
PISTIS: Trusted Computing Architecture for Low-end Embedded Systems

Michele Grisafi
University of Trento, Italy
michele.grisafi@unitn.it

Mahmoud Ammar
Huawei Technologies, Germany
mahmoud.ammar@huawei.com

Marco Roveri
University of Trento, Italy

marco.roveri@unitn.it

Bruno Crispo
University of Trento, Italy

bruno.crispo@unitn.it

Abstract
Recently, several hardware-assisted security architectures

have been proposed to mitigate the ever-growing cyber-
attacks on Internet-connected devices. However, such pro-
posals are not compatible with a large portion of the already
deployed resource-constrained embedded devices due to hard-
ware limitations. To fill this gap, we propose PISTIS, a pure-
software trusted computing architecture for bare-metal low-
end embedded devices. PISTIS enables several security ser-
vices, such as memory isolation, remote attestation and se-
cure code update, while fully supporting critical features such
as Direct Memory Access (DMA) and interrupts. PISTIS
targets a wide range of embedded devices including those
that lack any hardware protection mechanisms, while only
requiring a few kilobytes of Flash memory to store its root
of trust (RoT) software. The entire architecture of PISTIS is
built from the ground up by leveraging memory protection-
enabling techniques such as assembly-level code verifica-
tion and selective software virtualisation. Most importantly,
PISTIS achieves strong security guarantees supported by a
formally verified design. We implement and evaluate PISTIS
on MSP430 architecture, showing a reasonable overhead in
terms of runtime, memory footprint, and power consumption.

1 Introduction

The last years have witnessed an increased use of embed-
ded devices in many domains, ranging from tiny sensors to
industrial control systems. These devices are increasingly
connected to the Internet, realizing the idea of the Internet of
Things (IoT) by connecting digital processes to the physical
world. While this connectivity has enabled a vast array of
value-added services in all applications, it has also opened
the door to a wide variety of cyber-attacks. A high profile ex-
ample is the Mirai Botnet [5], a clever malware that managed
to turn vulnerable IoT devices, mostly specific types of smart
cameras and DVRs, into zombies to mount the largest DDoS
attack to date.

To detect potential attacks while protecting sensitive code
and data, various hardware-assisted Trusted Execution En-
vironments (TEEs)1 have been proposed by both industry
and academia, for high-end (e.g. Trusted Platform Modules
(TPMs) [40], Intel SGX [15], and AMD SEV [22]), mid-
range (e.g. ARM TrustZone [6]), and low-end platforms (e.g.
ARM TrustZone-M [7], VRASED [30], SANCUS [29], and
TyTan [10]). All of these TEEs provide confidentiality and in-
tegrity guarantees. The former is provided by enforcing strict
access control on part of the memory through rich hardware
features or some extensions to the original processor archi-
tecture, while the latter is realized by some sort of malware
detection mechanisms, mainly remote attestation (R A), that
is supported on all architectures. R A is a security service that
detects malware presence on a remote, potentially compro-
mised, device, called prover, by verifying its software integrity
using an integrity-ensuring function (e.g. a hash-based MAC)
by a trusted party, called verifier.

Problem statement. Embedded devices are characterized
according to many factors, among which, the support of hard-
ware security features. In contrast to mid-range and high-end
devices, low-end embedded devices are optimized for low
cost, small size, and low power consumption. This makes
them incapable of defending themselves against malware
infestation attacks. In particular, a significant number of low-
end embedded devices depend on Commercial Off-The-Shelf
(COTS) Micro Controller Units (MCUs), which even lack ba-
sic hardware-based memory safety features such as memory
protection units (MPUs), offering no (or, at best, little) se-
curity guarantees. Furthermore, the software in such devices
runs bare-metal with no Operating System (OS) support. High
profile examples include all AVR ATmega MCUs, many of the
ARM Cortex-M family,2 and all Flash-based MSP430 MCUs.
Notable is that the underlying memory architecture of such
MCUs is either the Von Neumann one [41], in which both

1Please note that we use the terms "Trusted Execution Environment" and
"Trusted Computing Architecture" interchangeably.

2Please note that ARM Cortex-M0 has by default no MPU, whereas the
MPU is optional in other ARMv7-based processors of the same family.

program code and data reside in a single address space, or the
Harvard architecture [37], in which code and data memories
are physically separated.

Initially, several software-based R A protocols were pro-
posed to detect malware presence on low-end devices [25, 33,
34]. Such protocols are hardware-independent. They rather
rely on assumptions which, however, are hard to achieve in
practice, such as silent adversary during R A, optimal code,
and one-hop communication [8]. This makes them vulnerable
to several attacks [11], providing no certain security guaran-
tees. More recently, various hardware-assisted R A mecha-
nisms with different assumptions and requirements have been
proposed for embedded devices [10, 18, 23, 29, 30]. While
such proposals provide strong security guarantees, their fu-
ture availability in low-end devices is questionable due to
several reasons. First, these proposals are not compatible with
legacy MCUs as they require hardware modifications and thus
replacing millions of the already deployed sensors and actu-
ators. Second, changing vendor production lines as a result
of hardware modification is not always easy and incurs extra
costs. Third, pure hardware solutions, such as SANCUS [29],
are inflexible in terms of patches in case of a vulnerability,
requiring changing all affected platforms. As an example,
a group of researchers exploited an unpatchable hardware
design flaw in Xilinx 7-Series FPGA boards which led to a
full break of the bitstream encryption, resulting in the total
loss of authenticity and confidentiality [19]. Another example
includes the removal of Intel Memory Protection Extensions
(MPX) from all future Intel processors due to several design
flaws [31].

Despite the limited initiatives to propose reliable software-
based security services for low-end devices [2,3,24], existing
proposals are limited to the Harvard architecture, which is
simpler than the Von Neumann one. Furthermore, the secu-
rity in such proposals is guaranteed under the assumption
that the underlying embedded device lacks (or physically dis-
ables) Direct Memory Access (DMA), which is an important
functionality that cannot be omitted in many low-end devices.
Last, security services in such proposals execute atomically
by disabling all interrupts, thus negatively influencing the
correct functioning of safety-critical applications.

Contributions. This paper tackles the aforementioned is-
sues by proposing PISTIS, 3 a pure-software trusted comput-
ing architecture for low-end Von Neumann-based embedded
devices. PISTIS is built from the ground up, targeting em-
bedded devices with limited or no hardware security features.
It only requires a few kilobytes of the Flash memory of the
corresponding device to hold its Trusted Computing Module
(TCM). The TCM is a set of software functions that acts as a
hypervisor, enabling different security services, such as mem-
ory protection, remote attestation, and secure code update.
PISTIS provides strong security guarantees, comparable to

3PISTIS was the personification of good faith in Greek mythology.

those in hardware-assisted architectures, while securely sup-
porting DMA and interrupts. Furthermore, PISTIS has the
advantage of being portable to several MCU architectures
because of its nature as a pure-software solution. In addition
to the formally verified design, PISTIS is accompanied by
an open-source implementation for the MSP430 family of
MCUs [9].

In a nutshell, this paper makes the following contributions:
(1) PISTIS: To the best of our knowledge, this is the first
design of a full-featured software-based trusted computing
architecture that offers memory isolation, remote attestation,
and secure code update services with strong security guaran-
tees, targeting Von Neumann-based embedded devices.
(2) Formal Verification: We formally verify the correctness
of the memory isolation design that provides the foundation
for establishing the root of trust (RoT) in pure software.
(3) Open Source Release: We release PISTIS as an open-
source C library along with a GCC compiler plugin (via [9])
with APIs that automate the deployment of PISTIS as well
as the generation of PISTIS-compliant binary images.
(4) Extensive Evaluation: We evaluate PISTIS covering all
relevant performance metrics, including runtime overhead,
memory footprint, and power consumption, using a represen-
tative set of 13 applications.

Paper outline. The remainder of the paper is organized as
follows. Section 2 reviews the related work. Preliminaries
are presented in Section 3. Section 4 describes PISTIS in
detail, whereas Section 5 highlights the methodology fol-
lowed in verifying the design of the memory isolation feature
employed by PISTIS. Implementation details and evaluation
are reported in Section 6 and Section 7 respectively. Section 8
concludes and gives directions for future work.

2 Related Work
The constant threat of cyber-attacks on computing systems has
driven the design of numerous security technologies, among
which TEEs are one of the most widely proposed in the lit-
erature and most employed in diverse computing platforms.
Existing TEEs generally depend on pure hardware or leverage
a combination of software and hardware modules to protect
one or multiple running applications by providing them with
confidentiality and integrity guarantees.

In high-end (and some mid-range) platforms, various
hardware-based TEEs have been designed and implemented
for different processors, including Intel, ARM, and AMD.
For instance, Intel Software Guard Extension (SGX) [15]
extends the Instruction Set Architecture (ISA) of Intel pro-
cessors to create hardware-enforced virtual containers, called
enclaves, capable of protecting the integrity, confidentiality,
and runtime state of internal applications without trusting any
existing software module, e.g. the OS. ARM-TrustZone [6]
is a well-known TEE for ARM processors, which provides
a single hardware-based enclave, dividing the memory into
two zones: secure and insecure. Thus, all sensitive apps run

Table 1: PISTIS vs. State-of-the-art trusted computing architectures from various perspectives.

Architecture HW modification Memory Organization DMA support Interrupts support Verified Design Extensibility*
SANCUS [29] Yes 7 Von Neumann No 7 No 7 No 7 No 7
VRASED [30] Yes 7 Von Neumann Yes 3 No 7 Yes 3 No 7
SMART [18] Yes 7 Von Neumann No 7 No 7 No 7 No 7
TrustLite [23] Yes 7 Harvard No 7 Yes 3 No 7 No 7
TyTAN [10] Yes 7 Harvard No 7 Yes 3 No 7 No 7
SµV [2] No 3 Harvard No 7 No 7 No 7 Yes 3
PISTIS No 3 Von Neumann Yes 3 Yes 3 Yes 3 Yes 3

*Extending or updating existing hardware-assisted architectures can only be considered for future devices

in a physically isolated secure memory area. Generally, ex-
isting solutions for high-end platforms depend on complex
and expensive hardware features that cannot be supported on
low-end devices due to cost and size constraints.

Given the lack of rich hardware features on low-end em-
bedded platforms, various types of lightweight security archi-
tectures have been proposed. Initially, the main focus was on
software-based solutions that enable security services such
as remote attestation and secure code update without depend-
ing on hardware [25, 33–35]. In particular, such proposals
depend on precise time measurements where the upper bound
is estimated during the initialization of the embedded device
(assuming time-space optimal code), or require filling the free
memory space with true randomness in order to prevent mal-
ware from using it. As aforementioned, such solutions are
vulnerable to some attacks as demonstrated in [11]. Further-
more, their security guarantees are uncertain due to depending
on unrealistic assumptions, e.g. passive remote adversary, op-
timal code, one-hop communication, etc.

In contrast to software-based solutions, SANCUS [29] has
been proposed as a lightweight security architecture for em-
bedded devices that implements a pure-hardware trust anchor.
Compared to other hardware-based TEEs, e.g. SGX [15],
SANCUS is cheaper and more suitable for embedded de-
vices. However, it still requires significant changes to the
underlying architecture of these devices, increasing their
cost. To overcome this limitation, several hybrid architectures
have been introduced, depending on a hardware-software
co-design [10, 18, 23, 30]. While there are several trade-offs
between the designs of these hybrid approaches, they aim to
provide the same security guarantees as hardware-based ones,
while minimizing modifications to the underlying hardware.
Although these approaches yield strong security guarantees
and good performance on low-end IoT devices, they require
customized hardware support on every device, which is either
absent or too expensive to implement in certain scenarios. For
instance, a wide spectrum of embedded devices that lack any
hardware support is already employed in privacy-sensitive and
safety-critical domains, making the adoption of such hybrid ar-
chitectures impractical [27,36]. Notable is that VRASED [30]
is the only formally-verified hybrid architecture that provides
a secure and sound remote attestation (R A) service.

