, since the orbs consist of multiple pixels,
it is still possible for a far-distance fake depth to be formed.
The three special cases are marked in blue.

It is worth noting that when d = b, no fake depth can be
generated in both attacks. In summary, (1) the beams attack
works with all three attack patterns when b > d, and with
X-shape and triangle-shape attack pattern when b < d; (2) the
orbs attack works with trapezoid-shape and triangle-shape
attack when b < d. Comparing the blue and red fake obstacle
points in beams and orbs attack (Fig. 6), we can see that the
beams and orbs attacks complement each other’s performance.
As a result, in a real-world attack, fake obstacles generated
by beams attack and orbs attack can co-exist, and these two
attacks can operate in concert to enhance the attack capability.

6 Simulation

In this section, we first evaluate DoubleStar against drone
in a simulation environment. Then, we simulate the attacks
towards various stereo depth estimation algorithms to verify
the attack impact.

6.1 Drone Attack Simulation
We simulate DoubleStar drone attacks using Ardupilot [2]
and AirSim [31]. AirSim is an autonomous system simu-

lator created by Microsoft, which is used to collect virtual-
environment data in our simulation, while Ardupilot, a popular
drone project, is used to simulate DoubleStar on drones.

Figure 7: The simulation workflow of DoubleStar with
Ardupilot and AirSim.

Fig. 7 shows the workflow in the virtual environment.
Ardupilot is used for simulating MAVProxy as the ground sta-
tion, and ArduCopter as the drone. AirSim provides the sensor
inputs to the ArduCopter. The user first sends commands to
ArduCopter via MAVProxy. Next, ArduCopter sends its states
to AirSim, which provides a simulated environment. After
that, AirSim sends the sensor inputs back to ArduCopter, and
the drone’s OA system processes the received data and makes
the flying decisions to avoid the obstacles.

To attack the drone, we design a depth manipulator and em-
bed it between ArduCopter and AirSim. By injecting different
fake obstacle depths in a realistic scenario, we successfully
demonstrate that our attack can achieve real-time drone con-
trol. For example, to move the drone forward while ignoring
the real obstacle in its path, we can generate a fake target that
is apparently far away. The bright beams would overwhelm
the sensors and make the actual barriers invisible. Conversely,
we could also inject a seemingly close object to stop the drone.
Remarkably, pushing the drone away from its original course
is also possible if the attacker creates a fake object that floats
at a constant distance from the drone by its side. Fig. 8 shows
such an example, where the attacker injects a fake depth to the
front right position of the drone. The drone under attack drifts
away from its heading direction to the left, even as there is no
real obstacle present near the drone. We further demonstrate
this attack in a real-world experiment in Section 7.5.

Other useful drone manipulations, such as drone body shak-
ing and moving backward, are also feasible. For example, by
merely injecting a fake object within the drone’s OA dis-
tance, the drone will move backward. By manipulating the
depth within its OA distance threshold, DoubleStar could
continue as the OA system attempts to steer the drone away.
We consider two shaking patterns for shaking the drone: (1)
front-to-back shaking and (2) left-to-right shaking. In the first
case, we place the fake obstacle depth intermittently with a
specific time interval, e.g., 0.5 seconds. When the drone de-
tects the fake obstacle, it will retreat, only to revert course
when the barrier suddenly disappears. Therefore, the attack
forces the drone to go back and forth alternately, resulting in
front-to-back body shaking. Similarly, we can also generate



(a) Flying trajectory on the zoom-
in map in Ardupilot

(b) Real flying environment in
AirSim

Figure 8: The ArduCopter under attack drifts away when there
is no real obstacle near the drone.

(a) Attack BM

(b) Attack SGBM

Figure 9: An image patch is attached to left and right images
in both BM and SGBM depth estimation algorithms, and the
result confirms that our attack can compromise these depth
estimation algorithms.

the fake depth on its front left and right alternately within a
short time interval to shake the drone sideways. The demo
video is available on the website.

6.2 Attack Simulation on Stereo Depth Esti-
mation Algorithms

Attacking Classic Algorithms. We simulate the attack to-
wards two classic stereo depth estimation algorithms, i.e.,
block matching (BM) [37] and semi global block matching
(SGBM) [38]. As shown in Fig. 9, we embed a patch on
both images, which deceive both algorithms in generating
unreliable depths. These classic non-AI-based depth estima-
tion algorithms are still pervasive in real devices, due to their
low computational complexity and short real-time delay [70].
However, the state-of-the-art depth estimation algorithms are
mostly driven by AI models, such as convolution neural net-
work (CNN) and recurrent neural network (RNN) [23]. These
algorithms leverage deep neural network (DNN) to learn rep-
resentations from image data to extract the depth information.

