
How to Abuse and Fix Authenticated Encryption Without Key Commitment∗

Ange Albertini1, Thai Duong1, Shay Gueron2,3, Stefan Kölbl1, Atul Luykx1, and Sophie Schmieg1

1Security Engineering Research, Google
2University of Haifa

3Amazon

Abstract

Authenticated encryption (AE) is used in a wide variety of
applications, potentially in settings for which it was not orig-
inally designed. Recent research tries to understand what
happens when AE is not used as prescribed by its designers.
A question given relatively little attention is whether an AE
scheme guarantees “key commitment”: ciphertext should only
decrypt to a valid plaintext under the key used to generate the
ciphertext. Generally, AE schemes do not guarantee key com-
mitment as it is not part of AE’s design goal. Nevertheless,
one would not expect this seemingly obscure property to have
much impact on the security of actual products. In reality,
however, products do rely on key commitment. We discuss
three recent applications where missing key commitment is
exploitable in practice. We provide proof-of-concept attacks
via a tool that constructs AES-GCM ciphertext which can be
decrypted to two plaintexts valid under a wide variety of file
formats, such as PDF, Windows executables, and DICOM.
Finally we discuss two solutions to add key commitment to
AE schemes which have not been analyzed in the literature:
a generic approach that adds an explicit key commitment
scheme to the AE scheme, and a simple fix which works for
AE schemes like AES-GCM and ChaCha20Poly1305, but
requires separate analysis for each scheme.

1 Introduction

Authenticated Encryption. Symmetric-key encryption
(SKE) has been the source of many attacks over the years.
The main culprit is the use of malleable, unauthenticated
schemes like CBC, and their susceptibility to padding ora-
cle [Vau02] and related attacks. Such attacks are found as
frequently against systems designed in the 90’s as they are
today; recent research [FIM20] shows that CBC continues to
be an attack vector.

∗The full version of this work can be found at https://ia.cr/2020/
1456. This is an abridged version.

Beck et al. [BZG20] cite flaws in Apple iMessage,
OpenPGP, and PDF encryption as examples to argue that prac-
titioners are often only convinced that unauthenticated SKE
is insecure when they see a proof-of-concept exploit. Similar
efforts are deemed necessary to demonstrate the exploitability
of cryptographic algorithms such as SHA-1 [SBK+17].

The vast majority of applications should default to using
authenticated encryption (AE) [BN00, KY00], a well-studied
primitive which avoids the pitfalls of unauthenticated SKE
with relatively small performance overhead. AE schemes are
used in widely adopted protocols like TLS [Res18], standard-
ized by NIST [NIS07a,NIS07b] and ISO [ISO09], and are the
default SKE option in modern cryptographic libraries such as
NaCl [nac] and Tink [tin].

With AE more widely used, recent research focuses on
its security guarantees in settings which push the boundaries
and assumptions of conventional AE, such as understanding
nonces [RS06], multiple decryption errors [BDPS13], unver-
ified plaintext [ABL+14], side channel leakage [BMOS17],
multi-user attacks [BT16], boundary hiding [BDPS12],
streaming AE [HRRV15], and variable-length tags [RVV16].
Furthermore, constructions and security models have received
additional scrutiny due to two recent competitions focusing
on AE: CAESAR [CAE14] and the NIST lightweight cryp-
tography competition [nis].

Key Commitment. Among the extended, desirable prop-
erties explored is the relatively little-studied idea of AE key
commitment, which we intuitively explain as follows.

One of the defining design goals of AE is ciphertext in-
tegrity: if recipient A decrypts a ciphertext with the key KA
into a valid plaintext, meaning authentication succeeds, then
A knows that the ciphertext has not been modified during
transmission. Intuitively, one might mistakenly extend that
integrity guarantee to keys, i.e., if some other recipient B
decrypts the same ciphertext with their key KB, then decryp-
tion would fail. However, this is neither an AE design goal,
nor a guaranteed property, and there are secure and globally
deployed AE schemes where both recipients can successfully

https://ia.cr/2020/1456
https://ia.cr/2020/1456

decrypt the same ciphertext.
Key commitment guarantees that a ciphertext C can only be

decrypted under the same key used to produce C from some
plaintext. Schemes where it is possible to find a ciphertext
which decrypts to valid plaintexts under two different keys do
not commit to the key.

Initially studied and formalized for AE by Farshim et
al. [FOR17] under the name “robustness”, key commit-
ment might seem like an academic pursuit. Yet Dodis et
al. [DGRW18] and Grubbs et al. [GLR17a] show how to
exploit AE schemes which do not commit to the key in the
context of abuse reporting in Facebook Messenger. Never-
theless, AE key commitment has not received much attention
and the concept can be overlooked during deployment.

1.1 Contributions
Facebook Messenger might seem like a niche use of AE
which implicitly relies on key commitment, and was
exploitable. However, we show that is not the case. We
conduct a thorough study of AE key commitment.

Exploration of vulnerable settings or products:
We found three settings in the past year: key rotation in key
management services, envelope encryption, and Subscribe
with Google [Albb] (see Section 2). In concurrent work, Len
et al. [LGR] found another. We expect there to be more.

Study of practical ways to exploit lack of key commitment:
We introduce new key commitment attacks against standard-
ized AE schemes, such as AES-GCM-SIV and OCB, to
complement the known attack against AES-GCM. These
cryptographic attacks place restrictions on adversarially
generated plaintext and ciphertext (see Section 3.4), thereby
preventing their direct application to real-world settings.
To turn the cryptographic attacks into practical ones, one
can create binary polyglots, files which are valid in two
different file formats. Whereas Dodis et al. [DGRW18]
demonstrate binary polyglots for JPEG and BMP, we
perform an extensive study of over 40 formats, extracting
common characteristics and properties of these file formats
which enable the creation of polyglots; we demonstrate
practicality by creating a tool1 to mix files of specific file
formats, then tries to combine the input contents following
various layouts, resulting in working binary polyglots made
of more than 250 format combinations (see Section 4).
Combined with another tool we made, we demonstrate how to
efficiently turn the binary polyglot into AES-GCM ciphertext.

Simple and efficient ways to add key commitment to AE
schemes:
Farshim et al. [FOR17], Grubbs et al. [GLR17a], and Dodis et
al. [DGRW18] present both generic and optimized encryption

1https://github.com/corkami/mitra

algorithms which include key commitment. However, none
achieve the efficiency of AES-GCM, and require changes to
the cryptographic algorithms used2.

We propose simple solutions which have not been ana-
lyzed in the literature — amounting to black-box use of the
AE schemes, with one additional block output — and ana-
lyze their security. One solution simply prepends a constant
block of all zero’s to the plaintext and encrypts the padded
plaintext as normal; decryption looks for the presence of a
leading block of zero’s to verify the correct key was used
(similarly, Krawczyk [Kra19, Section 3.1.1], too, proposed
padding the last block in GCM). This padding solution does
not necessarily work for any AE scheme and must be ana-
lyzed on a case-by-case basis, which we do for AES-GCM
and ChaCha20Poly1305.

Another solution applies a generic composition to any
given AE: the scheme’s key is first used to derive a key
commitment string and an encryption key; the encryption key
is then used in the underlying AE scheme; the scheme outputs
the ciphertext and the commitment string.

An instantiation of our generic composition is already pub-
licly deployed as part of the latest version (2.0) of the AWS
Encryption SDK [AWSa], an open source client-side encryp-
tion library. Key commitment is included in its default con-
figuration. More details can be found in [Tri].

1.2 How to choose a fix

If your setting cannot tolerate ciphertext expansion, or needs
a compact commitment, that is, where just a substring of
the ciphertext (like the tag) must suffice to prevent key
commitment attacks, then you must rely on prior solutions
such as those proposed by Farshim et al. [FOR17], Grubbs et
al. [GLR17a], and Dodis et al. [DGRW18]. Such compact
commitments could also be useful to produce compact audit
trails, where just the tag of a ciphertext is stored instead of
the full ciphertext.

If your setting can tolerate a small amount of ciphertext ex-
pansion and does not need a compact commitment, then:

1. If you are using AES-GCM or ChaCha20+Poly1305 and
cannot easily change algorithms or need a quick fix, use the
padding fix (Section 5.3) and prepend 2κ zeroes for κ bits of
security against key commitment attacks, e.g. 256 zeroes for
128 bits of security. For short-lived ciphertexts, or settings
where the cost of executing 264 computation outweighs the
benefit of performing the attack, it suffices to use a single
block to achieve only 64 bit key commitment security — this
will not impact AE security.

2In fact, as explained by Dodis et al. [DGRW18], performance was
the primary reason Facebook Messenger used AES-GCM for attachments,
making Facebook Messenger vulnerable to attack, despite the fact that Grubbs
et al. [GLR17a] had already proposed secure alternatives.

https://github.com/corkami/mitra

2. Otherwise use our generic solution which works with any
AE scheme. We give a sample instantiation in Section 5.4
and in the full paper [ADG+20] achieving 128-bit security.

2 Real-World Settings

We highlight real-world scenarios where lack of AE key com-
mitment could lead to vulnerabilities. These attacks do not
break any properties of the underlying AE scheme, but rely
on the fact that their applications implicitly assume that the
schemes are key committing. We found vulnerabilities in
real-world applications (see CVE-2020-8897) and this led to
changes to widely used products like the AWS encryption
SDK [Tri] and Subscribe with Google [Albb].

Key Rotation. A key management service (KMS) creates,
removes, controls access to, and audits use of cryptographic
keys. In such a service users typically identify and access
cryptographic keys through URIs. An important feature of
KMS’s is key rotation, where keys are updated to limit the
amount of data encrypted under a single key and reduce dam-
age in case of a compromise.

After key rotation, the old key should still be available to
decrypt old ciphertext but not be used to encrypt new data.
Therefore different versions of a key exist simultaneously and
there must be some mechanism to decide which key is used for
encryption and decryption. If the AE used for encrypting the
data is not committing to a key, then this could be exploited
by an attacker. A user might assume that a ciphertext will
decrypt to the same plaintext, independent of key rotations
happening, which might not be the case in practice.

The scenario we are interested in here is, multiple users
are accessing a key through a URI. One of the users is mali-
cious and wants to distribute e.g., a malicious file and the AE
scheme used is AES-GCM. The attacker proceeds as follows.
First, create two keys K1,K2 and produce a ciphertext C which
decrypts to a “good” file M under K1 and to a “bad” file M′

under K2. Next, import K1 into the KMS and send everyone
the ciphertext C which they can store and decrypt to M when
needed. At a later point in time, the adversary imports K2 to
the KMS.

