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Abstract

We show that Linux containers are vulnerable to a new
class of attacks — synchronization attacks — that exploit ker-
nel synchronization to harm application performance, where
an unprivileged attacker can control the duration of kernel
critical sections to stall victims running in other containers
on the same operating system. Furthermore, a subset of these
attacks — framing attacks — persistently harm performance by
expanding data structures even after the attacker quiesces. We
demonstrate three such attacks on the Linux kernel involving
the inode cache, the directory cache, and the futex table.

We design Tratr, a Linux kernel extension, to detect and mit-
igate synchronization and framing attacks with low overhead,
prevent attacks from worsening, and recover by repairing data
structures to their pre-attack state. Using microbenchmarks
and real-world workloads, we show that Tratr can detect an
attack within seconds and recover instantaneously, guarantee-
ing similar performance to baseline. Our experiments show
that Tratr can detect simultaneous attacks and mitigate them
with minimal overhead.

1 Introduction

Shared infrastructure, where multiple tenants run on the same
physical hardware, is common in data centers and cloud com-
puting environments. As anyone can be a tenant, including
competitors or malicious actors, such installations place a
heavy burden on system software to isolate mutually distrust-
ing tenants. Without strong performance isolation, the behav-
ior of one tenant can harm the performance of other tenants,
such as by monopolizing a resource. Past work has focused on
isolating CPU usage [17,23,30, 68], memory usage [40,67]
storage traffic [2,36,60], and network traffic [33,62] to reduce
the effect of sharing the resources.

It is challenging to build a perfectly isolating system plat-
form that is efficient. Virtual machines (VMs) per tenant on a
shared physical platform are more efficient, but they share lit-

*Tratr (pronounced Tra true) in Sanskrit means guardian or protector.

tle content in memory and duplicate OS functionality for each
VM. Containers, as used by Docker [42] and Kubernetes [55],
are highly efficient as they cost little more than an operating
system process but rely on a shared operating system kernel
between tenants with internally shared data structures.

Our work observes that this high degree of sharing across
tenants through operating system data structures creates an
avenue for performance interference in two ways. First, to
handle concurrent accesses, shared data structures must rely
on synchronization mechanisms such as locks or RCU [39]. If
one tenant makes heavy use of a data structure, that tenant may
monopolize locks and cause victims to stall waiting for access
to the structure. We term this a synchronization attack. This
attack is also possible with other synchronization mechanisms
such as RCU.

Second, a tenant can manipulate a shared data structure
by adding elements to make all tenants spend more time
traversing the structure. For example, suppose an attacker
adds thousands of elements to a linked list that other tenants
traverse as part of ordinary system calls. In this case, all
tenants will experience a substantial slowdown from spending
extra time in the list. Worse, tenants will increase contention
when they hold locks for long periods to traverse the shared
structure. We term this a framing attack, as after extending the
shared structure, the attacker may stop accessing the structure,
but the lock appears to be held by innocent victims.

These new attacks are related to algorithmic complexity at-
tacks (ACA) [22] that exploit data structures without strong
complexity guarantees [22,37]. When applied to shared struc-
tures protected by synchronization mechanisms, such attacks
stall tenants waiting to access the structure or make them
run longer, leading to poor performance. While ACAs target
preemptable resources, synchronization and framing attacks
target non-preemptable resources.

In this paper, we examine synchronization and framing at-
tacks on the Linux kernel when using containers for isolation.
We demonstrate several kernel data structures accessed by
common system calls — the inode cache and directory cache
used by file systems and the futex hash table used for syn-



chronization — are vulnerable to synchronization and framing
attacks. Furthermore, we demonstrate how an unprivileged
attacker can cause throughput reduction (nearly 3-12x) to
real-world applications in a container-based environment.

Based on our experience with these attacks, we observe
two conditions common to all the attacks: long critical sec-
tions and many kernel object allocations. We develop Tratr,
a Linux kernel extension to defend against synchronization
and framing attacks. As the problem is distributed across ker-
nel data structures, Tratr provides a general framework for
addressing these attacks using four mechanisms. Tratr tracks
the contributions to data structure size per tenant to identify
an attack, uses two conditions to detect attacks and identify
attackers, mitigates the attack by blocking the attacker, and
performs data structure specific actions to recover to baseline
performance.

Using microbenchmarks and real-world applications, we
show the effectiveness, efficiency, and responsiveness of Tratr.
Tratr can detect attacks within seconds of launch, preventing
the attack from worsening and recovering performance to
baseline (no attack) levels. We conduct a thorough study of
overhead incurred by Tratr, showing that at steady state, Tratr
causes only 0-5% overhead for tracking; other mechanisms
have negligible cost in the absence of an attack. We conduct a
false-positives study to show that for a variety of applications
and benchmarks, Tratr does not implicate victims as attack-
ers. Lastly, we conduct a false-negative experiment, where a
defense-aware attacker can launch an attack without getting
detected. We find that randomness in the detection mechanism
makes it challenging for the attacker to cause much damage.

The contributions of our work are threefold: (1) We de-
scribe two new classes of attacks on shared synchronization
primitives — synchronization and framing attacks that lead to
large denials of service; (2) We demonstrate Linux kernel vul-
nerabilities exposing tenants to synchronization and framing
attacks from other unprivileged tenants; and (3) We describe
Tratr that defends against these attacks with low-overhead
tracking and detection mechanisms for in-progress attacks,
and prevention and recovery mechanisms for restoring perfor-
mance to pre-attack levels.

2 Synchronization under attack

In this section, we discuss how shared infrastructure in data
centers rely on shared data structures protected by a variety
of synchronization mechanisms, and how exploiting these
synchronization mechanisms can lead to denial-of-service
attacks.

2.1 Concurrent Shared Infrastructure

Shared infrastructure is common in the data center compris-
ing the CPU, memory, disk, and network. System software
such as a virtual machine monitor or operating system allows

multiple tenants to concurrently share the hardware creating
concurrent shared infrastructure. The most common tenant
environments for shared infrastructure are virtual machines
(VMs) and containers. With VMs, each tenant runs their oper-
ating system over virtual hardware resources provided by a
virtual machine monitor, which space- or time-shares physical
resources across virtual machines.

Container isolation is based on a combination of mech-
anisms. Containers rely on schedulers to fairly share pre-
emptable resources such as CPU, disk, or network between
containers. For memory, accounting and allocation limits
prevent containers from overusing memory. The operating
system provides private namespaces for each container that
prevents them from accessing resources of other contain-
ers such as private file system directory trees and private
sets of process IDs. An operating system kernel provides
virtual software resources (files, sockets, processes) to each
container. Substantial effort has gone into isolation so that
one container or VM has minimal performance impact on
others [23, 30, 33, 36,40, 60, 67] and each container or VM
obtains a fair share of the resources. However, these isola-
tion controls are built atop shared kernel data structures; in
many cases, the kernel maintains global data structures shared
by all containers and relies on scheduling, accounting, and
namespaces to prevent interference. Our work focuses on
container-based isolation, as its higher-level interfaces create
more opportunities for performance interference.

2.2 Synchronization and Framing Attacks

Container isolation mechanisms do not directly isolate ac-
cesses to the operating system’s global data structures. Operat-
ing system kernels contain hundreds of data structures global
to the kernel and shared across containers. These structures
rely on synchronization primitives such as mutual exclusion
locks, read copy update (RCU), and reader-writer locks to al-
low concurrent access. Multiple containers make unprivileged
system calls to access the same kernel data structures using
these synchronization primitives in a shared environment. We
focus on mutual exclusion locks and RCU as they are heavily
used in the kernel.

Synchronization primitives do not control how long one
tenant can spend in a critical section accessing a data structure.
Locks are mutually exclusive such that once held, they prevent
any other process trying to acquire the lock from making
progress. Likewise, RCU allows multiple readers to access
the data structure, but updaters wanting to free objects must
wait until all prior read critical sections complete [39]. We
call the time spent waiting to acquire a lock or to let all the
prior read critical sections complete synchronization stalls.

Consider a linked list in Listing | that supports insertion
(insert()) and search (find()) operations. An attacker can
cause lock contention by repeatedly accessing the list. If the
list is short, the synchronization stalls will not be long, but if



struct node {
int data;
struct node #*next;

1

void insert(struct node *xlist ,
lock ();
n->next = *list; x=list = n;
unlock () ;

struct node #n) {

}

struct node =find(struct node ==list, int data) {
lock ();
struct node *n = xlist;
while (n) {
if (n->data == data) {
unlock () ;
return n;
}
n
}
unlock () ;
return NULL;

= n—->next;

Listing 1: Simple linked list example

an attacker can vastly expand the list, then the time spent in
search operations will increase, and victims may stall waiting
to access the list. We term this a synchronization attack, in
which an attacker increases the critical section size to deny
victims access to one or more shared data structures. Such an
attack occurs when:

* Condition S1: A shared kernel data structure is protected
by a synchronization primitive that can block such as a
mutual exclusion lock or RCU.

* Condition S2: Unprivileged code can control the dura-
tion of the critical section by either

— 82iupus: providing inputs that cause more work to
happen within the critical section
OR

= 82,ear: accessing a shared kernel data structure
with weak complexity guarantees e.g., linear.

AND

— 82¢xpana: expanding the shared kernel data struc-
ture to trigger the worst-case performance.

We term the case when an attacker targets a synchronization
primitive (condition S1) and uses input parameters (condition
S2inpur) to increase critical section size an input parameter at-
tack. One known example of an input parameter attack occurs
when a rename operation is performed on a large directory,
holding a shared per-filesystem lock while traversing the en-
tire directory [48]. We also found that AppArmor [1] holds a
shared namespace root lock while loading profiles, so loading
a large profile can hold the lock for tens of seconds. Existing
solutions can address input parameter attacks by ensuring
lock usage fairness (fixing condition S1) with Scheduler Co-
operative Locks (SCLs) [48] or by using regression-based
analysis [34] (breaking condition $2;,,,). Given these solu-
tions, input parameter attacks are not the focus of this paper.