Attacking AI-based Algorithms. To verify the generality
of DoubleStar, we test the attack on three state-of-the-art AI-
based stereo depth estimation algorithms, i.e., DispNet [30],
PSMNet [6], and AANet [51]. DispNet is an end-to-end train-
able framework for depth estimation, where a correlation layer
is used to measure the similarity of left and right image fea-

(a) X-shape beams attack

(b) Trapezoid-shape beams attack

Figure 10: Two image patches, P and Q, are attached to left
and right benign images.

tures. PSMNet takes a different approach by directly con-
catenating left and right features, and then 3D convolutions
are used to aggregate the costs to achieve higher accuracy.
AANet uses a cost aggregation method based on sparse points
in conjunction with neural network layers to achieve a faster
inference speed while maintaining comparable accuracy.

Fig. 10 shows examples of X-shape and trapezoid-shape
beams attacks. From Figs. 10a and 10b, we can see two small
image patches are embedded in the stereo image, correspond-
ing to the two light beams (i.e., P and Q). We take this adver-
sarial stereo image pair as the input to the three algorithms.
The corresponding outputs of the three algorithms are shown
in the Fig. 11. We can see that all three algorithms can be
deceived by X-shape beams attack, since a near-distance fake
obstacle is generated as expected. Regarding the trapezoid-
shape beams attack, we expect to see a far-distance fake depth
in the image according to our mathematical analysis. How-
ever, since a far-distance fake obstacle is blended into the
background in the depth map, it can hardly be observed. Note
that, the fake depth value depends on the position of the in-
jected patches, e.g., by separating P and Q away from each
other in the stereo image pair, the fake depth value grows.

Verifying the Attack. We collect the adversarial stereo
images from the real-world attack and use them as input to
these three algorithms. Specifically, we use the stereo image
pairs of X-shape beams attack and trapezoid-shape orbs attack
in Figs. 4a, 4d as input. Their corresponding fake depth maps
from the three algorithms are shown in Fig. 12. It can be
seen that except the orbs attack on AANet, all the attacks
successfully inject fake depth information. For the orbs attack
on AANet, the orbs disappear from the depth map, which may
have been smoothed out by the AANet algorithm.

7 Evaluation

In this section, we evaluate DoubleStar on the depth
estimation-based OA systems used in autonomous systems.



(a) DispNet (b) PSMNet (c) AANet

Figure 11: Depth maps from DispNet, PSMNet, and AANet.
Each column, from up to down, represents benign depth map,
depth map from X-shape beams attack, and depth map from
trapezoid-shape beams attack. The fake depths are circled.

(a) DispNet (b) PSMNet (c) AANet

Figure 12: Depth maps from DispNet, PSMNet, and AANet.
For each column, the upper depth map is from X-shape beams
attack, and the lower one is from trapezoid-shape orbs attack.
The fake depths are circled.

Specifically, we showcase proof-of-concept DoubleStar on
a commercial drone, DJI Phantom 4 Pro V2, and two stereo
cameras, ZED and Intel RealSense D415. For simplicity, we
refer DJI Phantom 4 Pro V2 as the DJI drone, ZED stereo
camera as ZED, and Intel RealSense D415 stereo camera as
RealSense. We select DJI drone due to its high popularity and
state-of-the-art stereo vision based OA systems [10]. ZED and
RealSense are chosen since they are specially designed for au-
tonomous robotic systems, both of which use the cutting-edge
AI-based algorithms to compute the depth [16, 69].

The experiments aim to measure (1) the range within which
the fake obstacle can be generated, (2) the range of attack
distance, and (3) the range of attack angle within which we
can successfully launch the attacks.

7.1 Experimental Setup

The evaluation setup is shown in Fig. 13, where we have the
DJI drone on the left and two projectors combined with two
zoom lenses on the right in an outdoor environment. The DJI
drone could be switched into ZED or RealSense according

to the setup of different experiments. The throwing ratio is
defined as the ratio between the projection distance and the
size of the projection screen. If an attacker aims to perform
long-distance attacks, he/she would need the projector to have
a larger throwing ratio to concentrate the light beams.

The size of the lenses on the stereo camera is tiny, e.g., the
area of the lens on ZED is 1.3×10−4m2. The throwing ratio
of our projector is also very small, i.e., 1.04 – 1.26, which
means that the projection screen area is at most 0.62 m2 at
1m. Comparing 1.3×10−4m2 with 0.62 m2, we can see that
less than 1% of the projection light can be injected into the
lens. Therefore, to further extend the attack distance, we inte-
grate each projector with a Canon zoom lens (i.e., Canon EF
75-300mm) [29]. In our experiments, the maximum throwing
ratio is increased to 30, when the focal length is adjusted to
300 mm, which implies that 2.5×10−3m2 projection screen
area can be achieved at 1m. Thus, around 12% of the projec-
tion light can arrive at the lens, making the long-range attack
feasible.

Since we have no access to the DJI drone’s sensor data, we
use the DJI drone to read the depth in meters and use the ZED
to verify the left and right images, depth map, and 3D point
cloud. For RealSense, as it does not give us access to its left
and right images, we will only check the depth map to verify
the success of our attack. For the experiments on the DJI
drone, we define the attack as successful if the generated fake
depth is less than 6m, which is the threshold value to trigger
actions of the OA system. For the experiments on ZED and
RealSense, we record it as a success as long as a near-distance
fake depth can be seen in the depth map. We perform each
attack pattern 3 times in every experiment.

