Hiding in Plain Sight? On the Efficacy of
Power Side Channel-Based Control Flow Monitoring

Yi Han
Rutgers University

Nils Ole Tippenhauer

CISPA Helmholtz Center for Information Security

Abstract

Physical side-channel monitoring leverages the physical
phenomena produced by a microcontroller (e.g. power con-
sumption or electromagnetic radiation) to monitor program
execution for malicious behavior. As such, it offers a promis-
ing intrusion detection solution for resource-constrained em-
bedded systems, which are incompatible with conventional
security measures. This method is especially relevant in safety
and security-critical embedded systems such as in industrial
control systems. Side-channel monitoring poses unique chal-
lenges for would-be attackers, such as: (1) limiting attack
vectors by being physically isolated from the monitored sys-
tem, (2) monitoring immutable physical side channels with
uninterpretable data-driven models, and (3) being specifically
trained for the architectures and programs on which they are
applied to. As a result, physical side-channel monitors are
conventionally believed to provide a high level of security.

In this paper, we propose a novel attack to illustrate that,
despite the many barriers to attack that side-channel moni-
toring systems create, they are still vulnerable to adversarial
attacks. We present a method for crafting functional malware
such that, when injected into a side-channel-monitored sys-
tem, the detector is not triggered. Our experiments reveal that
this attack is robust across detector models and hardware im-
plementations. We evaluate our attack on the popular ARM
microcontroller platform on several representative programs,
demonstrating the feasibility of such an attack and highlight-
ing the need for further research into side-channel monitors.

1 Introduction

Detection of malicious code execution on a platform is chal-
lenging in general [2], in particular for embedded computer
systems. The embedded setting imposes a host of limitations,
such as constrained computational power and a lack of hard-
ware support for security features [43]. In many cases, em-
bedded systems also have strict real-time operating deadlines;
importantly, this is true of many safety-critical and industrial
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control system (ICS) applications. Previous malicious code
execution attacks on these systems (e.g. Stuxnet [14], Black-
Energy [31], and many others [23]) have been carried out
by nation-state-level adversaries, costing untold amounts in
damage to critical infrastructure and service downtime.

One promising defense for embedded systems against these
attacks is physical side-channel monitoring [3,22,32,39]. It
measures physical phenomena such as transient power con-
sumption or electromagnetic radiation (both a result of circuit
transistor switching) in order to monitor for and accurately
detect malicious behavior.

Physical side-channel monitors pose unique challenges for
would-be adversaries. Unlike traditional monitoring in the
software realm, physical side-channel signals are a conse-
quence of code being executed on a chip. As a result, physical
signals are difficult or impossible to be spoofed or manip-
ulated by an attacker [4]. Side-channel monitors also limit
potential attack vectors by their air-gapped nature, i.e. they
cannot be interacted with except through the microcontroller-
emitted signals that they monitor.

These obstacles are thought to make conventional attacks
ineffective, and promote the idea that physical side-channel
monitors provide a high level of security. Despite those claims,
these systems have not yet been thoroughly evaluated due to
the complexity of doing so. Recent work on evaluating control
flow integrity defenses [29] has shown that the afforded prac-
tical security rarely matches up with the claimed theoretical
security. Likewise, side-channel monitors may be resting on
the assumption that the barriers to attack that they raise are
unlikely to be scaled (i.e., difficulties created by side-channel
monitors, as mentioned above, prevent adversaries from per-
forming attacks on the protected system efficiently or on a
large scale).

In this work, we address the question: “Are physical side-
channel monitors as secure as commonly thought (given that
they can observe all attacker code executed)’—or in other
words: can an attacker hide in plain sight? We present a
novel attack against physical side-channel monitoring systems
which demonstrates that they are vulnerable to an adaptive



adversary who knows that a side-channel monitor is in use.
Our attack uses a carefully-crafted assembly-level malware
injection to produce a side-channel signal that can evade de-
tection by a side-channel monitor. We exploit vulnerabilities
of the data-driven models used in side-channel monitoring,
finding adversarial programs which behave maliciously but
evade detection. To facilitate reproduction of our approach
and results (in contrast to prior work), we have made our code
open source .

We summarize our main contributions as follows:

* We present a novel attack highlighting the design-level
vulnerabilities of physical side-channel monitors to ad-
versarial examples.

* We present a methodology for crafting such adversarial
attacks on side-channel monitors, discussing how we
approach the related challenges to create stealthy and
functional malware.

* We evaluate our attack using the popular ARM Cortex-
M processor on various control programs and control
attacks. We show that our attack approach can find an
evading sample in all cases.

2 Background

Physical Side-Channels. Physical side-channels refer to
physical phenomena produced as a side-effect of system oper-
ations in digital circuits. Specifically, the execution of instruc-
tions as well as data read and write cause CMOS components
in the digital circuits to switch on and off. This creates vary-
ing currents and voltages. Such varying current and voltage
values can be observed by looking at the voltage fluctuations
in the power consumption in the circuits. Such voltage fluc-
tuations, called power side-channel signals, can be captured
by measuring the voltage at the VCC pins of a digital chip
(e.g., a micro-processor). Executing different instructions or
transferring different data values across a data bus create dif-
ferent power side-channel signal patterns. The signal patterns
are also affected by noise in the circuits. Nevertheless, power
signals can be used to infer system execution within a chip.
There are other physical side-channels such as electromag-
netic (EM), acoustic, and thermal side-channels, however in
this paper we focus mainly on power side-channel signals.

Physical Side-Channel Monitors. Physical side-channel
monitors have been employed both in academia [22,32,39]
and industry [3] to monitor the security of a system. The main
advantage of physical side-channel monitors compared to tra-
ditional software-based monitors is that they are air-gapped,
meaning that they are implemented externally to the moni-
tored system. This provides isolation and a separate attack
surface, reducing the number of available attack vectors.

Uhttps://github.com/yihan0512/HidingInPlainSight.git
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Figure 1: A side-channel monitor, consisting of (1) data
acquisition, (2) model training, and (3, 4) querying the model
to monitor behavior.

Physical side-channel monitors monitor the execution of
a program though physical side-channel signals. A physical
side-channel monitor consists of two parts, a physical side-
channel collection module and an anomaly detector. The sig-
nal collection module collects physical side-channel signals
during the execution of the program. The anomaly detector
predicts the status of the program (e.g., normal or abnormal,
malicious or benign) based on the collected signals.

The setup of a physical side-channel monitor is illustrated
in Figure 1. They are commonly trained using data-driven
models since current embedded platforms are exceedingly
diverse and complex, discouraging the use of manually de-
signed models. In the signal collection module, physical side-
channel signals are collected during the normal execution of
the program. This allows for initial training in a clean environ-
ment as well as subsequent retraining when necessary over
time. The collected signals represent a wide subset of possible
behaviors and control flows of the program. Once a model
has been trained to sufficiently high accuracy, the monitoring
phase begins. During system operation, the monitor measures
the system, returning a response on whether the system is
executing benign or malicious code.

