
Poisoning Attacks to Local Differential Privacy Protocols for Key-Value Data

Yongji Wu, Xiaoyu Cao, Jinyuan Jia, Neil Zhenqiang Gong
Duke University

{yongji.wu769, xiaoyu.cao, jinyuan.jia, neil.gong}@duke.edu

Abstract
Local Differential Privacy (LDP) protocols enable an un-

trusted server to perform privacy-preserving, federated data

analytics. Various LDP protocols have been developed for dif-

ferent types of data such as categorical data, numerical data,

and key-value data. Due to their distributed settings, LDP

protocols are fundamentally vulnerable to poisoning attacks,

in which fake users manipulate the server’s analytics results

via sending carefully crafted data to the server. However, ex-

isting poisoning attacks focused on LDP protocols for simple

data types such as categorical and numerical data, leaving the

security of LDP protocols for more advanced data types such

as key-value data unexplored.

In this work, we aim to bridge the gap by introducing novel

poisoning attacks to LDP protocols for key-value data. In

such a LDP protocol, a server aims to simultaneously esti-

mate the frequency and mean value of each key among some

users, each of whom possesses a set of key-value pairs. Our

poisoning attacks aim to simultaneously maximize the fre-

quencies and mean values of some attacker-chosen target keys

via sending carefully crafted data from some fake users to

the sever. Specifically, since our attacks have two objectives,

we formulate them as a two-objective optimization problem.

Moreover, we propose a method to approximately solve the

two-objective optimization problem, from which we obtain

the optimal crafted data the fake users should send to the

server. We demonstrate the effectiveness of our attacks to

three LDP protocols for key-value data both theoretically and

empirically. We also explore two defenses against our attacks,

which are effective in some scenarios but have limited effec-

tiveness in other scenarios. Our results highlight the needs

for new defenses against our poisoning attacks.

1 Introduction

Nowadays, many Internet services rely on users’ data. How-

ever, it poses significant challenges to users’ privacy for a

server to collect raw data from users. Local Differential Pri-
vacy (LDP) [16] aims to address the challenges. Specifically,

LDP is a variant of differential privacy [15] under a local

setting, where each user locally perturbs his/her data before

sending it to an untrusted server. The server aggregates the

perturbed data and obtains the statistics of interest. LDP en-

sures that even if the server is compromised, users’ privacy

is still well-protected. Due to its promising resilience against

untrusted server, LDP has been widely deployed by Internet

giants such as Google [16], Apple [40], and Microsoft [13].

Moreover, LDP protocols have been proposed for different

types of data, such as categorical data [16, 30, 39, 45–47],

numerical data [13, 14], multidimensional data [44, 52], and

key-value data [24, 49]. For instance, in recommender sys-

tems, each user rates a set of items (e.g., products), where

an item and a rating can be viewed as a key and a value, re-

spectively. Thus, each user possesses a set of key-value pairs.

In current recommender systems, users send their raw key-

value pairs to the server. However, given access to users’ raw

key-value pairs, an untrusted server can infer users’ sensitive

attributes (e.g., gender, age, sexual orientation) via attribute

inference attacks [22, 32]. LDP protocols enable a server

to collect frequency (i.e., popularity) and mean value (i.e.,

mean rating) of each key from users without accessing their

raw key-value pairs and thus protect users’ rating-behavior

privacy. The collected frequencies and mean values can be

used to rank keys and make recommendations to users.

However, due to the distributed settings, LDP protocols are

vulnerable to poisoning attacks [7, 11], in which an attacker

injects fake users into the system and manipulates the server’s

analytics results via sending carefully crafted data from the

fake users to the server. Specifically, Cheu et al. [11] showed

that poisoning attacks can degrade the overall performance

for indiscriminate items, while Cao et al. [7] showed that

poisoning attacks can promote attacker-chosen target items

in LDP protocols for frequency estimation and heavy hitter

identification. However, these studies focused on simple data

types such as categorical data and numerical data, in which

each user possesses a single categorical item or numerical

value. The security of LDP protocols for more advanced data

types such as key-value data is largely unexplored.

In this work, we aim to bridge this gap. Specifically, we

perform a systematic study on poisoning attacks to LDP proto-

cols for key-value data. In our poisoning attacks, an attacker

aims to simultaneously promote the estimated frequencies

and mean values for some attacker-chosen target keys. An

attacker can inject some fake users into the system and send

carefully crafted data to the server to achieve the attack goals.

Our attacks pose severe security threats to LDP protocols for

key-value data. For example, when such a LDP protocol is

deployed to collect popularity and mean ratings of mobile

apps in a mobile-app recommender system, an attacker can

use our attacks to promote a malicious app’s popularity and

mean rating such that it may be recommended to more people.

However, different from the poisoning attacks to LDP pro-

tocols for simple data types [7, 11], poisoning attacks to the

LDP protocols for key-value data face new challenges. Specif-

ically, key-value data are inherently heterogeneous, i.e., keys

are categorical and values are numerical. Moreover, there are

correlations between the keys and the values. In particular,

the estimated mean value of a key depends on the estimated

frequency of the key. Furthermore, each user may possess

more than one key-value pair, while each user only has a sin-

gle item or numerical value in LDP protocols for categorical

and numerical data. Therefore, existing poisoning attacks are

insufficient for LDP protocols for key-value data.

To address the challenges, we formulate our poisoning

attacks as a two-objective optimization problem, which ex-

plicitly captures the attacker’s two objectives on promoting

both the estimated frequencies and mean values of the target

keys. Specifically, we define the frequency gain (or mean
gain) as the difference between the total estimated frequency

(or mean value) of the target keys before and after attack. The

expected frequency gain and expected mean gain are the two

objective functions in our two-objective optimization prob-

lem, where the expectation is taken over the randomness in

a LDP protocol. Moreover, we propose a method, called

maximal gain attack (M2GA), to approximately solve the two-

objective optimization problem. The solution corresponds to

the crafted data fake users should send to the server. Specifi-

cally, M2GA can exactly maximize the expected frequency

gain and approximately maximize the expected mean gain.

To demonstrate the effectiveness of M2GA, we also pro-

pose two baseline poisoning attacks, called random message
attack (RMA) and random key-value pair attack (RKVA). In

RMA, each fake user sends a random message in the domain

allowed by the LDP protocol to the server, while in RKVA,

each fake user picks a random target key, associates the largest

allowable value with it, and perturbs the key-value pair fol-

lowing the LDP protocol before sending it to the server.

We apply our attacks to three state-of-the-art LDP proto-

cols for key-value data, e.g., PrivKVM [49], PCKV-UE [24],

and PCKV-GRR [24]. Moreover, we evaluate our attacks both

theoretically and empirically. Theoretically, we derive the

expected frequency gains of our attacks exactly. However, it

is challenging to derive the expected mean gains exactly be-

cause they involve divisions of random variables. To address

the challenge, we derive the expected mean gains approxi-

mately via relaxing the divisions of random variables. We

note that prior work [7, 11] found security-privacy trade-offs

in LDP protocols for categorical and numerical data, i.e., such

a LDP protocol is more vulnerable to poisoning attacks when

it is more privacy-preserving. One interesting finding from

our theoretical analysis is that, such security-privacy trade-off

does not necessarily hold in LDP protocols for key-value data.

For instance, in M2GA to PrivKVM [49], the expected fre-

quency gain increases (i.e., more vulnerable to M2GA) as the

privacy budget decreases (i.e., more privacy-preserving) when

an attacker selects one target key; the expected frequency

gain does not depend on the privacy budget when an attacker

selects two target keys; and the expected frequency gain de-

creases as the privacy budget decreases when an attacker

selects more than two target keys. Empirically, we evaluate

our attacks on multiple datasets. Our results show that M2GA

can successfully promote the estimated frequencies and mean

values of the target keys, and that M2GA substantially outper-

forms the two baseline attacks.

We also explore two defenses against our poisoning attacks.

Specifically, in one defense, the server uses one-class clas-

sifier to detect fake users via treating users’ data sent to the

server as their features. PrivKVM requires multiple communi-

cation rounds between the users and the server. Therefore, in

our second defense, the server detects fake users in PrivKVM

via checking the consistency of their data sent to the server

in multiple rounds. Our intuition is that a fake user sends

highly correlated data to the server in multiple rounds, while

a genuine user does not. Our empirical results show that our

defenses are effective in some scenarios. For instance, when

the fraction of fake users and the number of target keys are

small, M2GA achieves negligible frequency gains and mean

gains when the second defense is deployed. However, the

defenses are ineffective in other scenarios, e.g., when the frac-

tion of fake users or the number of target keys is large for the

second defense, which highlights the needs for new defense

mechanisms against our attacks.

Our contributions can be summarized as follows:

• To the best of our knowledge, we are the first to study

poisoning attacks to LDP protocols for key-value data.

• We formulate our attacks as a two-objective optimization

problem, which aims to maximize both the expected fre-

quency gain and expected mean gain of the target keys.