During the experiments, the distance between the two pro-
jectors is fixed as 1m. The environmental ambient light levels
are 4000lux and 0lux for day and night, respectively. All the
experiments are conducted outdoor. Unless otherwise speci-
fied, these parameters are the default for all experiments.

Figure 13: Outdoor attack experimental setup: the DJI drone
is on the left and two Epson PowerLite 1771W projectors [11]
combined with two Canon EF 75−300mm zoom lenses are
on the right. We also conduct the experiments on ZED and
RealSense in the experiments. All three attack devices have
a pair of stereo vision sensors. The DJI drone has a primary
camera at the bottom and RealSense has extra infrared pro-
jectors and an RGB camera.



Table 1: Fake depth range on the DJI drone at night and
during the daytime with different attack patterns. Expected
fake depth is derived from the mathematical model. “None"
means no fake depth can be successfully injected.

Attack
Distance (m)

Expected Fake
Depth (m) Fake Depth Range at Night (m) Fake Depth Range in the Day (m)

X Trapezoid X Trapezoid Triangle X Trapezoid Triangle
1 0.5 0.5 0.5 0.5 None 1.5 1 None
2 0.5 0.5 0.5 0.5 None 0.5 - 1 8 None
3 0.5 0.5 0.5 0.5 0.5 - 16 1 - 1.5 3 None
4 0.5, 1 1 0.5 - 1 10.5 0.5 - 16 0.5 - 1.5 10 - 11 0.5 - 11
5 0.5 1 0.5 11 0.5 - 16 0.5 - 2 5 - 11 1 - 5.5
6 0.5 1 0.5 - 1 12.5 10.5 - 16 1 - 2 5 - 11 1 - 11
7 0.5 1 1 12 -16 6.5 - 16 None None 0.5 - 14.5
8 1 1 0.5-1 12-16 6.5 - 16 None None 1 - 14
9 1 1 None None 1 - 16 None None None
10 1 1.5 None None 1.5 -10.5 None None None
11 1 1.5 None None 1 - 16 None None None
12 1.5 1.5 None None 1.5 - 16 None None None
13 1.5 2 None None 1.5 - 16 None None None
14 1.5 2 None None 10.5 - 14 None None None
15 1.5 2 None None 16 None None None
16 1.5 2 None None None None None None

7.2 Fake Depth Range

Table 1 summarizes the range of fake obstacle depth that the
attacks can achieve on the DJI drone during the daytime and
at night. The default value of the projection light illuminance
is 1.6×104 lux without connecting to any source. We perform
each attack pattern with different attack distances and record
all possible fake depths it generates.

The results show that DoubleStar can achieve maximally
13m attack distance when the fake depth is under 6m (i.e.,
a successful attack). Our attacks can achieve up to 15m in
distance, in which case the depth of a real near-distance object
is converted into the depth of a far-away fake obstacle. Using
all three attack patterns, our attack can generate various fake
depths with the attack distance ranging from 3−8m at night
and 4−6m in the day. However, there are a few cases when
only partial attack patterns work. Specifically, when the at-
tack distance is 1−2m, the triangle-shape attack fails in both
ambient light conditions. The reason is that in these cases the
width of the projection screen is smaller than the baseline,
and no projection light can enter the stereo camera. When the
attack distance is 3m, the triangle-shape attack works at night
but fails in the day due to the strong ambient light. In fact,
during the daytime, only the marginal projection light can
enter the stereo camera, resulting in an injected light intensity
that is too weak to deceive the depth perception. Also, when
the attack distance is more than 8m at night and 6m during the
daytime, both trapezoid- and X-shape attacks fail. The reason
is that the divergent light beams traversing a long distance
significantly weaken the injected light intensity.

It is worth noting that modern cameras are usually equipped
with the auto exposure (AE) control mechanisms [25], which
automatically balance the brightness of the captured image.
The exposure increases if the overall brightness turns dark,
and vice versa. Our results show that the orbs attacks usually
fail during the day, while the beams attacks succeed. This
phenomenon is likely caused by AE, when the brightness of
the injected beams induces a drop of lightness in the image
background. As a result, the orbs become less visible.

(a) Attack range on the DJI drone.
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(b) Attack range on ZED.

Figure 14: Attack range w.r.t. projection illuminances.

Moreover, in order to launch the trapezoid- and X-shape
attacks, the attacker should avoid lights overlapping at the
drone side. To achieve that, the attacker can only use marginal
light to launch these two attack patterns. As a result, the
injected light intensity becomes too weak to attack effectively.
However, overlapping is not an issue for the triangle-shape
attack. That is why the triangle-shape attack can achieve the
longest attack distance. In summary, the range of fake depth is
0.5−16m. This range covers all the possible depths that can
be sensed by DJI drone’s OA system, which makes real-time
drone control possible.