In this paper, we focus on the more challenging synchro-
nization attacks that exercise conditions $2,.q and S2.xpand-
For the linked list example, the lock protecting the critical
section meets condition S1, the list exhibits weak properties
meeting condition $2,,.4, and elongating the list meets con-
dition $2,ypanq- Even if RCU replaces the lock, the expanded
list leads to a lengthy read-side critical section, stalling the
victims who want to delete from the list.

Synchronization attacks are active attacks if the attacker
itself executes the long critical section. However, in some
cases, the attack can continue without the further participation
of the attacker. For example, consider what can happen if
other tenants traverse the elongated list. After an attacker adds
millions of entries to the list, other processes will continue to
traverse the longer list, leading to more time traversing the
list and more time stalling on the lock.

We term this a framing attack because an inspection of who
holds the lock will incorrectly frame innocent victim threads
rather than identifying the attacker that expanded the data
structure. Like a criminal framing someone innocent for a
crime, this attack directs blame at other victims. This is a
passive attack, as the attacker needs to do nothing to continue
the performance degradation. More precisely, a framing attack
is an extension of a synchronization attack and occurs when:

* Condition S1+ 82,04k + S2¢xpana: An attacker expands
a shared kernel data structure with weak complexity
guarantees, i.e., a synchronization attack is in progress
or was launched earlier.

* Condition F'1: Victim tenants access the affected portion
of the shared data structure with worst-case behavior.

In framing attacks, for mutual exclusion locks, the excessive
stalls are attributed to other victims traversing the list rather
than the attacker that grew the list. RCU relies on the grace
period to ensure that existing readers finish their access before
a delete operation starts. For expanded data structures, the
longer read-side critical section leads to a longer grace period
impacting performance. Thus, the victims continue to observe
poor performance due to the past actions of the attacker.

Synchronization attacks make the victims stall longer;
framing attacks additionally make them spend more time
in the critical section. Framing and synchronization attacks
can happen at the same time. Consider a situation where a
hash table uses the protected list to build hash buckets. The
attacker may target a single hash bucket by adding many
entries leading to a synchronization attack on that bucket. The
victims will have to wait longer to acquire the lock. If one of
these starved victims access the target hash bucket, they will
traverse the elongated list and hold the lock longer, leading
to a framing attack. Addressing framing attacks requires
additional steps to repair the shared data structures even after
the attacker stops executing to ensure condition F'1 is not met.
Merely preventing the continuation of an attack does not stop
victims from accessing the expanded data structure.



Algorithmic Complexity Attacks vs. Adversarial Syn-
chronization. Even though adversarial synchronization looks
similar to algorithmic complexity attacks, they are funda-
mentally different. While the algorithmic complexity attacks
target preemptable resources, synchronization and framing at-
tacks target non-preemptable resources like mutual exclusion
locks.

There have been numerous algorithmic complexity at-
tacks that end up exhausting one or more CPUs in the sys-
tem [4-12,61]. As the CPUs are exhausted, they cannot exe-
cute the regular user workload leading to denial-of-services.
As container isolation guarantees proper isolation of preempt-
able resources, such attacks may not impact all the containers
running on the host.

On the other hand, synchronization attacks make victims
stall longer, and framing attacks stall the victims and make
them execute longer. As these attacks target shared synchro-
nization primitives, more than one container that needs to
access the shared synchronization primitive and the kernel
services are impacted, leading to poor performance. Existing
container isolation mechanisms do not treat synchronization
as a resource and hence cannot handle the monopolization of
the shared synchronization primitives.

3 Real-World Problems

In this section, we present the threat model and show how
locks and RCU can turn adversarial in the Linux kernel.

3.1 Threat Model

We assume the following about the adversary and environ-
ment. One or more containers run on a single physical ma-
chine. All containers, including the one that plays the role
of an adversary, hereafter called an attacker, run arbitrary
workloads that can access OS services via system calls. We
assume there is a 1-1 mapping between tenants to users, and
each container is associated with a user. No container, includ-
ing the attacker, has special privileges. Due to random cloud
scheduling, we assume a single attacker, thereby removing the
possibility of collusion. We place no limit on the number of
containers a single user can run on a single physical machine.

The attacker targets one or more synchronization primitive
in an operating system making other containers accessing the
same primitives starve or waste CPU time, leading to poor
performance or denial-of-service. The attacker can use either
a single container or multiple containers to launch an attack.

3.2 Synchronization and Framing Attacks on
Linux kernel

We describe three Linux kernel data structures that are vul-
nerable to Algorithmic Complexity Attacks (ACAs) and can

be used to launch synchronization and framing attacks. The
setup is the same as used in Section 5.

Synchronization attack on inode cache. The Virtual
File System maintains the inode cache to avoid expensive
disk accesses to read file metadata [14]. A global lock
inode_hash_lock protects the inode cache (meets S1). The
inode cache is implemented as a hash table meeting S2,,¢4 as
collisions in a hash bucket are handled with a linked list of
inodes with the same hash value. The number of buckets in
the hash table is decided at boot time based on memory size.'

The inode cache hash function combines the inode num-
ber, unique to each file, and the address of the file system
superblock data structure in memory. This address is set when
a volume is mounted but varies across systems and boots.
While the inode number for a file is visible to unprivileged
users, the superblock address is not, and without that address,
it is hard to predict which hash bucket an inode will reside in.

We have found a way to break this function, which we de-
scribe in detail in the Appendix. By creating files with specific
inode numbers, a user can probe for the superblock address,
allowing them to create files in a single hash bucket that
grows and is slow to traverse. Although users cannot gen-
erally specify the inode number for a file, this is possible
with a FUSE unprivileged file system in user-space [66]. For
Docker, mounting needs CAP_SYS_ADMIN, which is privi-
leged [32]. Linux supports unprivileged FUSE mounts [35],
although Docker disables this by default. > As a workaround,
we use the idea of Linux user namespaces [43] discussed by
NetFlix [27] and elsewhere” to mount the FUSE file system
in an unprivileged environment.

After mounting the FUSE filesystem, a user can create files
with arbitrary inode numbers and create collisions in the in-
ode hash, leading to long lists in some hash bucket (meets
82.xpana)- Because of the large number of hash buckets, it
is difficult for the attacker to target a specific file for con-
tention. Instead, the attacker continues to access the same
bucket, elongating critical sections.

To show the impact on the victim’s performance, we run
an Exim mail server container as a victim and launch an
inode cache attack from a separate container. We run MOS-
BENCH [16] scripts as the client from another machine to
send messages to the Exim server.

Figure 1a shows the timeline of the throughput and average
latency for the duration of the attack. Once the attack starts,
the performance reduces significantly. The attacker initiates
probing the inode cache to determine the superblock address.
Around 100 seconds, the attacker finds the superblock ad-
dress and then targets a random hash bucket. The lock is held
while adding entries to this bucket, starving the Exim mail
server and reducing its throughput by 92% (12x). The attacker

For a system having 128 GB DRAM, the inode cache has 222 =
4,194,304 hash buckets.

2A bug is already filed to allow FUSE functionality by default -
https://github.com/docker/for-linux/issues/321.
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Figure 1: Performance of applications under attack. (a) Throughput and Average Latency timeline of Exim Mail Server when under inode cache attack. (b)
Throughput and Average Latency timeline of UpScaleDB when under futex table attack. (c) Throughput and grace period timeline of Exim Mail Server when
under directory cache attack. Prepare to attack means that the attacker starts to launch the attack and initiates probing and identify a target hash bucket. Once a

target hash bucket is identified, the attack is launched.

continues to add more entries to the hash bucket, increasing
the lock hold time further. In comparison, when we run two
other applications — DBENCH and UpScaleDB instead of the
attacker to generate interference, we observe a 15% reduction
in the performance.

Moreover, an economic impact is also associated as the
victims spin while waiting to acquire the lock. We observe
that around 33% of the total CPU used by the victim threads is
spent on waiting to acquire the lock. Given enough resources
and time, an attacker can further increase the wait times by
adding more threads leading to even worse performance.
Framing attack on futex table. The Linux kernel supports
futexes, a light-weight method to support thread synchroniza-
tion in user-space [28]. A futex provides the ability to wait
on a futex variable, which is any location in memory until
another thread signals the thread to wake up. Futexes are
used to build synchronization abstractions such as POSIX
mutexes and condition variables. The futex () syscall lets
the user-space code wait and signal futex variables.

Rather than maintain a wait queue for each futex variable,
the kernel maintains a futex table, and each bucket in the table
is a shared wait queue (meets S2,,.4¢). The kernel hashes the
futex variable address to identify the wait queue for a futex
variable. When a thread waits on a futex, the kernel adds the
thread to the wait queue dictated by the hash of the futex
variable. Similarly, when waking a thread, the kernel must
walk the shared wait queue looking for multiple threads wait-
ing on that futex variable. As a result, several futex variables
belonging to the same or different applications can share a
single wait queue. A separate lock protects each hash bucket
(meets S1). The number of buckets is decided at boot time
and is a multiple of the number of CPUs in the system.’

As the number of hash buckets is small, the attacker uses
bucket probing to identify a target hash bucket instead of
breaking the hash function. The attack starts by allocating a
few thousand futex variables to map them to different wait
queues. The attacker then probes the wait queues by calling
futex() to wake a thread for each variable while measuring

3For a 32 CPU system, the hash table comprises 256 % 32 = 8,192 hash
buckets.

the time it takes to complete the syscall. The syscall will take
measurably longer to complete if victim processes are already
using a wait queue, allowing the attacker to attack these wait
queues.

After identifying a busy-wait queue, the attacker spawns
thousands of threads that wait on the target futex variable,
thereby expanding the wait queue (meets S2.ypanq). Upon
expansion, any victims sharing the queue must walk the elon-
gated queue to wake up their threads, leading to longer lock
hold times, longer stalls, and poor performance.