• We evaluate our attacks on three state-of-the-art LDP proto-

cols for key-value data both theoretically and empirically.

• We investigate two defenses against our attacks. Our results

show that the defenses can defend against our attacks in

some scenarios but not in others, which highlights that new

defenses are needed to mitigate our attacks.

2 Related Work

Poisoning Attacks to LDP Two concurrent studies [7, 11]

proposed poisoning attacks to LDP protocols for categorical

and numerical data. In these LDP protocols, each user holds a

single item or numerical value, and a server aims to estimate

the frequencies of items or identify heavy hitters that have

the largest item frequencies. Cheu et al. [11] showed that an

attacker can downgrade the accuracy of the estimated item

frequencies or the identified heavy hitters for indiscriminate

items via injecting fake users into the system. Cao et al. [7]

showed that an attacker can increase the estimated frequencies

for attacker-chosen target items or promote them to be identi-

fied as heavy hitters. In particular, Cao et al. formulated their

poisoning attacks as a single-objective optimization problem,

where the objective function is to maximize the frequency

gains for the target items. As we discussed in Introduction,

these poisoning attacks are insufficient for LDP protocols for

key-value data.

In particular, our work differs from [7] in the following

aspects. First, we formulate a two-objective optimization

problem for key-value data instead of the single-objective

one. Second, our solutions to the optimization problems

are different. Third, we propose different defenses against

the poisoning attacks. Fourth, we observe different privacy-

security trade-off. Specifically, Cao et al. [7] found that when

the privacy guarantee is stronger, a protocol becomes less

secure to poisoning attacks. We do not necessarily observe

such privacy-security trade-off both theoretically (in some

cases) and empirically for LDP protocols for key-value data.

Poisoning Attacks to ML Poisoning attacks to machine

learning systems have been studied extensively [6, 8, 10, 17–

19, 23, 26, 28, 29, 34, 36–38, 48]. In these attacks, an attacker

manipulates the training phase of a machine learning system

via poisoning some carefully selected training examples or

tampering the training process. For instance, training-data

poisoning attacks have been studied for support vector ma-

chines [6], neural networks [10, 23, 36], and recommender

systems [18, 19, 27, 34, 48]. Training-process poisoning at-

tacks have been studied for federated learning [4, 5, 17]. Our

poisoning attacks differ from these ones because the computa-

tional process of LDP protocols is significantly different from

that of machine learning training phases.

3 Preliminaries

Before we dive into details, we summarize the important

notations we use in Table 1.

3.1 LDP Protocols for Key-Value Data
Suppose we have n users, we have a dictionary K of d keys

(i.e., K = {1,2, · · · ,d}), and each user possesses a set of KV

symbol representation

n # genuine users

m # fake users

β fraction of fake users

K dictionary of keys

d # keys

〈k,v〉 key-value pair

fk frequency of k
mk mean value of k
ε privacy budget

� padding length

r # target keys

G f frequency gain

Gm mean gain

Table 1: Notations used in this work.

pairs 〈k,v〉, where k ∈ K and v ∈ [−1,1]. Note that, without

loss of generality, we assume the values are transformed into

the range [−1,1]. A server aims to estimate the frequency and

mean value of each key among the n users. The frequency of

a key is the fraction of users who possess the key, while the

mean value of a key is the average of the values in the KV

pairs that contain the key. Formally, the true frequency fk and

mean value mk for each key k are defined as follows:

fk =
∑n

u=1 ISu(〈k, ·〉)
n

, mk =
∑u∈{1,··· ,n},〈k,v〉∈Su v

n · fk
,

where Su is the set of KV pairs possessed by user u and

ISu(〈k, ·〉) is an indicator function that equals 1 if one KV pair

in Su contains the key k and equals 0 otherwise.

Framework of LDP Protocols for Key-Value Data In

LDP protocols, each user randomly perturbs its KV pairs

and sends the perturbed data (called message) to the server.

Roughly speaking, in LDP, any two sets of KV pairs are

perturbed to the same message with close probabilities. State-

of-the-art LDP protocols [24, 49] for key-value data consist

of the following three key steps.

• Sample: A user randomly samples a key from the dictionary

and constructs a KV pair based on the sampled key.

• Perturb: The user perturbs the constructed KV pair to

obtain the message that should be sent to the server.

• Aggregate: The server estimates the frequency and mean

value of each key via aggregating the messages from all

users. We denote by f̂k and m̂k the estimated frequency and

mean value of a key k.

Next, we briefly review three state-of-the-art LDP protocols

for key-value data, i.e., PrivKVM [49], PCKV-UE [24], and

PCKV-GRR [24].

3.2 PrivKVM
PrivKVM utilizes an iterative procedure, where the aforemen-

tioned three steps are performed for Niter rounds. Specifically,

after each round, the server has an estimated mean value m̂k
for each key k, which is used to construct messages for the

users who do not possess the key k in the next round. Next,

we describe the three steps in each round.

Sample For each user, PrivKVM samples a key k from the

dictionary uniformly at random. If the user possesses k, then

the Sample step returns the user’s KV pair 〈k,v〉, otherwise

the Sample step constructs a KV pair 〈k,v = m̂k〉 (m̂k is the

estimated mean value in the previous round and is set to

0 in the first round). The value v in the KV pair is then

discretized to v∗ = 1 with a probability of 1+v
2 and v∗ =−1

with a probability 1−v
2 . Finally, the Sample step returns a KV

pair 〈k,v∗〉 and a flag indicating whether k is possessed by the

user or not.

Perturb First, the user perturbs the discretized value v∗ to

be v′ based on the following rule:

v′ =

{
v∗ w.p. eε2

1+eε2

−v∗ w.p. 1
1+eε2

, (1)

where w.p. is short for with probability. Then, the user further

perturbs the 〈k,v′〉 pair to be 〈kp,v′p〉. Specifically, if the user

possesses the key k, then 〈kp,v′p〉 is obtained based on the

following perturbation rule:

〈
kp,v′p

〉
=

{
〈1,v′〉 w.p. eε1

1+eε1

〈0,0〉 w.p. 1
1+eε1

. (2)

If the user does not have k, then 〈kp,v′p〉 is obtained as follows:

〈
kp,v′p

〉
=

{
〈0,0〉 w.p. eε1

1+eε1

〈1,v′〉 w.p. 1
1+eε1

. (3)

Finally, the user sends the pair 〈kp,v′p〉 and the index of the

key k to the server.

Aggregate We denote by nk the number of users report-

ing the index of key k and the tuple 〈1, ·〉. Then, the server

computes the estimated frequency of k as follows:

f̂k =
p−1+nk/n

2p−1
, (4)

where p = eε1

eε1+1
. Then, the server counts the number of users

nk
1 (or nk

−1) that report the index of key k and the tuple 〈1,1〉
(or 〈1,−1〉). The server computes the estimated mean value

of k as follows:

m̂k =
n̂k

1 − n̂k
−1

nk
, (5)

where n̂k
1 and n̂k

−1 are defined as follows:

n̂k
1 =

p−1

2p−1
·nk +

nk
1

2p−1
, (6)

n̂k
−1 =

p−1

2p−1
·nk +

nk
−1

2p−1
, (7)

where p = eε2

eε2+1
. We note that frequency estimation is only

conducted in the first round, while mean estimation uses

the results after Niter rounds. The privacy budget ε1 is only

allocated to the first round, while the privacy budget ε2 is

equally allocated for each round. Specifically, we have ε1 =
ε
2

and ε2 =
ε

2Niter
, where ε is the overall privacy budget.

3.3 PCKV-UE and PCKV-GRR
PCKV-UE and PCKV-GRR are two protocols from the

PCKV family [24]. PCKV improves PrivKVM by utilizing a

padding-and-sampling strategy in the Sample step to reduce

the variance of frequency and mean value estimation. More-

over, unlike PrivKVM that performs aforementioned three

steps for multiple rounds, PCKV only requires a single round.

The two protocols PCKV-UE and PCKV-GRR mainly differ

in the Perturb step and the Aggregate step, while sharing a

common Sample step. Specifically, we have the following

workflow:

Sample Suppose a user u has a set of KV pairs Su. If

|Su|< �, where � is called padding length and is a parameter

of the protocols, then the user u pads the set Su with dummy

KV pairs {〈d +1,0〉,〈d +2,0〉, . . . ,〈d + l −|Su|,0〉}.

Note that the maximum number of dummy KV pairs is �
when Su is an empty set. After the padding, a random KV

pair 〈k,v〉 is drawn from the padded set. The value v is then

discretized in the same way as PrivKVM, i.e., the value v is

discretized to v∗ = 1 with a probability of 1+v
2 and v∗ =−1

with a probability 1−v
2 .