7.3 Range of Attack Distance
The range of attack distance is the key evaluation criterion
in our attack, since no prior work has ever achieved a long-
range drone sensor attack. With the projector’s default light
illuminance, we can achieve up to 13m attack range at night
and 7m attack range during the daytime. Further, we explore
the impact of the projection light intensities on the range of
attack distance on both ZED and DJI drone.

Attack Range Results from Drone. We repeat the exper-
iments with different projector intensities on the DJI drone,
and record the longest distance where our attack is successful
as the corresponding attack range.

Fig. 14a presents the attack distance range on DJI drone
with various projection intensities. Each point in the figure
refers to the longest attack distance at which the fake depth
can be observed. We determine an attack as successful when
the fake depth is observed by the controller. The results show
that at night our attack can achieve up to 15m with the highest
projection intensity, and up to 3m with the lowest projection
intensity. The attack range increases dramatically with the in-
creasing of the projection illuminance below 1.4×104lux and
grows smoothly afterwards. The reason behind it is that the
projection illuminance has a more dominant impact than the
attack distance at the beginning since the light is very concen-
trated; whereas, the light beam becomes more divergent be-
yond 12m, which limits the injected light intensity even with
a higher projection illuminance. On the other hand, our attack
can be up to 7m during the day. The attack range increases
proportionally with the increasing of the projection inten-
sity at the beginning. However, when the luminosity reaches
8.4×103 lux, the attack range value plateaus and remains the
same ever since. It is because as the distance increases, the



(a) Illustration of three attack an-
gles

(b) Horizontal attack angle θh (c) Vertical attack angle θv (d) Spinning attack angle θs

Figure 15: The maximum attack angle with varying achievable attack distances during the day and at night.

light source becomes less predominant in the image. In addi-
tion, due to the AE control under the strong ambient light, the
camera could view the background environment more clearly.
Thus, false stereo correspondence matching is avoided.

Our results indicate that: (1) as the perpendicular distance
between the DJI drone and the projector increases, a stronger
projection intensity is required to generate the fake obstacle
depth; (2) launching successful DoubleStar at night is easier
than during the daytime due to the influence of the ambient
light; (3) during the daytime, even with a stronger projection
intensity, it is very difficult to achieve a larger attack distance
because the projected light source becomes less predominant
and the environment becomes clearer in the image.

Visualization Results from Stereo Camera. For the at-
tack on ZED, we visualize the image depth map and 3D point
cloud to evaluate the range of attack distance and explore the
relationship between the beams attack and orbs attack.

We conduct the experiments only in the daytime to better
observe the depth. By repeating the experiments with different
projection intensities, we record all attack results for different
attack distances using shades of blue as shown in Fig. 14b. In
the figure, “2" indicates the case when fake depths from both
the beams and orbs attack are observed; “1" indicates that
only fake depth from the orbs attack is observed; “0" indicates
no fake depth is observed. It can be seen that when the attack
distance is 1−2m, only the orbs attack works. It is because
the disparity of these two projectors is too large to be matched
as the same object, which has been discussed in Section 5.2.2.
When the distance is from 3− 8m, both the attacks can be
observed in the depth map and 3D point cloud. However, when
the distance increases to 9−11m, the fake depth can still be
observed from the orbs attack with stronger light intensities,
but not from the beams attack. This can be attributed to the
weak light intensity which is insufficient for beams attack
to succeed, but the lens flare effect is unaffected. Note that
both attacks are invisible with a weaker projection intensity
because of the low luminosity. When the distance goes beyond
12m, the light is too weak to execute any successful attack due
to the more divergent light beam. We observed that within the
successful range, the orbs attack usually outperforms beams
attack within the short attack range, whereas beams attack
becomes more evident as the attack range increases.

Our results indicate that: (1) merging the beams attack
with orbs attack helps increase the attack range; (2) the orbs
attack is more resistant to the weak projection intensity than
the beams attack; (3) DoubleStar can achieve up to 11m in
the day with a strong projection intensity on ZED.

7.4 Relative Positions of Attacker and Drone
In this section, we evaluate the attack performance with re-
spect to the relative positions of the attacker and drone. Specif-
ically, we define three types of attack angles, including hori-
zontal attack angle, vertical attack angle and spinning attack
angle. As shown in Fig. 15a, we define the horizontal and
vertical angle as the included angle between the center point
of the two attack projectors and the attack target, denoted as
θh and θv respectively. Spinning attack angle is defined as
the included angle between the two projectors and the attack
target (θs) at the ground plane. We perform the experiments
on DJI drone to evaluate the impact of attack angles.

In all the following experiments, we fix the attack range and
change the horizontal/vertical/spinning attack angles. Then,
we record the maximum attack angle to launch a successful
attack, with respect to the varying attack distances z between
the attacker and drone in Fig. 15a.

Horizontal Attack Angle θh. The horizontal field of view
(FOV) of the DJI drone is 60° [10], i.e., when the θh is more
than 30°, both projectors are out of the sensors’ view. Fig. 15b
shows maximum θh with respect to different attack distances.