Formalizing Side-Channel Restrictions. Pierazzi et
al. [44] provide a formalized understanding of the challenges
that a side-channel domain poses to an adversary. They
differentiate between the problem space — the attacker-
modifiable program code — and the feature space, which in
this case is the resulting side-channel signal and input to
the monitor. Without knowing an invertible or differentiable
mapping between the problem and the feature space, standard
gradient-based adversarial attacks [19] are infeasible.
Although the estimation or derivation of such a map-
ping poses an interesting question, we note that discover-
ing such a mapping is outside the scope of this work, as
any such mapping would be to some extent platform spe-
cific and therefore not widely generalizable. Additionally,



Figure 2: Assembly code snippet of the path planning program. Different colors are used to show the mappings between
instructions and corresponding power side-channel signal segments in Figure 3 in a clearer way.
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Figure 3: Power side-channel signal collected during the
execution of the benign program. Colors correspond to the
basic blocks of the program in Figure 2.

in our testing we found that the resulting physical signal at
each point in time was affected by both the currently exe-
cuting instruction as well as the series of previously exe-
cuted instructions, indicating that deriving a mapping would
be non-straightforward. Instead, we utilize a problem-driven
search [11,45] to learn effective attack strategies. We also
focus on several of the major challenge categories identified
by Pierazzi et al. [44], which highlight the domain-specific
adversarial barriers which make designing an attack on side-
channel monitors difficult: problem-space transformation lim-
itations and semantic preservation. The program code is based
on a set of assembly instructions which have a rigid structure
(feasible control flows), as well as semantic constraints such
as temporal and data dependencies. The resulting discrete set
of possible modifications must be taken into consideration by
an attacker to preserve program functionality during an attack
and remain evasive.

3 Problem Formulation

3.1 Motivating Example

Consider an embedded system executing a path-planning task
for a robotic arm. This system is protected by a power side-
channel based control flow monitor similar to those presented
in related work and described in the previous section. Fig-
ure 2 and Figure 3 show a highly simplified example of a
typical cyclical control program and corresponding power
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Figure 4: Power side-channel signal after the malicious
payload is injected at the beginning. The malicious signal
segment is marked in red.

signal collected by the monitor. The signal represents an exe-
cution trace of the path-planning program: which instructions
are executed, which branches are taken, and which control
flow is followed. The anomaly detector monitors these power
side-channel signals and reports any anomalous behavior.

More specifically, the anomaly detector takes the power
side-channel of a scan cycle as input and outputs a confidence
score. The confidence score indicates how likely it is that
the input signal corresponds to an execution of the benign
program. A threshold is set on the confidence score, with a
confidence score lower than the threshold indicating an attack
on the embedded system. The detector itself uses a data-driven
model trained with power side-channel signals collected over
a period of time during normal system operation.

An adversary wants to perform a data injection attack on
the robotic arm, e.g., altering the inputs to the path planning
algorithm. In this way, they can alter the internal state of the
program and hence the output actuation to cause undesired
arm behavior or damage.

The adversary also wants to launch a stealthy attack, i.e.,
the attack should not cause unintentionally observable effects.
For example, replacing the original program with a malware
program entirely might trigger an alarm in the system supervi-
sor or other automated tools, as a the original data-monitoring
feed is no longer available. Stealthy attacks have a more last-
ing impact on the system compared to attacks which break
down the system quickly, as shown in real world attack exam-
ples, e.g., Stuxnet [24]. To achieve this, the adversary might
choose to inject a malicious payload into the benign program.



Figure 5: Assembly code snippet of the path planning program with injected malware chunks. Code is otherwise unchanged from
Figure 2.
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Figure 6: Power side-channel signal after the malicious
payload is injected based on our proposed attack approach.
The malicious signal segments are marked as red.

The signal in Figure 4 is from a version of the program
where the malicious payload is injected at the beginning. This
signal is not recognized by the side-channel monitor, and the
resulting confidence score is lower than the threshold. There-
fore, the anomaly detector rejects it and triggers an alarm.

Using the attack approach proposed in this paper, an ad-
versary can find the optimal strategy to inject the malware
into a legitimate binary (see Figure 5) while keeping the con-
fidence score high. Figure 6 shows the corresponding power
side-channel signal.

3.2 Research Goals and Challenges

This paper has the following goal: given a benign program
guarded by a side-channel monitor and a malicious payload,
inject the payload into the program without being detected
by the monitor. As we consider direct attacks on the monitor
itself to be out of scope (e.g., as it is air-gapped), the attacker
has to ensure that the side-channel signals lead to a misclassi-
fication by the monitor. In particular, an adversary must craft
an adversarial signal indirectly by modifying the program
execution. The adversary also wants to make sure the desired
malicious functionality remains intact. This gives rise to the
main challenges that we address in this paper:

1. Side-channel signals are a consequence of code execu-
tion, meaning that malware cannot directly interact with
the side-channel monitor and rendering gradient-based
approaches ineffective. We address this challenge in Sec-

tion 4 with a side-channel-aware malware optimization
using an iterative search approach.

2. Side-channel monitors are trained on specific platforms
for specific programs, using uninterpretable (and inacces-
sible to the adversary) data-driven models. We address
this issue with the use of a substitute setup (Section 4.1),
which we show can sufficiently replicate the original
monitor for designing attacks.

3. Crafting an adversarial example is subject to domain-
specific constraints, such as temporal (e.g. B happens
after A) and data dependencies. To handle these con-
straints, we propose leveraging dependency analysis and
chunking heuristics in Section 4.2.

4. Attacks need to be optimized for robustness to reliably
evade detection even under the influence of measurement
noise. We minimize the effect of noise by incorporating
measurement variation in the optimization (Section 4.3)
to produce a high-confidence, low-variance attack.

These challenges result in a highly constrained problem

that highlights the strengths of side-channel monitors, but also
their weaknesses against advanced adversaries.

3.3 System Model

We consider safety-critical embedded systems monitored by
a power side-channel monitor. Examples of such systems in-
clude optimal path planning in robotic arms, traffic collision
avoidance control for an aircraft, and common control algo-
rithms such as the PID controller and Kalman filter. These
programs are commonly run on an embedded controller such
as a Programmable Logic Controller (PLC), which performs
several tasks. The PLC reads physical measurements from
sensors, runs a cycle of the control program, and sends the out-
puts to system actuators. Additionally, the PLC is connected
to a Supervisory Control and Data Acquisition (SCADA)
system which handles data logging and PLC programming.
Externally monitoring this system in real time is done using
a power side-channel monitor. It continuously collects power
side-channel signals of the embedded controller, and sends



the signals to an anomaly detector. The anomaly detector
inspects the side-channel signal for malicious behavior. It
is trained using signals from executions of the embedded
controller in a non-compromised environment and outputs
a confidence score, with a high score (above a threshold)
representing benign program execution and low score (below
a threshold) indicating abnormal operation.

3.4 Attacker Model

The goal of the attacker is to compromise system operation
by injecting a maliciously modified program while remaining
undetected by the classifier. These adversarial evasion attacks
can serve several purposes which we later evaluate, such as
false data injection or confidential information disclosure.

Due to the air-gapped nature of side-channel monitors, at-
tacks directly targeting the monitor or its feature space (sam-
pled points of the physical signal) are out of the scope of this
work, and the attacker is limited to modifying the program
running on the embedded system in the problem space (exe-
cuted code). We assume that the attacker has knowledge of
the hardware platform, the capability to upload a malicious
program (e.g. having compromised the SCADA connected
to the embedded controller), and has access to the original
program running on the embedded system. This capability
and attack vector is similar to Stuxnet [24].

Otherwise, we assume a black-box model with respect to
the data-driven side-channel monitor. In the black-box case,
the attacker is usually limited to external querying of the
model to gain information about it; however, in the side-
channel context, doing so is impractical as querying a live
model would result in being detected. Instead, the attacker can
leverage knowledge of the system’s software and hardware
to train a substitute setup [41], optimizing an attack and then
transferring it back to the original model.

4 Attack Design

An overview of our attack approach is shown in Figure 7. The
goal of our attack is, given a benign program and a malicious
payload, finding a way to inject the malicious payload into the
benign program such that the malicious code is undetected
by the side-channel detector, i.e., an evading sample. Accom-
plishing this requires addressing two baseline considerations.
Syntactic Correctness. Fundamentally, the resulting pro-
gram should be free of any syntax errors and able to be
compiled. This is achieved as our adversary has sufficient
information about both the program and malware to test and
verify the feasibility of the resulting code.