The security MicroVisor (SµV) [2] filled the sizeable gap
between software-based and hardware-assisted security archi-
tectures by implementing a software-based memory isolation
technique to isolate its RoT software (TCM) from the rest of
other untrusted software modules running in the same address
space. To do so, the SµV is inspired by the Software Fault
Isolation (SFI) approach proposed by Wahbe et al. [42]. How-
ever, in contrast to all existing memory protection techniques
that reuses SFI in high-end computing systems [38], the SµV
does not trust the compiler toolchain, relying only on its TCM.
Furthermore, it targets low-end Harvard-based MCUs. On top
of memory isolation, the SµV provides various security ser-
vices, such as remote attestation (e.g. SIMPLE [3]), secure
erasure (e.g. SPEED [4]), and secure code recovery (e.g. VER-
IFY&REVIVE [1]). Nevertheless, the SµV does not support
either DMAs or interrupts in the aforementioned security ser-
vices. Notable is that the SµV’s implementation (and not its
design) has been formally verified w.r.t. to safety properties,
targeting only the Harvard-based AVR architecture.

Although PISTIS shares similarities with SµV in terms
of adapting and optimizing some of the SFI techniques in a
new setting, it targets the Von Neumann architecture, which
is more challenging than the Harvard one as clarified in Sec-
tion 3.2. Furthermore, it aims for supporting DMA and inter-
rupt operations with critical security services.

To sum up, Table 1 compares PISTIS with the state-of-the-
art approaches.

3 Preliminaries

3.1 Scope of Embedded Devices
PISTIS targets tiny embedded devices that have small MCUs
based on the Von Neumann architecture with little or no hard-
ware security features. In general, such MCUs have a single
core and feature Flash and SRAM memories. They execute in-
structions in place (in physical memory) and have no memory
management unit (MMU) to support virtual memory. Some
of them can support an MPU. However, our design and imple-
mentation neglect the existence of MPUs due to their short-
comings as clarified in [43]. In particular, PISTIS targets
single-thread, yet multi-tasking bare-metal applications that
are the most common ones in the IoT domain [14].

Our implementation is based on the MSP430 architecture.
This choice is due to the wide use of this architecture in many
IoT devices as well as research prototypes. Nevertheless, our
design is applicable to other low-end MCUs in the same class,
such as ARM Cortex-M.

3.2 Challenges in designing PISTIS
All MCUs used in small embedded devices (regardless of
their vendors) are designed based on either of two memory
architectures: Von Neumann or Harvard. In contrast to the
SµV [2] that is proposed for the Harvard architecture, PISTIS
targets the Von Neumann one. Both architectures are visual-
ized in Figure 1. There are two main challenges in the Von
Neumann architecture compared to the Harvard one. First,
the Harvard architecture features a hardware isolation ad-
dress space as both program (non-volatile Flash) and data
(volatile SRAM) memories are physically separated, having
different instructions for accessing them. This feature sim-
plifies isolating part of the memory to host the trust anchor
as the data memory is not executable, and thus no need to
instrument its related instructions. This is not the case in
the Von Neumann architecture where both program and data
memories share the same memory address space and thus
are executable, facilitating code injection attacks as basically
any instruction could alter the state of the program memory,
i.e. read from or write to it. This poses a challenge when de-
signing PISTIS without incurring an intolerable performance
overhead. Second, in contrast to the Harvard architecture, the
Von Neumann one has a variable-length instruction set that
would be exploited to break any software-based memory iso-
lation technique by jumping into the middle of a multi-word
instruction and executing one of its words as an unaligned
instruction. This challenge cannot be handled by borrowing
some of the well-known SFI techniques, i.e. as in the SµV [2],
without considering a careful design to adapt them. To solve
the first challenge while avoiding adding a high performance
overhead, PISTIS focuses on checking the position of the
Program Counter (PC) rather than instrumenting the entire
instruction set. Also, PISTIS devises a special canary mecha-
nism to mark legitimate jump targets, thus handling the second
challenge. Furthermore, PISTIS, compared to all existing ar-
chitectures regardless of their types, is the only solution that
supports both DMA and interrupts while executing critical
operations. Further details are provided in the next section.

Program
Memory

CPU

Data
MemoryInstruction

Bus
Data
Bus

CPU

Program

Data

Instruction and
Data Bus

Harvard Architecture Von Neumann Architecture

Figure 1: Harvard vs. Von Neumann architecture.

4 PISTIS

Overview. Systems security strongly relies on the concept
of trust as lacking it renders any security service infeasible.
Trust is typically assured via some sort of memory isolation,
a mandatory security primitive for all security services. To
this end, PISTIS follows the bottom-up approach to build a
pure-software trusted computing architecture that is highly
optimized for low-end embedded devices with a full support
for DMA and interrupt operations. To achieve so, PISTIS
initially deploys an initial code, called a Trusted Comput-
ing Module (TCM), that occupies part of the Flash memory
including the bootloader area. The main goal of the TCM
is to guarantee memory protection by isolating its memory
area from other memory parts, creating two logically isolated
memory zones: secure and insecure. PISTIS leverages the
secure memory part to deploy two exemplar security services,
namely remote attestation and secure code update. Please
note that while PISTIS adapts some of the SFI techniques,
i.e. binary re-writing, in its special domain, it does not depend
on any hardware feature, such as segmentation registers in
MPUs as in [20]. Furthermore, in contrast to standard SFI
mechanisms [38], PISTIS represents a full-fledged trusted
computing architecture, offering a run-time virtualization en-
vironment without trusting the compiler toolchain. The cor-
rectness of the memory isolation design in PISTIS is formally
verified as clarified in Section 5.

In what follows, we outline our adversary model and then
describe the design of PISTIS in detail.

4.1 Adversary Model

We consider a software-based adversary Adv who has full
access to the network or potentially presents inside the device
itself in the form of malware. Adv can eavesdrop on or tamper
with traffic on any communication medium supported by the
target device. However, she cannot launch Denial of Service
(DoS) attacks. Protection against DoS attacks is out-of-scope
as they do not tamper with the device memory. Adv can also
control any software deployed in the insecure memory part
of the device. This includes trying to inject malicious code,
reading or writing any memory address that is not explicitly
protected, corrupting specific data, or manipulating I/O pins.

We assume that the TCM is initially and correctly installed
on the embedded device by a trusted party. We also assume
that the TCM is bug-free and does not contain any mem-
ory corruption vulnerabilities. 4 This means that Adv cannot
bypass any protection rules enforced by the TCM.

We rule out all physical and hardware-focused attacks. We
consider that protection against physical attacks is an orthog-
onal problem and can be achieved, for instance, by deploying
the device inside a tamper-proof protection shield [32].

4Likewise the work in [2], the memory-safety property can be achieved
by formally verifying the code before deploying it.

4.2 PISTIS: From the Ground Up
In what follows, we will describe the main building blocks
of PISTIS, namely the TCM and the accompanied compiler
toolchain, that guarantee memory isolation, a key-enabling
property for all trusted computing architectures. We then ex-
tend the described design by enriching the TCM with some
security services, called Trusted Applications (TAs), i.e. re-
mote attestation and secure code update, leveraging memory
protection as a basis. All building blocks sum up PISTIS.

4.2.1 Memory Isolation: Design Rationale

The memory isolation property of PISTIS aims at enforcing
memory protection to guarantee the integrity and confiden-
tiality of PISTIS’s TCM and its TAs. This is achieved by
first deploying the TCM on the device using a physical pro-
gramming device, e.g. JTAG, by a trusted party. The TCM is
responsible for protecting itself against any untrusted software
that is deployed on the same device afterward. To achieve so,
the TCM requires any software to be deployed through it to
verify its safety at the instruction level. The entire deployment
will be rejected by the TCM if there is at least one unsafe in-
struction that violates the memory isolation property. PISTIS
is accompanied by a PISTIS-enabled compiler toolchain that
produces compatible binary images. However, this toolchain
is untrusted as it is easy for Adv to tamper with it. Therefore,
the security of PISTIS depends on the load- and run-time
verification that occurs on the device itself by the TCM.

Trusted Computing Module (TCM). The TCM is a set
of software functions that reserves part of the non-volatile
memory, including the bootloader area, to act as a hypervisor
that fully manages access control to the entire memory area.
In particular, the TCM consists of the following components:

• Initial code: a bootloader code that replaces the original
one. When the MCU is powered on, this code decides
whether to continue booting from the TCM memory or
from the memory that holds untrusted software.

• Loader/Verifier: this software module is responsible for
receiving the untrusted software image from the network
interface and verifying whether it is PISTIS-compliant.
If so, the software will be installed and activated on the
device. Otherwise, it will be rejected and erased.

• Virtualized Instructions: a set of functions that repre-
sent safe equivalent versions to some potentially unsafe
instructions that cannot be checked at load-time. During
compilation, the PISTIS-enabled toolchain will replace
each instruction with a hyper-call to a safe equivalent
one that can be safely verified at runtime.

• Helper modules: other necessary helper functions such
as the ones that read and write memory pages.

The TCM code runs in a privileged mode in the sense that
it can perform any memory access operation. On the contrary,
the untrusted software is subject to some restrictions that

R/W
X

Persistent Memory

Volatile Memory MMIO

App
Data

Memory

uTrust Core
App

Instruction
memory

App
Read-Only

memory

MMIO
registers

R
R/W/X

R/W/X

Persistent Memory

Volatile Memory MMIO

App
Memory

App
memory

MMIO
registers

PISTIS Core

Entry Points

PISTIS
Data

Memory

Protected Code

Von Neumann Memory Map PISTIS Memory Map

Figure 2: A standard memory map vs. the PISTIS-enabled
memory map in a Von Neumann architecture. The latter also
shows R/W/X privileges of the untrusted application.

limit its access to some memory regions. Such restrictions
are meant to enforce memory protection and are thus checked
and enforced by the TCM. Figure 2 shows the memory layout
of the MCU when activating PISTIS. The TCM is the first
to be physically deployed in the PISTIS Core memory part.
It then manages other deployments to maintain the shown
layout. When deploying an application, the TCM verifies its
instructions according to the following access policy (AP):

• Read access is limited to Memory Mapped I/O (MMIO),
Application Data and Application Read-Only memory.

• Write access is limited to MMIO memory 5 and Appli-
cation Data memory.

• Jumps (to execute instructions) are limited to Applica-
tion Instruction memory and specific entry points of the
PISTIS Core memory.

In contrast to the Harvard architecture where maintaining
memory isolation only requires taking care of control-transfer
instructions, any instruction in the Von Neumann architec-
ture can violate the aforementioned AP. Therefore, to adhere
to such a policy, the TCM’s Loader/Verifier should smartly
verify each memory access (read/write) or control-transfer
(jump/call) instruction of untrusted software before deploying
it on the device. Initially, the TCM only knows the boundary
of its non-volatile memory area and the dedicated space in
the volatile one. To know the other boundaries shown in Fig-
ure 2, the PISTIS-enabled compiler toolchain produces some
meta-data that is sent ahead of the deployed binary image.
The TCM performs the verification process according to such
meta-data. Please note that the values of such meta-data are
accepted as long as they do not cross protected memory re-
gions. With that in mind, the TCM installs the entire received
binary image in the expected part of the non-volatile appli-
cation memory. It then starts verifying it after disabling all
interrupts to ensure atomicity. The following checks must be
passed before the actual deployment of untrusted software:

• Instructions with a static addressing mode, whose tar-
get memory address is known, are checked and verified
at load-time. These instructions can be either control-
transfer or memory-access ones. They both must comply
with the AP visualized in Figure 2 in the sense that:

5Exceptions can be made for critical MMIO registers.

– control-transfer instructions can only target the
memory area where the application will be in-
stalled or one of the entry points of the TCM. This
check guarantees the Data Execution Prevention
(DEP) property of the data memory since PC will
not be allowed to jump there.

– Write instructions can only target the permitted
part of the volatile data memory (RAM) or (some)
MMIO registers.

– Read instructions can only target any write-
permitted memory location or the application read-
only memory.