During the day time, θh is 18° at 1m. The largest attack
angle (29°) can be achieved when the attack distance is 2m.
However, θh decreases beyond 2m, mainly due to the increas-
ing straight-line distance between the camera and the projec-
tor. A longer distance results in weaker injected light, which
in turn leads to a smaller attack angle. Note that since the dis-
tance between the two projectors is 1m, when the attack angle
is 18° at 1m, one projector is already out of the vision sensors’
view while the other one is still in the view. Even when the
light source is out-of-view, several orbs can still be generated
due to the out-of-view lens flare effect (see Appendix A.3),
resulting in a successful orbs attack. Moreover, the light beam
is more concentrated at 1m, making it harder to inject light
into the stereo camera with a wider attack angle.

At night, we can see the overall attack performance is better



Figure 16: The attacks on forward and backward vision sen-
sors on the DJI drone at night and in the day, respectively.
The attack results are viewed on the controller.

than that during the day because of the absence of the ambi-
ent light. Most of the attack angles are around 30°or below.
Beyond 7m, θh decreases dramatically due to the decrease of
the injected light intensity. However, when the attack distance
is 3− 6m, θh reaches around 45°, the largest θh at night, in
which case both projectors are out of the sensors’ view. This
attack is thus the result of out-of-view lens flare effect.

Vertical Attack Angle θv. The vertical FOV of the DJI
drone is +27/-27° [10], i.e., when θv is more than 27°, both
projectors are out of the vision sensors’ view. Fig. 15c shows
maximum θv with varying attack distances. The range of
θv during the day and night have very similar trend while
the performance in the day outperforms that at night. It can
be observed that when the attack distance is at 1m in the
daytime and 1− 4m at night, θv is larger than the vertical
FOV, which is mainly caused by the out-of-view lens flare
effect. The maximum θv is around 40° during the day and
45° at night. With the increasing attack distance, θv in both
scenarios shrinks due to the drop of injected light intensity.

Spinning Attack Angle θs. Fig. 15d shows the maximum
θs with varying attack distance. During the day, we can see
that θs is 60° at 1m. When the attack distance increases, θs
becomes less flexible due to the increasing straight-line dis-
tance between the camera and the projector. The larger the
distance is, the weaker the injected light becomes and the
smaller the attack angle can be. On the other hand, the attack
performance improves at night. We achieve the maximum
90° attack angle at 2− 3m, which is larger than the vision
sensors’ horizontal FOV (60°). Even when the light source is
out-of-view, several orbs can still be produced, resulting in a
successful orbs attack.

The results indicate that: (1) the attack angle is more flex-
ible at night than during the day due to the weak ambient
light at night; (2) the range of attack angle becomes narrower
with the larger attack distance in most of the cases due to the
enlarged distance between the camera and the projector; (3)
during the night, the orbs attack can forge fake depths even
when the light source is out of the FOV.

7.5 End-to-End Attack Validation

For end-to-end attack validation, we first illustrate how the
attacker can control the injected fake depth using the math-
ematical model. To showcase the real-world attack perfor-
mance of DoubleStar, we validate the end-to-end attack on
both the flying DJI drone and RealSense camera. Please refer
to Appendix A.4 for the RealSense attack validation.

Control and Validation of the Fake Depth. An attacker
can apply the mathematical model in Section 5 to control the
fake depth generated at the victim device. For instance, with
d = 1m and b = 0.12m, the injected fake depth of X-shape
beams attack at 4m away is 0.43m from Eq. (4).

In our experiments, the near-distance fake depths from X-
shape beams attack and trapezoid-shape orbs attack are the
ones we use to trigger the drone’s OA, while the far-distance
fake depths are created from trapezoid-shape beams attack
and X-shape orbs attack. Since the step size of the depth in the
drone’s OA system is 0.5m, we manually round the calculated
values from mathematical model to its nearest step value.
Table 1 (second column) shows the expected near-distance
fake depths from the mathematical model in comparison with
the experimental results for X- and trapezoid-shape attacks.
The results show that most of the injected fake depths from
real experiments match with the expected ones. This indicates
that the mathematical model can indeed be used to guide the
attack process by adjusting the fake depths.

Sudden Braking. To demonstrate the practicality of
DoubleStar, we launch the attack on a flying drone to induce
sudden braking. We enable the P Mode on the DJI drone, with
which it simply brakes and hovers when it detects the obstacle
on its flying path. Fig. 1 shows our attack towards a flying
DJI drone from 7m away. Fig. 16 shows the attack effects on
backward vision sensors during the daytime and forward vi-
sion sensors at night on the controller. We can see that the 1m
fake depth is detected in both cases. The drone starts sending
warnings, and stops moving forward even though the pilot
pushes the throttle forward on the controller.