We conduct an experiment by running UpscaleDB, an em-
bedded key-value database [65], within a container as a victim
to show the performance impact. We use the built-in bench-
marking tool ups_bench to run an in-memory insert-only
workload. Figure 1b shows the throughput and average la-
tency timeline. Before the attack starts, UpscaleDB observes
high throughput while the average latency remains constant.
During the first part of the attack, the attacker probes the fu-
tex table, and around time 54 seconds, identify a busy-wait
queue and starts creating threads to lengthen the queue. This
leads to highly variable performance for UpScaleDB, reduc-
ing throughput between 65 to 80% (3x-5x). We also observe
that the tail latency increases from around 10-15 milliseconds
to 0.7-1.2 seconds, an increase of 45x to 100x. We observe a
10% reduction in the performance if we run DBENCH and
Exim mail server instead of the attacker.

Unlike the inode cache attack, in this scenario, the attacker
becomes passive and sits idle after creating the waiting
threads, which demonstrates a framing attack — there is lock
contention, but the attacker is not actively acquiring the lock.
When the victim access the target hash bucket, the condition
F1 is met. From an economic impact perspective, the victim
spends around 40% of the total CPU time waiting to acquire
the lock. Moreover, as the victim is forced to traverse an
expanded list, we observe that the victim’s total CPU usage
increases by 2.3x times compared to baseline and may end up
paying more for the extra CPU usage.

Synchronization attack on Directory cache. Lastly, we
show a vulnerability that can be exploited by an attacker
that can break the dcache hash function. The Linux directory



cache (dcache) stores dentry structures to support filename
lookups [64]. The dcache is implemented as a hash table
where each bucket stores a linked list of dentries with the
same hash value. The hash function uses the parent dentry
address and the filename to calculate the hash value.

For efficiency, the dcache relies on RCU to allow concur-
rent read access, but freeing entries must wait for all con-
current readers to leave the read critical section. This wait,
called a grace period, ensures that no reader is holding a
reference to the deleted object. RCU provides synchronous
(synchronize_rcu()) or asynchronous (call_rcu()) APIs
for this purpose. While the synchronous API makes the user
wait until the grace period ends, the asynchronous API reg-
isters a call back that the RCU subsystem executes after the
grace period is over. As RCU is shared across the Linux
kernel, any increase in the grace period stalls the victims.

The attack exploits the dcache’s support for negative entries.
These entries record that no such file exists. By breaking
the hash function, an attacker can create millions of negative
entries mapping to a single hash bucket, thereby meeting
condition S1+82,,¢ax + S2expana- Before creating a negative
entry, the lookup operation first walks through the hash bucket
to check if the entry exists or not. The hash bucket walk
is part of the RCU read-side critical section. Walking an
expanded hash bucket increases the read-side critical section,
thereby increasing the grace period size too. Victims using the
synchronize_rcu () will stall until the grace period is over.
In the case of call_rcu(), freeing objects will be delayed,
and more work will pile up for the RCU background thread
to execute the callbacks leading to lower performance or out
of memory conditions [38,51,52,58].

To demonstrate the attack and the impact on the victim’s per-
formance, we run an Exim mail server container as a victim
and launch the dcache attack from a separate container. We
modify the kernel to simulate an attacker targeting any hash
bucket. Figure 1c shows the throughput (averaged over 10
seconds) for the duration of the attack. Once the attack starts,
as the hash bucket size increases, the read-critical section size
increases, increasing the grace period size. Towards the end of
the experiment, the performance drops more than 90% (10x)
for a few instances. The grace period size increases from
20-30 milliseconds to 2 seconds. The mail server generates
hundreds of thousands of callbacks every second overwhelm-
ing the RCU background thread.

An attacker can launch the same attack without breaking the
hash function by randomly creating hundreds of millions of
negative entries instead of targeting a single hash bucket.
Existing Solutions. Attacks on synchronization primitives
can be addressed by interrupting one of the criteria neces-
sary for an attack by using lock-free data structures; or using
universal hashing, balanced trees or randomized data struc-
tures [22] to break condition $2,,.4x and S2.xpanq. However,
randomized data structures are vulnerable to ACAs [15] and
rewriting the kernel to use balanced trees is tedious [20,49].

Relying on strong hash functions is not enough as an attacker
can launch attacks without breaking the hash function. More-
over, it is not easy to convince developers to use secure hash
functions such as SipHash due to performance concerns [21].
We observe around 5-6% performance reduction when we
replace the existing hash function in the inode cache with
SipHash while running a simple file create workload confirm-
ing developer concerns. Another approach of rehashing all
the entries into a new hash table is possible but is invasive to
the code and may cause long delays during rehashing.

SCLs can prevent lock usage dominance during a synchro-
nization attack by guaranteeing lock usage fairness. However,
they fail to handle the framing attacks as they are not aware
of the cause of the longer lock hold times; they may treat the
victims like the one dominating the lock usage and penalize
the victims instead of the attacker. More details about SCLs
performance can be found elsewhere [46].

Summary. In all these three attacks, the common piece is
that the attacker can run arbitrary code to target the synchro-
nization primitives. Using containers is one way to launch
attacks by executing any user workload, especially as the con-
tainer isolation techniques do not directly isolate accesses to
the shared layers such as kernel, thereby becoming an easy
target for such attacks. Other environments, such as multiple
containers running within a single virtual machine, multiple
virtual machines running on a shared hypervisor, etc., are
vulnerable to such attacks. However, further investigation is
needed to confirm if an attacker can target such environments.

Through the inode cache attack, we show how easy it is to
obtain the superblock pointer address and break KASLR [25].
Attackers may employ numerous existing methods to break
KASLR and extract the addresses needed to break the hash
function and launch attacks. Thus, it is important to acknowl-
edge that while we demonstrated the problem on three data
structures only, the problem may be widespread as there
are hundreds of kernel data structures that may meet the
conditions for the attack. We manually analyzed 5429 crit-
ical sections protected by 617 locks, a small subsection of
the total critical sections in the Linux kernel. We find that
1039 contain loops (19%) and 112 instances (2%) that call
synchronize_rcu() in the critical section respectively that
an attacker can potentially exploit. We briefly describe the
manual analysis process in the Appendix.

Therefore, we take a multi-pronged approach to addressing
these attacks. We seek (1) light-weight mechanisms to detect
an in-progress attack, followed by (2) a combination of pre-
vention strategies for active attacks to block a malicious actor
from continuing an attack, and (3) recovery strategies that
seek to restore the data structure to its normal access cost.

4 Tratr

Tratr is an extension to the Linux kernel that provides a
framework to detect and mitigate synchronization and fram-



ing attacks. We present the goals for our design and then an
overview of Tratr design followed by the implementation of
Tratr with two recovery solutions.

4.1 Goals

We have four high-level goals to guide our design:
Automatic response and recovery. We seek an automated
response to synchronization and framing attacks to reduce
administrator effort and prevent them from harming perfor-
mance. While preventing an attacker from continuing may be
sufficient for synchronization attacks, framing attacks require
recovery to restore data structure performance properties.
Low false positives and negatives. Due to automatic re-
sponse, we want to reduce false positives and negatives. More
S0, as there is a thin line between heavy resource usage and
denial-of-service, we seek detection mechanisms relying on
multiple signals to avoid false positives and negatives.
Easy/flexible to support multiple data structures. Data
structures may require specialized recovery solutions, so a
single generic solution is not possible. Hence, it should be
easy for developers to incrementally add protection to targeted
data structures as attacks are identified.

Minimal changes to kernel design and data structures.
Much effort has been put into selecting and designing kernel
data structures [45]. We want to avoid extensive changes to
the kernel or modifications to hash functions that could lead
to performance issues.

4.2 Overview

Tratr is a Linux kernel extension to defend against synchro-
nization and framing attacks. The first step in using Tratr is to
identify vulnerable data structures that may be used in attacks.
We performed this task manually, but it could be determined
using static analysis or as part of an attack postmortem. After
finding such a data structure, our general approach is to track
resource usage in the steady-state and detect anomalous re-
source usage as a sign of attack. On detecting an attack, Tratr
acts to prevent the attack from continuing and to recover from
the effects of the attack.

Two detection conditions are common to all three attacks:

* Condition LCS: Long critical section. Expansion of the
data structure causes more work for the attacker or vic-
tims or both, making the critical section longer.

* Condition HSUA: High single-user allocations. A single
user has created many entries associated with the data
structure.

Neither condition on its own is sufficient to indicate an
attack as there may be other reasons for high allocations or
long critical section times (e.g., interrupt handling). Hence,
Tratr first checks critical section size and if it’s too large, then
checks if one user has a majority of the object allocations.

On detecting an attack, Tratr quickly prevents the attack
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Data Structure 1 Inode Futex Dentry
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Figure 2: High-level design of Tratr. Design showing the four mechanisms
of Tratr. The Tracking and Prevention mechanisms are part of slab-cache
management. Layer 1 Detection measures the synchronization stalls to indi-
rectly measure long critical sections. On finding longer stalls, Tratr triggers
layer two checks if a user has a majority of object allocations. On finding
one, Tratr identifies that user as an attacker and initiates prevention and
recovery mechanisms. The prevention mechanism prevents the attacker from
allocating more entries. Depending on the type of data structure, an appro-
priate recovery is initiated. The upper box shows the common code, while
the lower box shows data structure-specific code.

from worsening by stopping the attacker from extending the
data structures for a period. However, without recovery, the
attacker can still access the expanded data structure and con-
tinue with the synchronization attack, or the victim can access
the expanded data structure leading to framing attack. There-
fore, the final step is recovery, where Tratr tries to repair the
data structure to restore its performance to pre-attack levels.
Tratr relies on the type and purpose of the data structure to
find an appropriate recovery mechanism.