• Instructions with a dynamic addressing mode whose
target address is only known at runtime are replaced
with static instructions in the form of hyper-calls to their
secure virtualized versions (part of the TCM). If, at run-
time, the target address is deemed to be unsafe, PISTIS
performs a soft reset of the MCU to block this operation.

If the binary image contains at least one instruction that
does not pass the above checks, it will not be deployed and
accordingly erased. The list of instrumented instructions is
described in Table 5 in Appendix A. Please note that PISTIS
does not support self-modifying code in the sense that the un-
trusted software cannot directly write to its instruction mem-
ory area. However, if required, the untrusted software can
invoke the TCM’s Loader/Verifier module after installing the
needed chunks of code in the non-executable data memory.
The TCM’s Loader/Verifier will relocate the installed chunks
to the required memory location if they adhere to the afore-
mentioned AP.

Modified Toolchain. PISTIS leverages a modified
toolchain to transparently re-write each potentially unsafe
dynamic instruction, and replace it with a safe virtualized
equivalent that can be accessed via a call to a subroutine
stored in the protected TCM memory area. The target address
of the corresponding instruction is verified at runtime when
the subroutine is invoked. The execution continues normally
if it is valid. Otherwise, an MCU reset is triggered.

Figure 3 visualizes the modified compiler toolchain. We
chose the open-source GCC compiler toolchain and modified
it to suit our needs. Our modifications represent: (i) an instru-
menter plugin that verifies the validity of static instructions
and re-writes dynamic ones, and (ii) a custom linker script
that maintains the required memory layout and resolves the
addresses of valid TCM’s entry points. The instrumenter mod-
ule is placed between the compiler and assembler, targeting
assembly instructions. During instrumentation, all instruc-
tions with a static addressing mode are left untouched as they
are checked at load-time by the TCM on the device itself.
All control-transfer and memory-access instructions with a
dynamic addressing mode are re-written as previously clari-
fied. Please note that Adv cannot write hand-crafted assembly
instructions or use her own toolchain without being detected

Source

files

Source

files Compiler Assembler LinkerInstrumenter

Source
files

Executable
file

Modified Toolchain

Reject and virtualise
unsafe instructions,

add NOP slides

Modified
linker script

Deployer

Add metadata

.elf

LoaderVerifier

MCU

Reject app with
unsafe instructions

Image
receiverExecute

Reject app with
unsafe memory map

.c /.h /.s

Enforces modified
memory map

Figure 3: PISTIS-enabled Compiler Toolchain.

by the TCM. Application developers can use the PISTIS-
enabled toolchain with the same ease of use as any other
toolchain. No extra action is needed as all required steps are
performed transparently. Furthermore, developers can simply
allow their software to interact with the TCM by invoking any
of its valid entry points.

Virtual Instructions. Virtual instructions are part of the
TCM. They represent a safe replacement to some dynamic
unsafe instructions, maintaining the same functionality and
adhering to the aforementioned AP. This allows the TCM to
verify the safety of the intended operation at runtime before
executing the corresponding instruction.

Listing 1 shows an example of an unsafe dynamic CALL
instruction that tries to jump to an address held by a register.
Such an address is only known at runtime. When compiling
with the PISTIS-enabled toolchain, such an instruction is
replaced by a sequence of instructions shown in Listing 2.
The main purpose of these instructions is to safely invoke
an equivalent safe routine inside the TCM. This routine will
check the validity of the target address before jumping to it.
The instructions of such a routine are shown in Listing 3.

...
CALL R10 //Dynamic call to an address in a register

Listing 1: An example of a dynamic unsafe CALL instruction.

...
DINT // Disable interrupts to ensure atomicity
MOV R10, R6 // copy target address to R6
CALL #safe_call // Call to a TCM’s safe virt. routine
...

Listing 2: A safe equivalent virtualization to the CALL
instruction in Listing 1.

...
safe_call:

CMP #topInstrMem, R6 // Check upper boundary
JHS .stopExecution // MCU reset if AP is violated
CMP #btmInstrMem, R6 // Check bottom boundary
JL .stopExecution // MCU reset if AP is violated
EINT //Enable interrupts after passing all checks.
BR R6 // Jump to original destination

Listing 3: An example of a safe virtual function. safe_call
checks the validity of the original destination before jumping.

4.2.2 Memory Isolation: Supported Operations

Direct Memory Access (DMA). DMA is a crucial feature
that enables direct access to the memory without CPU inter-
vention, yielding faster and efficient data transfer between the
main memory and other external modules or I/O peripherals.
However, DMA is rarely supported by TEEs since it allows
bypassing the CPU-controlled access control mechanisms.
Notable is that DMA operations in simple embedded sys-
tems are always preceded by a CPU-controlled initialization
phase that entails writing some metadata, e.g. source and des-
tination addresses, to some specific MMIO registers. Upon
confirmation from the CPU, the DMA controller can exe-
cute independently to complete the entire operation. PISTIS
is designed to support safe DMA operations by supervising
the initialization phase. First, the instrumenter plugin in the
PISTIS-enabled toolchain is configured to instrument the
write instructions to the DMA-dedicated MMIO registers.
Second, the Loader/Verifier module in the TCM is extended
to check the existence of safe equivalents to such instructions
by means of valid hyper-calls. Thus, safe DMA transfers can
be guaranteed in a similar way to the control-transfer instruc-
tions, enabling execution if both the source and destination
addresses are valid w.r.t. the aforementioned AP.

Interrupts. Interrupts enable the preemption of the normal
application flow to execute user-defined functions, called In-
terrupt Service Routines (ISRs). These routines are fetched
by the CPU depending on the Interrupt Vector Table (IVT), a
priority-ordered list containing entry points to all defined ISRs.
Supporting interrupt operations is important for many safety-
critical application scenarios. Therefore, PISTIS supports
preemptive execution of TCM’s software modules except for
virtual functions (as shown in Listing 3) as they are very small
(each contains less than 10 instructions) and it is important
for the security to execute them atomically.

To enable safe interruption, PISTIS supports a secure con-
text switching mechanism through a chain of function-calls.
To do so, PISTIS considers duplicating the IVT and mov-
ing both versions into its core memory (the TCM memory).
All entry points inside the original IVT are overwritten to
point to a unified secure ISR that is maintained inside the
TCM memory as well. When invoked, this ISR backs up the
MCU state to a fixed safe memory location. It also clears
any sensitive data that is accessible by the untrusted software,
e.g. contents inside registers. It then triggers an IVT lookup
in the other non-modified version of the IVT to execute the
target ISR by the interrupt operation. In principle, any ISR
represents a set of instructions that is included as a part of the
deployed binary image. Thus it can be instrumented (during
compilation) and verified by the TCM at load-time. PISTIS
instrumentation also adds a call to a virtual function (stored
in the TCM memory) at the end of each ISR. When executed,
this function safely restores the CPU state. Please note that
the modified linker script in the PISTIS-enabled toolchain

holds the new address of the modified IVT to maintain the
intended functionality of compiled applications.

4.2.3 Memory Isolation: Variable Length Instructions

The Von Neumann architecture supports a variable-length in-
struction set, i.e. some instructions can be of variable lengths,
holding one or more words. Adv-s can maliciously leverage
this feature to arbitrarily execute code and bypass the memory
protection enforced by PISTIS. In other words, some benign-
like instructions can behave maliciously by jumping into the
middle of a multi-word instruction, located in the insecure
memory zone. The target location can hold a value that could
be executed as an instruction, allowing for illegal access to the
protected memory area. Therefore, it is crucial for PISTIS to
only allow jumping to verified instructions. While the TCM
can easily check static jumps at load-time, a similar runtime
check of dynamic jumps incurs a high runtime overhead.

To tackle this issue, we extend PISTIS’s memory isolation
design in two directions. First, we extend the functionality of
the instrumenter plugin (in the PISTIS-enabled toolchain) to
insert a special instruction, called instruction canary, before
any valid address that can be a target for a potential jump. This
instruction will be in the form of a NOP slide: a sequence
of two NOP instructions. Given that our modification to the
toolchain limits the number of dynamic jump instructions
when possible, only a few NOP slides are inserted in each
application. Second, the TCM is configured to take such NOP
slides into account when virtualising jump instructions.When
a dynamic jump executes at runtime, the corresponding vir-
tual safe routine inside the TCM will check whether a NOP
slide precedes the target address. If so, the jump is valid (i.e.
the jump target is a permitted address inside the insecure
memory area). Otherwise, an MCU reset is performed as a
consequence of an invalid target address.

Considering an implementation for the MSP430 architec-
ture, Figure 4 shows a snippet code, highlighting the working
mechanism of the two-NOP canary. Please note that PISTIS
does not enforce control flow integrity. Nevertheless, it guaran-
tees that diverting control flow does not break the maintained
memory isolation property.

4.2.4 Security Services

Leveraging memory isolation, PISTIS features two important
security services, namely R A and secure code update. No-
table is that the design of other security services, e.g. secure
erasure, can be easily supported in PISTIS.

Remote Attestation (R A). Considering that the TCM
memory is neither writable nor readable, we leverage it to
design an R A service. To do so, a secret key (that is pre-
shared with the verifier) and an integrity verification function
(based on MACs) are installed in the TCM memory. The first
instruction of this function is considered a valid entry point
to PISTIS. Whenever an attestation request is received, this
function computes a digest (MAC value) of the entire memory

MOV #0x4303, &0x4303 //Write operation

MOVX.W #0x12030, &0x4303 //Write operation

NOP //Nop operation

CALL #0x44FF //Call routine

NOP NOP //Inserted by PISTIS

0x40B2 0x4303 0x4303

0x18C0 0x40B2 0x2030 0x4303

0x4303

0x12B0 0x44FF

0x4303 0x4303

uncorrupted stack

// 0x44FF routine
....
....
safe_return

NOP instr.NOP instr.

NOP instr.NOP instr.

NOP instr.

corrupted stack

Assembly source code Binary source code

I

II

III

Figure 4: Binary code (right) of the assembly source code (left) has 3 NOP slides: a legitimate slide III after a CALL statement

and two accidental slides I and II in the middle of two instructions. III is inserted by PISTIS. However, I and II are either
maliciously inserted or accidentally derived from combinations of opcodes and operands. The safe_return virtual function
only allows returning to a location with a slide. In case of a corrupted stack, the control flow can at most be diverted to another
location containing an accidental slide. However, the instruction executed after the slide will always be safe since verified.

and then sends it back to the verifier for verification. Either a
nonce or a time-stamp can be used to avoid replay attacks. Our
R A is similar to SIMPLE [3]. However, it has the advantage
of being interruptible as explained in Section 4.2.2.

Secure Code Update. We also extended the TCM to in-
clude a secure code update service that complies with SUIT
[28], an IETF standard for software updates on IoT devices
that requires maintaining authenticity, integrity, and confiden-
tiality of the deployed software. By extending the crypto-
graphic module of the TCM with a decryption function, our
secure code update mechanism meets the above requirements.
Considering a pre-shared secret key, the verifier has to send
the software image encrypted along with a MAC value. The
image will be deployed if it is decrypted and verified (in terms
of matching MAC values and checking the compliance w.r.t.
the AP of PISTIS) successfully.

5 Formalization

Formally verifying both the design correctness and imple-
mentation are important to provide strong security guarantees
w.r.t. the aforementioned threat model (Section 4.1). Given
that verifying the implementation is platform-dependent and
requires continuous efforts with each software update to the
PISTIS code, we leave it as future work. We rather focus
on verifying the correctness of the design as it is platform-
independent and gives more trustworthiness to the proposed
solution.

In order to formalize the PISTIS design and memory map
layout described in Figure 2, and prove it preserves the mem-
ory isolation, we need first to introduce some basic concepts.
Let us assume for simplicity that we have a memory M that
contains the code and where data can also be stored, and that
there are a finite number of registers for the program counter
PC, the stack pointer SP, and for intermediate results (e.g. Rj
for some j). Moreover, let us also assume there is an inter-
rupt vector table (IVT) that contains the addresses of the first
instruction of the interrupt service routines (ISRs).

