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Abstract
Neural network pruning has been an essential technique to
reduce the computation and memory requirements for using
deep neural networks for resource-constrained devices. Most
existing research focuses primarily on balancing the sparsity
and accuracy of a pruned neural network by strategically re-
moving insignificant parameters and retraining the pruned
model. Such efforts on reusing training samples pose serious
privacy risks due to increased memorization, which, however,
has not been investigated yet.

In this paper, we conduct the first analysis of privacy risks
in neural network pruning. Specifically, we investigate the im-
pacts of neural network pruning on training data privacy, i.e.,
membership inference attacks. We first explore the impact of
neural network pruning on prediction divergence, where the
pruning process disproportionately affects the pruned model’s
behavior for members and non-members. Meanwhile, the in-
fluence of divergence even varies among different classes in
a fine-grained manner. Enlightened by such divergence, we
proposed a self-attention membership inference attack against
the pruned neural networks. Extensive experiments are con-
ducted to rigorously evaluate the privacy impacts of different
pruning approaches, sparsity levels, and adversary knowledge.
The proposed attack shows the higher attack performance on
the pruned models when compared with eight existing mem-
bership inference attacks. In addition, we propose a new de-
fense mechanism to protect the pruning process by mitigating
the prediction divergence based on KL-divergence distance,
whose effectiveness has been experimentally demonstrated to
effectively mitigate the privacy risks while maintaining the
sparsity and accuracy of the pruned models.

1 Introduction

Much of the progress in artificial intelligence over the past
decade has been the result of deep neural networks (DNNs).
The powerful DNNs with a large number of parameters con-
sume considerable storage and memory bandwidth, which

makes it challenging to deploy the state-of-the-art neural net-
works on resource-constrained devices. To address this issue,
neural network pruning as one of the most popular compres-
sion technologies has attracted great attention [1, 2]. By re-
moving insignificant parameters from a DNN, recent research
has shown that neural network pruning can substantially re-
duce the size of a DNN and speedup the inference process
without largely compromising prediction accuracy [2–5]. In
general, neural network pruning includes three main stages:
1) train an original DNN; 2) remove the insignificant parame-
ters; 3) fine-tune the remaining parameters with the training
dataset. Most existing research on neural network pruning
has focused on improving the trade-off between accuracy and
sparsity by strategically designing the last two stages [2–5].
However, such efforts on reusing training samples pose se-
rious privacy risks of the pruned neural networks due to the
potentially increased memorization of training samples.

The privacy risks of DNNs have already been pointed out,
where a DNN is prone to memorizing sensitive information of
the training dataset [6–9]. Taking the membership inference
attack (MIA) as an example, an adversary can infer whether a
given data sample was used to train a DNN, seriously threat-
ening individual privacy. For instance, an adversary can infer
an individual was a confirmed case, if it is known that the
individual’s record was used to train an infectious disease
model. The MIA was first proposed against black-box mod-
els in [10], where the adversary only has access to the data
sample and predictions of the target model. Later on, more
attention has been attracted against various DNN models,
such as generative models [7, 8], graph models [11], machine
translation [12], text generation [13], genomic analysis [14],
and transfer learning [15]. Although extensive analysis has
been conducted, none of the existing efforts have been put
into analyzing MIAs against pruned neural networks.

In view of this, the paper focuses on one fundamental ques-
tion: comparing with original deep neural networks, are the
pruned networks more vulnerable to membership inference at-
tacks? Specifically, most MIAs infer a sample’s membership
based on the different behaviors of a target model between
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(d) Pruned model sensitivity

Figure 1: Histograms of the prediction confidences and the
prediction sensitivity of the ground-truth label. We remove
70% of the parameters in the original DenseNet121 model
using l1 unstructured pruning on the CIFAR10 dataset. The
figures show the frequency of prediction confidence (a) and (c)
and prediction sensitivity (b) and (d) belonging to the ground-
truth class on the training and test data. The vertical lines indi-
cate the average values of training data, i.e., members (black),
and test data, i.e., non-members (red), respectively. In both
prediction confidence and sensitivity measurements, neural
network pruning makes the distances between the two verti-
cal lines in the pruned model larger than that in the original
model, which indicates a larger confidence gap and sensitivity
gap between members and non-members due to pruning.

members (i.e., training samples) and non-members (i.e., test
samples), such as the different prediction confidences [9, 10].
Since most neural network pruning approaches rely on reusing
the training dataset to fine-tune the parameters after pruning
the insignificant parameters, the additional training at the
pruned neural network inevitably increases its memorization
of the training samples. Moreover, the pruned neural network
enforces a small number of parameters to achieve similar pre-
diction capabilities, which also increases the memorization
of training data and makes the pruned model more sensitive
to the training data. Hence, such increased memorization can
intuitively lead to a larger divergence of the prediction confi-
dences and sensitivities between members and non-members.
Figure 1 illustrates the prediction confidence and the predic-
tion sensitivity1 of members and non-members in the original
DNN and the pruned network, respectively. The larger diver-
gence of the confidences and the sensitivities in the pruned
model at (c) and (d) confirms our intuition: neural network

1The definitions of the prediction confidence and the prediction sensitivity
are detailed respectively in Section 4.1.

pruning can aggravate the privacy issues of the original deep
neural network. Therefore, in the following paper, we con-
duct a comprehensive analysis to reveal the impacts of neural
network pruning on training data privacy, i.e., MIAs. Specifi-
cally, we first explore the impact of neural network pruning on
prediction divergence: the pruning process disproportionately
affects the pruned model’s behavior for members and non-
members. Enlightened by this insight, a new MIA is proposed
against the pruned neural networks. In addition, with the pro-
posed new attack, we propose a new defense mechanism to
protect the fine-tuning process by mitigating the prediction
divergence based on KL-divergence distance. Extensive ex-
periments are conducted to rigorously evaluate our proposals.
To the best of our knowledge, this is the first study to investi-
gate the privacy risks of neural network pruning. Our main
contributions are summarized below:

• We investigate the privacy risk of neural network prun-
ing and propose a new MIA: self-attention membership
inference attack (SAMIA). By exploring the impacts of
neural network pruning on prediction divergence, the
proposed attack results in high attack accuracy of re-
vealing the membership status from the pruned models.
In particular, SAMIA has advantages in identifying the
pruned models’ prediction divergence by using finer-
grained prediction metrics. We recommend SAMIA as a
competitive baseline attack model for future privacy risk
study of neural network pruning.
• To rigorously evaluate the privacy impacts of different

pruning approaches, sparsity levels, and adversary knowl-
edge, we conduct extensive experiments on seven com-
monly used datasets, four neural network architectures,
four pruning approaches, five sparsity levels, and 255
pruned models in total. Experimental results demonstrate
the effectiveness of the proposed attacks against pruned
neural networks, which further indicates that neural net-
work pruning can aggravate the privacy issues of the
original DNN. The adversary can successfully reveal the
membership status, even without the knowledge of the
pruning approach used in the target model. Furthermore,
we evaluate the privacy impacts of different pruning ap-
proaches and various sparsity levels.
• To defend the pruned models against MIAs, we propose

a new defense mechanism: pair-based posterior balanc-
ing (PPB). PPB protects the fine-tuning process of neural
network pruning by narrowing down the divergences of
posterior predictions and reducing the prediction sensi-
tivities based on their KL-divergence distances. Experi-
mental results demonstrate the effectiveness of the PPB
mechanism, which significantly mitigates the privacy
risks while maintaining the sparsity and accuracy of the
pruned model. Besides, compared with the state-of-the-
art defenses, PPB achieves a better trade-off between
prediction performance and privacy in most cases.