4.3 Design & Implementation

A high-level design of Tratr is shown in Figure 2. We start
with the design for two data structures, the inode cache and
futex table, and add the directory cache later to explain the
steps for adding a new data structure to Tratr. We implement
Tratr in Linux kernel version 5.4.62.

Tracking: The purpose of tracking is to support detection
and recovery. Tratr records the allocation and deallocation
of objects associated with a vulnerable data structure. When
allocating an object, Tratr (i) tracks the total number of objects
currently allocated by the user and (ii) stores the user ID in the
allocated object. The number of objects allocated by each user
helps identify the HSUA condition. The user ID information
is used by recovery to identify the objects allocated by the
attacker. Tratr increases the object size by 4 bytes to attach
the user ID at the end of the object.

Instead of writing a separate tracking mechanism for each
object, we use the Linux kernel slab-cache infrastructure to
track the objects. Linux associates a slab-cache with a data
structure to manage object allocation and freeing [29, 53].
We modify the common slab-cache management code to
selectively record the relevant information for specific slab
caches. The current implementation allows for tracking the



Tracking Detection

Data Structure Slab-cache Object Primitives sampled Recovery
Inode cache exl47¥nodeicachep ext47molde7mfo inode_hash_lock Evict
fuse_inode_cachep fuse_inode
Futex table task_struct_cachep task_struct futex_hash_bucket.lock Isolate
Dentry cache dentry_cache dentry RCU Evict

Table 1: Implementation summary of Tratr.

objects allocated using kmalloc() and kmem_cache_alloc()
and cannot track the allocations done via the vmalloc() and
get_free_pages() APIs. The total objects allocated per user for
each slab-cache is stored in a NUMA-aware global hash table,
updated during allocation and free operations. For our proto-
type, Tratr tracks four objects associated with the inode cache,
the futex table, and the directory cache, which is summarized
in Table 1.

Tracking is on the critical path for object allocation and
deallocation and does increase memory consumption for the
user ID and the global hash table; as we show later, the perfor-
mance and memory overhead is minimal. Although account-
ing can be performed across any entities that correspond to a
possible attacker (e.g., threads, processes, users, or contain-
ers), we currently focus on per-user accounting.

We believe that Tratr is not a new avenue for launching ad-

versarial synchronization attacks. Tratr only uses the global
hash table to track object information per user. We assume
that creating millions of users is not an easy task. Thus, an
attacker cannot target Tratr to launch synchronization and
framing attacks on the global hash table. Furthermore, en-
abling container-level tracking instead of user-level tracking
will make it impossible to create millions of containers on a
single node even if an attacker succeeds in collocating con-
tainers on the same node.
Detection: The primary objective of detection is to check
whether the LCS and HSUA conditions are met. When met,
Tratr detects an attack and initiates prevention and recov-
ery. For efficiency, Tratr adopts a two-layered approach. The
first layer checks for LCS, while the second layer checks for
HSUA and identifies the attacker. For simplicity purposes,
a separate kernel thread handles the layered checks and per-
forms recovery for each slab cache. It is possible to merge
the layered checks and recovery procedure for multiple slab
caches for efficiency purposes. The flowchart of the kernel
thread is shown in Figure 3.

To avoid large overheads, Tratr does not directly measure
the critical section length . Instead, Tratr samples the synchro-
nization primitives to measure synchronization stalls, since
if a synchronization primitive is under attack, the stalls will
be longer than expected. We call this check Critical Section
Sampling (CSS). Tratr relies on threshold values to detect if
the wait time is above expectation; this threshold is deter-
mined by assuming a uniform distribution of objects in the
hash table, and all CPUs participate in lock acquisition. By
running workloads that access inode cache and futex table,
we observe that worst-case lock hold times are around 2-3 us.
As our experiments are run on a machine that has 32 CPUs,
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Figure 3: Flowchart of the kernel thread associated with a data structure.
The kernel thread that is associated with a data structure performs the detec-
tion and recovery mechanism. As part of the detection mechanism, the thread
probes the synchronization primitives. If a synchronization stall is more than
the threshold, appropriate action is initiated. Upon detecting an attack, the
thread executes the TCA check to identify the attacker and initiate prevention
window. Lastly, the thread initiates the recovery of the data structure.

under heavy lock contention, the worst-case wait time will
be roughly 64-96 us as Linux uses queued spinlocks to pro-
tect the inode cache and futex table. Therefore, the current
implementation uses a threshold of 100 us. Table | shows the
locks that Tratr samples to detect inode cache and futex table
attacks. The sampling for RCU used in the dentry cache will
be described later in Section 5.5.

The sampling process is shown in Figure 4. To avoid false
positives, Tratr must repeatedly observe stall times above the
threshold. Tratr is adaptive and randomized to handle defense-
aware attackers. As shown, Tratr creates a sampling window
within which a lock is repeatedly sampled; if the stall thresh-
old is exceeded multiple times within this window, the CSS
check finishes, and Tratr proceeds to the TCA check (dis-
cussed later). Once a sampling window ends, another window
starts immediately. The length of the sampling window is
randomly chosen and ranges between 1 and 5.3 seconds.

Within each window, Tratr introduces a random delay be-
tween two samples to incur low interference with normal
user operations. The sampling delay begins between 5-20 ms.
Tratr enters suspicious mode on measuring a stall above the
threshold. When suspicious, Tratr increases the sampling win-
dow size and aggressively samples the lock every 1-5 ms to
quickly detect an attack. If no attack is found in the elongated
window, Tratr returns to normal mode. To ensure attackers
cannot slowly expand a data structure, Tratr also has a hard
limit for the length of a synchronization stall, beyond which
an attack is detected immediately. This check ensures that the
given lock cannot be held for an extremely long duration.

As the sampling window size and the sampling delay is ran-
domized, Tratr makes it difficult for a defense-aware attacker
to launch an attack. A defense-aware attacker cannot know
when to launch an attack and stop to remain undetected. To
remain undetected, the attacker would have to ensure it never
holds the lock beyond the threshold and does not repeat it
multiple times within the same sampling period. This sig-
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Figure 4: Working of Critical Section Sampling. Tratr samples for longer
critical section multiple times within a sampling window. Between two sam-
plings, there is a sampling delay when the kernel thread sleeps. When sus-
picious, Tratr increases the sampling window'’s size, reduces the sampling
delay, and aggressively starts sampling to detect an attack early.

nificantly slows down the attacker and makes the attack less
feasible.

If Tratr detects multiple long stalls, it initiates the second
layer, Traverse & Check Allocations (TCA). In TCA, Tratr
traverses the data structure associated with the synchroniza-
tion primitive and uses the 4-byte user ID embedded in each
object to count each user’s total number of allocations. If a
particular user has allocated the majority of entries, Tratr tags
that user as an attacker and passes their identity to the pre-
vention and recovery mechanisms. Tagging the users holding
the lock longer is insufficient to determine the attacker, as it
may end up tagging the victim of a framing attack. Thus, the
embedded user ID helps Tratr to identify the attacker. For the
inode cache and futex table, Tratr selects the bucket with the
most entries for traversal.

Even though Tratr tries to avoid false positives, poorly con-
figured applications and stress testing [13] may cause incor-
rect detection. To avoid an excessive impact on innocent vic-
tims, Tratr takes a softer but adaptive approach for prevention.
Prevention: We identify two approaches to mitigating attacks.
First, the system could terminate or suspend an attacker’s con-
tainer, stopping condition S2.xpanq; for some data structures,
killing the container could trigger clean-up, stopping condi-
tion F'1 as well. However, we believe killing the container is
inappropriate as it may lead to application-level corruption
when a user is wrongly identified as an attacker. Suspending
the attacker is also inappropriate as the attacker may hold
locks that could impact victims. Therefore, we investigate the
second approach: attackers are rate limited by stalling them
when they try to allocate memory to expand the vulnerable
data structure (stopping condition S2,pand)-

The prevention mechanism uses the existing slab-cache in-
frastructure to prevent the attacker from expanding the attack
or launching future attacks. After identifying the attacker,
Tratr blocks the attacker from allocating more objects from
the slab cache for a specific period, called the prevention win-
dow. Threads from the attacker trying to allocate objects are
put to sleep until the window expires. For the inode cache,
this means attackers cannot create new in-memory inodes,
blocking them from opening/creating files. For the futex ta-
ble, this means attackers cannot create new threads. Note that
Tratr does allow allocation requests with the ATOMIC flag,

which denotes that the process cannot be blocked; however,
this flag is rarely used with vulnerable kernel data structures.

The length of each user’s prevention window increases if it

performs more attacks. Tratr maintains a separate prevention
window size for each user. Tratr initializes the window size
to 1 second and then increases its size depending on how
frequently Tratr detects the user as an attacker. For an attacker
that is continuously trying to launch an attack, the growth
factor will be high as the attacks will be frequent. On the
other hand, if a victim is wrongly identified as an attacker
a few times, the prevention window will stay small, and the
victim will be able to resume its work.
Recovery: With only prevention, victims may continue to
observe poor performance as the expanded data structure still
exists, which the attacker or victim can continue to access.
Therefore, recovery is necessary to restore the performance
to normal. To design recovery solutions that can support dif-
ferent data structures, Tratr offers two solutions.

One solution deals with cache-like data structures where
the presence or absence of an entry does not impact correct-
ness. For such caches like the inode cache, Tratr evicts all the
entries belonging to the attacker. Victims do not lose much
performance from the eviction of the attacker’s entries, as
they typically do not reference those entries. This approach
breaks condition F1 as victims no longer have to traverse
the attacker’s entries. Implementing eviction for inode cache
is straightforward as we reuse existing code. Tratr iterates
through the file systems (fuse and ext4 currently) in use to
enumerate all inodes and drop those allocated by the attacker.

The other solution deals with non-cache data structures
where correctness is required. For the futex table, threads
must be present on the waitlist to correctly implement syn-
chronization. As each entry in the waitlist is a waiting thread,
dropping any entry may leave the threads waiting, leading
to problems. With these data structures, a shared structure is
often used as a convenient mechanism to manage data from
all processes but is only accessed by a single container. For
the futex table, each process only accesses entries belonging
to its futex variables despite sharing the wait queues.