Drifting Away and Shaking. We then perform the experi-
ments to drift the drone away from its original flying path by
continuously injecting fake depths. DJI drone can automati-
cally avoid obstacles rather than simple braking and hovering
in some specific intelligent flying modes, i.e., ActiveTrack
and TapFly [8]. We use ActiveTrack mode in our experiments,
which allows the pilot to mark and track a moving object. To
make the attack device more portable, we use two high-lumen
flashlights [1] to aim the drone. When the drone is tracking a
subject at around 7m away from the attacker, we launch the
attack and observe that the drone drifts away towards another
direction. Moreover, we can slightly adjust the position of the
light sources to change the fake depth locations from left to
right alternately, which effectively shakes the drone. Please
refer to our website for the attack demo.



7.6 Attack Sensitivity Analysis

Aiming Precision. The sensors mounted on flying drones and
moving autonomous vehicles are usually tiny. Thus, aiming
at the moving targets is quite challenging as shown in recent
work [5,29,50], since the adversarial attack patterns should ap-
pear at the specific positions in the images or 3D point clouds.
Unlike these efforts, our attack relaxes the requirements for
precise aiming.

To aim the drone, an attacker has to track the target in
real-time to ensure the light is projected into the appropriate
sensors. The position of the beam is determined by the loca-
tion of the projectors; the position of the orbs/glares in the
2D plane determines the position of the fake obstacle and its
depth value in the 3D-depth map. To realize the attack in real
attack scenarios, an attacker first visually estimates the dis-
tance between the two projectors and the stereo camera, and
determines the distance between the two projectors based on
the predetermined fake depth from the mathematical models.
More importantly, our attack can be generalized on different
devices by leveraging coarse-grained control of fake-depths
using various attack patterns, e.g., X-shape beam attack gener-
ates near-distance fake-depth, whereas trapezoid-shape beam
attack generates far-distance fake depth. In drones, a depth
threshold is used to trigger OA, thus, a precise fake depth is
not required. We experimentally validate that a coarse aiming
precision is sufficient for a successful attack.

Although the requirement of aiming precision is not high,
the attacker does need to inject light into the camera. Par-
ticularly, in order to drift the drone away to follow a target
trajectory, the attacker should closely follow the movement
of the drone. Otherwise, when the light beams become out of
the vision sensors’ view, the attack could fail. On the other
hand, with even the slightest movement of the lenses angle, a
large difference can be observed on the attack target. Since
the attacker can control the movement of the lenses, the at-
tacker can aim the light beam at the moving target by slightly
adjusting the angle of the lens. Based on the real-time feed-
back from the drone, e.g., its flying behavior or warnings, the
attacker can adjust the attack angle to carry out a successful
attack.

Other Factors. We conduct numerous drone experiments
under bad weather, such as snowing, raining, and windy con-
ditions. The flying speed is 1 m/s, and the flying height stays
at 2-3 meters. The results show that our attack can work prop-
erly in all the experimented weather conditions, including a
windy day with 20 miles per hour (mph) wind strength. How-
ever, the strong ambient light, fast speed, and high altitude
of the flying drone could lead to attack failures. Specifically,
when the ambient light is too strong (> 4000lux), due to the
auto exposure control, the vision sensors can clearly “see" the
background and the effect of the injected light beams or the
lens flare effect weakens. Moreover, when the drone flies too
fast, it becomes difficult to track the drone. Also, if the drone

flies in a high altitude, a wider attack angle is expected as
shown in Section 7.4, leading to a lower attack success rate.

As a special case, when the expected fake depth falls into
the focal length of the camera, the attack will usually fail.
However, since the glares/orbs cover multiple pixels, some-
times it will output the minimum depth value.

8 Discussion
In this section, we discuss the practical challenges in launch-
ing DoubleStar, and present the countermeasures.

8.1 Practical Considerations
Generality. Stereo vision based depth estimation algorithms
are widely adopted in OA systems. Nowadays, state-of-the-
art depth estimation algorithms are AI-based [6, 26, 30, 39,
48, 66, 67]. We test and show our attack against both tradi-
tional and AI-based stereo depth estimation algorithms in
Section 6.2. In fact, all the stereo depth estimation methods
intend to accurately match stereo correspondence in the left
and right images, which are susceptible to DoubleStar. Be-
sides, we confirm that the devices in our experiments use the
most advanced AI-based depth estimation methods [19, 69].
DoubleStar can successfully attack these algorithms and gen-
erate fake depths, corroborating its generality.

One limitation of our attack is the inability in adjusting
pixels to precisely control fake-depth in physical attacks.
However, as we mentioned earlier, we can earn a coarse-
grained control of fake depths using different attack patterns.
Meanwhile, DoubleStar attack can be generalized for dif-
ferent stereo cameras and drones, which only use the stereo
image pairs as the depth estimation input. However, if the
autonomous systems, such as autonomous vehicles and cer-
tain types of drones, adopt other sensors (e.g., LiDAR, radar,
acoustic sensors) for obstacle detection, DoubleStar may not
succeed as discussed in Section 8.2. In future, we will investi-
gate the impact of DoubleStar attack, when other types of sen-
sors are used for obstacle detection. In summary, DoubleStar
is a black-box attack approach that does not rely on the knowl-
edge of the target depth estimation algorithm or the victim
device information. Therefore, DoubleStar could cause a po-
tential impact on a wide variety of OA systems.