Any application can be thought as composed of sequences
and combinations of the following primitive instructions:
Definition 1 (Primitive (unsafe) instructions). The set of
primitive (unsafe) instructions is the following (we assume
the address i is a valid address for the memory M):
• Read(M,i) that reads the content of memory M at address i:

it denotes M[i];
• Write(M,i,V) that writes V in memory M at address i: it

denotes M[i] =V ;
• Goto(M,i) that modifies the program counter PC to contain

the address i of the given memory M: it denotes PC = i;
• End that terminates the execution of the entire application;
• Primitive operations (e.g. and, add, comparison) operating on

registers/constants, and assignment (=) to a register.
An application P is a sequence and combination of the above
primitive instructions, together with the IVT table specifying
the addresses of the interrupt service routines.

We can safely assume that all the instructions of a typical
MCU can be written in terms of these basic primitives. Let
us consider for instance some instructions taken from the
MSP430 MCU’s family:
• CALL funcname: the execution of this instruction stores in

the stack (in the memory) the current PC, modifying the
SP to create space for storing the PC, and then modifies the
PC to point to the address corresponding to funcname in the
memory. Thus it corresponds to SP = SP-1, to create space
in the stack, followed by Write(M,SP,PC), to write the PC in
the stack, followed by Goto(M,funcname) to update the PC and
continue the execution from address funcname.

• RET: corresponds to R = Read(M,SP) followed by SP = SP+1,
and finally Goto(M,R), using the value stored in register R.

The primitive instructions also allow the modelling of more
complex instructions like PUSH and POP in a very similar fash-
ion, as well as different addressing modes (e.g. indexed,
symbolic, indirect, absolute as for instance supported by the
MSP430 MCU’s family). For instance,
• MOV 0x22(R3), 0x10(R4) corresponds to Write(M,0x10 + R4,

Read(M, 0x22 + R3));

• ADD 0x22(R3), 0x10(R4) corresponds to Write(M, 0x10 +

R4, Read(M, 0x22 + R3)+ Read(M, 0x10 + R4));
• MOV @R4, &0x3000 corresponds to Write(M, 0x3000, Read(M,

R4));
• MOV 0x22, &0x3000 corresponds to Write(M, 0x3000,

Read(M, PC + 0x22)).
Given the above basic concepts, to proceed in the formal-

ization of the PISTIS design, the memory map layout de-
scribed in Figure 2 (right), and the access policy AP (for read-
ing, writing, and jumping), we need to: i) refine the memory
M distinguishing between the persistent memory (MP), the
volatile memory (MV), and the memory mapped IO (MMIO)6;
ii) explicitly introduce the finite set EnPo = { i : word[N] }
of addresses for the PISTIS core instruction area as speci-
fied by the access policy; iii) and finally introduce the VIV T:
array [K] of word[N] - the interrupt vector IVT of size K.
Moreover, we also need:
• utcb, utce - start and end addresses of the PISTIS core;
• aimb, aime - start and end addresses of the App Instruction

Memory;
• aromb, arome - start and end addresses of the App Read-

Only Memory;
• utdmb, utdme - start and end addresses of the PISTIS Data

Memory;
• admb, adme - start and end addresses of the App Data

memory;
• mmiob, mmioe - start and end addresses of the MMIO Reg-

isters.
The following constraint formalizes the memory layout and

the non-overlapping of the different memory areas.

0N < utcb < utce < aimb < aime < aromb < arome ≤ 2N−1
N

0N ≤ utdmb < utdme < admb < adme ≤ 2N−1
N

0N < mmiob < mmioe ≤ 2N−1
N

To model the constraint that the execution of PISTIS core
instructions only happens through pre-defined Entry Points,
we need a predicate EP(i) which is true iff the address i is
utcb ≤ i ≤ utce and i is an Entry Point address EPj ∈ EnPo
for the PISTIS core memory.

EP(i)↔ ((utcb ≤ i≤ utce)∧ (
∨

EPj∈EnPo i = EPj))

Then, to formalize the read/write/jump policies as those
enforced in the Figure 2 (right), we define the following terms:

APR(i,M)↔

(M = MP→ (aromb ≤ i≤ arome)) ∧
(M = MV → (admb ≤ i≤ adme)) ∧
(M = MMIO→ (mmiob ≤ i≤ mmioe))

6Without loss of generality, we consider each memory as an array of

size 2N of bit vectors of size N (i.e. array word[N] of word[N]), although
only a small part might be used. The addresses are bit vectors of size N
(i.e. word[N]. We use 0N to represent the unsigned word of size N corre-
sponding to value 0, similarly 2N−1

N to represent the unsigned word of size N
corresponding to value 2N−1.

APW (i,M)↔
(
(M = MV → (admb ≤ i≤ adme)) ∧
(M = MMIO→ (mmiob ≤ i≤ mmioe))

)
APX (i,M)↔

(
(M = MP)∧ (EP(i)∨ (aimb ≤ i≤ aime))

)
Moreover, we need also to ensure that each element of the

IVT table is a valid address w.r.t. the access policy, so that:

APIV T (M)↔∀i.APX (VIV T [i],M)

We denote with AP the access policy resulting from the
memory layout, from the read/write/jump constraints, and
from the fact that each i ∈ EnPo is such that utcb ≤ i≤ utce.
Given the above formalizations, we can formally define when
an application preserves memory isolation w.r.t. a given ac-
cess policy AP.

Definition 2. Given a memory layout and an access policy
AP, an application P preserves memory isolation w.r.t. the
access policiy AP iff any of its read/write/jump instructions
in all possible executions is such that the addresses used in
such instructions satisfy the given access policy AP.

We remark that the primitive instructions in Def. 1 do not
enforce particular restrictions on the addresses where to read-
/write or jump (it suffices them being valid addresses). As thor-
oughly discussed, if the addresses of the application are con-
stant, then checking whether the application preserves mem-
ory isolation is trivial. Indeed, it suffices to check whether
each address in the application satisfies AP. However, as
noted, in many cases such addresses are results of the ex-
ecution of the application itself, thus the check can only be
performed during the execution of the application.

To enforce memory isolation, for a given access policy AP,
we can define safe variants of the read/write/jump instructions
that will guarantee at runtime that no violation of the access
policy occurs.

Definition 3 (Safe primitive instructions). Given an access
policy AP, the safe read/write/jump primitive instructions
w.r.t. AP are:
• Readsf(M,i) that reads the content of memory M at address

i if address i is such that read policy APR(i,M) holds, oth-
erwise it ends execution;

• Writesf(M,i,V) that writes V in memory M at address i if ad-
dress i is such that write policy APW (i,M) holds, otherwise
it ends execution;

• Gotosf(M,i) that modifies the program counter PC to contain
the address i if address i is such that branch access policy
APX (i,M) holds, otherwise it ends execution.

The following theorem holds for the safe primitive instruc-
tions defined as above.

Theorem 1. Given an access policy AP, the safe primitive
instructions Readsf, Writesf, and Gotosf w.r.t. such AP preserve
memory isolation and do not allow to violate AP.

The proof directly follows from the definition of the safe
primitive instructions w.r.t. an AP (see Appendix C.2 for
the proof). If AP is violated, then each instruction results in
ending the execution of the entire application, thus preventing
access to memory areas forbidden by AP. On the other hand,
if the address satisfies AP, instruction specific access to the
specified memory location is allowed.

Given this, we can prove that any application P such
that i) APIV T (M) holds (i.e. each address i ∈ VIV T satisfies
APX (M, i)), and ii) uses only the safe primitive instructions,
preserves memory isolation.

Theorem 2. Let AP be an access policy, P be an application
specified with the set of (unsafe) primitive instructions. Let
Psf be the application obtained from P by replacing each of
the unsafe primitive instructions with the corresponding safe
primitive instruction. If APIV T (M) holds, then Psf preserves
memory isolation, preventing accessing memory addresses or
executing code that violates AP.

The proof is by induction on the structure of the applica-
tion Psf leveraging on Theorem 1 (see Appendix C.1 for the
proof). We remark that enforcing each element of the IVT to
satisfy AP ensures that also the interrupt routines are located
in memory locations allowed by AP. This requirement can
be relaxed by not only rewriting the unsafe read/write/jump
instructions with the corresponding safe ones, but also adding
for each interrupt routine a new wrapping interrupt routine
and modifying the IVT to point to the respective wrapping
interrupt routine. Each wrapping interrupt routine first checks
that the target address is a safe one, and if so, it does the
jump to the original address in the non-modified IVT copy.
Otherwise, it ends the execution.

6 Implementation
A prototype of PISTIS is implemented for the MSP430 ar-
chitecture from Texas Instrument [17]. MSP430 MCUs are
based on a Von Neumann memory model, and they are widely
used in many critical application domains. For instance, they
are employed in implantable medical devices (IMDs), e.g.
pacemakers, that have support for standard interfaces for wire-
less communication [16, 21, 36]. They also have been a tar-
get for many research prototypes, including SANCUS [29],
SMART [18], and VRASED [30].

In particular, we implemented PISTIS on top of the
MSP430F5529 MCU, which features ∼132 kB of FLASH,
∼8 kB of SRAM, and up to an 8 MHz of CPU speed using
internal oscillators. We used HMAC-SHA256 and ChaCha20
from the HACL library [44] to implement R A and secure
code update services respectively.

6.1 PISTIS in Numbers
Our PISTIS implementation is two-fold: we provide a
software-based TCM for MSP430F5529 MCU and a GCC
compiler plugin that produces PISTIS-compliant binary im-
ages. The TCM is modular in the sense that it is composed of

R
X

Persistent Memory

W/R

Volatile Memory MMIO

App
Data

Memory

App
Instruction
memory

App
Read-Only
memory

public
registers

Entry
Points

PISTIS
Data

Memory

Protected Code

PISTIS
Secure
Storage

PISTIS Core

RA

Secure
Update

Loader
Verifier

Virtual
functions

IVTsCrypto
keys

protected
registers

Crypto
module

Figure 5: PISTIS memory map on MSP430 architecture.

a core and various TAs that can be deployed independently
by adjusting some configurations in a custom Makefile which
serves as an API. The TCM core, including a boot code, Load-
er/Verifier, virtual functions, the interrupt context switch, and
some helper functions, is composed of 810 lines of C code
along with 703 lines of Assembly. The cryptographic primi-
tives used, namely HACL HMAC-SHA2 and ChaCha2, com-
prise 944 lines of code, extracted from the HACL library [44].
Leveraging these primitives, R A implementation includes 78
lines of code, whereas the secure code update mechanism is
composed of 220 lines of C code. The MSP430 architecture
features 60 main instructions, of which, we had to instrument
24 instructions to maintain strong isolation guarantees (fur-
ther details can be found in Appendix A). We provide an
API, comprising a 102-line Makefile in addition to an ex-
tended MSP430F5529 linker script with 257 lines, that fully
automates the deployment of the TCM on the target device.
Furthermore, our GCC plugin serves as another API to fully
automate the production of PISTIS-compliant binary images.
It comprises a 71-line Makefile that transparently modifies
15 lines of the original linker script of applications and exe-
cutes 745 lines of python scripts to re-write instructions and
embed meta-data. Furthermore, the user API includes a 236-
line python script that automates the deployment of produced
binaries using serial communication.

6.2 Memory Map in Practice
Section 4 elaborated on the design rationale of enforcing
memory isolation between software modules. As a conse-
quence, Figure 2 visualized the resulted memory map w.r.t.
the employed access policy (AP). Given that the AP is mainly
concerned with read, write, and execute rights, the number
of application instructions requiring virtualisation might vary
depending on the application nature. To optimise PISTIS
for our target MSP430 architecture, and thus reduce the num-
ber of virtualised instructions, we follow a slightly different
memory map that, nevertheless, has equivalent security guar-
antees to the one shown in Figure 2. The new memory map,
visualized in Figure 5, introduces a secure storage segment,
where all the sensitive data, including cryptographic keys, are

stored. This memory part is only accessible by the PISTIS
core, relaxing the application access policy as follows: (i)
Read access is extended to cover the PISTIS Core, App In-
struction memory, and PISTIS Data memory; and (ii) Write
access is extended to cover PISTIS Data memory.