Perturb We denote d′ = d + l and K ′ = {1,2, · · · ,d + l}
(the dictionary with dummy keys). The Perturb steps for

PCKV-UE and PKCV-GRR are as follows:

• PCKV-UE: PCKV-UE leverages Unary Encoding (UE)

to perturb KV pairs. In particular, a perturbed vector y ∈
{1,−1,0}d′ is sent to the server, where y[i] contains value

information of key i and is obtained as follows:

y[k] =

⎧⎨
⎩

v∗, w.p. a · p
−v∗, w.p. a · (1− p)
0, w.p. 1−a

, (8)

y[i] =

⎧⎨
⎩

1, w.p. b/2

−1, w.p. b/2

0, w.p. 1−b
, i ∈ K ′ \ {k}, (9)

where a, b, and p are as follows:

a =
1

2
,b =

2

eε +3
, p = eε/(eε +1) . (10)

• PCKV-GRR: PCKV-GRR leverages Generalized Random

Response (GRR) to perturb KV pairs. Specifically, the KV

pair 〈k,v∗〉 is randomly perturbed into 〈k′,v′〉 as follows:

〈
k′,v′

〉
=

⎧⎪⎪⎨
⎪⎪⎩

〈k,v∗〉, w.p. a · p
〈k,−v∗〉, w.p. a · (1− p)
〈i,1〉, w.p. b ·0.5
〈i,−1〉, w.p. b ·0.5

, (11)

where i ∈ K ′ \ {k} and a, b, and p are as follows:

a =
�(eε −1)+2

�(eε −1)+2d′ ,b =
1−a
d′ −1

, p =
�(eε −1)+1

�(eε −1)+2
.

(12)

The perturbed KV pair 〈k′,v′〉 is sent to the server.

Aggregate Due to the difference in Perturb step, the Aggre-

gate steps for PCKV-UE and PCKV-GRR are also different.

Given a key k, we respectively use nk
1 and nk

−1 to denote the

number of users that support the KV pairs 〈k,1〉 and 〈k,−1〉.
In particular, they can be computed as follows:

• PCKV-UE: Recall that, in PCKV-UE, y[k] contains the

value information of the key k. We say y[k] supports 〈k,1〉
(or 〈k,−1〉) if y[k] = 1 (or y[k] =−1). Then, we can com-

pute nk
1 (or nk

−1) as the number of users whose perturbed

vectors satisfy y[k] = 1 (or y[k] =−1).

• PCKV-GRR: In PCKV-GRR, each user sends a single

perturbed KV pair 〈k′,v′〉 to the server. Similar to PCKV-

UE, we say 〈k′,v′〉 supports 〈k,1〉 (or 〈k,−1〉) if k′ = k and

v′ = 1 (or v′ = −1). Then, we can compute nk
1 (or nk

−1)

as the number of users whose perturbed KV pairs satisfy

k′ = k and v′ = 1 (or v′ =−1).

Given nk
1 and nk

−1, the server can estimate the frequency of

key k as follows:

f̂k =

(
nk

1 +nk
−1

)
/n−b

a−b
· �, (13)

The estimated mean value of the key k is computed as follows:

m̂k = �
(

n̂k
1 − n̂k

−1

)
/
(
n f̂k

)
, (14)

where [
n̂k

1

n̂k
−1

]
= A−1

[
nk

1 −nb/2

nk
−1 −nb/2

]
, (15)

A =

[
ap− b

2 a(1− p)− b
2

a(1− p)− b
2 ap− b

2

]
. (16)

We note that in all the three LDP protocols, the server can

clip the estimated frequency f̂k to be 1
n if it is smaller than

1
n and to be 1 if it is larger than 1. Moreover, the server can

clip the support counts n̂k
1 and n̂k

−1 into the range of [0, n f̂k
�] in

PCKV-UE and PCKV-GRR, as well as the range of [0,nk] in

PrivKVM, before using them to estimate the mean value.

4 Threat Model

Attacker’s capability and background knowledge We

assume that the attacker is able to inject some fake users

into the system. Previous measurement study [41] has

shown that an attacker can easily obtain a large number of

fake/compromised users in online web services such as Twit-

ter and Facebook. Specifically, we assume that the attacker

has access to m fake users. Together with the n genuine users,

the server estimates frequencies and mean values of keys

among the n+m users. For each fake user, the attacker can

arbitrarily craft its message sent to the server. An attacker

has access to the parameters of the LDP protocol since the

LDP protocol is executed on a user side. Specifically, an

attacker has access to the dictionary of keys, as well as the

implementation details of the Sample and Perturb steps of the

LDP protocol.

Attacker’s goal An attacker aims to promote some target

keys. We assume r target keys and denote them as a set T=
{k1,k2, · · · ,kr}. The attacker aims to increase the estimated

frequencies and mean values of the target keys via sending

carefully crafted messages from the fake users to the server.

Without loss of generality, we assume the m fake users have

IDs n+ 1,n+ 2, · · · ,n+m. We denote the set of messages

the fake users send to the server as Y= {yi}n+m
i=n+1, where yi

is the message fake user i sends to the server. We denote

by f̂k and f̃k the estimated frequency of key k among the n
genuine users and all the n+m users, respectively. Moreover,

we denote by G f (Y) = ∑k∈TE[Δ f̂k] the frequency gain of the

target keys, where Δ f̂k = f̃k − f̂k and the expectation is taken

over the randomness in a LDP protocol.

Similarly, we denote by m̂k and m̃k the estimated mean

value of key k among the n genuine users and all the n+m
users, respectively. Furthermore, we denote by Gm(Y) =

∑k∈TE[Δm̂k] the mean gain of the target keys, where Δm̂k =
m̃k − m̂k and the expectation is taken over the randomness in a

LDP protocol. An attacker aims to simultaneously maximize

the frequency gain and mean gain via carefully crafting the

messages Y. We propose to formulate such an attack goal as

the following two-objective optimization problem:

max
Y

[
G f (Y)
Gm(Y)

]
. (17)

Note that we consider the target keys are weighted equally

for simplicity. However, our formulation can be extended

to the scenario where the attacker assigns different weights

to different target keys in the frequency and mean gains. A

method to solve the two-objective optimization problem is a

poisoning attack to a LDP protocol for key-value data.

5 Our Attacks

We first introduce our three attacks and then apply them to

PrivKVM, PCKV-UE, and PCKV-GRR.

5.1 Three Attacks
We propose Maximal Gain Attack (M2GA), which solves the

two-objective optimization problem to construct the optimal

messages the fake users should send to the server. To show the

effectiveness of M2GA, we also propose two baseline attacks:

Random Message Attack (RMA) and Random Key-Value Pair
Attack (RKVA). Next, we describe them one by one.

5.1.1 M2GA

Our idea is to unify the frequency gain and mean gain for

different LDP protocols under the same framework, based on

which we transform the two-objective optimization problem

to be one that is easier to solve.

Unifying the frequency gain We first observe that the es-

timated frequency f̂k can be unified as Eq. 13. In particular,

as discussed in Section 3.3, PCKV-UE and PCKV-GRR use

Eq. 13 to calculate f̂k. We can also use Eq. 13 to calculate

f̂k in PrivKVM, where the parameters a, b, and l are set as

follows:

a =
eε1

eε1 +1
,b =

1

eε1 +1
, �= 1. (18)

Therefore, we can represent the frequency gain G f (Y) as:

G f (Y) = ∑
k∈T

E
[

f̃k − f̂k
]

= ∑
k∈T

�

{
E

[
(nk

1 +nk
−1 + ñk

1 + ñk
−1)/(n+m)−b

a−b

]

−E

[
(nk

1 +nk
−1)/n−b

a−b

]}
,

where nk
1 and nk

−1 respectively are the support counts of 〈k,1〉
and 〈k,−1〉 among the n genuine users, while ñk

1 and ñk
−1 are

the ones among the m fake users. We note that the messages Y

only affect the term ∑k∈TE[
(ñk

1+ñk
−1)

(n+m)(a−b)] and the denominator

(n+m)(a− b) is irrelevant in the optimization for a given

setting of LDP protocol. Therefore, optimizing the frequency

gain is equivalent to optimizing the following:

max
Y

∑
k∈T

(E[ñk
1]+E[ñk

−1]). (19)

Moreover, the frequency gain can be simplified as follows:

G f (Y) =
�

(n+m)(a−b) ∑
k∈T

(E[ñk
1]+E[ñk

−1])− c, (20)

where c = ∑k∈T
m�(nk

1+nk
−1)

n(n+m)(a−b) =
m�

n+m (fT+ rb
a−b). fT = ∑k∈T fk

is the sum of the true frequencies of all target keys, which is

a constant.