Conspicuousness. The appearance of glares in the stereo
images seems to raise victims’ awareness. However, the stereo
images are not typically shown to the pilot/driver, such as DJI
drones and Tesla cars [52]. The highly concentrated beam
also makes it harder for other observers to notice the attack,
especially during daytime, e.g., as shown in Fig. 13, when
the projector is on, the light beams are unnoticeable. At night,
since the projection light becomes visible, a large attack angle
may be useful to lower the vigilance of the victim. Addition-
ally, the attack distance can reach up to 15m at night, which
makes it difficult for humans to react and avoid attacks across
such a long distance. Most importantly, the attacker can ex-
ploit the “safety first” [15] rule in the autonomous systems –



when it detects an obstacle, it will react to emergent situations
preceding any human inputs to prevent life loss.

Applicability. DoubleStar is not only an attack approach,
but it can also operate as a protection method against the pri-
vacy invasion threats posed by autonomous systems, such as
drone flyovers [21, 53, 58]. One particularly attractive appli-
cation scenario is to use DoubleStar to drift the drone away
from a private property when a spying drone approaches the
property. DoubleStar can even shake the drone to avoid cap-
turing clear videos or photos without damaging the drone, as
opposed to the previous attempts using powerful lasers [49]
to damage the sensors, which may bring legal disputes.

Limitation. One limitation of DoubleStar is the portabil-
ity of attack equipment. To make our attack more flexible, the
attacker can choose to use mini projectors or high-lumen flash-
lights which are more portable and light-weighted. However,
the projection intensity of the mini projectors is usually low.
As for the flashlight, due to its lower light frequency, flicker-
ing glares/orbs will be captured by cameras, which reduce the
attack success rate. Essentially, there is a trade-off between
the portability and attack success rate. Note that, laser can
cause the damage of the camera image sensor, which is not
suitable for launching a continuous attack.

Another limitation is that DoubleStar only works for one
stereo camera at a time, but not for multiple devices simulta-
neously. To address this problem, we can add multiple pairs
of light sources. However, it will be less convenient to launch
the attack physically without multiple human operators.

8.2 Countermeasure

Using Sensor Fusion. The most efficient countermeasure is
to use sensor fusion [56], the art of combining multiple physi-
cal sensors to produce an accurate “ground truth", even though
each sensor might be unreliable on its own. Autonomous vehi-
cles and drones are normally equipped with multiple cameras
or other types of sensors, such as LiDARs and radars. In this
work, we explore one type of sensor fusion to defend against
DoubleStar. We launch our attack on RealSense, which has
both stereo vision sensors, infrared projectors [13], and the
advanced sensor fusion algorithm.

In RealSense, the projected infrared light is patterned, the
perceived pattern by the sensor can be used to extract the depth
information. For example, if the pattern is a series of stripes
projected onto a ball, the stripes perceived by the sensor would
deform and bend around the surface of the ball in a specific
way [18]. Two types of data will become the input of the
sensor fusion algorithm: one is from the structured light and
coded light emitted by infrared projectors and captured by
infrared sensors, and the other one is based on the images
from stereo cameras. The algorithm fuses these two types of
data and outputs a depth map.

In the experiment, we first disable the infrared sensors and
launch our attack to inject a fake depth. Next, we enable the

infrared sensors and sensor fusion. We repeat our experiments
in both indoor and outdoor with various ambient light con-
ditions and attack distances. The results show that the fake
obstacle is present in all cases even under the active sensor
fusion. This is likely caused by the strong light projection
from the projector which may have washed out the projected
infrared patterns, resulting in the failure of defense using sen-
sor fusion. This indicates that DoubleStar has the potential
to bypass sensor fusion algorithms.

Sensor fusion can mitigate but not fully prevent all the
safety issues, especially as the camera provides important
inputs for depth estimation. Besides, since vehicle manufac-
turers endeavor to prevent the loss of lives, a “safety first”
approach is adopted for autonomous driving [15], and as a
result, the injected fake obstacles by DoubleStar may still be
treated as real objects even if some sensors in these sensor
fusion algorithms disagree.

Even though the results show that DoubleStar can bypass
the sensor fusion algorithms in RealSense, our attack could
fail in cases when the stereo camera data is fused with other
types of advanced sensors such as LiDAR on autonomous
vehicles, and we leave the further investigation as future work.

Detecting Over-Saturated Pixel. Under DoubleStar, the
injected glares/orbs are over saturated, so it could be a viable
defense to detect over-saturated pixels in the stereo images.
For example, Moizumi et al. propose to detect the traffic light
by considering color saturation using in-vehicle stereo camera
[33]. This can be applied to defend against DoubleStar.