2 Background and Related Work

2.1 Neural Network Pruning
The state-of-the-art neural networks are usually deep and re-
source hungry, requiring large amounts of computation and
memory, which becomes a particular challenge on resource-
constrained end devices. As one of the most popular network
compression approaches, neural network pruning has attracted
great attention in recent years [2–5]. In general, most network
pruning studies follow the pruning workflow: "train-prune-
finetuning." For example, Han et al. [2] proposed to remove
the individual parameters with the lowest magnitude. Ran-
domly removing individual parameters reduces the model size,
but may not be efficient to facilitate hardware optimization
and accelerate the neural network computation. Therefore,
many methods were proposed to remove parameters in an
organized way by removing a group of parameters (i.e., struc-
tured pruning). For example, Li et al. [3] removed the entire
filters with the lowest magnitude in the neural network, which
leads to significant speedup compared with the unstructured
pruning. Liu et al. [4] removed the entire channels according
to the corresponding scaling factors in the followed batch
normalization layers. In this paper, we investigate the privacy
risks of both unstructured and structured pruning approaches.

More recently, new pruning approaches have been pro-
posed, which prune parameters by searching the optimal neu-
ral architecture [16, 17] or fine-tune the pruned model by
rewinding the parameters to the previous states [18, 19]. The
privacy risks discussed in this paper might exist in these new
pruning approaches. We will investigate their privacy risks in
our future work.

On the other hand, recent efforts have been put into neu-
ral network pruning from other important perspectives. Pa-
ganini [20] investigated the unfairness and systematic biases
in the pruned models. Hooker et al. [21] demonstrated the
biased performance on different groups and classes after prun-
ing. Given the potential of pervasively implementing neural
network pruning, this work targets another critical and urgent
aspect regarding neural network pruning, i.e., training data
privacy.

2.2 Membership Inference Attacks (MIAs)
Membership inference attacks have raised serious privacy
threats by determining if a record was in the training dataset
of a neural network model via querying that model. Given a
target neural network model f : Rn→ R, the process of MIA
can be formally defined as:

A : xxx, f → {0,1}, (1)

whereA denotes the attack model, which is a binary classifier.
If the data sample xxx is used to train the target model f , the
attack modelA outputs 1 (i.e., member), and 0 otherwise (i.e.,
non-member).

Due to the practical consideration, most MIAs focused on
the black-box setting, where an adversary only has access to
the target model’s outputs. By leveraging the target model’s
prediction confidences, Shokri et al., [22] proposed a black-
box MIA. They constructed several shadow models to mimic
the behavior of a target model. The well-established shadow
models will then be used to generate data to train a neural
network-based binary classifier to determine the membership
of a record against the target model, i.e., whether a record
belongs to the target model’s training dataset or not. Salem et
al., [23] further boosted this attack successfully by only us-
ing a single shadow model. To further improve the attack
accuracy, Nasr et al., [24] included more features, such as the
class labels of data samples, to train the binary classifier. In
addition to the aforementioned neural network-based binary
classifier, Leino et al., [25], Yeom et al., [26], and Song et
al., [27,28] proposed the metric-based binary classifier, where
the membership of a record is directly determined by a prede-
fined threshold based on the metrics, such as the prediction
confidences, entropy, or modified entropy of the record. Song
and Mittal showed that by setting a class-dependent thresh-
old, the metric-based classifier could achieve comparable or
even better accurate inference performance compared with
the neural network-based classifier [28]. Despite the extensive
research on MIAs, none of them is designed towards pruned
models. Therefore, we propose SAMIA to investigate the
privacy risks of pruned models.

2.3 Defenses against MIAs

Recent efforts have been made to defend against MIAs. As
one of the most popular privacy-preserving techniques, differ-
ential privacy (DP) provides provable defense against MIAs
by adding noise to the gradient or parameter during model
training [29–31]. However, DP usually requires a large mag-
nitude of noises to achieve a meaningful privacy guarantee,
which seriously degrades the performance of the protected
models [32]. On the other hand, regularization [10], dropout,
and model stacking [23] have been used in model training
to reduce the privacy risks caused by overfitting. Although
these approaches reduced the vulnerability by bridging the
generalization gap between member and non-member data
samples, in many cases, the privacy risks after applying these
approaches are still high. Recent adversarial learning tech-
niques [33, 34] have been introduced in defending against
MIAs by adding noises to the prediction confidences for mis-
leading the adversary [24, 35]. In a recent analysis of the
defense mechanisms, Song and Mittal showed that the early
stopping mechanism achieved comparable performance with
most defenses [28]. In this paper, we provide a comprehen-
sive analysis of defenses in neural network pruning, including
our proposed PPB defense along with the existing defense
mechanisms.



Figure 2: A typical workflow of neural network pruning.

3 System Overview

3.1 Neural Network Pruning Workflow
This paper is focused on a general neural network pruning
process, whose workflow includes three key stages: original
network training, coarse pruning, and fine-tuning, as illus-
trated in Figure 2. Specifically,

1. Original network training: A large size original neural
network model f (xxx;WWW) (sometime over-parameterized) is
first trained at this stage, where xxx is the training data and
WWW is the model parameters;

2. Pruning: Upon the original network, the pruning is con-
ducted by removing insignificant parameters or groups of
parameters according to a specific criterion. The pruned
network can be given by f (xxx; MMM⊙WWW), where MMM ∈ 0,1|WWW |

denotes the binary mask that can set a parameter to be 0,
and ⊙ denotes the element-wise multiplication;

3. Fine-tuning: To recover the performance loss due to prun-
ing, a pruned network can be fine-tuned by reusing the
training data. After N-epoch fine-tuning, a pruned network
can be given by f (xxx; MMM⊙WWWN).

For the sake of simplicity, we use f to denote the original
model f (xxx;WWW) and fp to denote the pruned model f (xxx; M⊙
WWWN) in the following paper.

3.2 Adversarial Knowledge
The goal of MIAs is to find the membership of a data sample,
i.e., whether the sample is used to train a target model or not.
In this paper, we assume the adversary of the MIAs against a
pruned neural network has the following knowledge.