While our general design solely relies on the virtualisation
and verification of the application code to ensure compliance
with the AP of PISTIS, our implementation leverages two
existing commodity hardware features in MSP430 MCUs: the
Bootloader Section (BSL) and the Flash memory controller.
Further details follow.

6.2.1 Secure Storage using BSL

The BSL is a small memory segment, located as a part of
the Flash memory, whose confidentiality and integrity are
hardware-enforced by the MCU. It triggers a reset at any ille-
gal access. A legal access occurs through a few entry points,
i.e. the Z-area, which can be configured during the physical
deployment of PISTIS. Leveraging its intrinsic properties,
we customise part of this segment to form the PISTIS secure
storage, thus blocking any access by the untrusted application.
The Loader/Verifier module in PISTIS is only required to
check that the application instructions do not jump to the Z-
area. Only the TCM can freely access the Z-area. This allows
PISTIS to safely enable read access to the rest of the Flash
memory without breaking the security.

6.2.2 Integrity of PISTIS Core

While the untrusted software is allowed to read any part of
PISTIS core memory, it must not be allowed to have write
access to it in order to preserve the integrity of the TCM. One
possibility is to follow the guidelines of our design and virtu-
alise all write instructions. However, the MSP430 architecture
offers a hardware feature that allows achieving the same goal
with better performance. The Flash memory controller regu-
lates all write accesses over the Flash. It must be set up via
custom memory-mapped registers that enable (unlock) or dis-
able (lock) writing to the Flash according to their loaded value.
In particular, writing to the Flash will only have an effect if
there is an instruction that unlocks the Flash controller, i.e.
by writing a specific pre-defined byte sequence (password)
into one of the controller registers. Thus, PISTIS prevents
the untrusted application from writing to any part of the Flash
memory by checking that none of its instructions try to un-
lock the Flash memory controller. This reduces the number
of instructions that have to be virtualised and fully preserves
the integrity of PISTIS core. Please note that the volatile
Data memory (SRAM) is not controlled by the Flash memory
controller. Therefore, to reduce the performance overhead,
PISTIS allows applications to read from or write to any part
of it. PISTIS rather prevents the leakage of any sensitive data
by clearing all shared memory areas before any context switch
from a privileged to a non-privileged mode.

7 Experimental Evaluation

The variety of embedded applications along with the lack of
suitable benchmarks make the evaluation of a generic trusted
computing architecture such as PISTIS non-trivial, requiring
a careful selection of a representative set of applications that
would reflect the overhead incurred by PISTIS from various
perspectives.

We chose a set of 13 applications, considering two main
factors: (i) the compatibility with our target experimental plat-
form (MSP430F5529LP), and (ii) making a good balance
between the more CPU-intensive and the more IO-intensive
tasks that are typical for an embedded device. The source and
main functionalities of each application are described in Ap-
pendix B. Our evaluation metrics include: memory footprint,
execution time, deployment time, and power consumption.

NOTE. Unless otherwise specified, applications are com-
piled using -O3 optimization flag and 8 MHz as a CPU speed.

7.1 Memory Footprint
Increased Size of Instrumented Applications. Needless
to say that instrumentation adds extra bytes to the size of
each application due to inserting extra instructions, e.g. NOP
slides, virtual calls, etc.

Considering a GCC toolchain with a -O3 optimization flag
(that further optimizes the execution time), Table 2 shows the
size differences (in bytes) between binaries compiled using a
standard GCC toolchain (Orig.), and a PISTIS-enabled GCC
toolchain (Mod.) from two perspectives:

• The first two columns compare the sizes of the produced
ELF (Executable and Linkable Format) files. ELF is a
common standard file format for executable files, object
code, and shared libraries, which tells the bootloader
how to parse the received image, extract the real binary,
and deploy it. Therefore, the size of ELF binary images
is larger than native binaries since they include many
extra meta-data. In the case of PISTIS, our toolchain
customizes the relevant included meta-data, resulting in
the reduction of the size of ELF binaries by an average
of 77.6% as shown in Table 2. Please note that in embed-
ded systems, applications are compiled statically as the
entire binary image is considered self-contained with no
need for dynamically-linked libraries. Therefore, all the
libraries used in any application can be compiled using
the PISTIS’s compiler framework.

• The other two columns in Table 2 compare the real
binary sizes of both standard and instrumented binary
images when deployed. In other words, the recorded
sizes represent the amount of consumed Flash memory
in bytes. The increase of binary sizes when considering
PISTIS averages at 41.17%.

PISTIS memory footprint. As shown in Figure 5,
PISTIS persistently occupies part of the Flash memory. The
size of the entire PISTIS software is 19.5 kB (of which 11 kB

Table 2: ELF Binary size and memory footprint comparison
between original applications (Orig.) and PISTIS-enabled
ones (Mod.).

App ELF Binary Memory Footprint
Orig. Mod. Orig. Mod.

SerialMSP 3884 B 412 B (-89.39%) 302 B 356 B (+17.88%)
CopyDMA 5764 B 694 B (-87.96%) 444 B 628 B (+41.44%)
XorCypher 5940 B 532 B (-91.04%) 247 B 475 B (+92.31%)
Bitcount 5664 B 1602 B (-71.72%) 3684 B 5462 B (+48.26%)
SHA-256 9448 B 5518 B (-41.60%) 1376 B 1546 B (+12.35%)
ML-acc 16616 B 9512 B (-42.75%) 6174 B 9452 B (+53.09%)
PrimeFactor 33200 B 3650 B (-89.01%) 2192 B 3286 B (+49.91%)
32bitMath 6036 B 822 B (-86.38%) 522 B 766 B (+46.74%)
16bitSwitch 3940 B 182 B (-95.38%) 102 B 126 B (+23.53%)
8bitMatrix 4640 B 916 B (-80.26%) 844 B 860 B (+1.90%)
MatrixMul 4324 B 572 B (-86.77%) 500 B 516 B (+3.20%)
firFilter 24912 B 5486 B (-77.98%) 3312 B 5430 B (+63.95%)
dhrystone 7840 B 2468 B (-68.52%) 1335 B 2411 B (+80.60%)
Average -77.60% +41.17%

for the TCM core), amounting to 14.7 % of the available Flash
memory (∼132 kB) on the target MCU.

7.2 Deployment time
In PISTIS, deploying any application occurs in two phases.
First, the binary image is transferred as a stream of packets,
starting with some meta-data, i.e. size, Cyclic Redundancy
Check (CRC) value, etc. Second, the TCM’s Loader/verifier
module is executed to verify both the integrity of the binary
image w.r.t. the received CRC value and the safety of its in-
structions w.r.t. the AP of PISTIS. If both checks are passed,
the control is then given to the first instruction of this applica-
tion, indicating a successful deployment.

Considering a serial UART communication medium with a
speed of 9600 bps, Table 3 compares the deployment overhead
incurred in each phase when deploying applications using ei-
ther a standard compilation framework or the PISTIS one.
Due to the customized ELF binary format used by PISTIS
that further optimizes the size, the transfer time is faster, reduc-
ing the overhead by an average of no less than 75.4 %. On the
contrary, PISTIS increases the verification time by an average
of around 37.56 % due to the load-time verification mecha-
nism employed. Nevertheless, the total deployment time when
considering PISTIS is less than the time consumed in normal
deployment procedures, averaging at −73.63 %.

7.2.1 Secure Deployment Overhead

So far, the description above did not consider the proper-
ties of the secure code update mechanism recommended by
SUIT [28]. It only took into account the validation of a CRC32
value. Our secure deployment mechanism entails encrypting
the target binary image at the transmitter side and decrypting
it at the receiver side. This is in addition to including a MAC
value that reflects the integrity status of the image during
transmission. Comparing to the non-secure deployment mech-
anism in PISTIS, the secure code update slightly increases
the transfer-time overhead due to including some extra bytes

Table 3: Deployment (code update) time overhead when
considering PISTIS (Mod.) compared to normal procedures
(Orig.).

App Transfer Verification TotalOrig. Mod. Orig. Mod.
SerialMSP 3242 ms 347 ms 51 ms 62 ms -87.58 %
CopyDMA 4809 ms 585 ms 92 ms 111 ms -85.80 %
XorCypher 4957 ms 448 ms 42 ms 69 ms -89.66 %
Bitcount 4727 ms 1340 ms 646 ms 913 ms -58.07 %
SHA-256 7879 ms 4605 ms 212 ms 261 ms -39.86 %
ML-acc 13849 ms 7930 ms 1534 ms 2109 ms -34.74 %
PrimeFactor 27670 ms 3049 ms 597 ms 716 ms -86.68 %
32bitMath 5035 ms 689 ms 113 ms 135 ms -83.99 %
16bitSwitch 3289 ms 157 ms 29 ms 34 ms -94.24 %
8bitMatrix 3871 ms 771 ms 172 ms 189 ms -76.26 %
MatrixMul 3608 ms 482 ms 98 ms 196 ms -81.71 %
firFilter 20767 ms 4577 ms 633 ms 910 ms -74.36 %
dhrystone 6537 ms 2059 ms 210 ms 356 ms -64.21 %
Average -77.52 % +37.56 % -73.63 %

as a MAC value. In particular, 28 bytes are added to each
binary image as a result of replacing CRC32 with an HMAC-
SHA256 cryptographic primitive, increasing the overhead
from −77.52 % to −77.09 %. Furthermore, the decryption
and MAC verification increase the verification time overhead
from 37.56 % to 78.82 %, resulting in an increase of the over-
all deployment time overhead from −73.63 % to −71.71 %.
Nevertheless, the secure code update mechanism of PISTIS
still outperforms the normal deployment procedure.

7.3 Execution time

In order to estimate the runtime overhead that PISTIS im-
poses on the normal execution of applications, we measured
the difference between the time it takes to execute our test
applications with and without PISTIS. Measurements are
recorded at a CPU speed of 1 MHz, considering an average of
5 different test runs for each one. Table 4 shows that PISTIS
increases the execution time by an average of 52.72 %. The
maximum runtime overhead recorded is 127.32 %, whereas
the minimum one is 0.17 %. The high heterogeneity of results
is due to the nature of applications. For instance, memory-
and CPU-intensive applications, e.g. CopyDMA and ML-acc,
require virtualizing and verifying many instructions at run-
time, incurring high runtime overhead. On the contrary, the
I/O-intensive applications, e.g. SerialMSP, contain few un-
safe instructions to virtualize, resulting in a slight increase
of the execution time. It is important to mention that this is
an acceptable price to pay for accommodating a full-featured
trusted computing architecture without any hardware mod-
ification. We also note that using other optimization flags
rather than -O3 might optimize the execution time for some
applications. For instance, using -O2 optimization flag with
the PrimeFactor application reduces the runtime overhead by
9 %, compared to the -O3 version. Finally, we note that our
R A consumes 7.4 seconds when computing MAC for a 64 kB
memory block using the default clock speed (8 MHz).

(a) SerialMSP (b) SHA-256 (c) CopyDMA

Figure 6: An analysis of the power consumption of three different exemplar applications.

Table 4: Comparison between the execution time of origi-
nal applications (Orig.) and the execution time of PISTIS-
compliant ones (Mod.).

App Normal Execution (Orig.) PISTIS-enabled Execution (Mod.)
SerialMSP 334.1976 ms 335.325 ms (+0.34%)
CopyDMA 118.4960 ms 238.656 ms (+101.40%)
XorCypher 245.6500 ms 446.104 ms (+81.60%)
Bitcount 5.7520 ms 5.786 ms (+0.59%)
SHA-256 49.1888 ms 89.046 ms (+81.03%)
ML-acc 1456.9092 ms 3311.829 ms (+127.32%)
PrimeFactor 4.0810 ms 5.938 ms (+45.50%)
32bitMath 0.9310 ms 1.294 ms (+38.99%)
16bitSwitch 0.0050 ms 0.006 ms (+20.00%)
8bitMatrix 0.5760 ms 0.577 ms (+0.17%)
MatrixMul 0.3430 ms 0.344 ms (+0.29%)
firFilter 1093.5059 ms 2359.619 ms (+115.78%)
dhrystone 102.9200 ms 177.336 ms (+72.30%)
Average +52.72%

7.4 Power consumption
IoT devices are often used in areas where a connection to a
power line is simply unfeasible or expensive. Therefore, such
devices depend on batteries as their main power source, re-
quiring optimized energy usage to reduce maintenance costs.