Unifying the mean gain Similar to frequency estimation,

the estimated mean value can also be unified in the following

equation:

m̂k =

(
nk

1 −nk
−1

)
(a−b)

a(2p−1)
(
nk

1 +nk
−1 −nb

) , (21)

where the parameters a, b, p, and l are described in Section 3.3

for PCKV-UE and PCKV-GRR, and they are set as follows

for PrivKVM:

a = 1,b = 0, p =
eε2

eε2 +1
, l = 1. (22)

Then, we can represent the mean gain Gm(Y) as follows:

Gm(Y) = ∑
k∈T

E [m̃k − m̂k]

= ∑
k∈T

{
E

[(
nk

1 −nk
−1 + ñk

1 − ñk
−1

)
(a−b)

a(2p−1)
(
nk

1 +nk
−1 + ñk

1 + ñk
−1 − (n+m)b

)
]

−E

[(
nk

1 −nk
−1

)
(a−b)

a(2p−1)
(
nk

1 +nk
−1 −nb

)
]}

. (23)

However, unlike the frequency gain, it is non-trivial to

compute the two expectations above because they involve

divisions between random variables. Specifically, since nk
1

and nk
2 are random variables, both the numerator and the de-

nominator are random variables. To address the challenge, we

propose to use the first-order Taylor expansion of functions of

random variables [9] to approximately compute Gm. Specif-

ically, given two random variables X and Y , the first-order

Taylor expansion means the following:

E

[
X
Y

]
≈ E[X]

E[Y]
. (24)

Note that we have the following:

E[nk
1 −nk

−1] = n
fk

�
a(2p−1)mk,

E[nk
1 +nk

−1 −nb] = n
fk

�
(a−b),

where fk and mk are the true frequency and mean value of k.
Thus, based on the first-order Taylor expansion, we have:

Gm ≈ ∑
k∈T

(
a−b

a(2p−1)

n fka(2p−1)mk/�+E[ñk
1]−E[ñk

−1]

n fk(a−b)/�+E[ñk
1]+E[ñk

−1]−mb
−mk

)
.

(25)

For simplicity, we denote ck
1 = n fka(2p−1)mk/� and ck

2 =
n fk(a− b)/�−mb. Then, we approximate optimizing the

mean gain as follows:

max
Y

∑
k∈T

E[ñk
1]−E[ñk

−1]+ ck
1

E[ñk
1]+E[ñk

−1]+ ck
2

. (26)

Reformulated two-objective optimization problem By

combining Eq. 19 and 26, we re-formulate our two-objective

optimization problem as follows:

max
Y

⎡
⎣∑k∈T(E[ñk

1]+E[ñk
−1])

∑k∈T
E[ñk

1]−E[ñk
−1]+ck

1

E[ñk
1]+E[ñk

−1]+ck
2

⎤
⎦ . (27)

5.1.2 RMA

In this baseline attack, each fake user picks a message uni-

formly at random from the message domain allowed by a

LDP protocol and sends it to the server.

5.1.3 RKVA

RMA does not consider any information about the target

keys. Different from RMA, RKVA considers the target keys.

Specifically, each fake user picks a random target key k, pairs

it with an extreme value 1, and the constructed KV pair is

viewed as the fake user’s KV pair. Then, the constructed

KV pair is processed by the LDP protocol and the resulting

message is sent to the server.

5.2 Attacking PrivKVM
5.2.1 M2GA

Recall that PrivKVM is an iterative procedure, in which the

frequency estimation is performed in the first round while the

mean estimation is performed in each round and the estimated

mean values in the last round are used. Solving Eq. 27 exactly

is non-trivial. Therefore, we propose a two-step approximate

solution, which first optimizes the frequency gain and then

approximately optimizes the mean gain.

Since each user in PrivKVM sends a key index and a tuple

to the server, we craft such message for each fake user such

that Eq. 19 is maximized. For PrivKVM, a fake user can only

inject a single key to be counted by the server. That is, a

fake user can only increase either ñk
1 or ñk

−1 for a single key k.

Therefore, for each fake user, we randomly select a target key

k, and send the index k and the tuple 〈1, ·〉 to the server, where

the reported value does not influence the frequency gain and

we will discuss it for optimizing the mean gain. Thus, we

have ∑k∈T(E[ñk
1]+E[ñk

−1]) = m, and we have the frequency

gain as G f =
m

(n+m)(a−b) − c, where the parameters a,b are

defined in Eq. 18. In practice, for each target key, m
r fake

users send messages including the target key to the server.

For mean estimation, we attack each round of PrivKVM.

Specifically, in PrivKVM, the value sent to the server is either

1 or -1. Therefore, to increase the estimated mean, a fake user

always sends value 1 for a target key. In other words, we have

E[ñk
1] =

m
r and E[ñk

−1] = 0 for each target key k. The mean

gain is as follows: Gm ≈ ∑k∈T a−b
a(2p−1)

n fka(2p−1)mk/�+m/r
n fk(a−b)/�+m/r−mb) −

mk, where a,b, p are given in Eq. 22.

To summarize, each fake user sends a random target key

and value 1 to the server in each round of PrivKVM.

5.2.2 RMA

In RMA, each fake user randomly chooses a key k from the

entire dictionary. Then, the fake user randomly chooses a

tuple to report to the server. Specifically, 〈0,0〉 is chosen with

a probability of 1
2 , while 〈1,−1〉 and 〈1,1〉 are each chosen

with probability 1
4 .

Therefore, we have a probability of 1
2d that the message of

a fake user supports key k, and the KV pairs 〈k,1〉 and 〈k,−1〉
would be supported with equal probabilities. Thus, we have

E[ñk
1] = E[ñk

−1] =
m
4d . By plugging the values into Eq. 20 and

Eq. 25, we have the frequency gain of G f =
mr

2(n+m)(a−b)d − c,

and the mean gain of Gm ≈∑k∈T a−b
a(2p−1)

n fka(2p−1)mk
n fk(a−b)+m/(2d)−mb −

mk. Again, we note that the parameters a,b, p are different in

G f and Gm.

5.2.3 RKVA

In RKVA, each fake user picks a target key k uniformly at ran-

dom and the fake user’s tuple is 〈1,1〉. This tuple is perturbed

according to the Perturb step of the PrivKVM protocol. The

perturbed tuple still supports k with a probability of eε1

eε1+1
,

and the value is inverted with a probability of 1
1+eε2

.

Therefore, we have E[ñk
1] = E[ñk

−1] =
meε1

2r(eε1+1)
. E[ñk

1] =
meε1 eε2

r(eε1+1)(1+eε2)
and E[ñk

−1] =
meε1

r(eε1+1)(1+eε2)
. The frequency

gain is G f =
meε1

(n+m)(a−b)(eε1+1)
−c, and the mean gain is Gm ≈

∑k∈T a−b
a(2p−1)

n fka(2p−1)mk+meε1 (eε2−1)/r(eε1+1)(1+eε2)
n fk(a−b)+meε1/(r(eε1+1))−mb −mk.

5.3 Attacking PCKV-UE
5.3.1 M2GA

In PCKV-UE, each user sends a vector of length d + � to

the server, and each dimension is checked independently on

whether it supports the corresponding key. Therefore, a single

user could support multiple keys.

For each fake user, we put a 1 or -1 in all the dimensions

corresponding to the target keys. Therefore, a single fake

user can increase ñk
1 or ñk

−1 for all k ∈ T. For the remaining

dimensions, if we simply leave them as 0, the server may

easily detect that these messages are from fake users. To

address this issue, we sample some dimensions and set them

to 1 or -1, such that the vectors we craft for the fake users

would have the same number of 1 bits and -1 bits as the ex-

pectation of the genuine users’. Specifically, if a genuine user

samples a KV pair 〈·,1〉 (or 〈·,−1〉) to report, the perturbed

vector would have �ap+ (d′ − 1)(b/2)	 1 (or -1) bits and

a(1− p)+ (d′ − 1)(b/2) -1 (or 1) bits on expectation. We

note that this form of disguise does not affect the frequency

gain and mean gain for the target keys.

Therefore, we have ñk
1 + ñk

−1 = m for each target key k.

The frequency gain is G f =
mr�

(n+m)(a−b) − c. To further max-

imize the mean gain, we solve the optimization problem

of Eq. 26 in the similar way as for PrivKVM. Specifically,

we only need to maximize ñk
1 − ñk

−1 for each target key k
under the constraints of ñk

1 ≥ 0, ñk
−1 ≥ 0 and ñk

1 + ñk
−1 = m.

Therefore, we have the following optimal solution ñk
1 = m

and ñk
−1 = 0. Thus, we obtain the mean gain as: Gm ≈

∑k∈T a−b
a(2p−1)

n fka(2p−1)mk/�+m
n fk(a−b)/�+m(1−b) −mk.

To summarize, each fake user sets the dimensions corre-

sponding to the target keys to 1 in its vector. Moreover, to

evade possible detection, each fake user randomly samples

some other dimensions of its vector and set them to be 1 or -1

such that the vector has the same number of 1 bits and -1 bits

as the expected 1 bits and -1 bits in a genuine user’s vector.

5.3.2 RMA

In PCKV-UE, a message is a vector. For each fake user, we

randomly sample the value of each dimension of the vector.

Specifically, each dimension is randomly set to 1, -1, or 0

with an equal probability of 1
3 . Therefore, we have E[ñk

1] =

E[ñk
−1] =

m
3 . The frequency gain is G f =

2mr�
3(n+m)(a−b)−c. The

mean gain is Gm ≈ ∑k∈T a−b
a(2p−1)

n fka(2p−1)mk/�
n fk(a−b)/�+2m/3−mb) −mk.