• Access to query the pruned network. The pruned model
is made available to the public, i.e., queryable. Due to
practical considerations, the original model is assumed not
published and inaccessible.
• Access to the prediction confidences. We consider the prac-

tical black-box MIAs [6]. The adversary can only acquire
the output, i.e., the prediction confidences, of the pruned
network. Any internal information about the pruned model

Figure 3: Framework of membership inference attacks (MIA)
against neural network pruning.

and the original model, such as the network architecture
and activation functions, are inaccessible to the adversary.
• Access to the pruning approach and the sparsity level. We

consider two different types of adversaries with or without
knowledge of the pruning approach and the sparsity level.
• Access to the defense approach. The arms race between

attacks and defenses is one main challenge in machine
learning privacy. If the defense mechanisms are designed
without considering the adversary’s knowledge, their per-
formance might be substantially degraded when adaptive at-
tacks are used against those defensive mechanisms [28,35].
Hence, we consider both non-adaptive and adaptive attacks
to evaluate defense mechanisms: 1) non-adaptive attacks,
i.e., the adversary has no access to the defense mechanisms;
2) adaptive attacks, where the adversary has full knowledge
of the defense mechanisms and performs the MIAs by tak-
ing the defensive mechanisms into account.

4 MIA against Neural Network Pruning

Given the workflow of neural network pruning presented in
Section 3.1, this section focuses on investigating the privacy
risks introduced by the pruning process. A general framework
of MIAs against the pruned model is illustrated in Figure 3.
Specifically, to extract the membership information from the
pruned model, the adversary first derives the predictions of the
given input sample by querying the target pruned model. The
adversary then feeds the predictions into the trained attack
model and provides the binary classification of the member-
ship status. The attack model is derived following the shadow-
training technique, which was originally proposed by Shokri
et al. [22] and is widely used in MIAs [23, 24]: a shadow
model is trained and pruned to imitate the behavior of the
target pruned model. The adversary trains an attack model
based on the pruned shadow model’s predictions over shadow
training and test data.

4.1 Divergence of Prediction Behaviors

To investigate the prediction behaviors of pruned neural net-
works, we first introduce two metrics: prediction confidence
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Figure 4: Divergence of the pruned model’s prediction con-
fidences and prediction sensitivities over different classes,
respectively. We prune DenseNet121 models with 70% spar-
sity on the CIFAR10 datasets. The blue bar indicates the
average prediction confidence/sensitivity of members in dif-
ferent classes. The green bar indicates the average prediction
confidence/sensitivity of non-members. The divergence of
confidence (a) and sensitivity (b) between members and non-
members is increased after pruning as shown in (c) and (d),
respectively. Such divergence also differs among classes.

and prediction sensitivity. Specifically, given an input sample
xxx and a pruned model fp, the prediction confidence is defined
as PC = fp(xxx). In addition, to further measure the prediction
behavior changes in terms of slight input change, we introduce
prediction sensitivity, which is defined as

PS =
1
n

n∑
i=1

| fp(xxx+ ϵδδδiii)− fp(xxx)|
ϵ

, (2)

where δδδiii ∼N(0,1) is a random Gaussian noise vector added to
the input data xxx, and ϵ controls the magnitude of input changes.
A similar idea has been used in the gradient estimation for
black-box adversarial attacks [36]. It has been shown that a
small number of noise vectors can achieve a good estimation
of prediction changes, so that we set a small query budget

in the evaluation (n = 10) [36, 37]. Accordingly, we use the
confidence and sensitivity to measure the divergence between
members and non-members. We define the confidence gap as

1
|Dtrain|

∑
(xxxiii,yi)∈Dtrain

f yi
p (xxxiii)−

1
|Dtest |

∑
(xxxiii,yi)∈Dtest

f yi
p (xxxiii), (3)

where f yi
p denotes the prediction confidence of ground-truth

class yi. Confidence gap calculates the difference of aver-
age confidence between members and non-members in the
ground-truth class. Similarly, we define the sensitivity gap as

1
|Dtrain|

∑
(xxxiii,yi)∈Dtrain

PSyi (xxxiii)−
1
|Dtest |

∑
(xxxiii,yi)∈Dtest

PSyi (xxxiii), (4)

where PSyi denotes the prediction sensitivity (Eq. 2) of
ground-truth class yi. The sensitivity gap calculates the dif-
ference of average sensitivity between members and non-
members in the ground-truth class.

As illustrated in Figure 1, the divergence of prediction con-
fidences and prediction sensitivities is increased due to neural
network pruning, which introduces the new attack vectors
for MIAs and thus makes the pruned models more vulnera-
ble. Moreover, the divergences of prediction confidences and
sensitivities from the pruned model vary widely among the
different classes of training and test data. Figure 4 shows that
the divergences of the pruned models’ prediction behavior
(confidence and sensitivity) over members and non-members
are significantly different among classes. Similar observations
of prediction confidences on different classes after pruning
have been made in other fields such as model fairness and
transparency [20, 21, 38].

4.2 SAMIA: Self-Attention MIA
Upon the above observations, we propose one hypothesis:
the divergences among classes, i.e., confidence gap and sen-
sitivity gap, can provide fine-grained “evidence” for MIAs,
leading to serious privacy leakage. In addition, most existing
MIA research only considers the confidence gap and a single
threshold of the ground-truth class, which may underestimate
the privacy risks of MIAs in neural network pruning. Hence,
we propose SAMIA, a self-attention MIA, to fully utilize
the increased divergence information along with the class
information to conduct a finer-grained analysis. Specifically,
self-attention is a neural network module to capture global
dependencies among inputs and allows the inputs to interact
with each other. Despite the recent success of self-attention
mechanism in many areas, such as natural language process-
ing [39,40] and computer vision [41–43], it has not been well
exploited in the research of privacy attacks yet.

In SAMIA, we leverage the self-attention mechanism to
automatically extract the finer-grained “thresholds” from dif-
ferent classes by capturing the dependency between predicted
information (confidence and sensitivity) and class information
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Figure 5: Attack model architecture in SAMIA.

and allowing them to interact with each other. Specifically,
SAMIA takes the pruned model’s prediction confidence and
sensitivity and ground-truth labels as inputs. Given a specific
class, the self-attention mechanism finds out the specific con-
fidence information and sensitivity information that the attack
“threshold” should pay more “attention” to.