Figure 6 compares the amount of consumed energy by ap-
plications compiled with and without PISTIS. Three differ-
ent types of applications are considered: I/O-, memory-, and
CPU-intensive. Considering a 3.0 V/3 Ah battery, Figure 6
shows the impact on battery lifetime when considering differ-
ent execution rates. In the worst-case scenario, our exemplar
applications, namely SerialMSP, SHA-256 and CopyDMA,
decrease the battery lifetime by −0.22 %, −14.81 %, and a
−28.69 % respectively, when running once a second. The bat-
tery lifetime degradation becomes lower than 0.01 % when
running the aforementioned applications at rate of once every
2 min, 42 min, and 120 min, respectively. We also note that
the battery would last for no less than 1 year when perform-
ing our R A mechanism once an hour, considering any of the
sample applications executing once every 2 minutes.

7.5 PISTIS in Practice
The reported runtime overhead might seem not acceptable in
some scenarios. However, we note that this overhead does not

reflect the complete image in real-world scenarios. To do so,
we emulated a real case, in which we deployed PISTIS in an
MSP430-based device equipped with a gyroscope sensor and
a low-power IEEE 802.15.4 compliant radio. The main task
of the device was to obtain 10 different measurements from
the gyroscope (x,y,z coordinates), encrypt them, transmit the
encrypted data over the network to a host controller, and wait
for an acknowledgement. By measuring the time required to
perform this entire set of actions (that constitutes the job of
the IoT device), we noticed that out of a total of 276 ms as a
complete execution time, only 6.02 % of the time was occu-
pied by the software that should be instrumented by PISTIS.
The majority of the time (93.98 %) was consumed by the
network layer (that is hosted in another MCU and interfaced
with through peripherals). This means that if PISTIS incurs
100 % performance overhead on top of the normal execution
time of the corresponding software module, the overall per-
formance overhead on top of the total execution time of the
entire job will be not more than 9.5 %. Therefore, we believe
that the runtime overhead incurred by PISTIS is reasonable
in practice.

8 Conclusion & Future Work

This paper introduced PISTIS, a pure-software trusted com-
puting architecture for low-end embedded devices. PISTIS
provides memory isolation and other security services such as
remote attestation and secure code update. It provides strong
security guarantees while supporting interrupts and DMA op-
erations. The correctness of the memory isolation design is
formally verified. As future work, we want to formally verify
the rest of the design of PISTIS architecture as well as its
implementation. We further plan to design and implement a
control flow attestation scheme on top of PISTIS.

Acknowledgments: The authors thank Prof. Thomas
Mayor for shepherding this work. They also thank the anony-
mous reviewers for the valuable feedback. This research was
partly supported by the EU-EIT Digital Project MCU Fortifier
2020-21395.

References

[1] Mahmoud Ammar and Bruno Crispo. Verify&Revive:
Secure Detection and Recovery of Compromised Low-
end Embedded Devices. In Proceedings of the 36th An-
nual Computer Security Applications Conference (AC-
SAC), 2020.

[2] Mahmoud Ammar, Bruno Crispo, Bart Jacobs, Danny
Hughes, and Wilfried Daniels. SµV—The Security Mi-
croVisor: A Formally-verified Software-based Security
Architecture for the Internet of Things. IEEE Transac-
tions on Dependable and Secure Computing, 16(5):885–
901, 2019.

[3] Mahmoud Ammar, Bruno Crispo, and Gene Tsudik.
SIMPLE: A Remote Attestation Approach for Resource-
constrained IoT devices. In 2020 ACM/IEEE 11th In-
ternational Conference on Cyber-Physical Systems (IC-
CPS), pages 247–258. IEEE, 2020.

[4] Mahmoud Ammar, Wilfried Daniels, Bruno Crispo, and
Danny Hughes. SPEED: Secure Provable Erasure for
Class-1 IoT Devices. In Proceedings of the Eighth
ACM Conference on Data and Application Security and
Privacy, pages 111–118, 2018.

[5] Manos Antonakakis, Tim April, Michael Bailey, Matt
Bernhard, Elie Bursztein, Jaime Cochran, Zakir Du-
rumeric, J Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, et al. Understanding the Mirai botnet. In 26th
USENIX security symposium, pages 1093–1110, 2017.

[6] ARM. TrustZone technology for Armv8-A. https:
//developer.arm.com/ip-products/security-ip/
trustzone/trustzone- for- cortex- a#armv8- a,
2011. [Online; accessed 10-November-2020].

[7] ARM. TrustZone technology for Armv8-M. https:
//developer.arm.com/ip-products/security-ip/
trustzone/trustzone-for-cortex-m, 2015. [On-
line; accessed 10-November-2020].

[8] Frederik Armknecht, Ahmad-Reza Sadeghi, Steffen
Schulz, and Christian Wachsmann. A security Frame-
work for the Analysis and Design of Software Attesta-
tion. In Proceedings of the 2013 ACM SIGSAC confer-
ence on Computer & communications security, pages
1–12, 2013.

[9] Authors. PISTIS Source Code . https://
github.com/CybersecurityUnitn/PISTIS.

[10] Ferdinand Brasser, Brahim El Mahjoub, Ahmad-Reza
Sadeghi, Christian Wachsmann, and Patrick Koeberl. Ty-
TAN: Tiny Trust Anchor for Tiny Devices. In Proceed-
ings of the 52nd Annual Design Automation Conference,
page 6, New York, New York, USA, jun 2015. ACM.

[11] Claude Castelluccia, Aurélien Francillon, Daniele Perito,
and Claudio Soriente. On the Difficulty of Software-
based Attestation of Embedded Devices. In Proceedings
of the 16th ACM conference on Computer and commu-
nications security, pages 400–409, 2009.

[12] Roberto Cavada, Alessandro Cimatti, Michele Dorigatti,
Alberto Griggio, Alessandro Mariotti, Andrea Micheli,
Sergio Mover, Marco Roveri, and Stefano Tonetta. The
nuXmv Symbolic Model Checker. In Armin Biere and
Roderick Bloem, editors, Computer Aided Verification -
26th International Conference, CAV 2014, Held as Part
of the Vienna Summer of Logic, VSL 2014, Vienna, Aus-
tria, July 18-22, 2014. Proceedings, volume 8559 of
Lecture Notes in Computer Science, pages 334–342.
Springer, 2014.

[13] Alessandro Cimatti, Raffaele Corvino, Armando Laz-
zaro, Iman Narasamdya, Tiziana Rizzo, Marco Roveri,
Angela Sanseviero, and Andrei Tchaltsev. Formal Ver-
ification and Validation of ERTMS Industrial Railway
Train Spacing System. In P. Madhusudan and Sanjit A.
Seshia, editors, Computer Aided Verification - 24th In-
ternational Conference, CAV 2012, Berkeley, CA, USA,
July 7-13, 2012 Proceedings, volume 7358 of Lecture
Notes in Computer Science, pages 378–393. Springer,
2012.

[14] Abraham A Clements, Naif Saleh Almakhdhub,
Khaled S Saab, Prashast Srivastava, Jinkyu Koo,
Saurabh Bagchi, and Mathias Payer. Protecting Bare-
metal Embedded Systems with Privilege Overlays. In
2017 IEEE Symposium on Security and Privacy (SP),
pages 289–303. IEEE, 2017.

[15] Victor Costan and Srinivas Devadas. Intel SGX Ex-
plained. IACR Cryptol. ePrint Arch., 2016(86):1–118,
2016.

[16] Dave Muoio. DA warns of Bluetooth Low Energy
vulnerability affecting connected medical devices.
https : / / www.mobihealthnews.com / news / fda -
warns- bluetooth- low- energy- vulnerability-
affecting - connected - medical - devices, 2020.
[Online; accessed 10-May-2021].

[17] John H Davies. MSP430 microcontroller basics. Else-
vier, 2008.

[18] Karim Eldefrawy, Gene Tsudik, Aurélien Francillon,
and Daniele Perito. SMART: Secure and Minimal Ar-
chitecture for (Establishing Dynamic) Root of Trust. In
19th Annual Network and Distributed System Security
Symposium (NDSS). The Internet Society, 2012.

[19] Maik Ender, Amir Moradi, and Christof Paar. The Un-
patchable Silicon: A Full Break of the Bitstream En-

https://developer.arm.com/ip-products/security-ip/trustzone/trustzone-for-cortex-a#armv8-a
https://developer.arm.com/ip-products/security-ip/trustzone/trustzone-for-cortex-a#armv8-a
https://developer.arm.com/ip-products/security-ip/trustzone/trustzone-for-cortex-a#armv8-a
https://developer.arm.com/ip-products/security-ip/trustzone/trustzone-for-cortex-m
https://developer.arm.com/ip-products/security-ip/trustzone/trustzone-for-cortex-m
https://developer.arm.com/ip-products/security-ip/trustzone/trustzone-for-cortex-m
https://github.com/CybersecurityUnitn/PISTIS
https://github.com/CybersecurityUnitn/PISTIS
https://www.mobihealthnews.com/news/fda-warns-bluetooth-low-energy-vulnerability-affecting-connected-medical-devices
https://www.mobihealthnews.com/news/fda-warns-bluetooth-low-energy-vulnerability-affecting-connected-medical-devices
https://www.mobihealthnews.com/news/fda-warns-bluetooth-low-energy-vulnerability-affecting-connected-medical-devices

cryption of Xilinx 7-Series FPGAs. In 29th USENIX
Security Symposium, pages 1803–1819, 2020.

[20] Taylor Hardin, Ryan Scott, Patrick Proctor, Josiah Hes-
ter, Jacob Sorber, and David Kotz. Application Memory
Isolation on Ultra-low-power MCUs. In USENIX An-
nual Technical Conference (ATC), pages 127–132, 2018.

[21] imec. The medical implants of the future: faster, smarter
and more connected. https://www.imec-int.com/
en/imec-magazine/imec-magazine-april-2020/
the-medical-implants-of-the-future-faster-
smarter-and-more-connected, 2020. [Online; ac-
cessed 10-May-2021].

[22] David Kaplan, Jeremy Powell, and Tom Woller. AMD
memory encryption. White paper, 2016.

[23] Patrick Koeberl, Steffen Schulz, Ahmad-Reza Sadeghi,
and Vijay Varadharajan. TrustLite: A Security Archi-
tecture for Tiny Embedded Devices. In Proceedings
of the 9th European Conference on Computer Systems,
page 14, New York, NY, USA, 2014. ACM.

[24] Ram Kumar, Eddie Kohler, and Mani Srivastava. Harbor:
Software-based Memory Protection for Sensor Nodes.
In Proceedings of the 6th international conference on
Information processing in sensor networks, pages 340–
349, 2007.

[25] Yanlin Li, Jonathan M. McCune, and Adrian Perrig.
SBAP: Software-Based Attestation for Peripherals. In
Proceedings of the 3rd International Conference on
Trust and Trustworthy Computing, pages 16–29, Berlin,
Heidelberg, 2010. Springer-Verlag.

[26] Zohar Manna and Amir Pnueli. The Temporal Logic
of Reactive and Concurrent Systems - specification.
Springer, 1992.

[27] Francesca Meneghello, Matteo Calore, Daniel Zuc-
chetto, Michele Polese, and Andrea Zanella. IoT: In-
ternet of threats? A survey of practical security vulner-
abilities in real IoT devices. IEEE Internet of Things
Journal, 6(5):8182–8201, 2019.

[28] Brendan Moran, Milosch Meriac, Hannes Tschofenig,
and David Brown. A Firmware Update Architecture for
Internet of Things Devices. Internet Engineering Task
Force, Internet-Draft, 2019.