Moreover, during execution the injected program should
not crash. For example, this can happen if the malicious code
unintentionally modifies a register that the benign code is cur-
rently using. Using program analysis and execution context-
saving (analogous to multi-threading), we ensure that the
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Figure 7: Using a substitute setup, an adversary can train
attacks on a copy of the side-channel monitor.

malicious code does not accidentally overwrite registers the
benign program uses.
Semantic Preservation. Additionally, the malicious function-
ality of the malware should be preserved after its injection
into the benign program. For instance, if a malware intends to
modify program inputs, it must do so before the point where
they are used to have the "correct" effect. This creates locality
requirements on where the malware can be placed. To address
this, we perform program analysis on the benign program to
identify a set of feasible locations where sections or "chunks"
of the malware can be injected without impacting semantics.

Furthermore, as shown in past work [17], a typical malware
size with specific adversarial goal in the context of embedded
controllers (e.g., the controller’s output value corruption) is
often small (e.g., around 2KB [17]). That said, chunking the
malware up and distributing its effects across various points
of the side-channel signal is still necessary in practice to evade
the detector.

Next, we detail how these considerations are addressed in
our attack construction, starting with the physical setup.

4.1 Building a Substitute Setup

The isolation of the side-channel detector along with its real-
time nature prevents an adversary from manipulating the side-
channel detector freely, as described in Section 3. Therefore,
we take the step of creating a substitute setup to help us find
an evading sample. Specifically, the adversary procures a copy
of the program running in the target system. This can be done
in several ways, such as through a compromised SCADA,
insider or physical system access, or even through the pub-
lic availability of commonly-used controller software online.
The adversary runs symbolic execution on the program to
obtain test inputs that correspond to all execution paths of the
program. The adversary then prepares a system with the same
micro-controller model and peripheral circuits and uploads



the program to this system. They then send the test inputs
generated above to the system while at the same time collect-
ing power side-channel signals from the system in the same
way as the original system. Finally, a substitute side-channel
detector can be trained using the collected signals. A side-
channel based detector takes a power side-channel signal x as
input, outputs a confidence score s

s=f(x), se€]0,1]. €h)

A high confidence score indicates a normal execution while a
low score indicates an anomalous/malicious one. Depending
on the knowledge the adversary has, they can construct the
detector with the same model architecture as the original setup
or determine a "best guess" model architecture. We show in
Section 5 that it is possible to find an evading sample even
with a different model architecture.

4.2 Malicious Payload Injection

In this subsection we describe our approach for injecting
the malicious payload into a benign program. To allow for
further analysis, we first disassemble the binary of the benign
program. We then split the malicious payload into chunks.
Next, we apply program analysis to the assembly code to
identify where a malicious chunk can be injected for each
chunk. Then, based on the optimization algorithm described
in Section 4.3, the malicious chunks are injected into the
benign program. Finally the injected program is assembled
and uploaded to the device. We describe the key steps below.
Malicious Chunks. We propose splitting a malicious payload
into chunks such that we can distribute them across the benign
program. In this way, it is more likely that we can find an
evading sample with higher confidence scores. We split the
code such that each chunk is context-independent; in other
words, each chunk can be injected and executed alone. For
example, in the case of a data injection attack, instructions
that correspond to the modification of each input variable can
be considered as an individual chunk. We describe how we
define the malicious chunks for all other attacks we consider
in this paper in Section 5.

The Live Range of a Malicious Chunk. To ensure seman-
tic preservation of the malicious payload, i.e., to make sure
the malicious functionality is preserved, the locations that
a malicious chunk can be injected are limited. We use the
concept of a "live range" to express this constraint. We define
the live range of a malicious chunk to be the set of locations
in the benign program where a malicious chunk would still
be effective when injected.

The live range is contextually dependent on the goals of
the attack and results of the program analysis. Figure 8 rep-
resents the live ranges of several input variables in the sce-
nario of a false data injection attack. Each attacked input
variable needs to be modified after it is defined but before it is
used. Otherwise, the intended effect of the input modification
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Figure 8: Live ranges of malicious chunks for input data
injection on a collision avoidance program (dashed brackets).

might not be fully realized. The live ranges of the three in-
put variables Cur_Vertical_Sep, Own_Tracked_Alt_Rate,
and Two_of_Three_Reports_valid lie between beginning
of the program and the locations where they are first used, as
represented by the dashed brackets. Details of the live ranges
of other attacks in this paper are described in Section 5.

To find the live range of a malicious chunk, we perform
a data flow analysis. More specifically, the data a malicious
chunk intends to modify or retain is only available in some
locations of the benign program. For example, if the malicious
chunk wants to modify the data at a memory address asso-
ciated with the input, the data is only available at the points
between where the data is stored to the memory address and
where the data is first used. Or if the malicious chunk wants
to log the data at a memory address, this data is also only
available in some locations. We perform data flow analysis
on the benign program to locate where the data is created
and where it is consumed or updated. In this way, we are
able to identify a set of candidate locations where the data is
available. We consider the set of these locations as the live
range of the malicious chunk.

Once live ranges for all malicious chunks are identified,
we employ an optimization algorithm based on Monte-Carlo
Tree Search (MCTS) to find where in the live range to inject
each chunk such that the program with all malicious chunks
injected still has a high confidence score.

4.3 Generation of Evading Samples

We formulate finding an evading sample as an optimization
problem where we want to maximize the confidence score of
the program with the malicious code injected. As stated in
Section 3, the detector has a confidence score threshold, de-
termining whether the execution is benign (high confidence)
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Figure 9: Search tree of the problem. The root node of the
tree represents the benign program while the leaf nodes
represents programs with all malware chunks injected.

or malicious (low confidence). Our optimization objective is
to maximize the confidence score, which can account for the
noise caused by different data values or measurement noise.
This also improves the consistency of evasion for optimized
samples. To imitate the strategy of an attacker generating sam-
ples iteratively, we model the process of finding the optimal
injection combination as a tree search problem.

Specifically, we define the nodes in the tree to be an inter-
mediate snapshot of the program with some malicious chunks
injected, as seen in Figure 9. The root node represents the
benign program while the leaf nodes represent the program
with all malicious chunks injected. We call a program with
all malicious chunks injected an injection combination. The
edges in the tree represent the action of injecting the next
malicious chunk. Starting from the root node, the malicious
chunks are injected sequentially, one at a time, until the leaf
nodes are reached. A malicious payload consists of 3 chunks
a, b and c injected into a benign program ABCDE. The chil-
dren of a node represent where the next malicious chunk can
be injected. The choice of the child of a node is subjected to a
set of constraints. Firstly, the malicious chunk can only be in-
jected inside its live range. Secondly, malicious chunks must
be executed in the same order as in the original malicious
payload. This means if two chunks need to be executed one
after the other, once the first chunk is injected to a location,
any location before that are not available for the second chunk.
Finally, all the malicious chunks need to be executed simul-
taneously in at least one execution path to ensure semantic
preservation. Therefore, once a chunk is injected to a location,
the rest of the chunks can only be injected to the sub-graph of
the control flow graph of the benign program, starting from
that location.