Figure 5 illustrates the network architecture of the attack
model used in SAMIA, enlightened by the idea of Trans-
former [39], i.e., one of the most widely used self-attention
architectures. We first convert the ground-truth label into a
one-hot vector and then feed both pruned model’s predic-
tion confidence, sensitivity, and the one-hot vector into the
attack model as the input features. The input features are
encoded into a vector using a Fully Connected (FC) layer,
which is then fed into the multi-head self-attention modules.
In each module, we encode the features as query Q, key K,
and value V vectors using a linear function following the
self-attention strategy. The attention module calculates the
attention scores of the subgroups in a scaled dot-product
way: Attention(Q,K,V) = softmax(QKT )V, where softmax()
denotes the softmax function to make the attention scores sum
up to 1. The output of the attention module is the weighted
sum of the value vector, where the weight assigned to each
value is derived by the attention scores softmax(QKT ). In
addition, we calculate four attention scores (i.e., multi-head
attention) to capture the different attention strategies. Fol-
lowed by the attention module, we add the result to the input
features and apply the layer normalization [44] to stabilize
the attack model training. The result will be fed into another
FC layer with layer normalization. We consider these opera-
tions as a block and repeat the block three times, followed by
two fully connected layers. A non-linear activation function,
ReLU is applied to the output of the first few FC layers. A
softmax function is applied to the last FC layer to provide the
binary prediction on the membership status.

Compared with existing MIAs that learn a single threshold

of prediction confidence to determine the membership, the
proposed SAMIA captures the information of confidences and
sensitivities and intuitively better learns the diverse thresholds
to multiple classes. Our evaluation results demonstrate that
SAMIA leads to higher attack accuracy compared with the
state-of-the-art attacks.

5 Attack Evaluation

This section conducts comprehensive experiments2 to thor-
oughly investigate the privacy risks of the proposed MIAs
against neural network pruning. In the following, we first in-
troduce the experimental setup, and then evaluate the privacy
risks of the pruned models by comparing them with those
of original models. Next, we investigate the impact of the
confidence gap, sensitivity gap, and generalization gap, re-
spectively. Finally, we evaluate the privacy risks without the
knowledge of pruning approaches and sparsity levels.

5.1 Evaluation Setup
In the evaluation, we consider the most widely used datasets,
neural network architectures, and optimization approaches
following recent research of MIAs [10, 23, 28, 45].

5.1.1 Datasets

We consider seven popular datasets in the experiments: CI-
FAR10, CIFAR100, CHMNIST, SVHN, Texas, Location, and
Purchase.

• CIFAR10 and CIFAR100 [46]. These are two benchmark
datasets for image classification. CIFAR10 dataset contains
60,000 32×32 color images in 10 classes, with 6,000 im-
ages per class. CIFAR100 dataset contains 60,000 color
images in 100 classes, with 600 images per class.
• CHMNIST [47]. This dataset consists of 5,000 histological

images of human colorectal cancer containing 10 classes of
tissues. We resize all images to 32×32, the same dimension
as CIFAR10 and CIFAR100.
• SVHN [48]. This dataset consists of 99,289 32×32 color

images from house numbers in the Google Street View
dataset, containing 10 classes from 0 to 9.
• Location [49,50]. This dataset contains location “check-in”

records of mobile users in the Foursquare social network,
restricted to the Bangkok area. The dataset is used to predict
users’ geosocial type based on the geographical history
record features: whether the user visited a certain region
or location type. We use the preprocessed purchase dataset
provided by Shokri et al. [10], which contains 5,010 data
samples, 446 binary features, and 30 classes.
2Due to the space limit, we only present the major results in this paper.

More details can be found in the extended version https://arxiv.org/
abs/2202.03335.

https://arxiv.org/abs/2202.03335
https://arxiv.org/abs/2202.03335
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Figure 6: Prediction accuracy (test accuracy) of the pruned models using different pruning approaches and sparsity levels. Each
point indicates the prediction accuracy achieved by the pruned model with a certain pruning approach and sparsity level. The
black line indicates the prediction accuracy of the original models.

• Texas [51]. This dataset is presented in the Hospital Dis-
charge Data Public Use Data File provided by the Texas
Department of State Health Services. The dataset is used
to predict the types of patient’s main procedure based on
a wide range of features, such as external causes of injury,
diagnosis of the patient, procedures the patient underwent,
and other generic information. We use the preprocessed
purchase dataset provided by [10], which contains 67,330
data samples, 6,169 binary features, and 100 classes.
• Purchase [52]. This dataset is presented in Acquire Valued

Shoppers Challenge to predict which shoppers will become
repeat buyers based on the purchase history. We use the pre-
processed purchase dataset provided by Shokri et al. [10],
which contains 197,324 data samples, 600 binary features,
and 100 classes.

Each above dataset is first randomly and equally split into
two parts: one for target model, one for shadow model. In each
part, we split the data into three datasets: training (45%), vali-
dation (10%), and test (45%). We use the validation dataset to
determine if the model needs to stop training or fine-tuning for
early stopping. Therefore, the membership inference via ran-
dom guessing results in 50% attack accuracy. Due to the space
limit, we only show the results of the CIFAR10 and Purchase
datasets. The rest results are presented in the Appendix.

5.1.2 Neural Network Architectures

For the four image datasets, i.e., CIFAR10, CIFAR100, CHM-
NIST, and SVHN, we consider three representative neural
network architectures: ResNet18, VGG16, and DenseNet1213.
For the other three datasets, i.e., Texas, Purchase, and Loca-
tion, we implement fully connected (FC) neural networks
with two layers, and the numbers of neurons for each layer
are 256 and 128, respectively. All the FC layers except the last
one are followed by ReLU activation functions. In addition,
Adam optimizer [53] is implemented with a learning rate of

3All neural networks are trained using https://github.com/
huyvnphan/PyTorch_CIFAR10

0.001 and the batch size of 128 to train all the original models
and fine-tune all the models after pruning.

5.1.3 Neural Network Pruning Approaches

Four representative neural network pruning approaches are
considered, including L1 unstructured pruning, L1 structured
pruning, L2 structured pruning, and Network slimming.

• L1 unstructured pruning [2] (L1 unstructured), which re-
moves the weights with the lowest absolute values individ-
ually. This pruning approach can produce a sparse neural
network with a small size, but may not improve efficiency
given the existing hardware and software optimization.
• L1 structured pruning [3] (L1 structured), which removes

the entire filters with the lowest absolute values from the
convolution layers. By removing the entire filters, this
method leads to significant speedup compared with the
unstructured pruning since optimization for dense matrix
can be applied for efficient computation.
• L2 structured pruning (L2 structured), which removes the

entire filters with the lowest L2 norm values from the con-
volution layers, similar to L1 structured pruning.
• Network slimming [4] (Slimming), which associates scaling

factors used in the batch normalization layer with each
channel and removes the entire channels with the lowest
scaling factors. This method automatically identifies the
insignificant channels and finds the target architectures.