Now at this stage the question arises which key will be
used to decrypt C if a user calls the KMS API with the key
URI. The KMS might choose the right decryption key in one
of the following ways:

1. By adding metadata to the ciphertext to identify the key.
If the metadata is ensured to be authentic and bound to the
ciphertext, K1 will be used to decrypt C.

2. By trying out the keys until one successfully decrypts,
starting with oldest version. In this case K1 would successfully
decrypt and reveal M.

3. By trying out the keys until one successfully decrypts, start-
ing with newest version. In this case K2 would successfully
decrypt and reveal the malicious file M′.

4. By allowing the user to select the key version used to
decrypt.

Note that if the adversary may delete or disable old key
versions, a solution relying on (2) can still cause a decryption
of C to the malicious file M′. This gives the adversary a
simple trigger to enable/disable when the ciphertext should
be decrypted to harmful content. The user will not detect that
a different key was used, as the decryption is authentic.

Envelope Encryption. Envelope encryption is the term
used by cloud service providers to describe the process where
data is encrypted with a symmetric key, which in turn is en-
crypted under multiple symmetric or asymmetric recipient
keys (i.e. a KEM). All major cloud service providers use
envelope encryption, and typically use an AE scheme like
AES-GCM for the symmetric encryption; see for example
AWS [awsb] and Google Cloud [goo].

Envelope encryption users often — intuitively — expect
that if the recipients receive the same ciphertext, then all will
decrypt to the same plaintext. However this expectation is
false: cloud services without key commitment can fall victim
to attacks, where the same ciphertext will decrypt to different
plaintexts under different keys. The AWS encryption SDK
was vulnerable to this and as a result added the option for a
key commitment [Tri].

The encryption of a message for two users can be summa-
rized as follows. First, a random data encryption key KDEK is
generated and wrapped by the two users’ keys which are pro-
vided through the encrypt API. Next, a per-message AES-
GCM key K is derived using HKDF from KDEK, a randomly
generated message ID and fixed algorithm ID. A header
is formed from the wrapped keys, the encryption context
and other metadata. The header is authenticated using AES-
GMAC with K and zero IV. The message M is then encrypted
using AES-GCM with K, non-zero IV and fixed associated
data. In the end this gives us a ciphertext which consists of a
header H, header tag HT , encrypted message C and authen-
tication tag T . To decrypt, the SDK loops over the wrapped
keys and returns the first one which it can successfully un-
wrap, which is then used to decrypt the ciphertext and obtain
the message.

An attacker which wants to send different messages M,M′

to two recipients, can do so by exploiting the lack of key com-
mitment in GCM/GMAC. The attacker generates a random
pair of (KDEK,K′DEK), derives (K,K′) and encrypts (M,M′)
such that they form a single ciphertext C with a single valid
authentication tag T (see Section 3.4 for details). The attacker
then wraps KDEK for one user and K′DEK for the other user.
At last there is still the header H and tag HT which need to
be valid. For this we can use the same approach as for the

ciphertext encryption, as GMAC is used for authentication.
The encryption context can be used as an additional block and
allows to correct the authentication tag, such that it is valid
for both K and K′.

Subscribe with Google [Albb]. SwG is a service which
allows users to subscribe to publications using Google ac-
counts. Users pay to access “premium” content. Paying users
see the content immediately, while others might see a preview,
or nothing. Either the publisher or third party authorizers
give users access to the premium content; examples of third
party authorizers include a search indexer, content distribution
network, or a third-party paywall service.

Publishers include both premium and preview content in a
single document, with the premium content encrypted [Cry].
To do so, the publisher creates a random symmetric key, the
document key, and a structure that includes the document key
with access requirements, the document crypt. The document
key encrypts the premium content using an AE scheme, and
the document crypt is encrypted under the authorizers’ pub-
lic keys. The encrypted document crypts are placed in the
document’s header.

Whenever a client requests authorization, the authorizer
decrypts the document crypt and checks the access require-
ments. If a client may access the premium content, then the
document key is used to decrypt the content.

Analogous to the envelope encryption setting, if the AE
scheme used to encrypt the premium content with the docu-
ment key does not include a key commitment, then malicious
publishers can display different contents to different authoriz-
ers: prepare multiple document keys and a ciphertext which
decrypts to different plaintexts under those keys; place the
different document keys in different document crypts; when
an authorizer decrypts its document crypt, it will receive its
own document key, and therefore will see its own view of the
decrypted premium content.

Initially, SwG was designed to use an AE scheme which
did not have a key commitment. This issue was caught before
launch and fixed by including a key commitment.

3 Authenticated Encryption and Key Commit-
ment

3.1 Notation and Concepts

The set of strings of length not greater than x bits is {0,1}≤x,
and the set of strings of arbitrary length is {0,1}∗. Unless
specified otherwise, all sets are subsets of {0,1}∗. If X ,Y ∈
{0,1}∗, then |X | is the length of X , and X ‖ Y and XY denote
the concatenation of X and Y .

An adversary A is an algorithm which interacts with an
oracle O. Let AO = 1 be the event that A outputs 1 when

interacting with O, then define

∆
A
(f ; g) :=

∣∣P[A f = 1
]
−P

[
Ag = 1

]∣∣ , (1)

which is the advantage of A in distinguishing f from g, where
f and g are viewed as random variables. The notation can be
extended to multiple oracles by setting O = (O1, . . . ,Ol).

We assume that all keyed functions do not change their
output length under different keys, that is, |FK(X)| is the same
for all K ∈ K. Given a keyed function F , define $F to be the
algorithm which, given X as input, outputs a string chosen
uniformly at random from the set of strings of length |FK(X)|
for any key K. When given the same input, $F returns the
same output. Often $F is called a random oracle.

3.2 Authenticated Encryption Schemes
Authenticated encryption with associated data, which we call
AE, consists of stateless, deterministic encryption (Enc) and
decryption (Dec) algorithms, where decryption may output
either plaintext or a single, pre-defined error symbol:

Enc : K×N×A×M→ C , (2)
Dec : K×N×A×C→M∪{⊥} , (3)

with K the keys, N the nonces, A the associated data, M
the messages, C the ciphertexts, and ⊥ an error symbol not
contained in M, which represents verification failure. It must
be the case that for all K ∈ K, N ∈ N, A ∈ A, M ∈M,

Dec(K,N,A,Enc(K,N,A,M)) = M . (4)

Let ΠK = (EncK ,DecK) be an AE scheme using key K. Let
Π$:= ($Enc,⊥) be an ‘idealized’ AE scheme with the same
interface as Π, where $Enc outputs uniform random strings
and⊥ only outputs⊥; let Π

$
1,Π

$
2, . . . denote independent, ide-

alized copies. Then the multi-key AE advantage of adversary
A against Π is

µ-AEΠ(A) := ∆
A

(
ΠK1 ,ΠK2 , . . . ,ΠKµ ; Π

$
1,Π

$
2, . . . ,Π

$
µ

)
, (5)

where K1, . . . ,Kµ are chosen independently and uniformly at
random, and A is nonce-respecting, meaning A never queries
the same nonce twice to Enc. Nonces may be repeated with
Dec. Furthermore, A cannot use the output of an ON

1 query
as the input to an ON

2 with the same nonce N.

3.3 AE Key Commitment Definition
Key committing AE schemes are ‘collision resistant’ in the
sense that it is computationally difficult to find two keys which
either encrypt two plaintexts to the same ciphertext, or, equiv-
alently, decrypt the same ciphertext to two plaintexts.

We follow Farshim et al.’s [FOR17] formalization
(‘CROB’). Since we focus on concrete bounds, we only

define an adversary’s advantage in breaking an AE scheme’s
key commitment and refrain from defining when a scheme
‘commits to the key’. Our results allow users to pick parame-
ters according to their security needs.

Definition 1 (Key Commitment Advantage). Let Π =
(Enc,Dec) denote an AE scheme. Let A be an adversary inter-
acting with Π; let Q1,Q2, . . . denote the sequence of queries
A makes to either Enc or Dec, where Qi = (Ki,Ni,Ai,Mi,Ci)
and Enc(Ki,Ni,Ai,Mi) =Ci or Dec(Ki,Ni,Ai,Ci) = Mi. Then
A’s q-KC advantage against Π is the probability that there are
two queries Qi and Q j where Ki 6= K j, Ni = N j, Ci =C j 6=⊥,
Mi 6=⊥, M j 6=⊥, and i, j ≤ q.

3.4 Absence of Key Commitment in AE
schemes

We show that several commonly used AE schemes AES-GCM,
ChaCha20Poly1305, AES-GCM-SIV and OCB3 do not com-
mit to their keys. This property has been noted before for AES-
GCM and ChaCha20Poly1305 [LGR21]. Our attacks not only
confirm that key commitment does not follow from the usual
AE security properties, but also that protecting against key
commitment must be a conscious choice since some of the
most commonly used AE schemes do not guarantee it.

Apart from OCB, all these schemes produce ciphertext by
generating a (pseudorandom) key stream and XORing it with
the plaintext. Two different keys K1,K2 produce different key
streams S1,S2, and for a given ciphertext C this decrypts to
M1 = S1 +C and M2 = S2 +C. To mount a successful attack,
we have to ensure that the given C and authentication tag T
are valid so authentication passes.

We implemented the attacks on GCM-SIV and OCB3,
publicly available at https://github.com/kste/
keycommitment. Solving these system of equations is
very efficient and only takes ≈ 1 second using Sage 9.0 on an
Intel Xeon(R) W-2135 CPU @ 3.70GHz.

3.4.1 Polynomial MAC based schemes

We generalize Dodis et al.’s [DGRW18] AES-GCM attack to
schemes which compute a polynomial MAC over the cipher-
text, like ChaCha20Poly1305. The general construction we
consider is as follows:

1. Derive two keys (r1,s1) from K1 (resp. (r2,s2) from K2).

2. Split the ciphertext in blocks C[1], . . . ,C[m].

3. Compute the tag as T = s1 +∑
m
i=1 C[i] · rm−i

1 , where addi-
tion and multiplication are done over a finite field.

To generate valid tags with such an authentication scheme,
we have to ensure that the given ciphertext leads to the same
tag being computed under K1 and K2. We fix all ciphertext

blocks apart from a single block C[j], which gives us the
following equation:

s1 +C[j] · rm− j
1 +

m

∑
i=1,i 6= j

C[i] · rm−i
1 =

s2 +C[j] · rm− j
2 +

m

∑
i=1,i 6= j

C[i] · rm−i
2 .