The goal of the tree search is to find an injection combina-
tion that gives the maximum confidence score

maxs ()
C

where C is an injection combination. The solution of the tree
search problem can be accomplished with various methods
such as the min-max algorithm, greedy search, or MCTS. The
min-max algorithm is an exact method, enumerating all pos-
sible actions to find the optimal solution. However, as the
program or malware size increases, the number of possible
combinations explodes, making this method computationally

infeasible. The greedy algorithm moves down the tree by
picking up the child with the highest score, therefore, it is
sub-optimal as in this way it won’t be able to take longer term
dependencies into consideration. MCTS can be considered a
solution that balances between min-max and greedy search.
For a node, it does not enumerate all possible actions, nor
does it determine the value of this node without looking down
the tree at all. MCTS estimates the value of a node by try-
ing several possible solutions associated with this node. We
propose using MCTS to solve the optimization problem.
Below we describe in detail how we adapt MCTS into our
optimization scheme to find an evading malware. On a high
level, our MCTS based optimization starts from a single root
node, which is the benign program in our case. It explores and
expands the tree iteratively by injecting malicious chunks one
at a time. At the beginning, it explores randomly as there is
not enough information about the tree. It evaluates the impact
of injecting a malicious chunk at a candidate location on the
confidence score, accumulating information over iterations.
As it obtains more information about the how injecting the
malicious chunks affects the confidence score, it starts to
get an idea of which locations are better (resulting in higher
confidence scores). It then exploits this learned knowledge to
guide subsequent iterations exploring the tree more efficiently.
At each iteration, MCTS has four steps: selection, expan-
sion, rollout and backpropagation.
Selection. In selection, MCTS starts from the root node and
recursively traverses the child node with the highest value
until a leaf node is reached. The leaf node represents the
program with some malware chunks injected. We use the
following formula [45] to compute the value of a node

—nNo InN
s—mo [N
n n

3)

where s is the sum of the confidence scores of previous it-
erations. © is the sum of the standard deviation (stdev) of
the confidence scores of previous iterations as well. We will
elaborate more on these two terms below. 1 is a coefficient
balancing the two terms. 7 is the total number of visits of the
selected node and N is the total number of visits of its parent
node of the last iteration. Equation 3 helps find an injected
program with high confidence score and low variation.

During our experiment, we observe that the confidence
score of a power side-channel signal can vary a lot even for the
same version of the program with malicious chunks injected.
This is because injecting the malicious chunks changes the
signal patterns. As a consequence, the signal moves to a much
more nonlinear location in the feature space. At this location a
slight change in the signal (possibly caused by measurement
noise or different data values) can result in a significantly
different confidence score. A more robust evading sample
needs to be less sensitive to noise, or in other words, have low
variance. Therefore, we penalize evading samples with high
variation by including the ¢ term in Equation 3.



Equation 3 balances the search between exploration and
exploitation. The first term controls exploitation, it indicates
the average confidence score of all the injection combina-
tions (associated with this node) tried so far. The second term
controls exploration, it is large for nodes that have not been ex-
plored many times. Therefore, the algorithm tends to choose
unexplored nodes. As the number of iterations increases, all
nodes are explored at least once. Therefore, the first term
starts to take control. This means the model starts to shift
from exploration to exploitation.

Expansion. After a node is selected, the tree will be expanded
from this node. A child of this node is created. In our attack,
this essentially means injecting the next malware chunk. The
choice of which child to create is random.

Rollout. Starting from the node created above, a rollout
is carried out by repeatedly injecting the remaining mali-
cious chunks randomly until all chunks are injected. After
all chunks are injected, that version of the program is com-
piled and uploaded to the device. Side channel signals are
then collected during the execution. Usually CPS applications
execute only one or a few possible execution paths during
normal operation, so we only collect side channel signals that
correspond to these paths.

Side channel signals of various test inputs are collected
to take data differences into consideration (Section 2). In
addition, multiple signals are collected for each test input to
account for circuit noise. Collected signals are sent to the side
channel detector and a confidence score is obtained for each
signal. Mean and stdev of the the confidence scores are then
computed.

Backpropagation. Finally, the values of all nodes involved
in this iteration of the optimization are updated based on the
Rollout result, i.e., the mean and stdev computed in the Roll-
out step are summed into s and ¢ in Equation 3 respectively.
n and N are also incremented accordingly.

The four steps above are repeated until a predefined itera-
tion limit is reached. For each iteration, the injected program
generated in the Rollout step is saved together with its corre-
sponding confidence scores. The iterations will also stop if no
improvement can be observed over multiple iterations. After
the search process is done, injected program with the highest
average confidence score is chosen as the result.

During the optimization process, our MCTS based algo-
rithm accumulates information about injecting malicious
chunks over multiple steps instead of only considering the
instant impact of one single chunk. Therefore, it can esti-
mate the impact of a injection on the confidence score better.
As the algorithm learns better estimates about the values of
injecting different malicious chunks at different candidate lo-
cations, it will visit those with a higher value more frequently
in subsequent iterations. In this way, it can find an injection
combination with high confidence score more efficiently.

Name Description #paths = #instr.
path  Robotic automated arm path planning 8 200
collision  Siemens aircraft altitude control module 23 300
cruise  From Crazyflie drone altitude control 8 600
kalman From Crazyfile drone state estimation 4 1250
particle  From Udacity’s self driving car simulator 16 3000

Table 1: Control programs used in our evaluation.

5 [Evaluation

5.1 Experimental Setup

Hardware Setup. We use a NEWAE CW308T-STM32F3
(with an ARM Cortex M4 microprocessor) as our target em-
bedded platform, as the Cortex M4 is designed for cyber-
physical applications as well as IoT systems [1]. Power side
channel signals are collected using a NEWAE Chipwhisperer-
Lite CW1173 oscilloscope’. The CW308T-STM32F3 board
contains built-in circuits for measuring power side-channel
signals from the power pin of the microprocessor. The trigger
signal is sent out from one of the I/O pins. Both the power
signal measurement and the trigger signal are passed to the
Chipwhisperer. We modify the Chipwhisperer software to
align and truncate multiple measurements based on the trigger
signal. The microprocessor runs at a clock speed of 10MHz.
The sampling rate of Chipwhisperer is 4 times the clock speed
of the microprocessor.

Target Programs. We use a variety of programs as our tar-
get for evaluating the proposed attack. These programs are
extracted from different control applications designed for air-
craft, drones, and autonomous vehicles. Table 1 describes the
number of control paths and instructions of these programs.
For the cruise control, Kalman filter, and particle filter pro-
grams, the floating point unit on the target board is enabled.
For simplicity, and because the ARM Cortex M4 does not
have address-space layout randomization, we hard-code the
addresses in our malware when possible.

Constructing a Side-channel Detector. To construct a
power side-channel based anomaly detector for a given tar-
get program, we first identify all execution paths of the pro-
gram [22]. Then for each path, we generate five test cases. We
collect multiple power side-channel signals for each of these
test cases, representing all possible behaviors of the program.
The detector is then trained using these signals. We consider
three detectors that are used in prior works: 1. a Bidirectional
Long Short-Term Memory neural network [22] (BiLSTM),
2. a Bidirectional Recurrent Neural Network (BiRNN), and
3. a Hidden Markov Model [32] (HMM). We implement (1)
and (2) based on available code, and implement (3) closely
following its description in previous work. Our reproductions

2(https://wiki.newae.com/Main_Page)
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of prior works have comparable accuracy with respect to the
original schemes as shown in our evaluation.

All three detectors operate on signal segments. Signal seg-
ments are extracted using a 90% overlapping sliding win-
dow on the power side-channel signals [22]. For the HMM,
the signal segments were used as observations. The HMM
state is defined as the unique samples in the observation set.
Multiple HMM models are trained. Each one corresponds to
one execution path and is trained using power side-channel
signals of that path. To classify a test signal, all the trained
HMMs are queried using the signal, and each HMM produces
a log-likelihood score that represents how likely the signal
is generated by the HMM. The HMM (or the corresponding
execution path) with the highest log-likelihood score is the
prediction. The overall confidence score of the multi-HMM
model is the highest log-likelihood score.

Window Size and Features. For both time and frequency
[22] representation of the window, we test different window
sizes. Our goal is to identify values that allow us to reach com-
parable detection performance to prior work (see Table 2). In
particular, we tested multiple window sizes starting from a
base window of 4 signal points (representing a single instruc-
tion), progressively increasing the window size until matching
the prior work performance. We note that the window sizes of
all the detectors stay within the control loop (scan cycle). We
further discuss the possibility of windows spanning multiple
control loops in Section 6.