We apply the L1 unstructured pruning to all models. Since
structured pruning approaches, i.e., L1 structured and L2 struc-
tured pruning and Slimming, can only be applied to pruning
convolution layers, we evaluate the structured pruning ap-
proaches on the ResNet18, VGG16, and DenseNet121 models
trained on CIFAR10, CIFAR100, SVHN datasets. In addition,
five sparsity levels γ = {0.5,0.6,0.7,0.8,0.9} are investigated
for all pruning approaches, which denote the portions of the

https://github.com/huyvnphan/PyTorch_CIFAR10
https://github.com/huyvnphan/PyTorch_CIFAR10


removed parameters4. We follow typical pruning procedures:
train the original model, prune the model using the above
approaches, and finally fine-tune the pruned model.

Figure 6 shows the prediction accuracy of the original
model and the pruned models with different pruning ap-
proaches and sparsity levels. We observe that the pruned
models achieve close performance compared to the original
model if the sparsity level is not high. The accuracy of pruned
models is reduced with the increase of the pruning sparsity.
Sometimes, pruned models can achieve higher accuracy than
the original models, which has been shown in recent studies
of neural network pruning [5]. Unstructured pruning usually
performs better than structured pruning in the evaluation,
since structured pruning forces the removed parameter in a
restricted way, which limits the performance of the pruned
model but increases the speed of model inference.

5.1.4 State-of-the-art MIAs

To thoroughly evaluate the proposed SAMIA, we investigate
eight state-of-the-art MIAs along with SAMIA. 5.

• Ground-truth class confidence-based threshold attack
(Conf). Yeom et al. used the prediction confidence of
ground-truth class to identify membership status [26]. The
adversary learns a threshold to determine the membership
of a data sample based on the confidence of ground-truth
class. Given an input sample xxx, its class y, and the pruned
model fp, the attack function is defined as Iconf( fp, (xxx,y)) =
1{ f (y)

p (xxx) ≥ ζy}, where f (y)
p is the prediction confidence of

class y and ζy is the threshold of class y derived from the
shadow pruned model.
• Cross-Entropy-based threshold attack (Xent). The entropy

loss can be used to derive the threshold from the shadow
pruned model [26]. The attack function is defined as
Ixent( fp, (xxx,y)) = 1{xent( f (y)

p (xxx)) ≥ ζy}, where xent denotes
the cross entropy loss.
• Modified-entropy-based threshold attack (Mentr). Song and

Mittal proposed modified entropy by including the informa-
tion about the ground-truth class, which achieved better per-
formance than using prediction confidence [28]. The attack
function is defined as Imentr( fp, (xxx,y)) = 1{mentr( f (y)

p (xxx)) ≥
ζy}, where mentr( fp(xxx),y) = −(1 − f (y)

p (xxx)) log( f (y)
p (xxx)) −∑

t,y f (t)
p (xxx) log(1− f (t)

p (xxx)).
• Top1 Confidence-based threshold attack (Top1-Conf).

Salem et al. proposed to derive the threshold from the

4Since structured pruning only removes the parameters in the convolution
layers, the sparsity levels for structured pruning only count the removed
parameters in the convolution layers instead of the entire neural network.

5We implement Conf, Xent, Mentr, and Top1-Conf at-
tacks based on https://github.com/inspire-group/
membership-inference-evaluation and BlindMI attack based
on https://github.com/hyhmia/BlindMI/blob/master/BlindMI_
Diff_W.py.

highest prediction confidence [23]. The attack function is
defined as Itop1( fp, (xxx)) = 1{top1( fp(xxx)) ≥ ζy}, where top1
calculates the highest value from the prediction confidence.
• Confidence-based Neural Network attack (NN). Shokri et

al. proposed to use prediction confidence as features to
train a neural network from the shadow model [10], which
is used to distinguish member and non-member data.
• Top-3 Confidence-based Neural Network attack (Top3-NN).

Salem et al. proposed to use the top-3 prediction confi-
dences as features [23] to train a neural network classifier.
• Confidence-based Neural Network attack with ground-truth

class (NNCls). Nasr et al. combined one-hot encoded class
labels with the prediction confidence as features to train a
neural network classifier [24].
• Blind Membership Inference Attack (BlindMI). Hui et al.

proposed to determine the membership of a data sample
by moving it to a non-member set and check if the moving
operation increases the distance between member and non-
member sets [45]. BlindMI considers the data sample as a
non-member if the distance is increased. We use the default
BlindMI attack provided in [45].

In the main paper, we present the results of five attacks, that
achieve the highest attack accuracies in most experiments, i.e.,
Conf, Mentr, NNCls, BlindMI, and SAMIA. The results of
the rest of the attacks are reported in the Appendix.

Besides, it should be mentioned that to provide a practical
analysis of privacy risks, we adopt early stopping and l2 regu-
larization as a baseline defense mechanism and apply it to all
the following experiments of membership inference attacks.
Other defense mechanisms will be discussed in Section 6.

5.1.5 SAMIA Settings

Following the experimental setting in [10], we first train five
shadow models and their pruned models. The predictions
of the shadow models on shadow training and shadow test
datasets are used to train an attack model. In the attack model,
we use four attention heads, 64 neural units, and GeLU activa-
tion function [54] in each self-attention module, with a 20%
dropout rate. We use SGD optimizer [55] to train the attack
models for 100 epochs with batch size 128. The learning rate
of the SGD optimizer is set as 0.01 and reduced to 0.001 and
0.0001 at the 1/2 and 3/4 of the training process (i.e., the 50th
and 75th epoch). Due to the large number of settings evaluated
in the attacks and defenses and the high computational cost in
each setting, we conduct all the experiments only once. Thus
experimental variation may be observed due to the random-
ness in neural network pruning and membership inference
attacks (e.g., parameter initialization, dataset shuffling).

5.2 Privacy Risk Discussions

https://github.com/inspire-group/membership-inference-evaluation
https://github.com/inspire-group/membership-inference-evaluation
https://github.com/hyhmia/BlindMI/blob/master/BlindMI_Diff_W.py
https://github.com/hyhmia/BlindMI/blob/master/BlindMI_Diff_W.py
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Figure 7: Privacy Risks of Neural Network Pruning (w.r.t. prediction accuracy). Most pruning approaches result in a higher attack
accuracy when considering a similar prediction accuracy, compared with the original models. We present the attack accuracy of
SAMIA for pruned models and the attack accuracy of Conf attack for the original models.
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Figure 8: Privacy Risks of Neural Network Pruning (w.r.t. model sparsity). We present the attack accuracy of SAMIA for pruned
models and the attack accuracy of Conf attack for the original models.
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Figure 9: Impact of confidence gap, sensitivity gap, and generalization gap (CIFAR10, ResNet18). We present the relationship
between the gap and the attack accuracy of SAMIA.

In this section, we evaluate the privacy risks of the pruned
models and compare them with the original models and then
investigate several key factors on privacy risks of neural net-
work pruning. Additionally, we investigate the privacy risks
of different pruning approaches and discuss the effectiveness
of the proposed SAMIA and the impact of unknown sparsity
levels and pruning approaches.