(6)

All the variables here are known to the adversary, therefore
this equation can be rearranged (note that we here assume
that this is a finite field of characteristic 2 as is the case in
most schemes used in practice) to isolate C[j]

C[j] · rm− j
1 +C[j] · rm− j

2 = s1 + s2+
m

∑
i=1,i 6= j

C[i] · rm−i
1 +C[i] · rm−i

2 .
(7)

C[j] · (rm− j
1 + rm− j

2) = s1 + s2+
m

∑
i=1,i 6= j

C[i] · rm−i
1 +C[i] · rm−i

2 .
(8)

C[j] =(rm− j
1 + rm− j

2)−1 · (s1 + s2+
m

∑
i=1,i6= j

C[i] · rm−i
1 +C[i] · rm−i

2),
(9)

which fully determines C and T . In the case of
ChaCha20Poly1305, additional restrictions have to be ful-
filled and we refer the reader to [LGR21] for a detailed de-
scription on how to handle those.

Instead of computing the polynomial MAC over the cipher-
text, AES-GCM-SIV computes it over the plaintext, which
is then XORed with the nonce and encrypted to get the tag
T (see [GLL19]). T is then further used as the first counter
block for encryption. In this case we will first pick T , which
fixes the corresponding key streams S1,S2. Next, we decrypt
the tag with K1,K2 and XOR the nonce to obtain T1 and T2:

T1 =
m

∑
i=1

M1[i] · rm−i
1 and T2 =

m

∑
i=1

M2[i] · rm−i
2 . (10)

Additionally, we have the condition that the ciphertext should
be equal after adding the key streams, therefore we get m
equations of the form

M1[1]+S1[1] = M2[1]+S2[1]
M1[2]+S1[2] = M2[2]+S2[2]

...
M1[m]+S1[m] = M2[m]+S2[m].

(11)

In total this gives us m+2 linear equations in 2m variables
(the plaintext blocks), which we can find a solution for if
m > 1. In general this still gives us a lot of freedom in the
message blocks as for longer messages we can fix parts and
still find a solution to the system of linear equations.

https://github.com/kste/keycommitment
https://github.com/kste/keycommitment

3.4.2 OCB3

As a final example we consider OCB3 [KR14], which does not
follow the paradigm of creating a key stream and is therefore a
particularly interesting case. It is also one of the most efficient
AE schemes and has become popular in the variant θCB using
a tweakable block cipher. For example Deoxys [JNP15] from
the final CAESAR portfolio uses a similar mode and several
candidates in the ongoing NIST Lightweight Competition are
based on it.

We describe the OCB mode of operation [KR14, Rog04,
RBB03]. We do not include associated data as we do not
need it for the OCB attacks. The reference used for the fig-
ure, pseudocode, and notation below is from [RBB03]. Let
E : K×{0,1}n→{0,1}n be a block cipher and let τ denote
the tag length, which is an integer between 0 and n. Let
γ1,γ2, . . . be constants. The full paper [ADG+20] contains a
pseudocode description of OCB encryption with an accompa-
nying diagram.

Algorithm 1: OCBK(N,M)

Input: K ∈ {0,1}n, M ∈ {0,1}∗
Output: C ∈ {0,1}∗

1 M[1]M[2] · · ·M[m]
n←−M

2 L← EK(0n)
3 R← EK(N⊕L)
4 for i = 1 to m do
5 Z[i] = γi ·L⊕R
6 end
7 for i = 1 to m do
8 C[i]← EK(M[i]⊕Z[i])⊕Z[i]
9 end

10 X [m]← lenn(M[m])⊕L ·x−1⊕Z[m]
11 Y [m]← EK(X [m])
12 C[m]← Y [m]⊕M[m]
13 Checksum←M[1]⊕·· ·⊕M[m−1]⊕C[m]0∗n⊕Y [m]

14 T ←msbτ

(
EK(Checksum⊕Z[m])

)
15 return C[1] · · ·C[m]T

The tag is computed as a simple checksum which is then
encrypted. For the attack we can start with a similar approach
to AES-GCM-SIV and will first fix the tag T and the message
length m in order to be able to compute all the mask values Z.
We can then decrypt the tag under the two keys and apply the
mask which gives us

T1 =
m

∑
i=1

M1[i] and T2 =
m

∑
i=1

M2[i] . (12)

Each message block M[i] is encrypted as C[i] = EK(M[i]⊕
Z[i])⊕ Z[i] = EK,Z[i](M[i]) for some mask values Z[i] (the
concrete values for Z[i] are not important for the attack here,
and therefore it can also be instantiated with a tweakable

block cipher). Hence we get equations of the form

EK1,Z[1](M1[1]) = EK2,Z[1](M2[1])

EK1,Z[2](M1[2]) = EK2,Z[2](M2[2])
...

EK1,Z[m](M1[m]) = EK2,Z[m](M2[m]),

(13)

if we want to have the same ciphertext. However as these
equations are non-linear the approach used for AES-GCM-
SIV can not work here.

The total message length is m, and we will now split the
message blocks up into t + 1 blocks which we will need to
control for the attack, and m− t−1 blocks for the actual mes-
sage content. As a first step, we will ensure that T1 is correct,
by adding a message block M1[m− t] = T1⊕∑

m−t−1
i=1 M1[i].

As long as the remaining blocks after index m− t are
∑

m
i=m−t+1 M1[i] = 0 we get the correct tag T in the end for

M1. To get the correct T2 we can do the following:

• Generate two sets of messages A0,A1 of size t, where ∀a ∈
A0,a = 0 and ∀a ∈ A1,a = 1. We require here that t is even,
in order to have a checksum of 0.

• We encrypt those messages with K1, decrypt them with K2
and add them pairwise to obtain the values

γ j[i+1] =

E−1
K2,Z[m−t+2i+1](EK1,Z[m−t+2i+1](A j[2i+1]))+

E−1
K2,Z[m−t+2(i+1)](EK1,Z[m−t+2(i+1)](A j[2(i+1)])),

∀i, j : 0≤ i < t/2, j ∈ {0,1}.

(14)

• The next step is to find values xi ∈ {0,1}, such that

γx1 [1]+ . . .+ γxt/2 [t/2] = T2 +
m−t−1

∑
i=1

M2[i]. (15)

If we can find such values, then this will give us the correct
tag for T2.

• We can rewrite this equation to

t/2

∑
i=1

γ1[i]xi + γ2[i](1− xi) = T2 +
m−t

∑
i=1

M2[i]. (16)

• In order to solve this equation, we introduce a new variable
x and denote X [j] as the jth bit of X . This gives us the
following system of linear equations over F2

t/2

∑
i=1

γ1[i][j]xi + γ2[i][j]xi = (T2 +
m−t

∑
i=1

M2[i])[j]. 1≤ j ≤ b

xi + xi = 1 1≤ i≤ t/2.
(17)

Here, b is the blocksize of E. This gives us t/2+b equations
in 2b unknowns, therefore if we set t/2 > b+ 1 we get a
solution with a probability > 0.5.

• Finally, we set

M1[m− t + i] =

{
0, if xbi/2c = 1
1, if xbi/2c = 1

1≤ i≤ t, (18)

and compute the corresponding values for M2. This guaran-
tees that both M1,M2 will give us the correct tag T .

4 Creating Meaningful Plaintexts

In the settings discussed in Section 2 the adversary seeks
a single ciphertext C and two keys K1 and K2 such that
Dec(K1,C) = P1 and Dec(K2,C) = P2 are meaningful mes-
sages in the relevant setting — we call such a ciphertext
ambiguous. Although we have demonstrated how to gener-
ate ambiguous ciphertext, ensuring it decrypts to meaningful
plaintext requires controlling bits in the resulting plaintexts.

In this section we demonstrate how to construct ambiguous
ciphertext which decrypts to different valid files, potentially
satisfying different formats. Crafting ambiguous ciphertext
requires understanding file format characteristics and how
they relate to each other, to satisfy the constraints imposed by
the cryptographic attacks. Below we discuss those constraints,
followed by a discussion of file format characteristics, and
how to structure the files.

4.1 Cryptographic Attack Constraints
Inclusion of random blocks to repair the tag. As dis-
cussed in Section 3.4, for AES-GCM and ChaCha20Poly1305
we need a single block fixed in both P1 and P2 at the same
position to repair the tag, while for AES-GCM-SIV this will
typically require 2 controlled blocks. For OCB we need on
average b+ 1 blocks where b is the blocksize of the block
cipher used.

Computational impact of fixing bits in the plaintext.
The plaintexts P1 and P2 must satisfy C = P1⊕S1 = P2⊕S2,
where S1,S2 are known to the adversary. Fixing a single bit
in P1 determines the corresponding bit in C, resp. P2.

If we want to set a bit position in P1 and have no require-
ment on that same bit in P2, then we can just do so. However,
controlling the same bit position in both P1 and P2, requires
finding a collision in the key streams S1 and S2 at this position.
See Figure 1 for an example.

OCB works on 16-byte blocks, therefore if we have condi-
tions in both P1 and P2 which fall into the same 16-byte block
this will also require brute-force to find the keys which can
fulfill these conditions simultaneously.

File formats will impose constraints on how our target plain-
texts P1 and P2 must be encoded and structured, and if there is
significant overlap in the bit positions of the constraints in P1
and P2 — the red bits of Figure 1 — then the cryptographic

P1

⊕S1

C
⊕S2

P2

1010............10101010..01

????????????????????????????

011110101001011.............

Figure 1: Example of constructing two plaintexts P1, P2 from
the generated key streams S1, S2 and the conditions on the
single bits. The keystreams are fixed and the adversary can
choose the ciphertext C to determine the plaintexts. A “?”
denotes a bit that can be freely chosen by the adversary, a “.”
that the bit can be any value in the plaintext, and “1”, “0” that
the bit should have this value. In this example the conditions
on the first 4 bits (red), would have to be fulfilled by finding
the two key stream S1,S2, while all the other conditions can
simply be solved by choosing the corresponding bits in C.

attacks become infeasible. Therefore, we need to minimize
the overlap in the constraints imposed by the file formats.

4.2 Binary versus near polyglots
Overlap in the plaintexts is not necessary if the 2 file formats
combined in the same ambiguous ciphertext can start at dif-
ferent offsets and leave enough place for each other — in this
case, the two formats could co-exist in plaintexts in a single
binary polyglot file.

Some combinations of file formats might not be able to co-
exist in a single file, and would require, for example, changing
a few bytes in the file header. We use the term near polyglot to
describe a pair of files, potentially satisfying different formats,
which differ in a few bytes. We call the bytes where the files
differ their overlap.

From a binary polyglot or from a near polyglot and its
overlap, one can create an ambiguous ciphertext by keeping
track of the ranges of the file that belong to which format,
encrypting each set of ranges separately and combining them
in a single file.

There are many file formats with their own requirements
and restrictions, but we found more than 280 working com-
binations of formats without overlap, and more than 50 with
overlap — in reasonable duration of bruteforcing.