Partitioning is a traditional approach used to design data
structures to ensure isolation [47]. For such data structures,
Tratr partitions the entries so that victims and attackers use
separate, parallel structures, and victims do not have to tra-
verse the attacker’s entries. This isolation breaks condition
F1. Tratr walks the data structure, identifies entries allocated
by the attacker, and moves those entries out of the primary
structure to a new shadow structure. On subsequent access,
victims only access the original primary structure, while at-
tackers only access the shadow structure. This ensures victims
are not delayed by the number of attacker entries. Tratr dis-
solves the shadow bucket once the prevention window ends.
This approach does not support futexes shared across users,
but we believe this is extremely rare for containers across
different users. We note that partitioning may not work with
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Figure 5: IC benchmark performance without attack, with attack and with Tratr. (a) Timeline of the throughput showing the impact on the throughput due
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bucket for Vanilla and Tratr kernel.

cache-like data structures, as it could create multiple copies
of entries allocated by both victim and attacker and lead to
inconsistencies.

While Tratr is performing recovery, an attacker can continue
to access the expanded data structure, thereby slowing recov-
ery. Tratr solves this by blocking the attacker from acquiring
the synchronization primitive until recovery completes. For
nested synchronization, Tratr needs to prevent acquiring the
highest level primitive.

Adding a new data structure. Analyzing all existing data
structures to check for vulnerabilities is challenging. There-
fore, adding more structures to Tratr incrementally on finding
a new vulnerability is important. To add a new data struc-
ture, a developer must pass a flag to the memory management
system when creating the associated slab-cache at boot time.
Additionally, the developer must implement CSS checks, TCA
checks, and recovery functions for the new data structure. In
Section 5.5, using the example of dentry cache, we show the
effort needed to add a new data structure. A more thorough
Linux kernel analysis is needed to identify and protect vulner-
able data structures.

5 Evaluation

Using microbenchmarks, we show the effectiveness of all the
four mechanisms, performance characteristics, and respon-
siveness of Tratr. We conduct a thorough study of the perfor-
mance and memory overhead introduced by Tratr. We show
how Tratr can handle multiple real-world applications and
simultaneous attacks. Lastly, we conduct a study of false pos-
itives and false negatives to demonstrate the robustness of
Tratr.

We perform our experiments on a 2.4 GHz Intel Xeon ES5-
2630 v3 with two sockets; each socket has eight cores with
hyper-threading. The machine has 128 GB RAM and one
480 GB SAS SSD. The machine runs Ubuntu 20.04 kernel
version 5.4.62. All applications and benchmarking tools are
run as separate Docker containers. We run each experiment
three times and report the average value along with 95% con-
fidence interval unless stated otherwise. We use the average
value for the plots.

In our experiments, the standard Linux kernel is labeled

Vanilla. The kernel with Tratr and all four mechanisms en-
abled is Tratr. Tratr-T denotes that just tracking is enabled;
Tratr-TDP denotes tracking, detection, and prevention are en-
abled. The suffix +Attack notes that a kernel is under attack.

5.1 Performance under attack

We begin by showing that Tratr can effectively reduce the
attack’s impact on synchronization primitives compared to the
Vanilla kernel. Next, we quantify the performance impact of
an inode cache attack and a futex table attack on two different
victims that are particularly sensitive to those attacks. Each
experiment is run for 300 seconds with 8 CPUs and 8 GB of
memory for the victim and attacker containers.

The IC benchmark contains a victim which is sensitive to
the inode cache because it creates an empty file every 100 mi-
croseconds. The IC attacker identifies the superblock pointer
and then targets a hash bucket by creating files whose inode
number maps to that hash bucket. The FT benchmark victim
depends on the futex table because it contains 64 threads
which continuously acquires a shared lock for 100 microsec-
onds. The FT attacker targets the futex table by allocating
thousands of futex variables, probing the hash buckets to iden-
tify a busy bucket, and then parking thousands of threads
on that hash bucket; as a framing attack, the attacker turns
passive after parking the threads.

Figure 5 and Figure 6 shows the throughput and latency
timelines, and the internal state of the data structures for both
benchmarks. For the Vanilla kernel, the lock hold time in-
creases tremendously in a short period leading to a significant
drop in the victim’s performance; at the end of the experiment,
the throughput of the IC and FT victims drops by 95.95% =+
0.35% and 98.06% =+ 0.31%, respectively. However, with
Tratr, there is minimal impact on both throughput and latency
when under attack compared to Vanilla (i.e., less than 2% =+
0.25% for the inode cache attack and less than 2% =+ 0.51%
for the futex table attack). We observe that the prevention
and recovery mechanism never allows the attacker to expand
the data structure. Note that for the IC benchmark, Tratr de-
tects and ameliorates the attack even while the attacker is
still preparing. For the FT benchmark, Tratr is able to return
performance (especially noticeable for latency) to baseline
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after recovery.

5.2 Effectiveness of Tratr components

We evaluate the responsiveness of the detection, prevention,
and recovery mechanisms in Tratr for mitigating attacks on
the IC and FT benchmarks.

5.2.1 Detection

Early detection reduces the impact on a victim’s performance.
We present the initial timeline of the throughput of the IC
and FT benchmarks in Figure 7; we begin the IC benchmark
after the attacker’s preparation phase has been completed.
For IC, Tratr detects the attack in its first sampling window
(i.e., within 1 second of when the attack starts). For the FT
attack, while the attacker probes the hash buckets, it does not
disturb the lock hold times, and thus Tratr does not suspect
an attack. Once the attacker parks thousands of threads on the
hash bucket, Tratr detects the attack within 1 second of when
the synchronization stalls cross the threshold limits.

5.2.2 Prevention

We now evaluate the prevention mechanism in which identi-
fied attackers are not allowed to allocate more objects. For
the IC benchmark, when the attacker must first prepare, as
originally shown in Figure 5, Tratr detects the inode cache
attack before the attacker is able to identify the superblock;
as a result, the attacker is not able to launch the subsequent
synchronization attack. In contrast, if the attacker already
knows the superblock and can skip the prepare phase, as in
Figure 7b, Tratr is able to detect the synchronization attacks
(shown as black circles), prevent the attacker from allocating
more objects and keeping throughput high. In this scenario,
Tratr learns that the inode cache is under constant attack and
grows the prevention window accordingly; at the end of the
experiment, the prevention window is up to 250 seconds.
There is a slight dip in the throughput when an attack is
detected and before recovery completes. As Tratr needs to
access the synchronization primitives to perform recovery,
the victim observes a slight dip in the performance. For Tratr-
TDP, without recovery, the hash bucket continues to have the
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Figure 7: Performance of Tratr components. Throughput timeline for
the futex and inode cache attacks explaining the importance of detection,
prevention and recovery. We also show the timeline for Tratr-TDP. Tratr-TDP
denotes the kernel version that has the tracking, detection and prevention
mechanisms enabled.

entries belonging to the attacker. Thus, consecutive attacks
slowly increase the hash bucket entries, leading to slightly
more dips in the performance than Tratr.

For the FT benchmark, Figure 7a shows that detection and
prevention alone are not sufficient to isolate the attacker.
Specifically for Tratr-TDP, even after detecting the attack
and preventing future objects from being allocated, the victim
continues to traverse the expanded bucket. Thus, for framing
attacks, even after an attacker has turned passive, the expanded
data structure remains, and the prevention mechanism is not
sufficient: recovery is needed to restore the data structure to a
pre-attack state and recover baseline performance.

5.2.3 Recovery

Recovery is important to restore performance after an attack.
Even though both the inode cache and futex table are hash
tables, their recovery is significantly different. We show that
for different recovery solutions, Tratr can quickly bring per-
formance back to normal.

For the inode cache, the recovery evicts all the entries be-
longing to the attacker. In Figure 7b, we observe that post-
recovery, performance returns to baseline levels. In these ex-
periments, the time to recover and evict thousands of entries
is around 4-5 ms. Furthermore, the amount of work needed to
recover is limited as the attacker can only inflict damage until
the attack is detected.

For the futex table attack, Tratr recovers by isolating the
attacker from the victims. The time to recover and isolate
thousands of attacker threads is 50-70 milliseconds. Further-



Application Test Detail Performance
CouchDB Insertions 1.20% =+ 0.02%
Cassandra Read-Write mix 0.92% =+ 0.003%
LevelDB Random read 5.32% £+ 0.01%

Fill sync -3.46% + 0.01%
Overwrite -2.96% + 0.01%
Seek random 0.85% =+ 0.02%
Sequential fill -2.49% + 0.01%
RocksDB Sequential fill -4.16% + 0.01%
Random fill sync -1.53% =+ 0.002%
Read while writing 0.41% + 0.01%
InfluxDB Concurrent write -0.25% + 0.01%
SQLite Insertions -3.33% £+ 0.03%
Darktable "Boat" test using CPU only -3.05% =+ 0.05%
Kripke Equation solver -1.90% + 0.01%
RAR Compress Linux kernel -2.80% =+ 0.003%
MNN Inference on inception-v3 model -0.11% % 0.01%
NCNN Inference on regnety_400m model -1.31% + 0.03%

Benchmark Test Detail Performance
Apache Benchmark Static web page serving -0.58% + 0.01%
Blogbench Read -0.13% + 0.01%

Write -9.67% =+ 0.01%
Apache Siege Concurrent connection on webserver  -2.26% =+ 0.005%

Dbench Concurrent clients doing I/0 -0.44% + 0.02%
IOR Parallel I/0 tests with 1024 block size  -1.23% + 0.003%
OSBench Create files -7.22% + 0.03%

-2.25% =+ 0.04%
-6.14% =+ 0.02%
-9.54% =+ 0.04%
0.31% =+ 0.001%
-0.03% =+ 0.005%
5.88% £ 0.01%
-1.19% =+ 0.01%

Create threads

Launch Programs

Create Processes

Memory Allocations
Intel MPI Benchmark PingPong test
Neatbench Neat Video render using CPU
FinanceBench Bonds OpenMP Application

Table 2: Performance overhead study for Phoronix test suite.Comparison
of tracking performance for various applications and benchmarks for the
Vanilla kernel(baseline) and Tratr-T with just tracking enabled for all the
slab-caches relative to the Vanilla kernel. The numbers show the improvement
over the baseline.

more, as the attack is detected immediately after it is launched,
the attacker cannot expand the hash bucket extensively, help-
ing the recovery complete faster.