5.2.1 Privacy Risks of Neural Network Pruning

Since different pruning approaches and sparsity levels may
achieve distinct prediction accuracy, to make a fair compar-
ison, we evaluate the privacy risks of pruning by taking the

prediction accuracy into consideration. Figure 7 shows the
relationship between prediction accuracy and (SAMIA) at-
tack accuracy when we apply different pruning approaches
and sparsity levels on the CIFAR10, CIFAR100, and Location
datasets. We observe that when the pruned model achieves a
comparable prediction accuracy with the original model, most
pruning approaches result in an increased attack accuracy
(i.e., privacy risk). The attack accuracy may be decreased with
the loss of prediction accuracy, as the pruned model becomes
less effective for both prediction and attack. However, we still
observe that in most cases, when the pruned model performs
worse than the original model, the pruned model’s attack
accuracy remains higher than the original one’s. Therefore,
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Figure 10: Attack performance comparison of MIAs (CIFAR10, ResNet18). We present the attack accuracy of state-of-the-art
membership inference attacks and compare them with the proposed SAMIA. Four pruning approaches are used on CIFAR10
ResNet18 models. The black line presents the attack accuracy of original models using Conf attack, i.e., Conf (Org.).

the pruned models become more vulnerable to membership
inference attacks than the original models.

When a low sparsity level is used, we always observe the
increased privacy risk of the pruned model (Figure 8). Since
with a low sparsity level, the pruned model is more likely to
achieve a comparable or even higher prediction accuracy com-
pared with the original model, which increases the accuracy
of prediction confidence used in MIAs and further increases
the privacy risk.

5.2.2 Impact of Confidence, Sensitivity, and Generaliza-
tion Gap.

As aforementioned, we hypothesize that neural network prun-
ing leads to the increased confidence gap and sensitivity gap
(in ground-truth class) of pruned models, thus increasing their
membership inference risks. Meanwhile, overtraining is con-
sidered as one of the key causes of membership leakage in
previous research [26,28], leading to our evaluation on gener-
alization gap, i.e., the difference between training accuracy
and testing accuracy. From Figure 9, we observe that neural
network pruning increases the gaps between members and
non-members, i.e., confidence gap, sensitivity gap, and gen-
eralization gap, in most settings. Further, with the increase
of gaps, we observe the increase of attack accuracy, which
indicates the strong correlation between the gaps, i.e., confi-
dence gap, sensitivity gap, and generalization gap, and the
increased privacy risk.

The strong correlation of confidence gap and sensitivity gap
validates our intuition that these gaps can be leveraged by the
adversary to infer the membership status, introducing a new

attack surface in neural network pruning. By investigating
the attack results, we find that the confidence gap plays the
most important role in the privacy risk. L1 unstructured and
slimming pruning usually lead to an increased confidence gap,
which will be leveraged by the adversary and result in a higher
attack accuracy. Additionally, sensitivity gap can also leak
the membership information. For example, the confidence
gap of L1 unstructured pruning on a CIFAR10 ResNet18
model (Figure 9a) is close to the original model, but due to
the increased sensitivity gap (Figure 9b), the pruning still
results in an increased attack accuracy.

5.2.3 Privacy Risks of Pruning Approaches.

Following the same settings above, we investigate the privacy
risks of different pruning approaches by comparing the attack
accuracy under the similar prediction accuracy. As shown
in Figure 7 and 8, given the similar prediction accuracy of
the pruned models, L1 unstructured and slimming pruning
result in the highest attack accuracy. Besides, L1 structured
pruning achieves the lowest attack accuracy among all pruning
approaches, but still in some cases, the attack accuracy is
higher than the original model, even with the similar or lower
prediction accuracy. The structured constraint used in L1
structured pruning regularizes the model in the fine-tuning
and thereby reduces the privacy risk.

5.2.4 Effectiveness of SAMIA

To investigate the effectiveness of the proposed SAMIA, we
compare SAMIA with the state-of-the-art MIAs in terms of
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Figure 11: Attack performance comparison of MIAs on dif-
ferent datasets (L1 Unstructured). We present the attack ac-
curacy of state-of-the-art membership inference attacks and
compared them with the proposed SAMIA. We present the
attack accuracy of three models (CIFAR10 DenseNet121, CI-
FAR100 DenseNet121, Location FC) pruned by L1 unstruc-
tured pruning. The black line presents the attack accuracy of
original models using Conf attack, i.e., Conf (Org.).

attack accuracy. As shown in Figure 10, we observe that
our proposed SAMIA achieves the highest attack accuracy in
most cases compared with baseline attacks, which is mainly
due to the fact that SAMIA best leverages both confidence
gap and sensitivity gap (in ground-truth class) introduced
in pruning. Besides, Top1-conf and Mentr attacks are also
effective, as both attacks take advantage of the confidence gap,
the most important factor for model privacy. We also observe
that when the pruning introduces a high generalization gap ,
all attacks can achieve a high attack accuracy (e.g., CIFAR100
DenseNet121 in Figure 11c, 11d and Appendix Figure 36c)),
which has been discussed in the previous MIA research.

5.2.5 Unknown Sparsity Level and Pruning Approach

In the evaluation above, we assume the adversary has the
knowledge of sparsity levels and pruning approaches used
in network pruning. In this section, we explore the privacy

risks of a more realistic scenario, i.e., when the adversary
has no prior knowledge of the sparsity levels and the pruning
approaches.

Unknown sparsity level. We assume the adversary only
knows the pruning approach but not the sparsity level that is
the major factor of model efficiency. We evaluate the attack
accuracy of SAMIA when the adversary prunes target models
and shadow models using different sparsity levels. We also
consider the case when the target model is not pruned, i.e.,
sparsity level = 0. As shown in Figure 12 and 13, the attack
accuracy is not affected too much due to the different sparsity
levels between target models and shadow models. In some
cases, using a different sparsity level in pruning shadow mod-
els can even increase the attack accuracy. The attack accuracy
mainly depends on the performance of the shadow model,
and thus the adversary can attack victim models with higher
attack accuracy by selecting a good pruned shadow model.
For instance, the adversary can use each shadow model to
attack other shadow models with different sparsity levels and
select the one with the highest attack accuracy.