Detector Training. We train a detector with the power side-
channel signal and its corresponding execution path pairs. We
collect 20 signals for each test case as the training dataset,
another 10 as the validation dataset. For the BiLSTM and
BiRNN, the average number of epochs during training is
1000. For the HMM, we use a max of 200 iterations and a
tolerance of 0.01. We empirically determine the architecture
of the detector for each target program, i.e., size and number of
hidden layers, by starting with a hidden size of 64 and 2 layers,
and increasing the numbers until we achieve both a good
validation classification accuracy as well as high confidence
scores of all signals in the validation dataset. We use a similar
strategy for the HMM with a starting point of 10 states and
one mixture component.

Detector Accuracy. We report the classification accuracy
and the area under the ROC curve (AUC) of each detector
on its corresponding testing dataset in Table 2. Both BiL-
STM and and BiRNN have good classification accuracy and
detection performance for all the programs with both time
and frequency features. The results match with the detection
solutions in related work [22, 32]. Note that the results of
HMM are not as good as others. We spent a lot of effort tun-
ing the parameters of these HMM models but were not able

BiLSTM
Feature Time Frequency
Metric WS Acc. AUC WS Acc. AUC
path 4 98.01%  0.99 8 99.02%  0.99
collision 8 100.0%  0.99 16 100.0%  0.99
cruise 8 100.0%  0.99 16 100.0%  0.98
kalman 4 99.60%  0.99 8 100.0%  0.98
particle 64  99.86%  0.99 64  99.98%  0.99
BiRNN
Feature Time Frequency
Metric WS Acc. AUC WS Acc. AUC
path 8 99.26%  0.99 8 100.0%  0.98
collision 8 100.0%  0.98 16 100.0%  0.98
cruise 8 99.17%  0.99 16 99.12%  0.99
kalman 8 99.57%  0.99 8 98.23%  0.98
particle 64  99.22%  0.98 64  98.99%  0.99
HMM
Feature Time Frequency

Metric WS Acc. AUC WS Acc. AUC

path 8 98.23%  0.99 8 9991%  0.99
collision 8 99.16%  1.00 8 100.0%  0.98
cruise 8 99.01%  0.95 8 100.0%  0.96
kalman 8 77.50%  0.85 8 85.50%  0.82
particle 16  72.00%  0.76 16  63.50% 0.73

Table 2: Performance of detector models constructed for all
programs with both Time and Frequency features, comparing
Window Size (WS), Accuracy, and Area Under Curve (AUC).

to achieve optimal results for all the programs. We report
the best results we obtained in the table. We speculate that
(unlike neural network-based models) the HMM cannot deal
with long sequences well. As the program becomes larger,
the HMM can no longer capture the temporal dependencies
in the signal well. From the adversarial perspective, attacking
a weaker detector is easier.

Exploratory Analysis: Instruction Insertion. Before we
present our evaluation results on the real control attacks, we
perform an exploratory analysis on the trained detectors to
estimate the impact that deviations from a benign program
introduce in the detector output. We consider both inserting
and altering instructions.

For instruction insertion, we create a chunk consisting of
several NOP instructions. We vary the number of NOP instruc-
tions in the chunk and insert it into the beginning, the middle
and the end of the benign program. We find that, without the
optimization proposed in this paper, even a single instruction
insertion can lead to detection. For example, in the collision
avoidance program, the insertion significantly decreases the
output confidence score of the detector from an average of
0.99 to 0.87. This is because the side-channel detector cap-
tures the temporal relations of the signal segments (time or
frequency features) of benign samples. Inserting new instruc-
tions introduces new signal features as well as shifts the rest
of the signal points from the injection point. This has the ef-



fect of altering the internal states (i.e., hidden states) of all the
affected signal segments. Such alteration accumulates along
the sequence, making the final output of the detector deviate
significantly from normal values (values of benign samples).
However, we will show below that with our proposed attack,
it is possible to find locations in the benign program to inject
malicious chunks such that the internal states can be 'routed’
back to normal. In this way, the malicious sample stays un-
detected. We did not investigate the insertion of very long
malicious instruction sequences, but for all the evaluated rep-
resentative malware (some up to half the size of the benign
program), our approach is able to find evading samples.

Exploratory Analysis: Instruction Alteration. The goal
of instruction alteration is to replace individual benign in-
structions with others that have malicious effects, but do not
impact the detector’s classification. In addition, after the al-
teration the semantic and data flow of the original program
should stay unchanged—otherwise the program might crash
or misbehave in a noticeable way. This means keeping the
original program’s behavior as intact as possible while achiev-
ing the desired side-effects of the malware, which imposes a
large number of hard constraints. Therefore, we only perform
some preliminary studies. We consider altering an arithmetic
or load instruction by instead moving the result to the register
directly. We choose one instruction from the beginning, the
middle and the end of the program. We find that the average
confidence score suffers a detectable drop from an average of
0.99 to 0.93. This is because altering an instruction changes
the signal profile of itself and the surrounding instructions,
causing internal states of the detector to deviate from the nor-
mal state. A search for more suitable alteration would require
more complex semantic constraints and a much larger search
space compared to instruction insertion only. As a result, in
the remainder of this work we focus on instruction insertion.

Training the Adversary’s Substitute Setup. Normally,
training for a side-channel detector is done in-situ with train-
ing traces being acquired during normal operation. In the case
of the substitute setup, the adversary does not have a com-
plete operational system for training, instead knowing only
the control program and hardware platform. To compensate,
the adversary can generate a set of program inputs with thor-
ough path coverage using a symbolic execution framework
like Angr [59] or KLEE [8]. These program analysis frame-
works are flexible tools for verifying program correctness,
finding bugs, and exploring control flows.

Running Angr on a binary program produces a set of logical
expressions containing the path constraints for each control
path within a program. The path constraints determine input
variable value ranges that will lead execution down a certain
control flow. We then evaluate these logic expressions using
a logic solver (such as Z3 [12]) to generate multiple unique
concrete inputs for each control path. This allows us to train

Avg # Inst. per chunk / Total # Inst. path  collision cruise kalman particle
False Data Injection 4/36 4/48 424 4/16 4/28
Overwrite Actuation Output 4/12 4/12 4/16 4/12 4/8
Control Parameter Attack 4/16 4/16 4/12 4/24 4/28
Data Logging 8/32 8/64 8/56 8/72 8/64

Confidential Information Disclosure ~ 7/119 7/119 7119 7119 7/119

Table 3: The instruction count (by clock cycle) of malware
chunks/samples.

our substitute classifier against a wide array of scenarios, rep-
resentative of normal operation. While in general, symbolic
execution faces issues with exponential growth of paths, it
remains feasible for size-limited embedded programs.

5.2 Evaluation of Attack

We now evaluate our attack using five different malware pay-
loads. The payloads range from few instructions customized
for the target program (e.g., Overwrite Actuation Output) to
generic longer sequences of 119 instructions in the case of
Confidential Information Disclosure. When implementing
the attacks, we first disassemble the program binary. Then,
for each specific type of attack, we determine the data that
we want to attack, and construct malware chunks based on
this. We run data flow analysis afterwards to determine the
life cycle of each malware chunk. Finally, after the malicious
chunks are injected, we re-assemble the assembly code into a
binary. We then collect power side-channel signals during the
program execution. Those steps are repeated for every itera-
tion of the proposed attack framework. To construct malware
chunks, we only use registers that are not used by the target
program to avoid potential conflicts.

The average number of instructions per chunk and the total
number of instructions of a malware sample for all 5 types
of malware are shown in Table 3. For example, 9 chunks of
malware (with average size 4 instructions) were used for False
Data Injection on the path program.