4.3 File Format Characteristics
In this section, we introduce the aspects of file formats that are
important in generating binary polyglots and near polyglots.
We refer to [fil] for a description of the file formats referenced
below.

Enforced offset Most formats require files structure to start
at offset zero, but some formats allow files structure to start

at any offset. Pure compressors — software which compress
one block of data with no notion of file such as Bzip2, Gzip or
XZ — typically start at offset zero, as does storage software
such as TAR or Unix Archive. Typically, archive formats such
as ZIP, RAR, 7z or Arj and flexible web-oriented formats such
as Html and PHP allow files structure to start at any offset.

Pre-cavity Some formats start with a cavity that can hold
any content. This could be by design, as with the raw dump
of sectors of an ISO image, or by courtesy, as for DICOM or
PDF, or by abuse, such as archiving a null-named file with
TAR or overwriting the deprecated DOS header of a Portable
Executable.

Appended data Once a parser has determined that a file
is complete, any data appended to the rest of the file is typ-
ically ignored. Most file formats have one or more ways of
determining whether a file is complete:

• The file size or the number of elements is declared in ad-
vance, such as in RIFF or Java Class.

• The format has a terminator or footer to declare that the file
structure is valid or that it should not be parsed any further.
For example, the terminator could be the last element with a
specific bit set, or any element with its pointer to the next ele-
ment set to null. Some formats like XZ actively check that the
file ends with its footer, but in practice, most parsers process
the file until a terminator is encountered and all subsequent
data is ignored.

• It is also possible to force the parser to terminate, for exam-
ple by exhausting a recursion limit by triggering an infinite
recursion on purpose.

• If the previous conditions are not met but at some point,
enough elements have been correctly parsed in the file to
declare it valid, the parser might consider it valid and ignore
any further missing or invalid data. Typically, truncating the
terminator is silently ignored.

Parasite Most file formats allow for parasitic data that is
left as-is and not parsed:

• Archive formats are like a stack of labelled storage boxes
(cf. Figure 2). To add parasitic data to such a file, just store
it, i.e. keep as-is without any compression (see Figure 3).
Optionally prevent the newly added file to show like the other
ones in the archive listing, by for example corrupting a check-
sum or giving it a null name. Note that some archive formats
like XZ always process the data with some light compression,
and therefore modify data even at their lowest compression
level, but often they implement storage without any form of
processing.

Magic

Header File Data

Archived file

Figure 2: Layout of an archive format (like AR).

M H D

File1

H D

FileN

M H D

Parasite

H D

File1

H D

FileN

Figure 3: Adding parasitic data to an archive format (like Fig-
ure 2).

• Sequence-based formats are like trains: one locomotive for
the header, and one or several wagons for the chunks(cf. Fig-
ure 4). To add anything in that train, just load your goods on
another wagon, and insert it in the train at any wagon bound-
ary(see Figure 5). For such formats, use a comment/junk
block. While a comment is typically expected to be text, short
and unique, such chunks can in practice contain anything,
with length which only limitation is how it is stored, and be
repeated: parsers just treat comments as data to ignore, they
do not count them or check their contents. If the format does
not have such a kind of element, it is still possible to rely on
redundant or unused element, such as an extra ILDA palette,
a picture in an RTF, or just a block of data in PDF. These
chunks typically declare their type and size before their data
— pre-wrapping — and occasionally store some extra informa-
tion — post-wrapping — after their data such as CRC, size
(redundantly for error detection), chunk terminator (see Fig-
ure 6). In some cases such as inline comments or unused
functions in PostScript, the data still has to follow some mi-
nor requirements, such as no newline characters or balanced
parenthesis.

CRC

Magic

Size Type Chunk Data

Chunk

Figure 4: Layout of a sequence format (like PNG).

• Some formats such as WAD or ICO are like books. They
have at the start a table of contents that points to each chapter.
If you just add more pages, just update the indexes in the
table of contents. Some formats such as TIFF or BMP are
like towed dinghies, where a tugboat just has a rope - a pointer
- to the next boat, and each boat is linked to the next by another

C C

C C C

M S T D

Header

S T D

Data

M S T D

Header

S T D

Parasite

S T D

Data

Figure 5: Adding parasitic data to a sequence format (like Fig-
ure 4).

pre wrap. pre align. data
pre wrap.
(parasite) post align. post wrap.

Figure 6: Generic layout of a parasitic chunk.

rope. If you want to carry more, just put something between
two boats, and make the rope longer. In practice, you can for
example make some space that will be ignored by moving
format data further and adjusting all pointers accordingly
(see Figure 7).

Pointer

Pointer

Magic Data

Magic Parasite Data

Figure 7: Adding parasitic data to a pointer-based format.

Stopping parsers The parasite payload might be executed
but some trailing bytes might still be executed. It might be
better or even required to break out of the hosting format
(JavaScript) or to terminate parsing forcibly with some spe-
cific keyword in Ruby __END__ or PostScript stop or some
tricks such as forcing recursion and exhausting the parser.

Wrappending Some formats do not tolerate appended data
as they parse specific structures until the end of a file, but it is
still possible to add a trailing structure wrapping a parasite,
as most format structures are declared before the data they
contain. Such appended data wrapped in a structure we call
wrappended.

Wrappending needs to be used if a format that does not
tolerate appended data is used as a parasite into another one,
such as DICOM/PNG polyglots: PNG starts at offset zero,
DICOM at 128, so DICOM is a parasite of PNG, yet DICOM
does not tolerate appended data, so the body of the PNG
cannot be just following the DICOM parasite.

4.4 Polyglot combination strategies
Knowing the typical characteristics of file formats, we can
infer the following strategies to create a file valid according
to more than one format:

• Combining a format that starts with a cavity and another
format that tolerates appended or wrappended data. The cavity
should be big enough so that the other payload fits.

• Appending to a format tolerating appended — or wrap-
pended — data another format that is valid at a far enough
offset, after the first payload. This means that the feasibility
depends on the size of the first file.

• Inserting a format valid at a far enough offset as a parasite
inside another format. A chunk of it must be able to fit all the
parasite. Otherwise, it may be possible to split the parasite in
several pieces, making it a zipper: the pieces of each format
are parasites to the other.

Zippers Some formats like GIF start at offset zero and only
tolerate parasites of limited length, as the comment length is
encoded as a single byte — limited to 255 — which is likely
too small to contain a complete payload. A workaround for
that is to split the parasite payload in headers and parasite
declaration, so that the body of the host itself is a parasite to
the hosted file.

Therefore, both payloads’ bodies are parasite to each other.
They both set up the structure to tolerate the other’s body,
exactly like the teeth of each side of a zipper embrace the
other side’s teeth. This can be also extended to more than one
body, for example like splitting a JPEG image into hundreds
of scans — as opposed to the typical 1–6 — so that each of
them is small enough to fit in a parasite.

4.4.1 Binary polyglots

We see that it is usually possible for two different formats
to coexist in the same file without any overlap, therefore we
can avoid the computational costs associated with overlap
discussed in Section 4.1. In practice, few formats — two
to our knowledge: ID3v1 and XZ — cannot be made to
coexist with any other format: they enforce parsing at offset
zero, actively enforce a footer preventing appended data, and
prevent any form of parasite.

Binary polyglot files are instant to make, even generically:
some data has to be moved around, and some counters, point-
ers or checksums have to be updated. Our tool3 takes two
input files, identifies the supported file formats, then tries
different layouts and generates the final binary polyglot file.

We could take the next PDF article that you would want to
open, combine it with malware — even without the source
— and turn it into a standard PDF that once encrypted with

3redactedforanonymity

redacted for anonymity

the right key and then decrypted with another given key (both
known in advance), will result in the original malware.

It is easy to turn such a binary polyglot file into two valid
plaintexts that will be combined as the same ciphertext, using
the offsets where the file contents change side, and each side
does not depend on the contents of the other one (except
checksums of parasite chunks). It is like slicing two sausages
at the same locations and mixing their contents.

4.5 Crypto-polyglots

As mentioned before, near polyglots are invalid binary poly-
glots with interchangeable, overlapping data. The file type
changes depending upon which overlapping data is put in
the file. When the data is exchanged via a cryptographic
operation, we call these crypto-polyglots: files which are one
cryptographic step away from each other.4.

Each format has its own length requirements to declare its
type, header and declare a parasite (see Table 1). We only
need to deal with the minimum overlap of both formats; for
example, PE/JP2 ambiguous ciphertexts only have 2 bytes of
overlap, as PE requires 2 bytes of overlap even though JP2
requires 40.

Dodis et al. [DGRW18] create an ambiguous ciphertext us-
ing a JPEG-BMP near polyglot, which has 6 bytes of overlap.
We show in the full paper [ADG+20] that we can combine
most formats with PostScript with one byte of overlap at best
— otherwise 3 bytes. We also combined most formats with
Portable Executables with 2 bytes of overlap, and reduced the
overlap with JPEG files to 4 bytes.

Using twice the same format cancels this advantage, so it
is only possible for formats that can start at variable offset —
and make several instances of the same format coexist in the
same file.

Any formats requiring no controlled offset at zero can also
be combined with itself or another format, such as archives
like 7zip, Arj, Rar, Zip and cavities like Dicom, Iso, PDF.

Note that, since the two payloads of an ambiguous cipher-
text are not simultaneously in the clear, crypto-polyglots are
useful to bypass blacklisting and scanning: the malicious
payload is out of reach when the clean one is in clear.

4.5.1 Tag correction

In the case of AES-GCM, one block needs to be used to cor-
rect the authentication tag (see Section 4.1), respectively more
blocks are required for AES-GCM-SIV and OCB. In practice,
most formats support appended data, so just appending the
extra block(s) is enough. For the few formats that do not
tolerate appended data, wrappending, increasing the size of

4This concept is not limited to ambiguous ciphertexts : for example, the
two files of a hash collision pair (see [Alba]), or a file changing its type via
encryption (see [AA14])

the internal parasite, or using a small space of a cavity are ef-
fective solutions. They all depend on the formats combination
used in the file.

4.6 An Example Attack Scenario
Consider the scenario described in Section 2, Subscribe with
Google, but assume that the encryption scheme did not use a
key commitment. A malicious publisher wishing to exploit
the setting would want to display different premium content
to their premium users versus, for example, the search indexer
— perhaps to undermine the search indexer, or if the publisher
were compromised, then to display malicious content to the
premium users while minimizing detection.