Unknown sparsity level and pruning approach. Since we
assume the adversary has no prior knowledge of the sparsity
level and pruning approach, the adversary may randomly pick
a sparsity level and a pruning approach to prune a shadow
model for attacks. To evaluate the attack accuracy, we conduct
20 experiments for the aforementioned four image datasets
and the corresponding neural networks. In each experiment,
we randomly select the sparsity levels and pruning approaches
for target models and shadow models, respectively. For ex-
ample, the target model uses L1 Structured pruning with
0.5 sparsity level while the shadow model uses Slimming
pruning with 0.8 sparsity level. The sparsity levels are se-
lected from the set of {0.5,0.6,0.7,0.8,0.9} and the pruning
approaches are selected from the four pruning approaches. To
measure the privacy risks, we define the attack accuracy loss
as (accknown −accunknown)/accknown, where accknown denotes
the attack accuracy when the adversary knows all the prun-
ing information and accunknown denotes the attack accuracy
without knowing any pruning information. Table 1 shows the
average attack accuracy loss over 20 experiments for each
dataset and model. We observe that without knowing the spar-
sity levels and pruning approaches, the attack is still effective
in most cases except the CIFAR10 VGG16 and CIFAR100
ResNet18 models. The poor attack performance in these two
models is due to the ineffectiveness of shadow models using
specific sparsity levels and pruning approaches for attacks.
For example, we observe a significant drop of attack accu-
racy (from 90% to 50%) when applying L1 structured and
slimming pruning with sparsity levels 0.7 to 0.9, on the CI-
FAR10 VGG16 model (Figure 20a in Appendix). The large
gap makes the shadow models pruned using these settings
ineffective in attacking the unknown victim model.
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Figure 12: Attack accuracy with unknown sparsity levels (CIFAR10, ResNet18).
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Figure 13: Attack accuracy with unknown sparsity levels (L1 Unstructured).

Table 1: Attack accuracy loss with unknown sparsity levels
and pruning approaches.

Dataset Model Attack Acc Loss

CIFAR10
ResNet18 4.77%
DenseNet121 1.63%
VGG16 26.83%

CIFAR100
ResNet18 12.41%
DenseNet121 6.90%
VGG16 2.43%

SVHN
ResNet18 0.60%
DenseNet121 0.12%
VGG16 0.05%

CHMNIST
ResNet18 0.78%
DenseNet121 0.52%
VGG16 -0.58%

6 Defenses against MIAs

Given the privacy risks of pruned neural networks, this sec-
tion focuses on defenses against the proposed SAMIA. We
first present the design principle of defenses for pruned neu-
ral networks, then describe the proposed defensive design,
and lastly compare the performance of the proposed defense
with the state-of-the-art defenses. In addition, to rigorously
evaluate the defense performance, we consider the defenses

against both the non-adaptive attacks and adaptive attacks,
where the adversary of adaptive attacks is put into the last
step of the arms race between privacy attacks and defenses
(i.e., the adversary knows all the details of defense mech-
anism and performs adaptive attacks against the defended
models) [28, 56]. Extensive experiments are conducted to
evaluate our defensive proposals.

6.1 Design Principles of Defenses

Two major design principles are considered for the defenses of
pruned neural networks. On the one hand, effective defenses
should be able to reduce the behavior discrepancy introduced
by pruning. The above attack evaluation has demonstrated that
the privacy risks introduced by MIAs in the pruned models are
due to the increased divergence of prediction confidences and
sensitivities. Hence, it is essential to reduce such divergence
between members and non-members of the pruned neural
networks for defense. On the other hand, the defenses need
to take into consideration the resource constraints imposed
by low-end devices. Neural network pruning aims to reduce
the computational cost during inference. Such cost cannot
be increased by the defenses. Therefore, the defenses should
be designed to mitigate the privacy risks of pruned models
before deploying them on devices, thus without introducing
additional defense costs in the inference phase.
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Figure 14: Divergence of the pruned model’s prediction
confidences and sensitivities using PPB defense (CIFAR10,
DenseNet121).
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Figure 15: Divergence of the pruned model’s prediction con-
fidences and sensitivities over different classes with PPB de-
fense (CIFAR10, DenseNet121).

6.2 Proposed Defense: PPB

Following the two design principles, we propose a counter-
measure approach named by pair-based posterior balancing
(PPB). The main idea of PPB defense is to mitigate the new
prediction behaviors on prediction confidence and sensitivity
by aligning the posterior predictions of different input sam-
ples. In this way, PPB can reduce the divergence of prediction
confidence between members and non-members as well as
the degree of sensitivities. Specifically, given any pair of two
input samples, we try to make the distributions of their ranked
posterior predictions as close as possible. The difference be-
tween ranked posteriors’ distributions is measured by the
Kullback–Leibler divergence (KL divergence) [57]. Give two
posterior predictions P and Q, the KL divergence is defined
as:

LKL(P,Q) =
∑

x

P(x) log
P(x)
Q(x)

. (5)

KL-divergence is considered as a regularization term in
neural network pruning. The loss function includes both the
prediction loss and KL divergence loss, which can be given

by:

L( fp(xxx),yyy) =
∑

i

Lpredict( fp(xxxi),yi)

+λ
∑

j,k( j,k)

LKL(R( fp(xxx j)),R( fp(xxxk))), (6)

where LKL and Lpredict denote the KL-divergence loss and
the prediction loss (e.g., cross-entropy loss for the classifi-
cation tasks), respectively. R(·) sorts the posteriors provided
by the pruned model fp in decreasing order and λ is a hyper-
parameter to balance the two losses. It is computationally
costly to calculate the KL loss for all possible pairs of data
samples in the training dataset. To address this issue, we sam-
ple training pairs in each mini-batch during fine-tuning by
randomly selecting two data samples as a pair without re-
placement. Hence, in each mini-batch with batch size B, KL
loss consists of B/2 pairs of training samples.

In addition, the PPB defense is only applied in fine-tuning
of neural network pruning by using KL-divergence as a regu-
larization term. Thus, the defense does not include the addi-
tional computational costs in the inference phase.

After applying PPB defense, we observe the divergence
between the member and non-member data is significantly re-
duced by comparing Figure 14 with Figure 1. Such decreased
divergence can be observed in different classes by comparing
Figure 4 with Figure 15. Both changes on the distributions
of the pruned model’s posterior predictions indicate that the
PPB defense makes the attack model fail to learn the binary
classification thresholds from the prediction confidence and
sensitivity. Moreover, the PPB defense is designed to change
the distribution of predictions instead of their orders. In other
words, the PPB defense will not change the predicted classes
of the pruned models during fine-tuning, which largely pre-
serves the prediction accuracy of pruned models.

As shown in Figure 15, such decreased divergence can also
be preserved in different classes. After applying PPB defense,
the divergence of the pruned model is close to that of the
original model (comparing Figure 4 with Figure 15), which
indicates the effectiveness of the PPB defense.

6.3 Defense Evaluation
This section evaluates the effectiveness of PPB by comparing
the performance of PPB with that of state-of-the-art defenses6.