5.3.3 RKVA

For each fake user, a random target key k is sampled from T

and paired with a value of 1. The constructed KV pair is then

perturbed by the PCKV-UE protocol. As the perturbation is

independent for each dimension, we only need to focus on

the dimensions corresponding to the target keys in T. Similar

to PrivKVM, if k is selected, its value remains the same

with probability ap and gets inversed to -1 with a probability

of a(1− p). However, different from PrivKVM, if a key

other than k is selected, the perturbed vector supports k with

probability b and the value is 1 or -1 with equal probability
b
2 . Therefore, we have E[ñk

1] =
map+m(r−1)b/2

r and E[ñk
−1] =

ma(1−p)+m(r−1)b/2
r . The frequency gain and the mean gain

are respectively as follows: G f =
ma�+m(r−1)b�
(n+m)(a−b) − c and Gm ≈

∑k∈T
n fkmk/�+m/r

n fk/�+m/r −mk.

5.4 Attacking PCKV-GRR

5.4.1 M2GA

In PCKV-GRR, each user sends a KV pair as the message to

the server. A user supports a KV pair if and only if the mes-

sage he/she sent to the server is exactly the KV pair. There-

fore, similar to PrivKVM, a fake user can only increase the

support count ñk
1 or ñk

−1 of a single target key. Similar to

PrivKVM, we have ∑k∈TE
[
ñk

1 + ñk
−1

]
= m. The frequency

gain is G f =
m�

(n+m)(a−b) − c.

The mean gain for each target key is then maximized

in the same way as each round of PrivKVM, where we

set ñk
1 = m

r and ñk
−1 = 0, i.e., we set all the values in the

KV pairs sent to the server to 1. Thus, the mean gain is

Gm ≈ ∑k∈T a−b
a(2p−1)

n fka(2p−1)mk/�+m/r
n fk(a−b)/�+m/r−mb −mk.

To summarize, each fake user sends a random target key

and value 1 to the server.

5.4.2 RMA

For each fake user, we randomly select a target key and

set its corresponding value as -1 or 1 uniformly at random

, which is the KV pair sent to the server. Therefore, we

have E[ñk
1] = E[ñk

−1] =
m

2d′ . We have the frequency gain

as G f = mr�
(n+m)(a−b)d′ − c, while the mean gain as Gk

m ≈
∑k∈T a−b

a(2p−1)
n fka(2p−1)mk/�

n fk(a−b)/�+m/d′−mb −mk.

5.4.3 RKVA

For each fake user, we randomly select a target key k from

T and choose its value 1 to construct a KV pair. The KV

pair is then perturbed according to the Perturb step of the

PCKV-GRR protocol. The KV pair after perturbation still

keeps k as its key with a probability of a, and a key other than

k gets perturbed to k with a probability of b. Therefore, we get

E[ñk
1] =

map+m(r−1)b/2
r and E[ñk

−1] =
ma(1−p)+m(r−1)b/2

r . We

have G f =
ma�+m(r−1)b�
(n+m)(a−b) −c and Gm ≈∑k∈T

n fkmk/�+m/r
n fk/�+m/r −mk.

5.5 Theoretical Analysis

Table 2 summarizes the analytical forms of the frequency

gains of our three attacks for the three LDP protocols, while

Table 3 summarizes the analytical forms of the approximate

mean gains of our three attacks for the three LDP protocols.

We have replaced the protocol-dependent parameters a, b,

and p in the analytical forms. We note that we do not con-

sider clipping the estimated frequency f̂k and support counts

nk
1,n

k
−1 when deriving the analytical forms.

First, we observe that M2GA outperforms RMA and

RKVA. This is because M2GA crafts the fake users’ messages

via solving a two-objective optimization problem. In partic-

ular, our two objectives are non-convex. However, M2GA

Table 2: Frequency gains of the three attacks for PrivKVM, PCKV-UE, and PCKV-GRR. β = m
n is the fraction of fake users,

fT = ∑k∈T fk is the sum of true frequencies of the target keys, ε is the privacy budget, d is the total number of keys, � is the

padding length, d′ = d + � is the padded dictionary size, and r is the number of target keys.

PrivKVM PCKV-UE PCKV-GRR

M2GA
β

1+β

[
1− fT+ 2−r

eε/2−1

]
β�

1+β
[
2r− fT+ 4r

eε−1

] β
1+β

[
(1− fT)�+

2(d′−r)
eε−1

]
RMA

β
1+β

[
(eε/2−2d+1)r

2(eε/2−1)d
− fT

]
β�

1+β

[
4eεr

3(eε−1) − fT
]

β(r− fTd′)�
(1+β)d′

RKVA
β

1+β

[
1− fT+ 1−r

eε/2−1

]
β�

1+β (1− fT)
β�

1+β (1− fT)

Table 3: Approximate mean gains of the three attacks for PrivKVM, PCKV-UE, and PCKV-GRR. fk is the true frequency of key

k, mk is the true mean value of k, ε2 =
ε

2Niter
is the privacy budget in each round of PrivKVM, and Niter is the number of rounds.

PrivKVM PCKV-UE PCKV-GRR

M2GA ∑k∈T
fkmkr+ eε2+1

eε2−1
β

fkr+β −mk ∑k∈T
2β�(eε+1)+(eε−1) fkmk

2β�(eε+1)+(eε−1) fk
−mk ∑k∈T

(eε−1)(β�+ fkmkr)+2βd′
β[(eε−1)�+2(d′−r)]+(eε−1) fkr −mk

RMA ∑k∈T
2 fkmkd
2 fkd+β −mk ∑k∈T

3(eε−1) fkmk
3(eε−1) fk+4eεβ� −mk ∑k∈T

fkmkd′
fkd′+β� −mk

RKVA ∑k∈T
fkmkr(eε/2+1)+eε/2β

fk(eε/2+1)+eε/2β
−mk ∑k∈T

fkmkr+β�
fkr+β� −mk ∑k∈T

fkmkr+β�
fkr+β� −mk

achieves the optimal frequency gain for the three LDP pro-

tocols in all cases, as we discussed when describing M2GA

for each protocol. Moreover, in a given execution of a LDP

protocol, M2GA also achieves the optimal mean gain if there

is only one target key k (i.e., r = 1) and nk
1 ≥ nk

−1 >
(n+m)b

2
(Appendix A.1 shows the proof). Second, we observe that the

frequency gain of an attack increases as the fraction of fake

users increases. However, we do not have this observation

for mean gains. We suspect the reason is that the mean gain

depends on the estimated frequency and that we approximate

the mean gains via Taylor expansion. Third, the frequency

gain is larger when the total true frequencies fT of the target

keys is smaller. This is because the frequency gain is the

difference between the estimated frequencies before and after

attack. Moreover, the approximate mean gain becomes larger

when the true mean value of each target key becomes smaller.

Prior work [7, 11] observed trade-off between security

against poisoning attacks and privacy in LDP protocols for

categorical and numerical data, i.e., such a LDP protocol

is more vulnerable to poisoning attacks if it uses a smaller

privacy budget. Our fourth observation is that such security-

privacy trade-off does not necessarily hold in LDP protocols

for key-value data. In particular, while we observe such

security-privacy trade-off for the frequency gains of M2GA

to PCKV-UE and PCKV-GRR, how the privacy budget ε in-

fluences the frequency gain of M2GA to PrivKVM depends

on r, the number of target keys. Specifically, the frequency

gain of M2GA to PrivKVM increases, does not change, and

decreases as the privacy budget ε decreases when r = 1, r = 2,

and r > 2, respectively. The approximate mean gain of M2GA

Table 4: Dataset statistics. #records indicates the total number

of KV pairs in a dataset, while the 90th-percentile refers to

that of the number of KV pairs possessed per user.

Dataset #users #keys #records 90th-percentile

Synthetic 100,000 100 100,000 1.0

Clothing 105,508 5,850 192,198 3.0

TalkingData 60,822 320 1,327,468 34.0

MovieLens-1M 943 1,682 100,000 244.4

in Table 3 has such security-privacy trade-off as we can verify

that the derivative of the approximate mean gain of M2GA

with respect to ε is negative. However, we do not necessar-

ily observe such security-privacy trade-off for the true mean

gains of M2GA in our experiments. This is because the ap-

proximate mean gains are obtained using Taylor expansion of

the true ones and the protocols clip frequencies and support

counts in practice.

6 Evaluation

6.1 Experimental Setup
6.1.1 Datasets

We evaluate our three attacks, i.e., M2GA, RMA, and RKVA,

on a synthetic dataset and three real-world datasets. The

statistics of the four datasets are shown in Table 4.

• Synthetic: Following [24,49], we create a synthetic dataset

to evaluate our attacks. In particular, we generate 105 users

Figure 1: Impact of different parameters (β,ε,r) on the fre-

quency gains on Synthetic. The three rows are for PrivKVM,

PCKV-UE, and PCKV-GRR, respectively.

and 100 keys. Each user has a single KV pair. The keys and

the values follow a zero-mean Gaussian distribution, where

the standard deviation is 15 for keys and 1 for values.