Applying Film Polarizers. Film polarizers allow the light
waves of a specific polarization to pass through and block
light waves of other polarizations. Applying a film polarizer
on the camera lens might be a potential defense method. We
experimentally verified that film polarizers can filter out the
glares directly generated by the sunshine or other strong light
sources [20]. However, they cannot cope with the lens flare
effects or directly injected glares (light beams) presented in
our attack.

Adding Camera Lens Hood. Another complementary ap-
proach of defense is to add a camera lens hood [27], which
can mitigate the lens flare effects to reduce the attack success
rate. However, this is unfit for many autonomous systems,
as the hood reduces the camera’s FOV. Moreover, the lens
hoods can only reduce the orbs generated by out-of-view light
sources while they are unable to prevent the orbs created by
in-view ones. Also, it cannot defend against the beams attack.

Building Robust Neural Networks. Another line of de-
fense would be to make neural networks themselves robust
against computer vision-based adversarial attacks. However,
the existing defenses proposed in [24, 28, 40, 63] are ill-suited
for our work, as DoubleStar does not follow the constraints
placed on traditional adversarial examples. Meanwhile, these
defenses are not designed for arbitrarily large perturbations in
a 3D environment. Moreover, even though the defense model
proposed in [35] can defend against large perturbations in



terms of 2D object classification, DoubleStar could evade
such defense as it targets at attacking the 3D depth perception.
Designing a defense model towards the 3D adversarial attacks
will be our future work.

9 Related Work

In this section, we review related studies on sensor attacks
towards drones. With the rapidly growing popularity and ca-
pability of drones, sensor attacks towards drones have become
a non-negligible security risk. Son et al. are the first to in-
vestigate the sensor attack towards drones [47]. By injecting
sound noise at the gyroscopes’ own resonant frequencies, the
gyroscopes on the drones will fluctuate, leading to a DoS at-
tack. Similarly, Wang et al. injected ultrasound signals around
the gyroscope’s resonant frequencies to change the spinning
speed of the four rotors to cause the DoS on the commer-
cial drone [56]. However, these two attacks can only achieve
the non-continuous attack with the very short attack distance
(around 10cm). Davidson et al. are the first to realize the
continuous control of the drone by spoofing the optical flow
sensor at the bottom of the drone. It can achieve the attack
distance up to 3m away in loiter mode, which is used to hold
the drone precisely in the current position. Different from this
work, DoubleStar enables a diverse class of drone manipu-
lations (i.e., stopping, shaking, drifting away), and achieves
long-range continuous drone control under various flying
modes.

10 Conclusion

In this paper, we present DoubleStar, a new long-range at-
tack towards the depth estimation-based OA systems on au-
tonomous robotic vehicles and drones. By exploiting the vul-
nerabilities in the depth perception, an attacker can inject
arbitrary lights into the stereo camera to create a fake ob-
stacle depth. DoubleStar consists of beams attack and orbs
attack with three different attack patterns. We conduct the
simulation using Ardupilot to demonstrate our attack towards
drones. Through extensive real-world experiments, we find
DoubleStar is effective on different devices equipped with
stereo cameras. The successful long-range attacks against the
flying DJI drone imply potential security impacts on different
types of autonomous systems.
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Appendix
A Additional Experiments and Analysis
A.1 Green Orbs Visualization from RealSense
As shown in Fig. 17, it can be seen that the green orb is always
centrosymmetric to the light source. Moreover, the brightness
of the orbs decreases as the projection distance increases.

Figure 17: Using an iPhone 12 Pro Max flash to project to
RealSense with different distances and angles.

A.2 Beams Attack Unsuccessful Case
The analysis of the unsuccessful case of the X-shape beams
attack is shown in Fig. 18. When d� b or z is too small, the
fake depth is within the focal length of the camera, which
is unrealistic in the optical imaging. Thus, the attack fails to
generate the fake depth.

Figure 18: An unsuccessful case in X-shape beams attack
when b < d.

A.3 Out-of-View Light Source
In the experiments, we observe that out-of-view light sources
can generate several undistinguished orbs, which can cause
several fake depths on ZED as shown in Fig. 19.

(a) Left and right images (b) 3D point cloud

Figure 19: The orbs attack on ZED. (a) shows the light sources
are out of view, where several unclear orbs are generated; (b)
shows several fake depths can be created consequently.

A.4 Validation on RealSense
Fig. 20 shows a near-distance fake depth (around 0.5m) can
be generated when the attack distance is 10m in RealSense. It
demonstrates that DoubleStar remains effective even without
the access to its left and right stereo images.

(a) RGB camera view (b) Depth map

Figure 20: (a) shows the view from the RGB camera under
the attack. RealSense provides a colored depth map in (b)
where the blue color indicates an object is at 0.5m.

https://en.wikipedia.org/wiki/Stereoscopy
https://en.wikipedia.org/wiki/Stereoscopy
https://www.yuneec.com/en_US/home.html
https://www.yuneec.com/en_US/home.html
https://www.stereolabs.com/zed
https://www.stereolabs.com/zed
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