[29] Job Noorman, Pieter Agten, Wilfried Daniels, Raoul
Strackx, Anthony Van Herrewege, Christophe Huygens,
Bart Preneel, Ingrid Verbauwhede, and Frank Piessens.
SANCUS: Low-cost trustworthy extensible networked
devices with a zero-software trusted computing base.
In 22nd USENIX Security Symposium, pages 479–498,
2013.

[30] Ivan De Oliveira Nunes, Karim Eldefrawy, Norrathep
Rattanavipanon, Michael Steiner, and Gene Tsudik.
VRASED: A verified hardware/software co-design for
remote attestation. In 28th USENIX Security Symposium,
pages 1429–1446, 2019.

[31] Phoronix. Intel MPX Support Is Dead With Linux
5.6. https://www.phoronix.com/scan.php?page=
news_item&px=Intel-MPX-Is-Dead, 2020. [Online;
accessed 10-May-2021].

[32] Srivaths Ravi, Anand Raghunathan, and Srimat Chakrad-
har. Tamper Resistance Mechanisms for Secure Embed-
ded Systems. In 17th International Conference on VLSI
Design. Proceedings., pages 605–611. IEEE, 2004.

[33] A Seshadri, A Perrig, L van Doorn, and P Khosla.
SWATT: Software-based Attestation for Embedded De-
vices. In Proceedings of the IEEE Symposium on Secu-
rity and Privacy, pages 272–282. IEEE, may 2004.

[34] Arvind Seshadri, Mark Luk, and Adrian Perrig. SAKE:
Software Attestation for Key Establishment in Sensor
Networks. In Distributed Computing in Sensor Sys-
tems, pages 372–385, Berlin, Heidelberg, 2008. Springer
Berlin Heidelberg.

[35] Arvind Seshadri, Mark Luk, Adrian Perrig, Leendert
van Doorn, and Pradeep Khosla. SCUBA: Secure code
update by attestation in sensor networks. In Proceedings
of the 5th ACM workshop on Wireless security, pages
85–94, 2006.

[36] Muhammad Ali Siddiqi, Angeliki-Agathi Tsintzira,
Georgios Digkas, Miltiadis G Siavvas, and Christos Stry-
dis. Adding Security to Implantable Medical Devices:
Can We Afford It? In EWSN, pages 67–78, 2021.

[37] T SPERRY. 386 VS 030-THE CROWDED FAST
LANE. DR DOBBS JOURNAL, 13(1):16, 1988.

[38] Gang Tan et al. Principles and Implementation Tech-
niques of Software-based Fault Isolation. Now Publish-
ers, 2017.

[39] Texas Instrument. MSP430 Competitive Benchmarking.
Application Report SLAA205B, 2006.

[40] Trusted Computing Group. TPM Main
Specification Level 2 Version 1.2. http :
/ / www.trustedcomputinggroup.org / tpm - main -
specification/, 2011. [Online; accessed 13-
February-2017].

[41] John Von Neumann. First Draft of a Report on the
EDVAC. IEEE Annals of the History of Computing,
15(4):27–75, 1993.

https://www.imec-int.com/en/imec-magazine/imec-magazine-april-2020/the-medical-implants-of-the-future-faster-smarter-and-more-connected
https://www.imec-int.com/en/imec-magazine/imec-magazine-april-2020/the-medical-implants-of-the-future-faster-smarter-and-more-connected
https://www.imec-int.com/en/imec-magazine/imec-magazine-april-2020/the-medical-implants-of-the-future-faster-smarter-and-more-connected
https://www.imec-int.com/en/imec-magazine/imec-magazine-april-2020/the-medical-implants-of-the-future-faster-smarter-and-more-connected
https://www.phoronix.com/scan.php?page=news_item&px=Intel-MPX-Is-Dead
https://www.phoronix.com/scan.php?page=news_item&px=Intel-MPX-Is-Dead
http://www.trustedcomputinggroup.org/tpm-main-specification/
http://www.trustedcomputinggroup.org/tpm-main-specification/
http://www.trustedcomputinggroup.org/tpm-main-specification/

[42] Robert Wahbe, Steven Lucco, Thomas E Anderson,
and Susan L Graham. Efficient software-based fault
isolation. ACM SIGOPS Operating Systems Review,
27(5):203–216, dec 1993.

[43] Wei Zhou, Le Guan, Peng Liu, and Yuqing Zhang.
Good motive but bad design: Why ARM MPU has be-
come an outcast in embedded systems. arXiv preprint
arXiv:1908.03638, 2019.

[44] Jean-Karim Zinzindohoué, Karthikeyan Bhargavan,
Jonathan Protzenko, and Benjamin Beurdouche.
HACL*: A verified modern cryptographic library. In
Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, pages
1789–1806, 2017.

A List of Instrumented Instructions

The list of instrumented instructions is illustrated in Table 5.

B Applications descriptions

Our application test suite is composed of 13 different applica-
tions described in Table 6. We categorised the apps based on
the type of operations performed. Specifically, we distinguish
between I/O-oriented applications (i.e. using peripherals and
performing memory operations), computational applications
(i.e. performing CPU-intensive operations), and a mix of the
two. Our application selection covers multiple domains, com-
prising two cryptographic primitives, several mathematics
functions, a machine learning algorithm, a synthetic bench-
mark and applications in other domains. On top of 3 custom-
made applications, appositely designed to stress different sub-
systems of our reference MCU, we selected 4 open-source
applications from public repositories and 6 benchmark appli-
cations from the TI MSP430 Competitive Benchmark [39].
The latter is a representative selection7 of the applications
proposed by TI, comprising both simple and complex mathe-
matical operations, and a synthetic benchmark.

C Formal Proofs of Theorem 1 and 2

C.1 Proofs for Theorem 1
In order to prove Theorem 1, we formalized the three op-
erations in NUXMV [12] (a state of the art symbolic model
checker), and for each of the three formalizations we con-
sidered some Linear Temporal Logic (LTL) [26] properties
aiming at proving the correctness of the operations. In this ap-
proach we codify the three different operations as a sequential

7The original TI Competitive Benchmark contains several redundant
applications. We chose the most relevant subset containing approximately
one application per type.

program encoded in NUXMV in form of Single Static Assign-
ment [13] (as it is typically done in compilers and in software
model checking), specifying for each value of the program
counter: s0 before the implicit condition checking the respec-
tive access policy i.e., APR(i,M), APW (i,M) or APX (i,M));
s1 if the access point condition holds; s2 right after the real
operation on the memory for reading, writing, or modifying
the program counter if correct; end representing the location
to jump to if the access policy is violated. The variable i is a
free variable that models the address we aim at reading from,
writing to, and jumping to respectively. Then we have the
three memories PM (Primary Memory), VM (Volatile Memory),
and MMIO. v is the value to write in the memory in the case of
the Writesf.

Listing 5 contains the NUXMV code for the Readsf. Here
we model the Readsf with the DEFINE ReadSV that is a word
of size N+1 where the N+1 bit is set to 0 if the access policy
APR(i,M) holds, and to 1 otherwise. The model is then com-
plemented with three LTL properties. The first states that if
the APR(i,M) is always true, then the state can never take
value end. The second property states that if the APR(i,N) is
always true, then the N+1 is always 0 if the state is different
from s0 (i.e., the state before a Readsf). Finally, the last LTL
property states that if it is possible to reach a state where the
violation of the APR(i,N) holds, then it is possible to reach
the state end (the state where the read has violated the access
policy). In this model, the i variable can range over any pos-
sible value (there is thus an implicit universal quantification
(∀)).

Listing 4 reports the output of running NUXMV (taken
from https://nuxmv.fbk.eu/) on this file. The execution
has been done on a Linux laptop. NUXMV was able to prove
(or disprove) the three LTL properties in few seconds.

computer_shell > nuXmv −int −dcx pistis_read.smv
∗∗∗ This is nuXmv 2.0.0 (compiled on Oct 14 2019)
....
nuXmv > go_msat
nuXmv > check_ltlspec_ic3 −i
....
−− LTL specification (G APr −> G state != end) is true
−− LTL specification (G APr −> G (state != s0 −> ReadSV[32 : 32] = 0ud1_0)) is

true
−− LTL specification (F !APr −> F state = end) is false
−− (trace generation was suppressed)
nuXmv > quit

Listing 4: Run of NUXMV on the pistis_read.smv file to
prove the correctness of the Readsf instruction.

These results show that the first two properties hold, while
the last one is violated (as expected) to indicate that the only
possible way to reach the end state is to violate the APR(i,M)
in a Readsf. In this case, NUXMV can generate a trace show-
ing how to reach that state (in the run for the sake of presenta-
tion we disabled the extraction of the counterexample, option
-dcx at command line).

Similar considerations hold for the other two instructions.

https://nuxmv.fbk.eu/

Table 5: List of main MSP430 instructions with a brief description and whether they had been instrumented by PISTIS.

Instruction Description Instrumented Why
ADC, ADCX Add carry bit to destination No 7 Does not affect PISTIS
ADD, ADDX, ADDC, ADDCX Add word to destination (w, w/o carry bit) No 7 Does not affect PISTIS
AND, ANDX AND between source and destination Yes 3 Can unlock Flash controller
BIC, BICX, BIS, BISX, BIT, BITX Clear, set, test bits of destination No 7 Does not affect PISTIS
BR Jump to destination word No 7 Does not affect PISTIS
CALL Call a function Yes 3 Can break application boundaries
CLR, CLRX, CLRC, CLRN, CLRZ Clear destination or carry, negative, zero bits No 7 Does not affect PISTIS
CMP, CMPX Compare source and destination No 7 Does not affect PISTIS
DADC, DADCX, DADD, DADDX Add word to destination (w, w/o carry bit) No 7 Does not affect PISTIS
DEC, DECX, DECD, DECDX Decrement, double decrement destination No 7 Does not affect PISTIS
DINT, EINT Disable, enable interrupts No 7 Does not affect PISTIS
INC, INCX, INCD, INCDX Increment, double increment destination No 7 Does not affect PISTIS
INV, INVX Invert destination No 7 Does not affect PISTIS
JC, JHS, JEQ, JZ, JQE, JL, JMP,
JN, JNC, JLO, JNZ, JNE Jump to destination with a condition Yes 3 Can break application boundaries

MOV, MOVX Copy source to destination Yes 3
Can break application boundaries,
Can unlock Flash controller

NOP No operation No 7 Does not affect PISTIS

POP, POPX, POPM Pop value, values, from stack to register, registers Yes 3
Can break application boundaries,
Can unlock Flash controller

PUSH, PUSHX, PUSHM Push register, registers, to the stack Yes 3 Can unlock Flash controller
RET, RETI Fetch return address from the stack Yes 3 Can break application boundaries
RLA, RLAM, RLAX, RLC, RLCX, RRA,
RRAM, RRAX, RRC, RRCX, RRUM, RRUX Rotate destination No 7 Does not affect PISTIS

SBC, SBCX Subtract borrow bit from destination No 7 Does not affect PISTIS
SETC, SETN, SETZ Set carry, negative, zero bits on status register No 7 Does not affect PISTIS
SUB, SUBX, SUBC, SUBCX Subtract source to destination (w, w/o carry bit) Yes 3 Can unlock Flash controller
SWPB, SWPBX Swap bytes of destination No 7 Does not affect PISTIS
SXT, SXTX Extend sign of destination No 7 Does not affect PISTIS
TST, TSTX Test destination No 7 Does not affect PISTIS
XOR, XORX XOR between source and destination Yes 3 Can unlock Flash controller

Table 6: An overview of the main functionalities of the applications used in evaluating PISTIS.

App Category Domain Source Description

SerialMSP I/O
Inter-device
communication Custom made

Set up an UART connection with a terminal and initiate the download of chunks of
data to be stored on the RAM.

CopyDMA I/O
Data migration /
backup Custom made

Initiate the migration of chunks of data from FLASH to RAM employing both CPU
and DMA. The transferred data is checked for errors to verify its integrity.