• Clothing [1]: This is a clothing fit dataset for product

size recommendation. It contains users’ rating scores for

different products. We treat each product as a key and view

each rating score as a value. Note that each user may have

multiple pairs of 〈product, rating score〉.

• TalkingData [3]: This dataset contains mobile apps down-

loaded by users on their mobile devices. In particular, we

treat each category of mobile apps as a key and view the

number of apps downloaded by a user in a category as a

value. A user may have multiple KV pairs.

• MovieLens-1M [25]: This dataset contains users’ rating

scores for different movies. Each movie is a key and each

rating score is a value. A user may rate multiple movies.

We scale the values in each dataset such that they fall into

the range of [−1,1].

6.1.2 Evaluation Metrics

gain@freq and gain@mean We use frequency gain
(gain@freq) and mean gain (gain@mean) of a set of tar-

get keys as the evaluation metrics. In particular, given a set

of target keys T, gain@freq is computed as ∑k∈TE[Δ f̂k] and

gain@mean is computed as ∑k∈TE[Δm̂k], where Δ f̂k and Δm̂k
respectively measure the frequency gain and mean gain for

the target key k. Note that frequency gain and mean gain

involve expectations. In our experiments, we average the re-

sults over 100 trials to compute the expectations. Since in our

experiments, we clip the estimated frequencies and support

Figure 2: Impact of different parameters (β,ε,r) on the mean

gains on Synthetic. The three rows are for PrivKVM, PCKV-

UE, and PCKV-GRR, respectively.

counts in the LDP protocols, the frequency gains may not be

the same as those in Table 2.

ASR for recommender systems We also consider recom-

mender system as a downstream application. Specifically,

the server first collects the frequency and mean value (i.e.,

average rating score) of each item/key from users using LDP

protocols and then recommends top-t items to all users based

on the statistics. In this downstream application, the attacker’s

goal is to promote the target items/keys to be among the top-t
items recommended by the system. Therefore, we use attack
success rate (ASR) as our metric, which we define as the

fraction of target items that are in the t recommended items

after attack. Note that the target items are not among the t
recommended ones before attack.

We consider three different cases of recommender systems,

i.e., frequency-based recommender system (Case 1), score-

based recommender system (Case 2), and frequency-score-

based recommender system (Case 3). In Case 1, the recom-

mender system recommends the most popular t items, i.e., the

t items with the largest estimated frequencies. Ties are broken

by selecting the item with higher estimated average rating

score. In Case 2, the recommender system recommends t
items with the highest estimated average rating scores. Ties

are broken by selecting the item with larger estimated fre-

quency. In Case 3, the recommender system considers both

the popularity and the average rating score of an item. Specif-

ically, the recommender system calculates the product of the

estimated frequency and (uncalibrated) average rating score

of each item, and recommends the t items with the largest

products. Ties are broken randomly. Roughly speaking, the

product of the estimated frequency and average rating score

of an item is the item’s estimated total rating scores.

Figure 3: Impact of different parameters (β,ε,r) on the fre-

quency gains on Clothing. The three rows are for PrivKVM,

PCKV-UE, and PCKV-GRR, respectively.

Figure 4: Impact of different parameters (β,ε,r) on the mean

gains on Clothing. The three rows are for PrivKVM, PCKV-

UE, and PCKV-GRR, respectively.

6.1.3 Parameter Settings

The parameters involved are β (the fraction of fake users),

ε (the privacy budget), and r (the number of target keys).

PrivKVM further involves Niter (the number of rounds), while

PCKV-UE and PCKV-GRR further involve � (the padding

length). Unless otherwise mentioned, we set the default val-

ues of these parameters as follows: β = 0.05, ε = 1.0, r = 1,

Niter = 10, � = 1 for Synthetic, � = 2 for Clothing, � = 20

for TalkingData, and � = 100 for MovieLens-1M. We set

� differently for different datasets to consider their different

characteristics, which is suggested by [24]. We set r = 10

and t = 20 by default when evaluating our attacks to the rec-

ommender system downstream application. We randomly

sample r keys from the entire dictionary as the target keys for

Figure 5: Impact of different parameters (β,ε,r) on the

frequency gains on TalkingData. The three rows are for

PrivKVM, PCKV-UE, and PCKV-GRR, respectively.

Figure 6: Impact of different parameters (β,ε,r) on the mean

gains on TalkingData. The three rows are for PrivKVM,

PCKV-UE, and PCKV-GRR, respectively.

each dataset. We vary one parameter while keeping the others

fixed to their default values, to investigate its impact on the

frequency and mean gains. We note that we clip the estimated

frequencies and support counts in the LDP protocols as we

described in Section 3.3.

6.2 Experimental Results
Figure 1–Figure 8 show the frequency gains and mean gains

of our attacks on the four datasets. Figure 9 shows the ASRs

of M2GA to the recommender systems in different cases on

Clothing dataset. Moreover, we also explore the impact of

Niter on our attacks for PrivKVM, and the results are shown in

Figure 10. Note that we don’t show the results of frequency

estimation since the frequencies of keys are estimated only in

Figure 7: Impact of different parameters (β,ε,r) on the fre-

quency gains on MovieLens-1M. The three rows are for

PrivKVM, PCKV-UE, and PCKV-GRR, respectively.

the first round and thus are not affected by Niter. We have the

following observations:

• In all scenarios, M2GA achieves larger frequency and mean

gains than the two baseline attacks (RMA and RKVA). This

is because M2GA is an optimization based attack.

• RKVA achieves larger frequency gains than RMA except

PCKV-UE, as RKVA considers target keys. RMA achieves

a larger frequency gain for PCKV-UE because the target key

RKVA samples gets perturbed and the perturbed message

in PCKV-UE continues to support this target key with a

probability of 1/2, while a target key is supported with a

probability of 2/3 in RMA.

• M2GA and RKVA achieve larger frequency and mean gains

as the number of fake users (i.e., β) increases. However, the

frequency/mean gains of RMA may increase, not change, or

fluctuate as β increases in different datasets and for different

LDP protocols.

• The security-privacy trade-off does not necessarily hold.

In particular, we observe security-privacy trade-off with

respect to the frequency gains of M2GA (for PrivKVM,

this is because we set r = 1), i.e., the frequency gains of

M2GA decrease as ε increases. However, the mean gains of

M2GA may increase, fluctuate, or decrease as ε increases

in different datasets and for different LDP protocols.

• The mean gains of M2GA increase as the number of tar-

get keys (i.e., r) increases for all the three LDP protocols.

The frequency gains of M2GA decrease as r increases for

PrivKVM. This is because a fake user can only increase the

estimated frequency for a single target key. The frequency

gains of M2GA increase as r increases for PCKV-UE. This

is because a fake user in M2GA can simultaneously support

Figure 8: Impact of different parameters (β,ε,r) on the mean

gains on MovieLens-1M. The three rows are for PrivKVM,

PCKV-UE, and PCKV-GRR, respectively.

all the target keys. However, the frequency gains of M2GA

for PCKV-GRR have different trends on different datasets.

We find that this is mainly caused by clipping the estimated

frequencies and support counts in PCKV-GRR.

• M2GA achieves high ASRs towards the recommender sys-

tems in different cases. Specifically, in Case 1 and Case

3, when β ≥ 0.01 and ε ≥ 1, M2GA achieves close-to-1

ASRs. Our results mean that the recommender system rec-

ommends almost all target items under M2GA. In Case 2,

M2GA still achieves ASRs that are close to 1 for PrivKVM,

while the ASRs for PCKV-UE and PCKV-GRR are close

to 0.5, which means that half of the target keys/items are

among the recommended t items. The ASRs for PCKV-UE

and PCKV-GRR are smaller in Case 2 because the esti-

mated average rating scores of many non-target keys are 1

in PCKV-UE and PCKV-GRR.

• Our strongest attack, i.e., M2GA, is effective for differ-

ent Niter. Specifically, the estimated mean after attack is

consistently 1.0 when Niter ranges from 1 to 10.

7 Defenses

Cao et al. [7] proposed three defenses against poisoning at-

tacks to LDP protocols for categorical data. However, these

defenses cannot be directly applied to defend against our at-

tacks. This is because these defenses rely on the assumption

that each user only holds one single item. In contrast, we

consider key-value data, where each user usually has multiple

KV pairs. We explore two methods to detect fake users as

defenses against our poisoning attacks. For both methods, we

assume the server knows the KV pairs sent from each user.

For one-class classifier based detection, we further assume

the server knows λ fraction of genuine users as ground truth.

Figure 9: Impact of β, r, ε, and k on ASR of M2GA towards recommender systems (first row: Case 1, second row: Case 2, and

third row: Case 3). Three LDP protocols and Clothing dataset are used.