To do so, the publisher would need to put two HTML pay-
loads in the same file, interleaved with comment declarations.
The layout of the generated ambiguous file is as follows :

<!--[cut 1]-->
[payload1]
<!--[cut 2]-->
[payload2]
<!--
[padding]
[tag correction]

Each payload will be commented out from the other. Given
the ambiguous file, the publisher creates a ciphertext which
when decrypted under one key will display only one payload
and garbled data for the other payload, the latter of which is
commented out. This is easy for the publisher to do as they
generate the keys used for encryption (see Section 2).

There’s a risk that encrypted content accidentally instan-
tiates a comment closing --> statement, in which case gen-
erating the file again with a different nonce should do the
trick.

The four first characters <!-- may show up as garbage once
encrypted, but it’s easy to hide them or make them disappear
with CSS or Javascript, for example with this script :

<div id=’mypage’>
Hello World!

</div>
<script language=javascript

type="text/javascript">
document.documentElement.innerHTML =
document.getElementById(’mypage’).innerHTML;

</script>

The full paper [ADG+20] shows an example ambigu-
ous HTML file, and its two different decryptions. The
ambiguous HTML file was generated with our htmhtm.py
tool; see https://github.com/corkami/mitra/blob/
master/utils/extra/htmhtm.md for the tools and an ex-
planation for how to generate our examples.

https://github.com/corkami/mitra/blob/master/utils/extra/htmhtm.md
https://github.com/corkami/mitra/blob/master/utils/extra/htmhtm.md

1 2 4-6 8 9 12 16 20
PS PE JPG Flac MP4 Tiff Flv Wad Wasm Bpg Gif Nes Png Riff Id3v2

23 26 28 32 34 36 40 64 68 94 112 132
Rtf Bmp Cpio Ogg Ilda Psd Cab Jp2 PcapNg Elf Ar Pcap Ico Icc

Table 1: Required amount of controlled bytes at offset zero (best cases).

5 Adding Key Commitment to AE

5.1 Hash Function Use in Prior Work

Recall that key committing AE schemes (Enc,Dec) need to
be collision resistant, that is, it should be difficult to find
two inputs X = (K,N,A,M) and X ′ = (K′,N′,A′,M′) such
that Enc(X) = Enc(X ′). As we discuss below, all prior work
relies on schemes which explicitly or implicitly contain hash
functions to achieve collision resistance.

Farshim et al. [FOR17], the first to study key commit-
ment which they call “robustness”, propose generic compo-
sition — like encrypt-then-MAC [BN08] — which send ei-
ther the entire message or ciphertext into a collision-resistant
pseudorandom function (PRF). As a practical instantiation,
they propose using a hash function with a key, for example
HMAC [BCK96] or KMAC [NIS16].

Grubbs et al. [GLR17a] design compactly committing AE,
where a small portion of the ciphertext commits to the mes-
sage. Due to differences in security definitions, GLR’s com-
pactly committing AE does not formally guarantee FOR’s
robustness, yet GLR need collision resistance and, like FOR,
they propose using collision resistant PRFs which process the
entire message or ciphertext.

Dodis et al. [DGRW18] design encryptment schemes,
which they propose as a building block to achieve robust
or compactly committing AE. Their schemes are more effi-
cient than FOR and GLR’s, yet they still need to process the
message through a hash function, and even prove that block
cipher-based encryptment schemes cannot be more efficient
than hash functions. They also conjecture that block cipher-
based key robust schemes as defined by FOR cannot be more
efficient than hash functions.

There are two drawbacks to these approaches:

1. Since commonly used AE algorithms like AES-GCM and
ChaCha20Poly1305 do not follow the above hash-based de-
signs, avoiding attacks requires using less widely deployed
algorithms, or entirely new ones.

2. The performance of hash-based designs is limited by the
fact that commonly used hash functions are serial, whereas
widely used AE schemes are parallelizable. This becomes
an issue when the message or ciphertext is large, and in
fact led Facebook Messenger to rely on AES-GCM to en-
crypt message attachments, exposing the application to at-
tack [DGRW18].

Ideally, a solution would require minimal changes to widely
deployed, highly efficient AE schemes like AES-GCM.

5.2 Overview of Our Solutions
The message or ciphertext does not need to be processed as in
a hash-based design: if the ciphertext contains a commitment
to just the key, verified during decryption, then the adversary
cannot generate ciphertext valid under two keys. We propose
the following:

Padding Fix5. Let X denote an `-bit string of 0’s. Prepend
X to the message M for each encryption, Enc(K,N,A,X ‖M),
and check for the presence of X at the start of the message after
decryption; decryption fails if X is not present. This solution
is not generic, and must be analyzed per scheme. Furthermore,
it is implicitly assumed that X ‖M is a legitimate input to Enc,
i.e., that it is still shorter than the longest legitimate message.

Generic solution. Given a key K, derive an encryption key
and a commitment using collision-resistant PRFs: Kenc =
Fenc(K) and Kcom =Fcom(K). The ciphertext is a combination
of the normal ciphertext computed with Kenc and Enc, and
Kcom: (Enc(Kenc,N,A,M),Kcom). A nonce N′ can be used
to compute Kenc = Fenc(K,N′) or Kcom = Fcom(K,N′). The
presence or absence of N′ to derive Kenc and Kcom results in
four constructions named in Table 2.

5.3 Padding Fix
Our padding solution Pad`Π = (Pad`Π

Enc,Pad`Π
Dec) for

some predetermined integer ` > 0 and AE scheme Π =
(Enc,Dec) is algorithmically described in the full pa-
per [ADG+20]. We discuss the security of Pad`Π
when Π is instantiated with 96-bit-nonce AES-GCM and
ChaCha20Poly1305, followed by performance considera-
tions.

AE Security. Since the padding fix uses the underlying AE
scheme in a black-box manner, conventional AE security fol-
lows immediately. Note that the AE security bounds change
since the plaintext length increases by ` bits. However, for
all practical values of `, e.g. one or two block lengths, the
difference is negligible.

5Similar solution also proposed by Krawczyk [Kra19, Section 3.1.1]

Key Commitment Security. An ideal cipher is a random
variable chosen uniformly at random from the set of all block
ciphers with interface K×X→ X

Theorem 1. Let Π denote GCM with 96-bit nonces using
ideal cipher π : K×X→ X as an idealization of AES. As-
sume that ` < 128 · (232−2), so that the `-bit padding does
not violate GCM’s message length constraint. Consider an
adversary A with access to π. Then A’s q-KC advantage
against Pad`Π is at most (q+ p)2/2`, where A makes at most
p queries to π.

The proof is in the full paper [ADG+20]. We recommend
` to be shorter than 4 · 128 = 512 bits, or four blocks, as
anything longer would exceed 256 bit security.

Theorem 2. Let Π denote ChaCha20Poly1305 using
ideal random function ρ : {0,1}256×{0,1}32×{0,1}96 →
{0,1}512 as an idealization of the ChaCha20 block function.
Consider an adversary A with access to ρ. Then A’s q-KC
advantage against Pad`Π is at most (q+ p)2/2`, where A
makes at most p queries to ρ.

Analysis of ChaCha20Poly1305 is similar to AES-
GCM since ChaCha20Poly1305 uses CTR mode (see the
full paper [ADG+20] for a pseudocode description of
ChaCha20Poly1305), but with the ChaCha20 block function
instead of AES.

Assumptions on the Underlying Primitives.
GLR [GLR17b] and DGRW [DGRW19] justify secu-
rity assuming either key-dependent message security,
related-key security, or by modelling the primitives as ideal.
Similarly, our analysis assumes the primitives are ideal.

To build a conventional AE scheme with a block cipher
or hash function, it suffices to assume that the underlying
primitive behaves like a PRP or PRF when keyed with a
uniformly random key unknown to the adversary. In con-
trast, supporting AE key commitment requires understanding
what happens when the adversary can choose the key used
in the block cipher or hash function. As a result, practical
instantiations require a stronger assumption on the underlying
primitives. Since the adversary can choose the key, related-
key attacks [Bih94] and known-key [KR07] or chosen-key
attacks become relevant.

In fact AE schemes might not achieve key commitment
when instantiated with weak primitives. Take for example
HMAC, which is commonly used to build AE with e.g. CTR-
mode. HMAC does not require a collision resistant hash
function, therefore the use of HMAC-SHA-1 could be justi-
fied, and it is still used in TLS in practice. However, if an
adversary can find a collision efficiently for the hash function
it is possible to find two different tags under two different keys
to break the key commitment. As chosen-prefix collisions are
practical for SHA-1 [LP20], HMAC-SHA1 is insufficient to

provide key commitment while this is not the case for HMAC
used with a collision resistant hash function.

In particular, the padding fix with AES-GCM assumes
an ideal cipher, and therefore raises the following interest-
ing problem: Is it possible to find two keys k1,k2 such that
AESk1(0) = AESk2(0) in less than ≈ 264 trials. If the key-
size is larger than the blocksize, then such a pair of keys must
exist. While there has been some work on the chosen-key
setting [FJP13] or using AES in a hashing mode [Sas11], we
are not aware of any results on this specific problem.

Performance. The performance overhead of the Padding
solution is minimal. Let TGCM(a, p) denote the performance
(e.g., in processor cycles, where smaller is better) for AES-
GCM encryption with a 128-bit key, over an input with AAD
A of length a blocks and message M of length p blocks. For
convenience, assume that A and M consist of full 128-bit
blocks, and set |A| = 128a and |M| = 128p for some a ≥ 0,
p≥ 0.

The performance of the Padding solution is TPad` GCM(a, p)
= TGCM(a, p+ d`/128e). The actual differences depends on
factors such as the computing platform, and potentially also
the values of a and p. For example, well aligned buffers may
fit better in the caches, and can be accessed more efficiently.

To illustrate, we consider a = 0 (no AAD) and measure-
ment carried out on OpenSSL (version 1.0.2m). This code
is optimized to leverage the potential pipelining that the pro-
cessor can offer. We ran the code on a 7th Generation Intel
Core i7-7700 processor (“Kaby Lake"). On this processor,
the latency of the AESENC instruction is 4 cycles. Given that
AES128 has ten rounds, and accounting for the initial whiten-
ing steps, the latency for AES encryption of one block is∼ 41
cycles (the throughput is 10 cycles).

For p = 128 (a 2048 bytes message) and `= 128, we mea-
sured T ′Pad` GCM(0,128) = 1,739 cycles and TGCM(0,128) =
1,665 cycles, indicating an overhead of 74 cycles for
the Padding solution and relative impact of ∼ 4.4%.
With p = 127 (a 2032 bytes message), we measured
T ′Pad` GCM(0,128) = 1,665 cycles and TGCM(0,128) = 1,636
cycles. In this case, The overhead is 29 cycles, and the rel-
ative impact is ∼ 1.8%. For a longer message we measured
T ′Pad` GCM(0,384) = 4,263 cycles and TGCM(0,384) = 4,203
cycles, with relative impact of ∼ 1.4%.