Prevention measures are necessary for faster recovery. With-
out the prevention measures, an attacker can continue to ex-
pand the data structure while holding the synchronization
primitives. Since recovery must also acquire these synchro-
nization primitives, longer lock hold times will make the re-
covery mechanism a victim.

To understand the performance impact of having a data struc-
ture isolated, we run another microbenchmark that comprises
two processes — parent and child that use a pair of futexes
located inside a shared anonymous mapping for synchroniza-
tion. While the parent calls futex_wait() on the first futex
and futex_wake() on the second futex after sleeping for 100
us, the child process does the exact opposite. This way, only
one process is active at a time. Using systemtap, we measure
the time to complete the futex_wait() and futex_wake() calls.
We iterate each process for one million iterations and run
the microbenchmark on the Vanilla and Tratr kernel. Without
an attack, we observe that due to the extra code added for
isolation in Tratr, futex_wait() and futex_wake() is slower by
1-1.2% and 2-2.5% respectively. Using the cost for isolation,
we can extrapolate the performance impact from a single data
structure to multiple data structures. For example, if a system

call accesses five data structures vulnerable to attacks, the the-
oretical worst performance cost will be around 5% to 12.5%.
Remember that not all data structures can be isolated, as we
discussed in Section 4.3. We believe that this performance
gap can be reduced further with further tuning.

5.3 Overhead

We now show the performance and memory overhead in-
troduced by Tratr. For performance, we show the overhead
incurred due to the tracking mechanism and by the additional
kernel threads.

Tracking mechanism overhead. We measure the perfor-
mance overhead of the tracking mechanism because it is the
only code in Tratr that is executed in the critical path; the work
for detection, prevention, and recovery all occur in the back-
ground by kernel threads. To measure overhead, we use the
Phoronix test suite, an open-source benchmark suite that sup-
ports more than 400 tests [S0]. We run the Docker container
provided by the Phoronix test suite for our experiments with
unrestricted CPU access. Thus, multiple objects are created
concurrently on all CPUs, stressing the tracking mechanism’s
parallelism. We average at least three runs.

We use 13 applications (CouchDB, Cassandra, LevelDB,
RocksDB, InfluxDB, SQLite, Darktable, Kripke, RAR, MNN,
NCNN, Apache Benchmark, and Apache Siege) and 7 bench-
marks (Blogbench, Dbench, IOR, OSBench, Intel MPI Bench-
mark, Neatbench, Financebench) that heavily use the under-
lying kernel and allocate kernel objects, thus stressing the
tracking mechanism. We use Tratr-T, a special version that
tracks all slab-caches. Note that tracking overhead is paid only
when objects are allocated or freed and not while accessing.

Table 2 shows the performance of Tratr kernel compared
to the Vanilla kernel(baseline). The numbers only show
the difference in the performance compared to the baseline.
Raw numbers for the baseline and Tratr can be found else-
where [46]. For the majority of the applications and bench-
marks, Tratr’s performance is within 0-5% of the Vanilla
kernel’s performance. Tratr’s NUMA-aware hash table for
the user’s accounting information minimizes the performance
difference. We observe a slight performance improvement for
a few workloads. In two benchmarks (i.e., Blogbench write;
OSBench Create files, OSBench Launch programs, OSBench
Create processes), the decrease in the performance is slightly
higher (7-10%). These benchmarks create hundreds of kernel
objects (e.g., processes or threads) in a short period, over-
whelming the hash table used to track each user’s accounting
information. However, we believe that very few real-world
applications create thousands of threads or processes rapidly.
Kernel threads overhead. Kernel threads sample the syn-
chronization primitives to detect an attack and also initiate
the prevention and recovery mechanisms. Even though these
threads run in the background, they may still interfere with
applications and compete for the CPU. To understand the



Slab overhead Slab overhead

Application 3 15 (in MB) (%) Benchmark in Tratr (in MB) (%)
CouchDB 10.14 (2.9%) Apache Benchmark 5.1(6.93 %)
Cassandra 20 (9.52%) Blogbench 19.66 (7.42 %)
LevelDB 5(7.58%) Apache Siege 1.4 (3.68 %)
RocksDB 3.48 (3.8 %) Dbench 19.93 (11.72 %)
InfluxDB 11.37 (18.06 %) IOR 11.44 (18.19 %)
SQLite 8.78 (9.49 %) OSBench 11.69 (13.41 %)
Darktable 1.71 (1.49 %) Intel MPI Benchmark ~ 4.21 (7.7 %)
Kripke 3.51(7.55%) Neatbench 3.23(11.25 %)
RAR 3.1 (4.02 %) Financebench 4.48 (6.17 %)
MNN 7.94 (7.72 %)

NCNN 7.88 (8.32 %)

Table 3: Memory overhead study for Phoronix test suite. Comparison
of the memory overhead for various applications and benchmarks for the
Vanilla and Tratr-T with just tracking enabled for all the slab-caches. The
numbers in the bracket in the second and fourth columns show the % increase
in the total memory allocated to all the slab caches.

impact of these kernel threads, we use three CPU-heavy appli-
cations from the Phoronix test: N-Queens, CP2k Molecular
Dynamics, and Primesieve. We run the same application in
four containers and allocate each container 8§ CPUs. By run-
ning the same test in all containers, we can easily isolate the
performance variation caused by the kernel threads.

For all three applications, the performance difference be-

tween the maximum runtime with Tratr and the minimum run-
time with Vanilla kernel is around 1-1.5%. This performance
matches the design described in Section 4.3: on average, the
kernel threads spend 120 us sampling the synchronization
primitives every 12.5 ms (approximately 1%).
Memory overhead. Tratr has two sources of additional mem-
ory overhead. First, Tratr uses a hash table with 32 buckets
per NUMA node to track the memory allocations of each
user for a slab cache. With two NUMA nodes, the hash table
increases the size of each slab cache by 544 bytes. Therefore,
the total memory overhead is less than 1 Megabyte (MB) per
NUMA node to support thousands of slab-caches. Second,
Tratr adds 4 bytes per object to track the user-id. As the Linux
kernel uses slabs for object allocation, increasing the object’s
size by 4 bytes reduce the total objects allocated per slab.

To quantify the overhead on a running system, we use the
slabtop command [18]. On an idle system with 150 slab-
caches, we find 3.8% more memory is allocated to slab caches
for Tratr-T (219 MB) than the Vanilla kernel (211 MB). Ta-
ble 3 shows the memory overhead caused for the Phoronix
suite. We do not report the confidence interval as we only
measured the maximum memory usage throughout the entire
test suite run and reported it. We notice that applications and
benchmarks that regularly create objects are more likely to
observe a higher memory overhead than the workloads that
create few objects and use the same objects several times.
We find that up to 20 MB more memory is allocated to slab
caches with Tratr-T, which is less than 1% of the memory
used in each experiment. We believe that given the amount of
main memory available today, a few MB for slab-caches is
reasonable.

Application Workload

Filebench - DBENCH 128 threads executing client loadfile workload
UpScaleDB ups_bench —inmemorydb —num-threads=32
Exim Mosbench workload using 16 clients

Table 4: Application benchmarks and their workloads.

Scenario 1 & 2 Scenario 3

Container  Futex table & Inode cache attack Multiple attacks
CPU Memory CPU Memory
Exim 8 16 GB 8 16 GB
DBENCH 8 16 GB 8 16 GB
UpscaleDB 8 64 GB 8 64 GB
Attacker 1 8 GB 4 8 GB

Table 5: Scenario summary and resource allocation to each container.

5.4 Real-World Applications

We demonstrate how Tratr can protect multiple potential vic-
tims from multiple attackers using real-world applications.
We focus on three applications described in Table 4: Exim
mail server (E), UpScaleDB (UDB), and DBENCH (DB). We
run the workloads for 300 seconds as part of three scenarios
summarized in Table 5. Scenario 1 uses a futex table attack,
scenario 2 uses the inode cache attack, and scenario 3 uses
both attacks simultaneously. Each application is running as a
separate container on a single physical machine.

The normalized throughput of the applications with Vanilla
and Tratr under the three attacks is shown in Figure 8a. For
scenario 1, the futex table attack impacts UpScaleDB since
it uses locks; however, Tratr brings the performance of Up-
ScaleDB to match that with no attack. For scenario 2, the in-
ode cache attack harms Exim and DBENCH with the Vanilla
kernel; again, Tratr prevents and recovers from the attacks.
Finally, scenario 3 shows that when both the futex table and
inode cache attacks are launched simultaneously, all three
victims observe poor performance with the Vanilla kernel.
As desired, Tratr detects both attacks and employs different
recovery solutions to mitigate each attack without impacting
the victim’s performance. Tratr is not limited to protecting a
single victim or detecting and mitigating a single attack.
Cost of the attack. Launching a highly-damaging synchro-
nization or framing attack against a Vanilla kernel does not
require many CPU resources: for scenarios 1 and 2, 1 CPU is
used to launch the attacks; for scenario 3, 2 CPUs are used.
Thus, with minimal cost, an attacker can generate synchro-
nization interference leading to poor performance.
Economic impact. Synchronization and framing attacks can
cause an economic impact for victims. For example, in sce-
narios 1 and 3, with a Vanilla kernel, the UpScaleDB victim,
may use 2.25-2.4x more CPU when under attack; however,
with Tratr, UpScaleDB uses only 0.5% =+ 0.05% more CPU.
In scenarios 2 and 3, when attacked on a Vanilla kernel, the
Exim Mail Server spends 32% =+ 0.2% of its runtime waiting
to acquire the inode cache lock (DBENCH spends 46% =+
0.35%); this waiting time corresponds to wasted resources
with an economic impact.
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5.5 Adding new data structure complexity

One of our goals is to simplify the process of adding a new
data structure to Tratr. We choose the dcache to understand
the effort needed to implement the detection and recovery
mechanisms. To enable tracking, we begin by setting the
tracking flag for the dcache slab-cache. The dcache uses RCU
and bit-based spinlocks to support concurrent access. We
focus on RCU because the spinlock’s critical section is small
and difficult to make adversarial.