(a) Synthetic (b) Clothing

(c) TalkingData (d) MovieLens-1M

Figure 10: Impact of Niter on the estimated mean value after

attack for PrivKVM on the four datasets.

7.1 One-class Classifier (OC) based Detection

Detecting fake users is essentially an anomaly detection

problem, where we aim to distinguish fake users as outliers

from the genuine ones. Therefore, we can leverage the one-

class machine learning classifiers that are commonly used

for anomaly (outlier) detection to detect fake users. Specifi-

cally, we treat each user’s messages sent to the server as its

features. For PrivKVM, we concatenate each user’s messages

in multiple rounds as a single feature vector. We can then

use these features as training data to fit an outlier detection

classifier. In our experiments, we use isolation forest [35]. An

isolation forest trains an ensemble of randomly partitioned

trees to detect outliers. After training, the isolation forest can

categorize the users into two groups. We assume the server

already knows λ fraction of the genuine users as ground truth.

Moreover, the server treats the group which includes more

ground-truth genuine users as the “genuine” group and the

other one as the “fake” group. The users in the “fake” group

are considered as fake users and are excluded from aggrega-

tion. The server only uses the messages sent by users in the

“genuine” group to estimate the frequencies and mean values.

In our experiments, we use the implementation of isolation

forest in Scikit-learn [2].

7.2 Anomaly Score (AS) based Detection
We note that, multiple rounds of communications are con-

ducted in PrivKVM, allowing us to check the consistency of

the messages sent by a user in different rounds. Based on

this observation, we propose a method to detect fake users

for PrivKVM. Recall that, in PrivKVM, each user sends a

Figure 11: Impact of β, r, and λ on FPR (first row) and FNR (second row) of detecting fake users against M2GA on TalkingData.

Figure 12: Impact of β and r on the defense effectiveness of

OC against M2GA for PrivKVM on TalkingData.

perturbed KV pair and the index of a key to the server in each

round. Since the key is randomly sampled from the large dic-

tionary, it is unlikely that the same key is repeatedly selected

in multiple rounds for genuine users. However, since a fake

user promotes a target key in each round, it may send the

same key to the server in multiple rounds, especially when

the number of target keys is small.

Based on this intuition, we assign an anomaly score to each

user, which we define as the maximum number of rounds

in which the user sends the same index of key to the server.

Specifically, in round t, the server computes the number of

rounds Nt
k,u in which the user u has sent key k to the server.

The anomaly score of user u in round t is the maximum Nt
k,u

over possible k’s. If the anomaly score for a user is no smaller

Figure 13: Impact of β and r on the defense effectiveness of

OC against M2GA for PCKV-UE on TalkingData.

than η (called anomaly threshold), then we mark the user as

a fake one. We calculate the anomaly score of each user and

detect fake users in each round. When a user is detected as

fake in a certain round, we exclude the user in the subsequent

rounds for mean estimation. Moreover, we re-estimate the

frequencies of keys based on the messages sent by users in

the first round by removing the ones belonging to the detected

fake users.

7.3 Experiments
7.3.1 Experimental Setup

Unless otherwise mentioned, we adopt the following default

parameters: β = 0.05, r = 2, ε = 1.0, Niter = 10, and η =

Figure 14: Impact of β and r on the defense effectiveness of

OC against M2GA for PCKV-GRR on TalkingData.

2. We adopt frequency gain (gain@freq) and mean gain
(gain@mean) of a set of target keys as the evaluation metrics

(please refer to Section 6.1.2 for details). Moreover, we also

consider False Positive Rate (FPR) (or False Negative Rate
(FNR)), which is the fraction of genuine (or fake) users that

are detected as fake (or genuine). We vary one parameter

while keeping the others fixed to their default values to study

the impact of it on the effectiveness of our defenses. Moreover,

we evaluate M2GA since it is the strongest attack.

7.3.2 Experimental Results

Figure 11 shows the impact of β, r, and λ on the FPRs and

FNRs of OC and AS against M2GA on TalkingData dataset.

Figure 12, 13, and 14 show the impact of β and r on the

defense effectiveness of OC against M2GA on TalkingData

dataset for PrivKVM, PCKV-UE, and PCKV-GRR, respec-

tively. Figure 15 shows the impact of β and r on the defense

effectiveness of AS against M2GA for PrivKVM on Talking-

Data dataset. Note that in Figure 15, we set β = 0.001 when

exploring the impact of r to better illustrate the impact of r
(AS is not effective in the default setting β = 0.05 regardless

of r).

Our key observation is that the defenses are effective in

some scenarios but have limited effectiveness in other sce-

narios. For instance, when β is small or r is large, OC fails

to detect the fake users with high FNR. Moreover, OC has

high FPR (e.g., 22% for PCKV-UE), which results in utility

loss as a large fraction of genuine users are excluded from

aggregation. For instance, when β = 0.05 and r = 2, OC

for PCKV-GRR has a FPR of 5.5% and the mean gain is

-1.04, which means that the estimated mean decreases by 1.04

compared to the estimated mean without attack and defense.

Similarly, when β or r is small, AS can detect a large fraction

or all of fake users, and thus the frequency and mean gains

of M2GA under AS become close to 0. However, when β
or r is large, the frequency gain and/or mean gain increase

Figure 15: Impact of β and r on the defense effectiveness of

AS against M2GA for PrivKVM on TalkingData.

substantially. Our results show that new defenses are needed

to defend against our attacks.

7.4 Other Defenses
Another defense is to use verifiable computing in the LDP

protocols. For instance, the server may leverage homomor-

phic encryption [33] when collecting the key-value pairs.

However, such methods incur large computational overhead

on the user side, downgrading the user experience. Other

potential defenses include detecting fake users based on ad-

ditional information about the users, e.g., their social con-

nections [12, 20, 21, 31, 42, 43, 50] or registration informa-

tion [51]. Nevertheless, these detection methods are not ap-

plicable when the needed information is not available.

8 Conclusion and Future Work

In this paper, we conduct the first systematic study on poison-

ing attacks to LDP protocols for key-value data. We show

such poisoning attacks can be formulated as a two-objective

optimization problem. Our results show that an attacker

can promote the estimated frequencies and mean values of

attacker-chosen target keys. We also explore two defenses,

which are effective in some scenarios but are ineffective in

others. An interesting future work is to study defenses against

our attacks.

Acknowledgments

We thank the anonymous reviewers for their constructive com-

ments. This work was supported by the National Science

Foundation under Grants No. 1937786 and 2112562. Any

opinions, findings and conclusions or recommendations ex-

pressed in this material are those of the author(s) and do not

necessarily reflect the views of the funding agencies.

References

[1] Clothing fit dataset for size recommenda-

tion. https://www.kaggle.com/rmisra/
clothing-fit-dataset-for-size-recommendation.

[2] Scikit-learn isolation forest. https://scikit-learn.
org/stable/modules/generated/sklearn.
ensemble.IsolationForest.html.

[3] Talkingdata mobile user demograph-

ics. https://www.kaggle.com/c/
talkingdata-mobile-user-demographics.

[4] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deb-

orah Estrin, and Vitaly Shmatikov. How to backdoor

federated learning. In AISTATS, 2020.

[5] Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mit-

tal, and Seraphin Calo. Analyzing federated learning

through an adversarial lens. In ICML, 2019.

[6] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poi-

soning attacks against support vector machines. In

ICML, 2012.

[7] Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong.

Data poisoning attacks to local differential privacy pro-

tocols. In USENIX Security Symposium, 2021.

[8] Nicholas Carlini. Poisoning the unlabeled dataset

of semi-supervised learning. arXiv preprint
arXiv:2105.01622, 2021.

[9] G. Casella and R. Berger. Statistical Inference. Duxbury,

1990.

[10] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and

Dawn Song. Targeted backdoor attacks on deep learn-

ing systems using data poisoning. arXiv preprint
arXiv:1712.05526, 2017.

[11] Albert Cheu, Adam Smith, and Jonathan Ullman. Ma-

nipulation attacks in local differential privacy. In IEEE
S & P, 2021.

[12] George Danezis and Prateek Mittal. Sybilinfer: De-

tecting sybil nodes using social networks. In NDSS,

2009.

[13] Bolin Ding, Janardhan Kulkarni, and Sergey Yekhanin.

Collecting telemetry data privately. arXiv preprint
arXiv:1712.01524, 2017.

[14] John C Duchi, Michael I Jordan, and Martin J Wain-

wright. Minimax optimal procedures for locally private

estimation. Journal of the American Statistical Associa-
tion, 113(521):182–201, 2018.

[15] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and

Adam Smith. Calibrating noise to sensitivity in private

data analysis. In TCC, 2006.

[16] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova.

Rappor: Randomized aggregatable privacy-preserving

ordinal response. In CCS, 2014.

[17] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil

Gong. Local model poisoning attacks to byzantine-

robust federated learning. In USENIX Security Sympo-
sium, 2020.

[18] Minghong Fang, Neil Zhenqiang Gong, and Jia Liu.

Influence function based data poisoning attacks to top-n

recommender systems. In WWW, 2020.