5.4 Generic Solution
Let Π = (Enc,Dec) be an AE scheme where K= {0,1}κ and
N = {0,1}ν. We describe the scheme CommitKeyΠ over
Π. Let κ0, ν′, c be positive integers where, without loss of
generality, κ0 ≥max (κ,c). Let

Fenc : {0,1}κ0 ×{0,1}≤ν′ →{0,1}κ (19)

Fcom : {0,1}κ0 ×{0,1}≤ν′ →{0,1}c (20)

be independent PRFs. Both schemes use the same key K ∈
{0,1}κ0 , called the main key, but must guarantee that their
outputs remain independent.

CommitKeyΠ has four types, depending on whether a
nonce is used in Fenc or Fcom (see Table 2). We describe
Type IV in Algorithm 2 and Algorithm 3. The remaining
types are described in Appendix B.

Note that CommitKeyΠ includes a nonce N′ in addition
to the nonce N used for the underlying AE scheme Π. This
is done for backwards compatibility, as Π might already be
deployed and re-using Π’s nonce for CommitKeyΠ might not
be feasible. The security requirements for N′ and N are the
same, so if possible, they can be set to equal each other as
long as uniqueness is guaranteed; however care must be taken
to ensure the nonces are sufficiently long — |N| and |N′| may
not be the same, and depending upon the exact requirements
of the application (e.g. N′ needs to be generated randomly),
one might want a larger |N′|.

Table 2: The four types of key derivation for the generic
solution. Each key is either derived with a nonce, or without.

Kcom
fixed nonce

Kenc
fixed Type I Type III
nonce Type II Type IV

Algorithm 2: CommitKeyIV ΠEnc(K,N′,N,A,M)

Input: K ∈ {0,1}κ0 , N′ ∈ {0,1}ν′ , N ∈ N, A ∈ A,
M ∈M

Output: C ∈ C, Kcom ∈ {0,1}c

1 Kenc← Fenc(K,N′)
2 Kcom← Fcom(K,N′)
3 C← Enc(Kenc,N,A,M)
4 return (C,Kcom)

Using the Different CommitKeyΠ Types. The differ-
ent CommitKeyΠ types have different incremental com-
putational and bandwidth overheads over Π; see Table 3.

Table 3: The overheads compared to Π involved with the
different flavors of CommitKeyΠ, when encrypting or de-
crypting q payloads with the main key K.

Type Fenc calls Fcom calls Communication

I 1 1 c
II q 1 c+ν′

III 1 q c+ν′

IV q q c+ν′

Algorithm 3: CommitKeyIV ΠDec(K,N′,N,A,C,Kcom)

Input: K ∈ {0,1}κ0 , N′ ∈ {0,1}ν′ , N ∈ N, A ∈ A,
C ∈ C, Kcom ∈ {0,1}c

Output: M ∈M∪{⊥}
1 K′com← Fcom(K,N′)
2 K′enc← Fenc(K,N′)
3 M← Dec(K′enc,N,A,C)

4 if Kcom 6= K′com or M ?
=⊥ then return ⊥

5 return M

CommitKeyΠ Type I and type II carry the lowest incre-
mental overheads over Π as they use a fixed key identifier
Kcom. These are useful when leaking an identifier for the
key used to produce ciphertext does not violate privacy re-
quirements, for example, when a main key is used for only
one session between the communicating parties. Deriving
a nonce-dependent Kcom value, as in Types III and IV, does
not leak any key identifiers, but comes at some incremental
cost. Deriving a new key for each encryption in Type IV
comes with the added benefit of avoiding encryption data
limits imposed by the underlying encryption algorithm.

Simple Instantiation of Fenc and Fcom Let κ0 = κ = 256,
assume that ν1 ≤ 256, and set c = 256. Let Lenc and Lcom be
fixed labels and define

Fenc(K,N) = SHA256(K ‖ Lenc ‖ N) (21)
Fcom(K,N) = SHA256(K ‖ Lcom ‖ N) (22)

For concreteness, we give examples of labels Lenc and Lcom
in Table 4. The different CommitKeyΠ types are encoded in
the labels Lenc, Lcom. With this choice,∣∣K ‖ Lenc ‖ N

∣∣= ∣∣K ‖ Lcom ‖ N
∣∣≤ 576 bits , (23)

so deriving Kenc and Kcom require for each computation at
most two calls to the SHA256 compression function. Fur-
thermore, for Type I, computing Kenc and Kcom invokes the
SHA256 compression function only once, and for Type II, com-
puting Kcom calls the compression function only once (but
twice to compute Kenc). The full paper [ADG+20] demon-
strates how to instantiate a Type I key committing AES-GCM.

Key Commitment Security. To meet the CommitKeyΠ

design goal, the PRFs Fenc and Fcom must be collision-
resistant (24); our instantiation achieves collision-resistance
with SHA256. Furthermore, c should be large enough to
make brute-force collision search impractical.

Claim 1. If adversary A produces a winning tuple
(N,A,C,T,Kcom) for keys K1 6= K2, then A has found a colli-
sion (on Kcom), i.e.,

Fcom(K1,N) = Fcom(K2,N) . (24)

Table 4: Sample labels for use in our instantiation of Fenc and
Fcom. Define some fixed label L0 of length 48 bits; for exam-
ple L0 = 0x436f6d6d6974, which is Commit in hexadecimal
notation.

Type Lenc Lcom

I L0 ‖ 0x01 ‖ 0x01 L0 ‖ 0x01 ‖ 0x02
II L0 ‖ 0x02 ‖ 0x01 L0 ‖ 0x02 ‖ 0x02

III L0 ‖ 0x03 ‖ 0x01 L0 ‖ 0x03 ‖ 0x02
IV L0 ‖ 0x04 ‖ 0x01 L0 ‖ 0x04 ‖ 0x02

Note that the claim holds even if the adversary may freely
choose two different nonces N1 and N2 as input.

AE Security. Say the PRF’s used by CommitKeyΠ are se-
cure, that is, each PRF output looks uniformly random and
independent of other PRF output against computationally
bounded adversaries, then:

1. Π is called using Kenc, which is uniformly random and
independent, hence if Π is a secure AE scheme, then Π’s
output maintains confidentiality and integrity, and

2. Kcom is uniformly random and independent of Π’s output,
hence Kcom does not affect AE security.

As with other generic compositions involving key derivation
functions, we can use a straightforward hybrid argument with
the result that CommitKeyΠ preserves Π’s AE security.

We state AE security for CommitKeyΠ Type IV; Types I,
II, III are analogous.

Definition 2. Let F : K×X→ Y,F ′ : K×X′→ Y′ be PRFs,
then the PRF advantage of adversary A against (F,F ′) is

PRFF,F ′(A) := ∆
A

(
FK ,F ′K ; $F ,$F ′

)
, (25)

where K is chosen uniformly at random from K.

Theorem 3 (CommitKeyIV Π AE Security). Let A be a
nonce-respecting AE adversary against CommitKeyIV Π mak-
ing at most q queries with associated data, message, and ci-
phertext length at most `. Let B be a PRF adversary and C
an AE adversary against Π, then A’s multi-key AE advantage
with µ instances is

µ-AECommitKeyIV Π(A)≤PRFFcom,Fenc(B)+
(µ ·q)-AEΠ(C) ,

(26)

where B makes at most q queries to each of its oracles, and C
makes at most 1 query to each of its oracles with associated
data, message, and ciphertext length at most `.

The full paper [ADG+20] shows how to use the bounds of
Theorem 3.

Design rationale and alternatives. We require
CommitKeyΠ to use κ0 ≥ κ to keep a key hierarchy:
the derived encryption keys (Kenc) are not longer than the
main key. Similarly, we require κ0 ≥ |Kcom| and set Kcom
to be sufficiently long to make brute force collision and
pre-image search unfeasible. The power-of-two choice
κ0 = κ = c = 256 seems adequate and convenient. However,
it is also reasonable to settle with c = 192 or 160 to reduce
the overhead of CommitKeyΠ encryption.

We point out that defining F(K,L) = H(K ‖ L) with any
NIST standard collision-resistant hash function H, with a suf-
ficiently long digest, is an acceptable choice. This makes it is
easy to choose a main key (K) of a desired length, and also to
truncate the digests to c or κ bits, as needed. Note that it is
implicitly assumed here that for this usage, H is invoked with
equal-length arguments.

6 Related Work

Other possible techniques to generate polyglots include
[Alb15, SBK+17, LP20, AAE+14, Alba]; these techniques
are not generic to all file formats.

Hoang, Krovetz, and Rogaway introduce the concept of
“robust AE” (RAE) [HKR15], formalizing one of the strongest
types of security that an AE scheme can satisfy. We do not
use the term robust in the sense of “robust AE.”

Abdalla et al. [ABN10] initiate a provable-security treat-
ment of robust encryption. Canetti et al. [CKVW10] consider
“wrong-key detection”, which is similar to robustness.

The OPAQUE protocol [JKX18] requires an AE scheme
with random key robustness: robustness where the attacker
may not choose the two keys under which it finds a collision.
An early draft of an OPAQUE protocol RFC describes a way
to fix GCM similar to what we propose [Kra19, Section 3.1.1],
by appending a constant string to the plaintext. Subsequent
drafts of the RFC remove mention of the fix.

Everspaugh et al. [EPRS17] discuss how to securely sup-
port key rotation without decryption in key management ser-
vices via updatable AE; as part of their motivation, they dis-
cuss how Amazon and Google perform key rotation. To
achieve ciphertext integrity while rekeying, they require the
underlying symmetric encryption scheme to be compactly
robust, where the adversary should not be able to find two
keys and two ciphertexts with the same tag.

7 Conclusions

Section 2 demonstrates products and settings where key com-
mitment naturally arises and a lack thereof violates expecta-
tions, resulting in attacks. We conclude that key commitment
is an important property to consider for AE schemes.

We see that a lack of collision-resistance results in AE
schemes’ lack of key commitment; the fastest, widely de-

ployed AE schemes are often not collision resistant and are
easy to exploit. Adversaries can choose encryption keys as
they please, and our automated tools demonstrate how easy
it is to generate binary polyglots with a wide variety of file
formats.

We also conclude that it is easy to add key commitment
via blackbox use of AE schemes. We note that, while the
generic solution mainly relies on collision resistance of hash
functions, the padding fix does rely on additional assumptions
on its underlying primitives.

Acknowledgments

The authors would like to thank Daniel Bleichenbacher for
highlighting the impact of binary polyglots, Jean-Philippe Au-
masson, Maria Eichlseder and Marc Stevens for helping with
crypto-polyglots, Joseph Jaeger and Stefano Tessaro for point-
ing out an oversight in the key commitment definition, and
Peter Valchev and Christoph Kern for their helpful feedback.