False Data Injection/Overwriting Actuation Outputs.
These two classes of attacks modify the inputs and outputs of
the program, resulting in malicious behavior. To implement
this type of attack, we first reverse-engineer the binary of the
target program and locate the memory addresses of where
input/output data are stored, then refer to those addresses in
our malicious code to modify the corresponding values.

We consider the modification of a single input/output vari-
able to be one malware chunk. The live range of each chunk
is constrained to be between the beginning of the scan cycle
of the program and where the data is first used (input) or
between the data is last written and the end of the scan cycle
(output). By serving false data to the program, the attacker
can control the physical system arbitrarily.



BiLSTM

Program Input manipulation Control parameter Overwrite actuation Data logging Information disclosure

Feature Time Frequency Time Frequency Time Frequency Time Frequency Time Frequency
path  1.0009 1.0036 1.0014 0.9952 1.0039 1.0031 0.9973 0.9975 1.0001 1.0045
collision  0.9985 0.9985 1.0023 1.0004 0.9995 1.003 1.0028 0.9986 0.999 0.9978
cruise  1.005 1.0019 0.9967 0.9988 0.9978 0.9987 0.997 0.9965 0.9973 0.9961
kalman  1.0027 0.9954 0.9951 0.9954 1.0042 1.004 0.9952 1.0045 1.0047 1.0047
particle  0.997 0.9978 1.0006 1.0045 1.0007 0.9986 0.998 1.0044 0.9989 1.0033

BiRNN

Program Input manipulation Control parameter Overwrite actuation Data logging Information disclosure

Feature Time Frequency Time Frequency Time Frequency Time Frequency Time Frequency
path  0.9973 0.9977 0.9961 0.9987 0.9995 1.0026 1.0048 1.0023 0.9997 0.9964
collision  0.9975 0.9966 0.9982 0.9998 0.9996 0.9953 1.0008 1.0033 1.0045 0.9973
cruise  0.9978 0.9956 1.0038 0.9984 0.9996 0.9981 0.9954 1.0004 1.0026 1.0023
kalman  0.9951 0.9994 1.0004 1.0022 1.0045 0.9956 1.0037 1.0006 1.0033 0.9952
particle  1.0026 0.9954 0.9956 0.9974 1.0011 0.9994 0.999 0.999 1.0034 0.9979

HMM

Program Input manipulation Control parameter Overwrite actuation Data logging Information disclosure

Feature Time Frequency Time Frequency Time Frequency Time Frequency Time Frequency
path  0.9993 0.9987 0.9969 0.9970 1.0035 1.0020 1.0007 0.9995 0.9975 1.0008
collision ~ 1.0024 1.0032 1.0038 1.0013 0.9982 1.0027 0.9957 0.9984 0.9963 0.9998
cruise  1.0039 1.0038 1.0018 1.0020 0.9953 0.9951 1.0024 1.0003 1.0027 0.9969
kalman  1.1398 1.2010 1.0389 1.1015 1.1290 1.2312 1.1026 1.1107 1.1114 1.1023
particle  1.1530 1.1115 1.1128 1.1227 1.1511 1.1199 1.1392 1.1143 1.1879 1.1501

Table 4: Normalized average confidence scores (attack performance) on the tested programs with respect to different attacks.

Control Parameter Attack. The control parameter attack
seeks to change memory locations containing constants or pa-
rameters used by the program. Similar to the previous attack,
the control parameter attack is also implemented by reverse-
engineering the binary to locate the memory addresses that
correspond to the control parameters, manipulating those ad-
dresses in the malicious code. In this type of attack, the modi-
fication of each control parameter is treated as one malware
chunk. The live range of each chunk is between the beginning
of the program to where the corresponding control parameter
is first used. Attacking the control parameters can effectively
drive the physical system into dangerous states, potentially
causing catastrophic damage such as crash.

Data Logging. This attack stores data to a predetermined
location in memory, allowing it to be retrieved later or reused
in a common replay attack scenario. Such an attack is im-
plemented by first reverse-engineering the program binary
to identify the addresses of the data that to be logged. The
malicious code fetches the values of those addresses and store
them in unused addresses in the SRAM. The modification of
each data (address) is considered one malware chunk. The live
range of these malware chunks is constrained by which loca-
tions in the code the desired data are available. Data logging
can essentially steal sensitive data from the target program.

Confidential Information Disclosure. This attack sce-
nario involves leaking confidential data used by the program
over a communication channel that is available to the attacker.
This type of attack is very similar to data logging with the

difference being that the data is sent out in real time. In our
implementation, we choose UART as the channel, leveraging
the UART transmission function in the CMSIS library’. We
linearize the code by removing functions, condition checks
and other branch instructions, treating each basic block as one
malware chunk. Again, the live ranges of the malware chunks
are subject to the availability of the data to be sent out.

Research Questions. We aim to answer the following re-
search questions by evaluating the proposed attack:

* RQI: Can the proposed attack framework help find eva-
sive malware sample injection strategies?

* RQ2: Can the proposed attack framework work under a
cross-device setup for real-world settings?

* RQ3: Can the proposed attack framework even work
under a cross-model setup for adversaries without access
to the target detection models?

* RQ4: Can the proposed attack be still effective when
adversarial examples are included during the training of
the detectors?

RQ1: To answer RQI, we apply our proposed attack frame-
work to all the aforementioned attack types against the 5
control programs. We present the highest average confidence
score achieved for each program and attack pair in Table 4.
The reported confidence scores are normalized by the average
confidence scores of benign traces. Therefore, a score close
to or greater than one indicates a successful attack. As can

3The CMSIS library is a HAL implementation for ARM Cortex.



be seen from the table, the proposed attack is able to find
an evading sample with very high score for all the scenar-
ios. By splitting the malicious payload into small chunks and
optimizing to find locations in the benign program to inject
the chunks, the proposed attack framework manages to hide
a malicious payload in a benign program. For HMM-based
detectors that are weaker (e.g. kalman and particle), since the
average confidence score of the benign signals are lower, the
proposed attack can even find evading samples with a signifi-
cantly larger confidence score. As mentioned above, injecting
malicious code deviates internal states of the detector. The op-
timization of our proposed attack finds locations in the benign
program to inject each chunk such that the internal states can
be ‘routed’ back to normal. In this way, the malicious sample
stays undetected.

We also compare the proposed attack framework with a
baseline attack strategy, i.e., injecting the malicious payload
directly without our optimization algorithm (represented by
BASELINE). For this baseline attack, we manually identify a
location in the benign program where injecting the malicious
payload will be effective. For example, in the false data injec-
tion attack, we inject the malicious payload at the beginning
of the program. We use CHUNK to represent the proposed
attack approach in which payload chunks are injected into
locations in the program determined by our search algorithm.

Figure 10 shows the mean of the normalized scores
achieved for each strategy for a BILSTM-based detector using
time feature. For each attack, the scores are averaged over
all the five programs. As shown, BASELINE results in lower
scores compared to CHUNK, as injecting the malicious pay-
load introduces signal patterns which cannot be recognized
by the detector. Therefore, the output confidence score is still
low. However, in the case of CHUNK, our search algorithm
manages to find the optimal locations to inject the malicious
chunks. In this way, the confidence score is kept high.

The proposed attack helps find a more robust evading sam-
ple. As is mentioned in Section 4, we observe that for a pro-
gram with a malicious payload injected, the confidence scores
tend to have a large amount of variation. Based on Equation 3,
the optimization aims at minimizing this variation. This can
help find a more robust evading sample. We apply the attack
approach again on all the five programs with respect to all
five control attacks. But this time, we do not consider the stan-
dard deviation in the formula, i.e., 1 = 0. We report the mean
and max/min range of the confidence scores in Figure 1.
The results are averaged over all the five programs. Again a
BiLSTM-based detector using time feature is used.