[19] Minghong Fang, Guolei Yang, Neil Zhenqiang Gong,

and Jia Liu. Poisoning attacks to graph-based recom-

mender systems. In ACSAC, 2018.

[20] Hao Fu, Xing Xie, Yong Rui, Neil Zhenqiang Gong,

Guangzhong Sun, and Enhong Chen. Robust spammer

detection in microblogs: Leveraging user carefulness.

ACM Transactions on Intelligent Systems and Technol-
ogy (TIST), 8(6), 2017.

[21] Neil Zhenqiang Gong, Mario Frank, and Prateek Mittal.

Sybilbelief: A semi-supervised learning approach for

structure-based sybil detection. IEEE Transactions on
Information Forensics and Security, 9(6), 2014.

[22] Neil Zhenqiang Gong and Bin Liu. You are who you

know and how you behave: Attribute inference attacks

via users’ social friends and behaviors. In USENIX
Security Symposium, 2016.

[23] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth

Garg. Badnets: Identifying vulnerabilities in the ma-

chine learning model supply chain. arXiv preprint
arXiv:1708.06733, 2017.

[24] Xiaolan Gu, Ming Li, Yueqiang Cheng, Li Xiong, and

Yang Cao. {PCKV}: Locally differentially private cor-

related key-value data collection with optimized utility.

In USENIX Security Symposium, 2020.

[25] F Maxwell Harper and Joseph A Konstan. The movie-

lens datasets: History and context. Acm transactions on
interactive intelligent systems (tiis), 5(4):1–19, 2015.

[26] Seira Hidano, Takao Murakami, Shuichi Katsumata,

Shinsaku Kiyomoto, and Goichiro Hanaoka. Expos-

ing private user behaviors of collaborative filtering via

model inversion techniques. Proc. Priv. Enhancing
Technol., 2020.

[27] Hai Huang, Jiaming Mu, Neil Zhenqiang Gong, Qi Li,

Bin Liu, and Mingwei Xu. Data poisoning attacks to

deep learning based recommender systems. In NDSS,

2021.

[28] Yujie Ji, Xinyang Zhang, Shouling Ji, Xiapu Luo, and

Ting Wang. Model-reuse attacks on deep learning

systems. In CCS, 2018.

[29] Yujie Ji, Xinyang Zhang, and Ting Wang. Backdoor

attacks against learning systems. In CNS, 2017.

[30] Jinyuan Jia and Neil Zhenqiang Gong. Calibrate: Fre-

quency estimation and heavy hitter identification with

local differential privacy via incorporating prior knowl-

edge. In INFOCOM, 2019.

[31] Jinyuan Jia, Binghui Wang, and Neil Zhenqiang Gong.

Random walk based fake account detection in online

social networks. In DSN, 2017.

[32] Jinyuan Jia, Binghui Wang, Le Zhang, and Neil Zhen-

qiang Gong. Attriinfer: Inferring user attributes in

online social networks using markov random fields. In

WWW, 2017.

[33] Fumiyuki Kato, Yang Cao, and Masatoshi Yoshikawa.

Preventing manipulation attack in local differential pri-

vacy using verifiable randomization mechanism. arXiv,

2021.

[34] Bo Li, Yining Wang, Aarti Singh, and Yevgeniy Vorob-

eychik. Data poisoning attacks on factorization-based

collaborative filtering. In NeurIPS, 2016.

[35] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isola-

tion forest. In ICDM, 2008.

[36] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan

Lee, Juan Zhai, Weihang Wang, and Xiangyu Zhang.

Trojaning attack on neural networks. In NDSS, 2018.

[37] Luis Muñoz-González, Battista Biggio, Ambra Demon-

tis, Andrea Paudice, Vasin Wongrassamee, Emil C Lupu,

and Fabio Roli. Towards poisoning of deep learning

algorithms with back-gradient optimization. In AISec,

2017.

[38] Blaine Nelson, Marco Barreno, Fuching Jack Chi, An-

thony D Joseph, Benjamin IP Rubinstein, Udam Saini,

Charles A Sutton, J Doug Tygar, and Kai Xia. Exploit-

ing machine learning to subvert your spam filter. LEET,

2008.

[39] Zhan Qin, Yin Yang, Ting Yu, Issa Khalil, Xiaokui Xiao,

and Kui Ren. Heavy hitter estimation over set-valued

data with local differential privacy. In CCS, 2016.

[40] Apple Differential Privacy Team. Learning with privacy

at scale. Machine Learning Journal, 2017.

[41] Kurt Thomas, Damon McCoy, Chris Grier, Alek Kolcz,

and Vern Paxson. Trafficking fraudulent accounts: The

role of the underground market in twitter spam and

abuse. In USENIX Security Symposium, 2013.

[42] Binghui Wang, Neil Zhenqiang Gong, and Hao Fu.

Gang: Detecting fraudulent users in online social net-

works via guilt-by-association on directed graphs. In

ICDM, 2017.

[43] Binghui Wang, Jinyuan Jia, and Neil Zhenqiang Gong.

Graph-based security and privacy analytics via collec-

tive classification with joint weight learning and propa-

gation. In NDSS, 2019.

[44] Ning Wang, Xiaokui Xiao, Yin Yang, Jun Zhao, Siu Che-

ung Hui, Hyejin Shin, Junbum Shin, and Ge Yu. Col-

lecting and analyzing multidimensional data with local

differential privacy. In ICDE, 2019.

[45] Tianhao Wang, Jeremiah Blocki, Ninghui Li, and

Somesh Jha. Locally differentially private protocols

for frequency estimation. In USENIX Security Sympo-
sium, 2017.

[46] Tianhao Wang, Ninghui Li, and Somesh Jha. Locally

differentially private frequent itemset mining. In IEEE
S & P, 2018.

[47] Tianhao Wang, Ninghui Li, and Somesh Jha. Locally

differentially private heavy hitter identification. IEEE
Transactions on Dependable and Secure Computing,

2019.

[48] Guolei Yang, Neil Zhenqiang Gong, and Ying Cai. Fake

co-visitation injection attacks to recommender systems.

In NDSS, 2017.

[49] Qingqing Ye, Haibo Hu, Xiaofeng Meng, and Huadi

Zheng. Privkv: Key-value data collection with local

differential privacy. In IEEE S & P, 2019.

[50] Haifeng Yu, Michael Kaminsky, Phillip B Gibbons, and

Abraham Flaxman. Sybilguard: defending against sybil

attacks via social networks. In SIGCOMM, 2006.

[51] Dong Yuan, Yuanli Miao, Neil Zhenqiang Gong, Zheng

Yang, Qi Li, Dawn Song, Qian Wang, and Xiao Liang.

Detecting fake accounts in online social networks at the

time of registrations. In CCS, 2019.

[52] Zhikun Zhang, Tianhao Wang, Ninghui Li, Shibo He,

and Jiming Chen. Calm: Consistent adaptive local

marginal for marginal release under local differential

privacy. In CCS, 2018.

A Appendix

A.1 Optimality of M2GA
Theorem 1. In a given execution of any of the three LDP
protocols, M2GA achieves the optimal mean gain if there is
only one target key k and nk

1 ≥ nk
−1 >

(n+m)b
2 .

Proof. When there is only one target key k, the mean gain

in a given execution of a LDP protocol can be written as

Gm(Y) = m̃k − m̂k, where the second term is irrelevant to the

attack. Therefore, Gm(Y) is maximized when m̃k is maxi-

mized. According to Equation (21), we have the following

equation:

m̃k =

(
nk

1 −nk
−1 + ñk

1 − ñk
−1

)
(a−b)

a(2p−1)
(
nk

1 +nk
−1 + ñk

1 + ñk
−1 − (n+m)b

) , (28)

where nk
1 and nk

−1 are constants in a given execution. For

simplicity, we let x = nk
1 +nk

−1 − (n+m)b, y = nk
1 −nk

−1, and

z = a−b
a(2p−1) . Then we can rewrite m̃k as follows:

m̃k = z · y+ ñk
1 − ñk

−1

x+ ñk
1 + ñk

−1

, (29)

where z > 0. Taking the partial derivative with respect to ñk
1

and ñk
−1, we have the following equations:

∂m̃k

∂ñk
1

=
z

(x+ ñk
1 + ñk

−1)
2
· (2ñk

−1 + x− y) (30)

∂m̃k

∂ñk
−1

=
z

(x+ ñk
1 + ñk

−1)
2
· (−2ñk

1 − x− y) (31)

If nk
1 ≥ nk

−1 >
(n+m)b

2 , we have x−y > 0 and x+y > 0. Since

ñk
−1 and ñk

1 are both in the range [0,m], we have ∂m̃k
∂ñk

1

> 0 and

∂m̃k
∂ñk

−1

< 0. Therefore, m̃k reaches the maximum value when

ñk
1 = m and ñk

−1 = 0, which is what M2GA does. In other

words, M2GA maximizes the mean gain Gm(Y) for the given

execution.