This research was partly supported by: NSF-BSF Grant
2018640; The Israel Science Foundation (grant No. 3380/19);
The BIU Center for Research in Applied Cryptography and
Cyber Security, and the Center for Cyber Law and Policy at
the University of Haifa, both in conjunction with the Israel
National Cyber Bureau in the Prime Minister’s Office.

Availability

The polyglot and GCM tools along with proof-of-concepts
are available at https://github.com/corkami/mitra and
https://github.com/kste/keycommitment.

References

[AA14] Ange Albertini and Jean-Philippe Aumasson. A
binary magic trick, angecryption. International
Journal of Proof-of-Concept or GTFO, 0x03:37–
41, 2014. https://archive.org/details/
pocorgtfo03.

[AAE+14] Ange Albertini, Jean-Philippe Aumasson, Maria
Eichlseder, Florian Mendel, and Martin Schläffer.
Malicious hashing: Eve’s variant of sha-1. In Se-
lected Areas in Cryptography – SAC 2014, pages
1–19, Cham, 2014. Springer International Publish-
ing.

[ABL+14] Elena Andreeva, Andrey Bogdanov, Atul Luykx,
Bart Mennink, Nicky Mouha, and Kan Yasuda. How
to securely release unverified plaintext in authenti-
cated encryption. In ASIACRYPT (1), volume 8873
of Lecture Notes in Computer Science, pages 105–
125. Springer, 2014.

[ABN10] Michel Abdalla, Mihir Bellare, and Gregory Neven.
Robust encryption. In TCC, volume 5978 of Lec-
ture Notes in Computer Science, pages 480–497.
Springer, 2010.

[ADG+20] Ange Albertini, Thai Duong, Shay Gueron, Ste-
fan Kölbl, Atul Luykx, and Sophie Schmieg. How
to abuse and fix authenticated encryption without
key commitment. Cryptology ePrint Archive, Re-
port 2020/1456, 2020. https://ia.cr/2020/
1456.

[Alba] Ange Albertini. Hash collisions and exploitations.
Date Accessed: Oct. 13, 2020. https://github.
com/corkami/collisions.

[Albb] Jim Albrecht. Introducing Subscribe with
Google. Date Accessed: Oct 4, 2020. https:
//blog.google/outreach-initiatives/
google-news-initiative/
introducing-subscribe-google/.

[Alb15] Ange Albertini. Abusing file formats. International
Journal of Proof-of-Concept or GTFO, 0x07:18–
41, 2015. https://archive.org/details/
pocorgtfo07.

[AWSa] AWS Encryption SDK. Date Accessed: Oct.
13, 2020. https://docs.aws.amazon.com/
encryption-sdk/latest/developer-guide/
introduction.html.

[awsb] AWS Key Management Service concepts - AWS
Key Management Service. Date Accessed: Sep
1, 2020. https://docs.aws.amazon.com/kms/
latest/developerguide/concepts.html.

[BCK96] Mihir Bellare, Ran Canetti, and Hugo Krawczyk.
Keying hash functions for message authentication.
In CRYPTO, volume 1109 of Lecture Notes in Com-
puter Science, pages 1–15. Springer, 1996.

[BDPS12] Alexandra Boldyreva, Jean Paul Degabriele, Ken-
neth G. Paterson, and Martijn Stam. Security of
symmetric encryption in the presence of ciphertext
fragmentation. In EUROCRYPT, volume 7237 of
Lecture Notes in Computer Science, pages 682–699.
Springer, 2012.

[BDPS13] Alexandra Boldyreva, Jean Paul Degabriele, Ken-
neth G. Paterson, and Martijn Stam. On symmetric
encryption with distinguishable decryption failures.
In FSE, volume 8424 of Lecture Notes in Computer
Science, pages 367–390. Springer, 2013.

[Bih94] Eli Biham. New types of cryptanalytic attacks using
related keys. J. Cryptol., 7(4):229–246, 1994.

https://github.com/corkami/mitra
https://github.com/kste/keycommitment
https://archive.org/details/pocorgtfo03
https://archive.org/details/pocorgtfo03
https://ia.cr/2020/1456
https://ia.cr/2020/1456
https://github.com/corkami/collisions
https://github.com/corkami/collisions
https://blog.google/outreach-initiatives/google-news-initiative/introducing-subscribe-google/
https://blog.google/outreach-initiatives/google-news-initiative/introducing-subscribe-google/
https://blog.google/outreach-initiatives/google-news-initiative/introducing-subscribe-google/
https://blog.google/outreach-initiatives/google-news-initiative/introducing-subscribe-google/
https://archive.org/details/pocorgtfo07
https://archive.org/details/pocorgtfo07
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/introduction.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/introduction.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/introduction.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html

[BMOS17] Guy Barwell, Daniel P. Martin, Elisabeth Os-
wald, and Martijn Stam. Authenticated encryption
in the face of protocol and side channel leakage. In
ASIACRYPT (1), volume 10624 of Lecture Notes in
Computer Science, pages 693–723. Springer, 2017.

[BN00] Mihir Bellare and Chanathip Namprempre. Au-
thenticated encryption: Relations among notions
and analysis of the generic composition paradigm.
In ASIACRYPT, volume 1976 of Lecture Notes in
Computer Science, pages 531–545. Springer, 2000.

[BN08] Mihir Bellare and Chanathip Namprempre. Authen-
ticated encryption: Relations among notions and
analysis of the generic composition paradigm. J.
Cryptology, 21(4):469–491, 2008.

[BT16] Mihir Bellare and Björn Tackmann. The multi-user
security of authenticated encryption: AES-GCM in
TLS 1.3. In Advances in Cryptology - CRYPTO
2016 - 36th Annual International Cryptology Con-
ference, August 14-18, 2016, Proceedings, Part I,
volume 9814 of Lecture Notes in Computer Science,
pages 247–276. Springer, 2016.

[BZG20] Gabrielle Beck, Maximilian Zinkus, and Matthew
Green. Automating the development of chosen
ciphertext attacks. In 29th USENIX Security Sympo-
sium, USENIX Security 2020, August 12-14, 2020,
pages 1821–1837. USENIX Association, 2020.

[CAE14] CAESAR: Competition for Authenticated En-
cryption: Security, Applicability, and Robustness,
May 2014. http://competitions.cr.yp.to/
caesar.html. Date Accessed: 14 Oct 2020.

[CKVW10] Ran Canetti, Yael Tauman Kalai, Mayank Varia,
and Daniel Wichs. On symmetric encryption and
point obfuscation. In TCC, volume 5978 of Lecture
Notes in Computer Science, pages 52–71. Springer,
2010.

[Cry] CrystalOnScript. Protect your subscription content
with client-side encryption. Date Accessed: Oct 4,
2020. https://amp.dev/documentation/
guides-and-tutorials/develop/
monetization/content_encryption/.

[DGRW18] Yevgeniy Dodis, Paul Grubbs, Thomas Risten-
part, and Joanne Woodage. Fast message franking:
From invisible salamanders to encryptment. In
CRYPTO (1), volume 10991 of Lecture Notes in
Computer Science, pages 155–186. Springer, 2018.

[DGRW19] Yevgeniy Dodis, Paul Grubbs, Thomas Risten-
part, and Joanne Woodage. Fast message frank-
ing: From invisible salamanders to encryptment.

Cryptology ePrint Archive, Report 2019/016, 2019.
https://eprint.iacr.org/2019/016.

[EPRS17] Adam Everspaugh, Kenneth G. Paterson, Thomas
Ristenpart, and Samuel Scott. Key rotation for
authenticated encryption. In CRYPTO (3), volume
10403 of Lecture Notes in Computer Science, pages
98–129. Springer, 2017.

[fil] Just Solve the File Format Problem. Date Ac-
cessed: Oct 4, 2020. http://fileformats.
archiveteam.org/.

[FIM20] Rintaro Fujita, Takanori Isobe, and Kazuhiko Mine-
matsu. ACE in chains: How risky is CBC encryp-
tion of binary executable files? In ACNS (1), volume
12146 of Lecture Notes in Computer Science, pages
187–207. Springer, 2020.

[FJP13] Pierre-Alain Fouque, Jérémy Jean, and Thomas
Peyrin. Structural evaluation of AES and chosen-
key distinguisher of 9-round AES-128. In CRYPTO
(1), volume 8042 of Lecture Notes in Computer Sci-
ence, pages 183–203. Springer, 2013.

[FOR17] Pooya Farshim, Claudio Orlandi, and Răzvan
Roşie. Security of symmetric primitives under in-
correct usage of keys. IACR Trans. Symmetric
Cryptol., 2017(1):449–473, 2017.

[GLL19] Shay Gueron, Adam Langley, and Yehuda Lindell.
AES-GCM-SIV: Nonce Misuse-Resistant Authenti-
cated Encryption. RFC 8452, April 2019.

[GLR17a] Paul Grubbs, Jiahui Lu, and Thomas Ristenpart.
Message franking via committing authenticated en-
cryption. In CRYPTO (3), volume 10403 of Lecture
Notes in Computer Science, pages 66–97. Springer,
2017.

[GLR17b] Paul Grubbs, Jiahui Lu, and Thomas Ristenpart.
Message franking via committing authenticated
encryption. Cryptology ePrint Archive, Report
2017/664, 2017. https://eprint.iacr.org/
2017/664.

[goo] Envelope encryption | Cloud KMS Documenta-
tion | Google Cloud. Date Accessed: Sep 1,
2020. https://cloud.google.com/kms/docs/
envelope-encryption.

[HKR15] Viet Tung Hoang, Ted Krovetz, and Phillip Rog-
away. Robust authenticated-encryption AEZ and
the problem that it solves. In EUROCRYPT (1),
volume 9056 of Lecture Notes in Computer Science,
pages 15–44. Springer, 2015.

http://competitions.cr.yp.to/caesar.html
http://competitions.cr.yp.to/caesar.html
https://amp.dev/documentation/guides-and-tutorials/develop/monetization/content_encryption/
https://amp.dev/documentation/guides-and-tutorials/develop/monetization/content_encryption/
https://amp.dev/documentation/guides-and-tutorials/develop/monetization/content_encryption/
https://eprint.iacr.org/2019/016
http://fileformats.archiveteam.org/
http://fileformats.archiveteam.org/
https://eprint.iacr.org/2017/664
https://eprint.iacr.org/2017/664
https://cloud.google.com/kms/docs/envelope-encryption
https://cloud.google.com/kms/docs/envelope-encryption

[HRRV15] Viet Tung Hoang, Reza Reyhanitabar, Phillip
Rogaway, and Damian Vizár. Online authenticated-
encryption and its nonce-reuse misuse-resistance.
In CRYPTO (1), volume 9215 of Lecture Notes in
Computer Science, pages 493–517. Springer, 2015.