As illustrated, without considering the variation, the attack
approach cannot find an evading sample with low variation for
most of the control attacks. Only by taking the variation into
account in the optimization objective can the attack approach
can find evading samples with low variation, i.e., a more ro-
bust evading sample. This is because without considering the
variation of the confidence score in the optimization formula,
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Figure 10: Comparison of attack strategies (averaged over all
the five programs). BASELINE represents injecting the
malicious payload as a whole. CHUNK represents injecting
payload chunks in optimized locations.

the found evading samples might fall into a very sensitive
(nonlinear) region in the signal space.

Therefore, a tiny change in the signal due to circuit noise or
data differences might alter the confidence score significantly.
Such a result is not robust. With the variation of the confidence
score plugged in the formula, our search algorithm looks for
samples with both a high score and low variation. Therefore,
the result found is more robust and less likely to be detected.

5.3 Detailed cross-device attack performance

We report the detailed cross-device attack performance for
all the programs and with respect to different attacks in Ta-
ble 5. The collision avoidance and particle filter program have
slightly lower confidence scores over all the attacks compared
to other control programs. This is because these two programs
have larger number of classes compared to other control pro-
grams. Therefore, their loss surfaces are more complicated.
This makes them more sensitive to changes in the input.

RQ2: As described in our attack model, realistically the
attacker cannot query the target microprocessor unlimited
number of times. Instead, they can construct a substitute setup
to generate malware samples and apply them to the origi-
nal microprocessor. To answer RQ2, we assume the attacker
has a substitute setup for generating the malware samples.
Specifically, they have a substitute device which is exactly
the same as the target one, and a copy of the program binary.
They can upload the program binary to the substitute devices
and collect power side-channel signals. We also assume the
attacker knows the model architecture of the detector and they
can train a substitute detector using the signals they collected.
After generating the malware samples, the attacker can apply
them to the original device under attack.

We compute the normalized confidence scores for all the
programs with respect to different attacks. We obtain an av-
erage score of approximately 0.93. Detailed results can be
found in Table 5. This is slightly lower than on the original



BiLSTM

Program Input manipulation Control parameter Overwrite actuation Data logging Information disclosure

Feature Time Frequency Time Frequency Time Frequency Time Frequency Time Frequency
path  0.9361 0.9385 0.9128 0.9449 0.9239 0.9376 0.9333 0.924 0.9247 0.9215
collision  0.9199 0.9086 0.9201 0.9048 0.919 0.9093 0.9239 0.9049 0.9136 0.9231
cruise  0.9339 0.9339 0.9311 0.9159 0.9276 0.9263 0.9475 0.9383 0.9161 0.9105
kalman  0.9414 0.9367 0.9266 0.9496 0.9225 0.9164 0.9176 0.9272 0.9275 0.935
particle  0.9205 0.9172 0.902 0.9125 0.9042 0.9145 0.9222 0.9124 0.9149 0.9201

BiRNN

Program Input manipulation Control parameter Overwrite actuation Data logging Information disclosure

Feature Time Frequency Time Frequency Time Frequency Time Frequency Time Frequency
path  0.9306 0.9249 0.9105 0.9354 0.9199 0.9403 0.9453 0.9485 0.9257 0.9321
collision  0.9176 0.9065 0.9181 0.9122 0.9253 0.9263 0.9236 0.9283 0.9105 0.9086
cruise  0.947 0.9188 0.9298 0.9361 0.9188 0.9138 0.91 0.9471 0.949 0.9269
kalman 0.9168 0.9316 0.9382 0.9364 0.9436 0.9421 0.9492 0.9331 0.9154 0.9147
particle  0.9103 0.9153 0.9272 0913 0.9286 0.9164 0.9079 0916 0.9259 0.9455

HMM

Program Input manipulation Control parameter Overwrite actuation Data logging Information disclosure

Feature Time Frequency Time Frequency Time Frequency Time Frequency Time Frequency
path  0.9208 0.921 0.9202 0.9185 0.9193 0.9234 0.921 0.9214 0.9244 0.9199
collision ~ 0.916 0.9231 0.9202 0.9153 0.9157 0.9184 0.92 0.9152 0.9192 0.9202
cruise  0.9165 0.9206 0.916 0.9196 0.9217 0.9237 0.9178 0.924 0.9152 0.9159
kalman  1.0128 1.0113 1.0012 1.0102 1.1 1.1101 1.0007 1.0154 1.0321 1.0508
particle  1.0111 1.0203 1.0189 1.0169 1.0087 1.0147 1.0194 1.0155 1.0146 1.0128

Table 5: Normalized average confidence scores for cross-device attack performance on the tested programs with respect to
different attacks. Here, the attack evaluation device is different from the attack optimization (substitute setup) device.

device. However, they are still acceptably high. This means
the evading samples found by the proposed attack framework
manage to transfer to a different device. We attribute the cross-
device transferability of the proposed attack to the goal of the
optimization. Even though on a different device the signal
patterns can be different due to circuit noise, since the goal
of the proposed attack is to find an evading sample with low
standard deviation, the effect of such signal pattern difference
does not significantly decrease the confidence score. We also
note that the collision avoidance and particle filter program
have slightly lower confidence scores over all the attacks com-
pared to other control programs. This is because these two
programs have larger number of classes compared to other
control programs. Therefore, their loss surfaces are more com-
plicated. This makes them more sensitive to changes in the
mput.

RQ3: RQ3 addresses questions of transferability by further
restricting the attacker’s knowledge and capabilities on the
target; not only does the attacker have no access to the target
microprocessor, nor do they have knowledge of the model of
the detector. This can be the model type, the model architec-
ture (e.g. number of hidden layers or the size of each hidden
layer). We show that by exploiting the transferability of ma-
chine learning models, such an attack is still possible. We
examine the transferability among the aforementioned three
detector models as well as a substitute detector for BILSTM
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Figure 11: Comparison of the attack with and without
considering the confidence score variance. The error bars
represent the max and min confidence scores . By
considering the variance, we find robust evading samples.

(BiLSTMy,). For BiILSTMyy, we make the hidden layer size
half and double the number of layers. These four models rep-
resent three different levels of transferability: cross different
architectures of the same model, cross different models of
the same family (i.e., neural networks) and cross different
families of models. The detectors are trained using the power
signals collected from the substitute device. We upload the
evading samples found in RQ1 to the original device. We then
collect 100 power side-channel signals for each execution
path of the program from the original device. These signals
are sent to the detectors to generate the confidence scores.
We report the normalized average score for each pair of



Detector BiLSTM  BiLSTM,, BiRNN HMM

BiLSTM - 0.9323 0.9301  0.7712

2 BILSTMy, 09301 - 0.9277  0.7513

s BiRNN 0.9135 0.9126 - 0.7912
HMM 0.8012 0.8071 0.7908 -

7  BiLSTM - 0.9302 0.9287 0.8124

§ BiLSTMgp,  0.9226 - 0.9191  0.7811

g BiRNN 0.9107 0.9097 - 0.5511
@ HMM 0.7798 0.8025 0.8175 -

Table 6: Transferability between different models.
Normalized average scores between each pair of models.

four models in Table 6. The reported results are averaged over
all the programs and attack types for each model. As can be
seen, cross architecture and cross model attacks transfer pretty
well. This is due to the fact that these neural network-based
models are trained with the same dataset, perform similar
computations, follow similar optimization procedure, so loss
surface of these models are similar to some extent. On the
other hand, cross family attack does not transfer very well.
This is because two families of models, such as neural net-
works and HMM, can be very distinct. To sum up, recall our
attack model, an adversary only needs to know the family of
the detector model to successfully perform the attack.