6.3.1 State-of-the-art Defenses

We investigate three state-of-the-art defenses against MIA
attacks in neural network pruning.
Early Stopping and L2 Regularization (Basic). Early stop-
ping and l2 regularization have been used to successfully

6The defenses are evaluated by the empirical experiments. We will inves-
tigate the strict privacy guarantee in future work.
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Figure 16: Performance of defenses for different pruning approaches (CIFAR10, ResNet18, Sparsity 0.6).
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Figure 17: Performance of defenses for different datasets (L1 Unstructured, Sparsity 0.6).

defend membership inference attacks with competitive per-
formance [10, 23, 28]. As discussed in Section 4.1, an adver-
sary infers the membership of a sample based on the diver-
gence of the prediction confidences between members and
non-members. Such divergence becomes more severe as the
number of training epochs increases, due to the increased
memorization. Hence, the early stopping mechanism with
fewer training epochs and l2 regularization for penalizing the
over-training can tradeoff a slight reduction in model accuracy
with lower privacy risk. In the evaluation, we stop the training
and fine-tuning when the validation loss is not decreased for
five epochs using early stopping mechanism. In l2 regular-
ization, we set the regularization factor as 0.0005. Note that
we use early stopping and l2 regularization in all the other
defenses to improve the defense performance.

Differential Privacy (DP). Differential privacy is a strat-
egy to bound the individual information exposure when run-
ning an algorithm f and has been widely investigated for
preventing privacy leakage against membership inference at-
tacks [14, 58, 59]. We implement differentially private SGD
(DPSGD) [31, 59], one of the most widely-used defense tech-
niques, to train neural networks with DP guarantees. Follow-
ing DPSGD, we first clip the gradient, then add noise to the
gradient, and use the generated noisy gradient to update the
model’s parameters. The noise is sampled from a Gaussian
distribution N(0,σ). To achieve (ϵ,δ)-DP, the standard de-
viation of the Gaussian distribution, i.e., δ, should be in the
order of Ω(q

√
T log(1/δ)/ϵ, where q denotes the sampling

ratio and T denotes the total number of iterations. Accord-

ingly, the privacy guarantee of the DP defense can be derived
from δ, which plays an important role in balancing utility
and privacy. Therefore, in the defense evaluation, we evaluate
the effectiveness of DP defense and explore the impact of
different privacy budgets (i.e., different values of δ).
Adversarial Regularization (ADV). Nasr et al. proposed
to consider the membership inference adversary in the train-
ing process [24]. The defender first trains a surrogate attack
model to distinguish between members and non-members
and then trains the target model to minimize the prediction
loss while maximizing the classification loss of the surrogate
attack model. A parameter α is used to balance the prediction
performance and privacy risk. ADV is applied in the fine-
tuning process of pruning to protect the privacy of pruned
models.

6.3.2 Experimental Results of Defenses

We use the same settings of attack evaluations in Section 5
and conduct the following experiments with defenses in the
process of pruning. Since there is always a trade-off between
privacy and prediction accuracy when implementing defenses,
we explore different settings of hyper-parameters in the defen-
sive mechanisms to thoroughly evaluate the defense perfor-
mance. Specifically, we set hyper-parameter λ ∈ {1,2,4,8,16}
in PPB, σ ∈ {0.01,0.1,1,10,100}) in the DP noise vectors,
α ∈ {0.5,1,2,4,8,16} in ADV, respectively.

Figure 16 and 17 illustrate the prediction accuracy and at-
tack accuracy with different defense mechanisms. For better
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Figure 18: Performance of defenses against adaptive attacks for different pruning approaches (CIFAR10, ResNet18, Sparsity 0.6).
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Figure 19: Performance of defenses against adaptive attacks for different datasets (L1 Unstructured, Sparsity 0.6).

illustration, we remove the results if the model with a specific
hyper-parameter cannot achieve 75% of the basic defense’s
prediction accuracy, i.e., poor prediction performance, or re-
sult in a higher attack accuracy, i.e., ineffective defense.

We observe that PPB is especially effective in protecting all
pruning approaches from attacks, which can reduce the attack
accuracy to around 50% (random guessing accuracy), while
not degrading the prediction accuracy too much. Hence, PPB
defense provides a privacy-preserving approach with minimal
degradation of prediction accuracy. In addition, ADV is also
effective in the L1 unstructured and Slimming pruning, but
fails to achieve a good balance between prediction perfor-
mance and privacy in the L1 structured and L2 structured
pruning. Similar to the fact shown in recent work [32], we
observe DP can hardly balance this utility-privacy tradeoff.

6.3.3 Defenses against Adaptive Attacks

To rigorously evaluate the defense performance, we consider
adaptive attacks, where the adversary knows all the details
of defenses along with the pruning information. In adaptive
attacks, the adversary trains a shadow pruned model follow-
ing the same defense mechanism (e.g., Basic, DP, ADV, and
proposed PPB) and pruning process. The adversary then per-
forms the SAMIA attack based on the shadow pruned model.

As shown in Figure 18 and 19, we observe that PPB reduces
the accuracy of adaptive attacks compared to the attacks on
the pruned model without defenses and provides the best pro-
tection in L1 structured and L2 structured pruning. Besides,

for the L1 unstructured and Slimming pruning, PPB and ADV
are the best two defenses. PPB is designed towards pruned
models by reducing the confidence and sensitivity gap. There-
fore, in general, PPB provides good protection in all pruning
approaches. In addition, ADV is designed to mitigate the
confidence gap, which is largely increased in L1 unstructured
and slimming pruning (as discussed in Section 5.2.2). Hence,
ADV is also effective in protecting pruned models using L1
unstructured and slimming pruning.

7 Conclusion

This paper conducted the first analysis of privacy risks in
neural network pruning. We first explored the impacts of
neural network pruning on prediction divergence, based on
which, a new membership inference attack, i.e., self-attention
membership inference attack (SAMIA), is proposed against
the pruned neural network models. Through comprehensive
and rigorous evaluation, we demonstrated the substantially
increased privacy risks of the pruned models. We found that
the privacy risks of the pruned models are tightly related to
the confidence gap, sensitivity gap, and generalization gap
due to pruning. Besides, even without knowing the pruning
approach, the membership inference attacks can still achieve
high attack accuracy against the pruned model. Especially,
the proposed SAMIA showed superiority in identifying the
pruned models’ prediction divergence by using finer-grained
prediction metrics, which is recommended as a competitive
baseline attack model for future privacy risk study of neural



network pruning.
In addition, to defend the attacks, we proposed a pair-based

posterior balancing named as PPB by reducing the predic-
tion divergence of fine-tuning process during neural network
pruning. We experimentally demonstrated that PPB could
reduce the attack accuracy to around 50% (random guessing
accuracy) without considering adaptive attacks and achieve
the best protection compared with the three existing defenses.
Besides, PPB showed competitive performance even when
defending adaptive attacks.

The proposed SAMIA attack will be further explored under
more challenging MIA settings, such as the label-only MIA
without available confidences, where the existing label-only
MIA attacks using data augmentation [60] and black-box ad-
versary [61] can be potentially integrated for more powerful
attack capability. We hope our work convinces the commu-
nity about the importance of exploring innovative neural net-
work pruning approaches by taking privacy-preserving into
consideration.
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