[ISO09] Information technology — Security techniques
— Authenticated encryption. Standard, Interna-
tional Organization for Standardization, Geneva,
CH, February 2009.

[JKX18] Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu.
OPAQUE: an asymmetric PAKE protocol secure
against pre-computation attacks. In EUROCRYPT
(3), volume 10822 of Lecture Notes in Computer
Science, pages 456–486. Springer, 2018.

[JNP15] Jérémy Jean, Ivica Nikolić, and Thomas Peyrin.
Deoxys v1.3. CAESAR submissions, 2015.
http://competitions.cr.yp.to/round2/
deoxysv13.pdf.

[KR07] Lars R. Knudsen and Vincent Rijmen. Known-
key distinguishers for some block ciphers. In ASI-
ACRYPT, volume 4833 of Lecture Notes in Com-
puter Science, pages 315–324. Springer, 2007.

[KR14] Ted Krovetz and Phillip Rogaway. The OCB
Authenticated-Encryption Algorithm. RFC 7253,
May 2014.

[Kra19] Dr. Hugo Krawczyk. The OPAQUE Asymmetric
PAKE Protocol. Internet-Draft draft-krawczyk-cfrg-
opaque-03, Internet Engineering Task Force, 2019.
Work in Progress.

[KY00] Jonathan Katz and Moti Yung. Unforgeable encryp-
tion and chosen ciphertext secure modes of oper-
ation. In FSE, volume 1978 of Lecture Notes in
Computer Science, pages 284–299. Springer, 2000.

[LGR] Julia Len, Paul Grubbs, and Tom Risten-
part. Re: [Cfrg] Second RGLC on draft-
irtf-cfrg-hpke. Date Accessed: Oct 4,
2020. https://mailarchive.ietf.org/arch/
msg/cfrg/culAsRgMOvpPQcdvmXBrb8Muai8/.

[LGR21] Julia Len, Paul Grubbs, and Thomas Ristenpart.
Partitioning oracle attacks. In 30th USENIX Secu-
rity Symposium (USENIX Security 21). USENIX
Association, August 2021.

[LP20] Gaëtan Leurent and Thomas Peyrin. SHA-1 is a
shambles: First chosen-prefix collision on SHA-1
and application to the PGP web of trust. In USENIX
Security Symposium, pages 1839–1856. USENIX
Association, 2020.

[nac] NaCl: Networking and Cryptography library. Date
Accessed: Oct 4, 2020. https://nacl.cr.yp.
to/, version 2016.03.15 of the index.html web page.

[nis] Lightweight Cryptography. https://csrc.nist.
gov/projects/lightweight-cryptography.
Date Accessed: 14 Oct 2020.

[NIS07a] NIST Special Publication 800-38C. Recommen-
dation for Block Cipher Modes of Operation: the
CCM Mode for Authentication and Confidential-
ity. National Institute of Standards and Technology,
2007.

[NIS07b] NIST Special Publication 800-38D. Recommen-
dation for Block Cipher Modes of Operation: Ga-
lois/Counter Mode (GCM) and GMAC. National
Institute of Standards and Technology, 2007.

[NIS16] NIST Special Publication 800-185. SHA-3 De-
rived Functions: cSHAKE, KMAC, TupleHash, and
ParallelHash. National Institute of Standards and
Technology, 2016.

[RBB03] Phillip Rogaway, Mihir Bellare, and John Black.
OCB: A Block-Cipher Mode of Operation for Ef-
ficient Authenticated Encryption. ACM Trans. Inf.
Syst. Secur., 6(3):365–403, 2003.

[Res18] Eric Rescorla. The Transport Layer Security (TLS)
Protocol Version 1.3. RFC 8446, August 2018.

[Rog04] Phillip Rogaway. Efficient Instantiations of Tweak-
able Blockciphers and Refinements to Modes OCB
and PMAC. In ASIACRYPT, volume 3329 of
Lecture Notes in Computer Science, pages 16–31.
Springer, 2004.

[RS06] Phillip Rogaway and Thomas Shrimpton. Determin-
istic authenticated-encryption: A provable-security
treatment of the key-wrap problem. IACR Cryptol-
ogy ePrint Archive, 2006:221, 2006.

[RVV16] Reza Reyhanitabar, Serge Vaudenay, and Damian
Vizár. Authenticated encryption with variable
stretch. In ASIACRYPT (1), volume 10031 of Lec-
ture Notes in Computer Science, pages 396–425,
2016.

[Sas11] Yu Sasaki. Meet-in-the-middle preimage attacks on
AES hashing modes and an application to whirlpool.
In FSE, volume 6733 of Lecture Notes in Computer
Science, pages 378–396. Springer, 2011.

[SBK+17] Marc Stevens, Elie Bursztein, Pierre Karpman,
Ange Albertini, and Yarik Markov. The first col-
lision for full SHA-1. In CRYPTO (1), volume
10401 of Lecture Notes in Computer Science, pages
570–596. Springer, 2017.

http://competitions.cr.yp.to/round2/deoxysv13.pdf
http://competitions.cr.yp.to/round2/deoxysv13.pdf
https://mailarchive.ietf.org/arch/msg/cfrg/culAsRgMOvpPQcdvmXBrb8Muai8/
https://mailarchive.ietf.org/arch/msg/cfrg/culAsRgMOvpPQcdvmXBrb8Muai8/
https://nacl.cr.yp.to/
https://nacl.cr.yp.to/
https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/projects/lightweight-cryptography

[tin] GitHub - google/tink: Tink is a multi-language,
cross-platform, open source library that provides
cryptographic APIs that are secure, easy to use cor-
rectly, and hard(er) to misuse. Date Accessed: Oct
4, 2020. https://github.com/google/tink.

[Tri] Alex Tribble. Improved client-side encryption: Ex-
plicit KeyIds and key commitment. Date Accessed:
Oct. 13, 2020. https://docs.aws.amazon.com/
encryption-sdk/latest/developer-guide/
introduction.html.

[Vau02] Serge Vaudenay. Security flaws induced by CBC
padding - applications to ssl, ipsec, WTLS ... In
EUROCRYPT, volume 2332 of Lecture Notes in
Computer Science, pages 534–546. Springer, 2002.

A Notation

Let ε denote the empty string, and let 0n denote the n-bit
string consisting of only zeros. Given a block size n, the
function lenn(X) represents the length of X modulo 2n as an
n-bit string, and X0∗n is X padded on the right with 0-bits
to get a string of length a multiple of n. If X ∈ {0,1}∗, then
|X |n = d|X |/ne is X’s length in n-bit blocks. The operation

X [1]X [2] · · ·X [x] n←− X (27)

denotes splitting X into substrings such that |X [i]| = n for
i = 1, . . . ,x−1, 0 < |X [x]| ≤ n, and X [1]‖X [2]‖· · ·‖X [x] = X .

The set of n-bit strings is also viewed as the finite field
GF(2n), by mapping an−1 . . .a1a0 to the polynomial a(x) =
an−1+an−2x+ · · ·+a1xn−1+a0xn−1 ∈GF(2)[x], and fixing
an irreducible polynomial which defines multiplication in the
field. For n = 128, the irreducible polynomial is 1+x+x2 +
x7 +x128, the one used for GCM.

The function int(Y) maps the j-bit string Y = a j−1 . . .a1a0
to the integer i = a j−12 j−1 + · · ·+a12+a0, and str j(i) maps
the integer i = a j−12 j−1 + · · ·+ a12+ a0 < 2 j to the j-bit
string a j−1 . . .a1a0. Let incm(X) denote the function which
adds one modulo 2m to X when viewed as an integer:

incm(X) := strm(int(X)+1 mod 2m) .

Define msb j(X) to be the function that returns the j most
significant bits of X , and lsb j(X) the j least significant bits.

The expression a ?
= b evaluates to > if a equals b, and ⊥

otherwise.

For a keyed function defined on a domain K× X, we
write F(K,X) and FK(X) interchangeably. If the function
has three or more inputs, K×N×X, then the second in-
put can be written as a superscript, F(K,N,X) = FN

K (X). If
E : {0,1}n→{0,1}m is a function, then the notation

F ← E(C ‖ ·) (28)
defines F to be the function from {0,1}n−|C| to {0,1}m which
maps an element X ∈ {0,1}n−|C| to E(C ‖ X).

B Type I, II, and III CommitKeyΠ Encryption

Algorithm 4: CommitKeyIΠ
Enc(K,N,A,M)

Input: K ∈ {0,1}κ0 , N ∈ N, A ∈ A, M ∈M
Output: C ∈ C, Kcom ∈ {0,1}c

1 Kenc← Fenc(K)
2 Kcom← Fcom(K)
3 C← Enc(Kenc,N,A,M)
4 return (C,Kcom)

Algorithm 5: CommitKeyIIΠ
Enc(K,N1,N,A,M)

Input: K ∈ {0,1}κ0 , N1 ∈ {0,1}ν1 , N ∈ N, A ∈ A,
M ∈M

Output: C ∈ C, Kcom ∈ {0,1}c

1 Kenc← Fenc(K,N1)
2 Kcom← Fcom(K)
3 C← Enc(Kenc,N,A,M)
4 return (C,Kcom)

Algorithm 6: CommitKeyIIIΠ
Enc(K,N1,N,A,M)

Input: K ∈ {0,1}κ0 , N1 ∈ {0,1}ν1 , N ∈ N, A ∈ A,
M ∈M

Output: C ∈ C, Kcom ∈ {0,1}c

1 Kenc← Fenc(K)
2 Kcom← Fcom(K,N1)
3 C← Enc(Kenc,N,A,M)
4 return (C,Kcom)

https://github.com/google/tink
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/introduction.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/introduction.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/introduction.html

	Introduction
	Contributions
	How to choose a fix

	Real-World Settings
	Authenticated Encryption and Key Commitment
	Notation and Concepts
	Authenticated Encryption Schemes
	AE Key Commitment Definition
	Absence of Key Commitment in AE schemes
	Polynomial MAC based schemes
	OCB3

	Creating Meaningful Plaintexts
	Cryptographic Attack Constraints
	Binary versus near polyglots
	File Format Characteristics
	Polyglot combination strategies
	Binary polyglots

	Crypto-polyglots
	Tag correction

	An Example Attack Scenario

	Adding Key Commitment to AE
	Hash Function Use in Prior Work
	Overview of Our Solutions
	Padding Fix
	Generic Solution

	Related Work
	Conclusions
	Notation
	Type I, II, and III CommitKey Encryption