RQ4: RQ4 even further challenges the capability of the
proposed attack approach by asking: Is the proposed attack
still effective even when generated evading samples are in-
cluded in the training dataset of the detector? To answer
the question, we adopt adversarial training in the design of
the detectors and test the proposed attack approach on them.
Specifically, for a detector under attack, we create one more
adversarial class apart from its original classes. To prepare
data for training this augmented detector, we use the proposed
attack approach to generate evading samples for all the attack
types we considered. We pick the top 10 evading samples
(in the sense of average confidence score) and collect power
side-channel signals of these evading samples as signal sam-
ples in the adversarial class. This is to show the detector what
evading malicious signals look like. We then train the detec-
tor in a standard way. Finally, we apply the proposed attack
on the augmented detectors. To make the proposed attack
compatible with the augmented attacks, borrowing from the
idea from adversarial machine learning [28], we replace the
confidence scores in Equation 3 with the cross entropy loss
of the input signals with respect to the adversarial class. By
maximizing this loss, we are essentially reducing the prob-
ability of classifying a malicious signal into the adversarial
class. Once we obtain the result from the attack procedure, we
classify the corresponding power side-channel signals using
the augmented detector. We measure the successful rate of
the attack by looking at how many signals are classified into
any class other than the adversarial class.

path collision  cruise kalman  particle
Time 99.78%  100% 97.13%  99.24%  98.55%
Frequency  99.26%  99.16% 98.01%  98.26%  97.98%

Table 7: Attack success rate for adversarial training
augmented BiLSTM detector.

We perform the aforementioned experiment on BiLSTM-
based detectors for all the five programs. To construct an aug-
mented detector and measure the attack performance, evading
samples of all the attacks we considered are used. We col-
lect five power side-channel signals for each test input. We
observe that all augmented detectors has very good perfor-
mance (average classification accuracy 98%). For the attack,
we report the percentage of signals not classified into the ad-
versarial class as attack successful rate. The results are shown
in Table 7. As can be seen from the table, even when evading
samples are added to the classifier, our proposed attack can
still find evading samples that can cause most of the power
signals to be misclassified as benign. This is because data
driven models such as a side-channel detector can easily suf-
fer from lack of sufficient data, leaving a lot of corner cases
near the decision boundary. The iterative MCT's optimization
of our proposed attack approach can maneuver around the
decision boundary, moves towards these corner cases (i.e.,
regions with a high loss with respect to the adversarial class).
Therefore, our proposed attack approach can find an evading
sample with a high attack successful rate. There is no direct
way of compare the performance with and without adversar-
ial training. This is because the definition of attack success
rate is the percentage of signal samples not classified as the
adversarial class. In the absence of adversarial training there
is no adversarial class, and it is not possible to compute the
attack success rate. However, as shown in Table 4 and Table 7,
our proposed attack is successful in both scenarios.

6 Discussion

Improving malicious hit-rate. One limitation of this work
as it stands is that a solution is not guaranteed even though we
did not face this problem in our extensive experiments. Due to
the constrained nature of the problem, we are not theoretically
guaranteed to find a suitable evading example. To address
this issue, one possible future direction is the incorporation
of code randomization [25] applied to malware samples.

Recommendations for defense. A common strategy for
mitigating the effect of adversarial examples is the use of
adversarial training. Borrowing ideas from adversarial ma-
chine learning and including adversarial examples generated
by our method in the training data can potentially produce a
more robust side-channel monitor. However, our experiments
indicate such mitigation is not effective against our proposed



attack. Alternatively, the detector could perform information
fusion and utilize power and electromagnetic side-channels
at the same time. Misleading such a hybrid detection engine
could be more challenging in practice.

As noted in Section 5.1, window sizes of all the detectors
stay within the control loop (scan cycle). As a result, windows
will never span two control loops at once. A possible avenue
for detector improvements would be to use windows spanning
multiple control loops. However, including more scan cycles
in the window would increase the number of path combina-
tions exponentially and potentially cause a state explosion.
Given that the focus of this work was not on developing better
detectors, we leave this exploration for future work.

Possible Transferability to EM Side Channel. The pro-
posed attack approach can potentially be transferred to EM
side channel for the following reasons. First of all, both power
and EM side-channels originate from the same circuit compo-
nents. Therefore, they may have high correlation. Moreover,
the proposed attack approach is a search based attack; it does
not depend on a specific type of physical side-channel signals
to work. Therefore, it can also be applied to EM side-channel
signal based detectors.

7 Related Work

Physical Side Channel Analysis. Many recent works ana-
lyze physical side channels (e.g. power consumption or EM
radiation) produced by embedded microcontrollers to infer
their internal behavior. Eisenbarth et al. [13] demonstrate the
ability to reconstruct a program by modeling executed instruc-
tions with Hidden Markov Model (HMM) states. Other works
leverage side-channel information to verify the integrity of
code execution on a monitored device.

Liu et al. [32] track code execution using power signals.
They measure the voltage drop over a resistor on the power
pin of the monitored 8-bit AVR microcontroller. They train
an HMM on normal program executions and use a maximum
likelihood algorithm to detect abnormal control flows. Nazari
et al. [39] measure EM spectra and use statistical tests to de-
termine whether an execution follows a “benign” frequency
distribution. Han et al. [22] use neural networks to classify
benign and malicious EM signals. All of these works utilize
data-driven models, which are susceptible to adversarial exam-
ples [19]. Our attack exploits the vulnerabilities of imperfect
data-driven models to evade the detection mechanism.

Functional Malware Generation. The generation of func-
tional malware to evade defensive classifiers has been pre-
viously studied in the case of PDF malware [11, 63]. They
utilize mutation-based approaches such as genetic algorithms
to convert benign samples to malicious-but-evasive samples
while maintaining malicious functionality. In [11], the authors

use a generation-testing loop to verify the functionality of a
malware sample once it is generated. In [63], the authors use a
query-based approach and knowledge of classifier features to
guide their search for evasive and functional malware variants.
We approach our problem similarly with exploratory meth-
ods to find evasive malicious samples with a query-based
approach. In our problem, however, the features of the side-
channel monitor are not readily mapped to the input domain.
We further prune our search space using Monte-Carlo tree
search and deep reinforcement learning.

Evading Classifiers with Adversarial Examples. Our at-
tack is based on the vast amount of adversarial example re-
search in machine learning [64]. A well known method in
this domain is the fast gradient sign method (FGSM) for
generating adversarial examples [19]. This method calcu-
lates gradients to determine the best perturbation direction
to generate an adversarial example. The usage of gradient
information is popular among many adversarial example con-
struction techniques [37,47,64]. Even methods that do not use
gradient information directly estimate gradient information
using iterative and query-based techniques [26, 40]. In our
case, the classifier uses physical signals created from discrete
instructions executed on a processor. Therefore, in our case
the classifier gradient does not contain direct information on
how to create an adversarial example program. As a result,
we use iterative gradient estimation techniques in the form
of Monte-Carlo Tree search, as well as deep reinforcement
learning to develop feasible adversarial examples.

8 Conclusion

In this work, we investigate the resilience of side-channel
based control flow monitoring schemes. We design and
demonstrate attacks that allow (despite the comprehensive
monitoring enabled via power consumption) to hide in plain
sight. Our attacks inject a functional malware payload; this
is achieved using adversarial code injection and optimization
techniques like Monte Carlo Tree Search to help explore the
discrete and constrained state space. Our experiments on the
popular ARM microcontroller demonstrate that even though
side-channel monitors are physically isolated, measure im-
mutable signals, use uninterpretable models, and present a
highly constrained input domain for an attacker, they remain
vulnerable to malicious code execution. Our results demon-
strate that, although side-channel monitoring systems are well
matched for real-time embedded control systems, they are not
as secure as previous work would suggest. Therefore, more
research is required to improve their robustness against eva-
sive advanced adversaries, including (but not restricted to) the
use of information fusion.
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