The dcache CSS measures the time to complete the
synchronize_rcu() call; we choose a sampling threshold
of 100 milliseconds. The dcache TCA walks the hash bucket
with the most entries. Since the dcache is used for perfor-
mance, the recovery procedure evicts all the attacker’s entries;
we re-use existing code to evict the attacker’s entries from all
superblocks. In total, we write 120 lines of new code to add
the dcache to Tratr.

To test these code changes, we run the dcache attack de-
scribed in Section 3. The attack targets a single hash bucket
and creates thousands of negative entries to increase the RCU
grace period. Figure 8b shows performance with the Vanilla
and Tratr kernel with an attack. One can see that Tratr miti-
gates the attack. Given that the attacker can launch new attacks
when the prevention window expires, the small initial win-
dow leads to relatively frequent dips in throughput; however,
as time passes and Tratr increases the prevention window,
performance dips occur less frequently.

5.6 False Positives

Another design goal is to have a low rate of false positives
so that Tratr does not tag a victim as an attacker. Since Tratr
relies on threshold limits to detect attacks, a poorly config-
ured application or a system under high utilization could be
tagged as an attack. We conduct a study to identify how many
times false positives are detected. We use the 20 Phoronix
applications and benchmarks, grouping five applications into
a single container; we allocate 8 CPUs to each of the four
containers and repeatedly run the stress tests over 24 hours.
During the 24 hours run, there were no situations where Tratr
tagged an application as an attacker. This demonstrates that

our thresholds are correctly calculated for heavy contention
and the number of CPUs in the machine and that stressing the
system does not breach the threshold limits. Automatically
choosing the threshold values for different machines is an
interesting avenue for future work.

We also deliberately misconfigured the filebench-
webserver [63] workload to see if Tratr would tag it as an
attacker. Not surprisingly, Tratr incorrectly identifies the
workload as a futex table attacker a few times over the
experiment. However, since the workload is not aggressively
accessing the futex table, the prevention window size never
proliferates; furthermore, the workload does not create more
threads during the prevention window, so it does not have to
stall. As a result, the workload sees a negligible reduction in
performance (less than 1%).

5.7 False Negatives

A final goal of Tratr is to have few false negatives. Since Tratr
relies on thresholds for detection, attacks that stay within the
thresholds may not be detected. We describe a defense-aware
inode cache attack and discuss the performance implications
when Tratr cannot detect the attack.

The strategy of this attack is to expand a hash bucket such
that inserting or accessing entries does not exceed the thresh-
olds. To do this, the attacker creates entries until it reaches
the thresholds, then stops and deletes those entries. Then, the
attacker repeats this cycle, causing the victim to experience
increased critical section sizes. However, the attacker cannot
continuously create and delete files due to the random sam-
pling window sizes and sampling delays in Tratr. The attacker
must watch the sampling window size since Tratr moves into
aggressive sampling mode if it finds that the synchronization
stall exceeds the threshold even once.

To illustrate the impact of a defense-aware attacker on a
victim, we use the IC benchmark. During the experiment,
we verified that the lock hold times are always less than the
thresholds, and thus the defense-aware attacker remains unde-
tected. Figure 8c shows that even a defense-aware attacker is
not able to cause much damage to the victim. Victims do not
have to wait long for the inode cache lock since the attacker



cannot acquire the lock for more than the threshold. Thus,
victims do not observe poor performance or denial-of-service
with attackers that remain below the thresholds.

6 Limitations

As there is no distinct boundary defining a particular behavior
as a minor performance inconvenience or a significant perfor-
mance problem, Tratr uses sampling thresholds to detect an
attack. A defense-aware attacker may be able to stay within
these threshold boundaries and remain undetected. Under
such a condition, the victim may continue to observe minor
performance issues where the attacker can elongate the criti-
cal section size to threshold values. By lowering the threshold
boundaries, Tratr can push the attack boundary lower. How-
ever, by doing so, Tratr may end up increasing the false pos-
itive rate. Our goal is to avoid false-positive cases as much
as possible. By replacing the existing mutual exclusion locks
with SCLs, the problem of minor performance inconvenience
can be avoided as they guarantee lock usage fairness.

Secondly, an attacker can use other services available in
the operating system to expand a data structure making the
service accountable for its size. For example, the attacker can
ask the print spooler to load files whose hash values map to a
single bucket for printing. Tratr will treat the print spooler as
the one who created the inodes and may tag it as the attacker.
Similarly, it is possible that a remote attacker can employ a
confused deputy attack [31] and target a service such as a web
server by making Tratr believe that the targeted service is the
attacker leading to a denial of service on the targeted service.

Thirdly, the current threat model assumes that an attacker
cannot colocate containers on a single physical machine to
launch a coordinated attack. If an attacker can launch colo-
cation attacks using the techniques discussed elsewhere [59],
the existing detection mechanism will fail to detect the at-
tacker. Due to colocation, each user’s total object allocation
count can stay within the majority limits making it harder to
identify an attacker. The existing detection mechanism needs
to be further enhanced to include statistical properties of the
object allocations to detect multiple attackers. Also, as only
a few containers can run on a single physical machine, it is
impossible to launch a coordinated attack involving tens of
containers.

7 Related Work

Synchronization attacks and framing attacks are closely re-
lated to Algorithmic complexity attacks (ACA) [22]. To
launch synchronization and framing attacks, an attacker ex-
ploits the weak complexity guarantees of a data structure. To
avoid ACA’s, researchers have proposed several techniques
such as universal hashing [22], using balanced trees [22], ran-
domized algorithms [22], or probabilistic algorithms [19].

However, using secure hash functions can have performance
implications [21], replacing the existing data structures to
use balanced trees is a tedious process [20,49]; not all data
structures can be replaced by trees. There have been attacks
against randomized [15] and probabilistic algorithms [44, 56].

Detection and prevention is another approach to tackle
ACAs. Khan et al. propose an alternative to randomiza-
tion through regression analysis based model to prevent at-
tacks [34]. Qie et al. propose an approach where they show
annotating application code can help detect resource abuse
and accordingly initiate rate-limiting or dropping the attackers.
Similarly, FINELAME also uses annotation and probing to
detect attacks [24]. DDOS-Shield assigns continuous scores
to user sessions and checks these scores to identify suspicious
users and accordingly prevent them from overwhelming the
resources [54]. Tratr too looks for anomalous resource allo-
cations by checking LCS and HSUA. Moreover, prevention
is not enough to address framing attacks. No other approach
considers synchronization as a resource, unlike Tratr.

Radmin learns and executes Probabilistic Finite Automatas
offline of the target process of all the monitored resources
and then perform anomaly detection by making sure that the
target programs stay within the learned limits [26]. It will be
an interesting avenue to explore building lock usage models
and using them to detect attacks in Tratr.

8 Conclusion

We introduced a new class of performance attacks — syn-
chronization and framing attacks in Linux kernel when using
containers in a shared infrastructure environment. These at-
tacks significantly impact victims’ performance leading to
denial-of-service. To remedy this, we introduce Tratr that can
address these attacks by detecting them within seconds and
instantaneously recovering from the attack. The performance
of victims with Tratr is similar to the baseline performance.
A thorough analysis is needed to identify vulnerable data
structures in the Linux kernel and other concurrent shared
infrastructure. We look forward to analyzing the Linux ker-
nel and expanding Tratr to support different data structures.
Tratr’s source code and the attack scripts will be made public.
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10 Appendix

10.1 Extract super block pointer
10.1.1 Hash function parameters

The inode hash function is parameterized by two variables:
cshift and ishift. cshift is logy of L1 cache line size
in bytes. Most server machines have 64 bytes L1 cache line,
so cshift is always 6 on these machines. ishift is log, of
the number of buckets in the inode hash table, which is deter-
mined when the inode cache is allocated. ishift is 22 or 23
on the machines that we ran the experiments. To make dis-
cussion easier, we use 1shift=23 for the following examples
and implications unless otherwise specified. A demonstration
of hash implementation is shown in Fig. 9.
#define GOLDEN_RATIO_64  0x61c8864680b583eb
#define cshift 6
#define ishift 23
#define imask ((1UL << ishift) - 1)
#define last23bits(x) ((x) & imask)
#define middle23bits(x) (last_23bits((x) >> ishift))
unsigned long ihash(unsigned long sb,
unsigned long ino)
{
unsigned long varl, var2, var3;
varl = ino * sb;
var2 (GOLDEN_RATIO_64 + ino)
var3 = varl " var2;
bucket = last23bits(var3)
return bucket;

>> cshift;

~ middle23bits(var3d);

Figure 9: Inode hash function implementation with cshift=6 and
ishift=23. All the variables are 64-bit. Only the last 46 bits of var3 are
used for computing bucket. var3 is calculated as bit-wise XOR of varl and
var2, so only the last 46 bits of these two variables are used.