XorCypher Computational Crypto Custom made
Encodes various data streams with a custom-XOR stream cipher, saving the new
encoded data to protect its confidentiality.

Bitcount Computational Benchmark
OpenSource
https://github.com/embecosm/mibench

Perform different bit-based intensive computations over data arrays to test the
computational power of the CPU.

SHA-256 mix Crypto
OpenSource
https://github.com/amosnier/sha-2

Compute the hash of various strings using the SHA-256 algorithm, storing it
alongside the strings for integrity protection.

ML-acc mix Machine Learning
OpenSource
https://github.com/CMUAbstract/dino

Train an activity recognition machine learning model to classify new accelorometer
measurements into "shaking" and "still" activity.

PrimeFactor mix Mathematics
OpenSource
https://github.com/TheAlgorithms/C

Calculate the prime factorisation for various input numbers to test the
computational power of the CPU.

TI-32bitMath Computational Mathematics TI Benchmark Perform several 32-bit math operations on various input data.
TI-16bitSwitch Computational Operational TI Benchmark Test various switch cases using different 16-bit data.
TI-8bitMatrix I/O Operational TI Benchmark Backup the data from 8-bit based matrixes in RAM.
TI-MatrixMul Computational Mathematics TI Benchmark Perform different multiplications between matrixes in RAM, saving the new data.

TI-firFilter mix Signal processing TI Benchmark
Benchmark an FIR filter of order 17 with various input data contained in arrays of
16-bit values.

TI-dhrystone mix Benchmark TI Benchmark Dhrystone synthetic benchmark

Listing 6 is the NUXMV code for proving correctness of the
Gotosf, while the one for the Writesf instruction can be
found available on the public repository of PISTIS [9].

C.2 Proof of Theorem 2
Base case: There are four base cases each constituted re-

spectively by: i) the NOP no-op instruction that does not

perform any access to the memory neither for writing nor
reading nor executing; ii) the Readsf; iii) the Writesf;
iv) the Gotosf. The last three instructions preserve mem-
ory isolation as proved in Theorem 1. The NOP preserves
memory isolation since it does not access memory nei-
ther for writing nor for reading nor for executing. Thus
the single instruction program preserves memory isola-
tion.

Step case: Let us assume a program P preserves memory iso-
lation. Let P′=P;inst be a program obtained by adding
an instruction inst immediately after the last instruction
of P. The possible instructions inst are: NOP, Readsf,
Writesf, and Gotosf. These instructions preserve mem-
ory isolation (given the base case and Theorem 1), thus
given that P preserves memory isolation and the fact
that the possible extension of the program P (i.e., the
program P′) also preserves the memory isolation, we can

−− To run it:
−− shell > nuXmv −int

pistis_read.smv
−−
−− At the nuXmv prompt issue

following commands:
−− go_msat; check_ltlspec_ic3 −i;

quit
−−
MODULE main

VAR PM : array word[32] of
word[32]; −− Persistent
memory

VAR VM : array word[32] of
word[32]; −− Volatile
memory

VAR MMIO : array word[32] of
word[32]; −− MMIO

VAR mem_k : {_PM, _MMIO, _VM};
−− kind of memory

VAR state : {s0, s1, s2, end}; −−
Possible values of the PC

VAR PC : word[32]; −− The
program counter;

VAR v : word[32]; −− Value to
write

VAR i : word[32]; −− Address to
read from/write to

−− Memory layout as mandated
by the policy

VAR EPadd : array word[3] of
word[32]; −− List of entry
points

DEFINE utc_b := 0h32_00000010;
DEFINE utc_e := 0h32_00000100;
DEFINE aim_b := 0h32_00001000;
DEFINE aim_e := 0h32_00010000;
DEFINE arom_b := 0h32_00100000;
DEFINE arom_e := 0h32_01000000;
DEFINE utdm_b := 0h32_00000010;
DEFINE utdm_e := 0h32_00000100;
DEFINE adm_b := 0h32_00001000;
DEFINE adm_e := 0h32_00010000;
DEFINE mmio_b := 0h32_00000010;
DEFINE mmio_e := 0h32_00000100;

INVAR
0h32_00000000 < utc_b & utc_b <

utc_e & utc_e < aim_b &
aim_b < aim_e & aim_e < arom_b &

arom_b < arom_e &
arom_e < 0h32_FFFFFFFF;

INVAR
0h32_00000000 < utdm_b & utdm_b

< utdm_e &
utdm_e < adm_b & adm_b < adm_e

& adm_e < 0h32_FFFFFFFF;
INVAR

0h32_00000000 < mmio_b & mmio_b
< mmio_e & mmio_e <
0h32_FFFFFFFF;

−− Access policy
DEFINE APr :=
(((mem_k = _PM) −> ((arom_b <=

i) & (i <= arom_e))) &
((mem_k = _VM) −> ((adm_b <=

i) & (i <= adm_e))) &
((mem_k = _MMIO) −> ((mmio_b

<= i) & (i <= mmio_e))));

DEFINE APw :=
(((mem_k = _VM) −> ((adm_b <=

i) & (i <= adm_e))) &
((mem_k = _MMIO) −> ((mmio_b

<= i) & (i <= mmio_e))));

DEFINE APx :=
((mem_k = _PM) & (EP | ((aim_b

<= i) & (i <= aim_e))));

DEFINE EP := (((utc_b <= i) & (i
<= utc_e)) &

((i = READ(EPadd, 0d3_0)) | (i =
READ(EPadd, 0d3_1)) |

(i = READ(EPadd, 0d3_2)) | (i =
READ(EPadd, 0d3_3)) |

(i = READ(EPadd, 0d3_4)) | (i =
READ(EPadd, 0d3_5)) |

(i = READ(EPadd, 0d3_6)) | (i =
READ(EPadd, 0d3_7))));

−− Read_sf(M, i) := if
(APr(i,M)) return M[i]
else goto end;

ASSIGN
init(state) := s0;
next(state) := case

state = s0 & APr :
s1;

state = s1 & APr :
s2;

state = s2 : s2;
TRUE : end;

esac;

DEFINE ReadSV := case
state = s0 & APr : 0d33_0;
state = s1 & APr : case

mem_k = _PM : 0d1_0
:: READ(PM, i);

mem_k = _VM : 0d1_0
:: READ(VM, i);

mem_k = _MMIO :
0d1_0 ::
READ(MMIO,
i);

TRUE :
0h33_FFFFFFFF;

esac;
state = s2 : 0d1_0 ::

0h32_FFFFFFFF;
state = end : 0d33_0;
TRUE : 0d33_0;

esac;

−− If the APr is always true, then
there is not a possibility to

−− reach the end state.
LTLSPEC
G(APr) −> G(state != end)

−− If the APr is always true, and
we are in any state
different from

−− s0, then the error flag bit is
always 0

LTLSPEC
G(APr) −> G(state != s0 −>

ReadSV[32:32] = 0d1_0)

−− If APr is violated, then the
state eventually become
end,

−− i.e. end is only reachable if
APr is violated

LTLSPEC
F(!APr) −> F (state = end)

Listing 5: The encoding to
prove the correctness of the
Readsf

conclude that the theorem holds.

−− To run it:
−− shell > nuXmv −int

pistis_goto.smv
−−
−− At the nuXmv prompt issue

following commands:
−− go_msat; check_ltlspec_ic3 −i;

quit
−−
MODULE main

VAR PM : array word[32] of
word[32]; −− Persistent
memory

VAR VM : array word[32] of
word[32]; −− Volatile
memory

VAR MMIO : array word[32] of
word[32]; −− MMIO

VAR mem_k : {_PM, _MMIO, _VM};
−− kind of memory

VAR state : {s0, s1, s2, end}; −−
Possible values of the PC

VAR PC : word[32]; −− The
program counter;

VAR v : word[32]; −− Value to
write

VAR i : word[32]; −− Address to
read from/write to

−− Memory layout as mandated
by the policy

VAR EPadd : array word[3] of
word[32]; −− List of entry
points

DEFINE utc_b := 0h32_00000010;
DEFINE utc_e := 0h32_00000100;
DEFINE aim_b := 0h32_00001000;
DEFINE aim_e := 0h32_00010000;
DEFINE arom_b := 0h32_00100000;
DEFINE arom_e := 0h32_01000000;
DEFINE utdm_b := 0h32_00000010;
DEFINE utdm_e := 0h32_00000100;
DEFINE adm_b := 0h32_00001000;
DEFINE adm_e := 0h32_00010000;
DEFINE mmio_b := 0h32_00000010;
DEFINE mmio_e := 0h32_00000100;
DEFINE END := 0h32_10000000;

INVAR
0h32_00000000 < utc_b & utc_b <

utc_e & utc_e < aim_b &
aim_b < aim_e & aim_e < arom_b &

arom_b < arom_e &
arom_e < 0h32_FFFFFFFF;

INVAR
0h32_00000000 < utdm_b & utdm_b

< utdm_e &
utdm_e < adm_b & adm_b < adm_e

& adm_e < 0h32_FFFFFFFF;
INVAR
0h32_00000000 < mmio_b & mmio_b

< mmio_e & mmio_e <
0h32_FFFFFFFF;

−− Access policy
DEFINE APr :=

(((mem_k = _PM) −> ((arom_b
<= i) & (i <= arom_e))) &

((mem_k = _VM) −> ((adm_b <=
i) & (i <= adm_e))) &

((mem_k = _MMIO) −> ((mmio_b

<= i) & (i <= mmio_e))));

DEFINE APw :=
(((mem_k = _VM) −> ((adm_b <=

i) & (i <= adm_e))) &
((mem_k = _MMIO) −> ((mmio_b

<= i) & (i <= mmio_e))));

DEFINE APx :=
((mem_k = _PM) & (EP | ((aim_b

<= i) & (i <= aim_e))));

DEFINE EP := (((utc_b <= i) & (i
<= utc_e)) &

((i = READ(EPadd, 0d3_0)) | (i =
READ(EPadd, 0d3_1)) |

(i = READ(EPadd, 0d3_2)) | (i =
READ(EPadd, 0d3_3)) |

(i = READ(EPadd, 0d3_4)) | (i =
READ(EPadd, 0d3_5)) |

(i = READ(EPadd, 0d3_6)) | (i =
READ(EPadd, 0d3_7))));

−− goto_sf(M, i, v) := if
(APx(i,M)) PC = i else
goto end;

ASSIGN
init(state) := s0;
next(state) := case

state = s0 & APx :
s1;

state = s1 & APx :
s2;

state = s2 : s2;
TRUE : end;

esac;
INIT
PC != END;

ASSIGN
next(PC) := case

state = s0 & APx : PC;
state = s1 & APx : i;
state = s2 : PC;
TRUE : END;

esac;

−− If the APx is always true,
then there is not a
possibility to reach the
end state.

LTLSPEC
G(APx) −> G(state != end)

−− If the APx is always true,
then the PC never
assumes value END

LTLSPEC
G(APx) −> G (state != s0 −> PC

!= END)

−− If APx is violated, then the
state eventually become
end,

−− i.e. end is only reachable if
APx is violated

LTLSPEC
F(!APx) −> F (state = end)

Listing 6: The encoding to
prove the correctness of the
Gotosf

	Introduction
	Related Work
	Preliminaries
	Scope of Embedded Devices
	mChallenges in designing PISTIS

	PISTIS
	Adversary Model
	PISTIS: From the Ground Up
	Memory Isolation: Design Rationale
	Memory Isolation: Supported Operations
	Memory Isolation: Variable Length Instructions
	Security Services

	Formalization
	Implementation
	PISTIS in Numbers
	Memory Map in Practice
	Secure Storage using BSL
	Integrity of PISTIS Core

	Experimental Evaluation
	Memory Footprint
	Deployment time
	Secure Deployment Overhead

	Execution time
	Power consumption
	PISTIS in Practice

	Conclusion & Future Work
	List of Instrumented Instructions
	Applications descriptions
	Formal Proofs of Theorem 1 and 2
	Proofs for Theorem 1
	Proof of Theorem 2