10.1.2 Hash function properties

We observe the hash function has three properties, and we
derive another three implications to better utilize these prop-
erties.
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Property 1. For any super block pointer sb and inode number
ino, the following equation always holds:

ihash(sb, ino) == ihash(sb+m, ino+n), where m €
{i*22*ishift|l- c N} andn € {i*zcshift+2*ishift|l- c N}

For a machine with ishift=23 and cshift=6, this property
claims flipping the most significant 18 bits of sb and 12 bits
of ino does not affect hash results. We call these bits non-
essential. Intuitively, these bits are masked out at some point,
so flipping them does not result in any difference in the hash
output. Other bits that would affect the hash result are called
essential. In addition, within (2* ishift) essential bits of sb,
the least significant 11 bits are all zero due to the fact that sb
is a pointer to struct super_block. The essential bits have
two implications.

Implication 1. We only need to extract the 46 essential bits of
sb; with the 11 trailing zeros known, we only need to extract
the other 35 bits.

Implication 2. For any given inode number, we could easily
get another 4095 inode numbers that would be hashed to the
same bucket by flipping these non-essential bits.

We call these inode numbers obtained by flipping non-
essential bits sibling inode numbers.

Algorithm 1: Extracts the last 34 bits of the super
block pointer
Input: threshold
Output: sb_last34bits
1 for n = 010 4095 do
2 | InsertInodeCache (0x800000000 + n < 52)

ino_x=1<«12;
latency = 0;
GOLDEN_RATIO_64 = 0x61c8864680b583¢b;
while latency < threshold do
t0 =now();
InsertInodeCache (ino_x);
latency = now () - t0;
10 ino_x = ino_x + (1 <« 13);

11 bucket = 0x4a697a;

12 var2 = (GOLDEN_RATIO_64 + ino_x) > 6;

13 var2_last23bits = var2 & Ox7{ftff;

14 var2_middle23bits = (var2 > 23) & Ox7ffftf;

15 varl_middle23bits = bucket * var2_last23bits *
var2_middle23bits;

16 sb_12to34bits = ExtendedEuclidean (ino > 12,
varl_middle23bits, 1 < 23);

17 sb_last34bits = sb_12to34bits < 11;
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Property 2. For any super block pointer sbl and sb2,
ihash(sbl, n) == ihash(sb2, n), where n €
{i*22*ishift711|l- c N}.

Property 2 means, if an inode number has 35 trailing zero
bits, it will be hashed to a deterministic bucket regardless the
value of sb. For example, 0x4a697a is an anchor bucket be-
cause 1no=0x800000000 will always be hashed to 0x4a697a.
We call these buckets anchor buckets.

Combining property | and 2, we are able to add
ino=0x800000000 and its siblings into the anchor bucket
0x4a697a. These 4096 inodes would form a long list in the
bucket. Every time the kernel wants to insert another inode
into this bucket, it must traverse through the list first to en-
sure this inode is not already present, which would result in
observable latency.

Implication 3. After the anchor bucket 0x4a697a being pop-
ulated, if inserting another inode with inode number ino
takes significantly longer, we know this inode goes to bucket
0x4a697a and ihash (sb, ino)==0x4a697a.

Property 3. Given two super block pointers sbl and sb2
whose the last k bits are same, the (k + 1)th bit different, and
ihash(sbl, n) !'= ihash(sb2, n), where n €
{i % 2%ishifi=k=1; ¢ N}, then for any sb3 having the
same last k bit, the following equation is always true:
ihash(sb3, n) == ihash(sb, n), if the (k+ 1)th bit of
sb3 is same as sb, for sb € {sbl, sb2}.

Property 3 means, given the last k bits of sb fixed, the hash
result of a given inode number which has (45 — k) trailing
zero bits only has two possible outputs, depending on whether
the (k+ 1)th bit is zero or one.

10.1.3 Extract the last 34 bits of the superblock pointer

With the properties and implications studied, we describe
algorithm 1 to extract the last 34 bit of sb . Algorithm I
takes a latency threshold as the input to determine whether
insertion latency in Implication 3 is “long” enough. It
first populates bucket 0x4a697a (line 1-2). The function
InsertInodeCache can be implemented as any filesystem
operation that would touch the inode cache. In our exper-
iments, we developed a FUSE-based filesystem that imple-
ments name lookup as translating the name into inode number
e.g lookup a file with name “0x123” will return inode number
0x123; we use syscall stat ("0x123", &statbuf) as the
implementation for InsertInodeCache (0x123).

In line 3-9, it searches for an inode number ino_x satisfying
1) has 12 trailing zero bits. 2) the least significant 13th bit is
one. 3) is hashed to the bucket ex4a697a. These requirements
are used in lines 10-15 to reverse the 12th to 34th bits of sb.
Requirement 1 ensures varl has the last 23 bits all zeros, so
its middle 23 bits (the least significant 24th to 46 bits) can be
reversed by bitwise XOR.

As varl is the product of sb and ino_x, we get a linear
congruence equation after removing the trailing zeros:

ax = b,mod 2%



where x is 12th to 34th bits of sb, a is 13th to 35th bits of
ino_x, and b is middle23bits (varl). This equation can
be solved by the extended Euclidean algorithm [41]. To en-
sure the unique solution, the extended Euclidean algorithm
requires a and 232 are relatively prime. This is satisfied by the
requirement 2 which ensures the a is odd.

Algorithm 2: Extracts the rest of essential bits of
super block pointer

Input: sb_last34bits

Output: sb
1 Function ReverseHash (sb, bucket, trailing_zero)

2 i=1;

3 while true do

4 ino =i K trailing_zero;

5 if ihash(sb, ino) == bucket then
6 L return ino;

7 i=i+1;

8 sb = sb_last34bits;

9 bucket = 0x4a697a;

10 for b = 35 t0 46 do

1 sb_if0 = sb;

12 | sb_ifl =sb| (1 < b);

13 ino_if0 = ReverseHash (sb_if0, bucket, 46 - b) ;
14 ino_ifl = ReverseHash (sb_ifl, bucket, 46 - b) ;
15 t0 =now ();

16 InsertInodeCache (ino_if0);
17 tl = now();
18 InsertInodeCache (ino_ifl);

19 t2 =now();

20 latency_if0 = tI - tO;

21 latency_ifl =t2 - t1;

22 if latency_ifl > latency_ifO then
23 | sb=sb_ifl;

24 else

25 | sb=sb_if0;

10.1.4 Extract the rest of essential bits: Guess then test

After knowing the last 34 bits of sb, we introduce algorithm 2
to extract the rest of the essential bits. It inductively guesses
a bit of sb then tests whether this guess is true.

Suppose we already know the last 34 bits of sb and want
to know the 35th bit (b = 35 in line 10). Property 3 suggests
when the inode number has 11 trailing zero bits; the hash
output purely depends on the 35th bit of sb. We thus name
two candidates as sb_1f0 and sb_1if1.

Line 13-14 search for an inode number with 11 trailing zero
bits and would be hashed to the anchor bucket 0x4a697a if
the corresponding candidate is true. In lines 15-21, these two
inodes are inserted into the inode cache. If the 35th bit is one,
then inserting ino_if1 should take significantly longer, vice

versa. By comparing the latency (lines 22-25), we could know
whether this bit is zero or one. We then inductively extract
other bits.

A potential problem is, ReverseHash may fail to find any
inode number that satisfies the requirements. This can happen
if requiring too many trailing zeros. As an alternative, we
are motivated to use algorithm 1 to get the last 34 bits first,
so b in line 10 could start with 35 instead of 12. For b < 35
and trailing_zero < 11, there are two at least 2*! candidates
having that many zero bits, and each candidate have 1/22
chance produces the hash result we want.

10.2 Linux Kernel Critical Section analysis

We now discuss the manual analysis for the Linux Kernel’s
critical section. First, we identified global and static locks in
a few directories in the Linux source code tree — filesystem
(fs), kernel core functionality (kernel), memory management
(mm), and security functionalities (security). Using the cscope
tool [3], we then looked for the critical sections associated
with the identified locks and started making notes. Within the
critical section, we looked for instances that contain loops
and instances that call synchronize_rcu(). On finding such
instances, we note the information about the critical sections
and consider that as a potential vulnerability that an attacker
can exploit.

The manual analysis was hard and time-consuming as we
dealt with debug code, function pointers, different coding
patterns, etc. Over time, due to familiarity, we were able to
quickly identify debug code and common function pointers,
making things easier. There were other instances where the
lock was acquired in one function and released in another
function. One such example is the inode_hash_lock used to
protect the inode cache hash. In find_inode_fast(), the lock
is released in __wait_on_freeing_inode() if the inode state is
being deleted and again acquired after waiting for the deletion
process to complete so that the find_inode_fast() function can
continue with the inode finding process. Similarly, we find
that within a function, for a single instance of lock acquisition,
there are numerous lock release instances. We considered
such one-to-many mapping as one critical section to ease our
analysis.

We identified other factors that can expand the critical sec-
tion sizes, such as allocating an object, freeing an object,
nested loops, hierarchical locking, number of functions called,
etc. However, including all such factors makes the manual
analysis process cumbersome and time-consuming. There-
fore, we believe that developing a tool that can perform criti-
cal section analysis will be useful to identify vulnerabilities.
However, our initial attempt to design such a tool did not
work out due to function pointers, different coding patterns,
etc. Thus, we had to perform the minimal critical section
analysis manually.



	Introduction
	Synchronization under attack
	Concurrent Shared Infrastructure
	Synchronization and Framing Attacks

	Real-World Problems
	Threat Model
	Synchronization and Framing Attacks on Linux kernel

	Trātṛ
	Goals
	Overview
	Design & Implementation

	Evaluation
	Performance under attack
	Effectiveness of Trātṛ components
	Detection
	Prevention
	Recovery

	Overhead
	Real-World Applications
	Adding new data structure complexity
	False Positives
	False Negatives

	Limitations
	Related Work
	Conclusion
	Acknowledgments
	Appendix
	Extract super block pointer
	Hash function parameters
	Hash function properties
	Extract the last 34 bits of the superblock pointer
	Extract the rest of essential bits: Guess then test

	Linux Kernel Critical Section analysis


