
Constant-weight PIR: Single-round Keyword PIR via Constant-weight Equality
Operators

Rasoul Akhavan Mahdavi
University of Waterloo

rasoul.akhavan.mahdavi@uwaterloo.ca

Florian Kerschbaum
University of Waterloo

florian.kerschbaum@uwaterloo.ca

Abstract
Equality operators are an essential building block in tasks

over secure computation such as private information re-
trieval. In private information retrieval (PIR), a user queries
a database such that the server does not learn which ele-
ment is queried. In this work, we propose equality opera-
tors for constant-weight codewords. A constant-weight code
is a collection of codewords that share the same Hamming
weight. Constant-weight equality operators have a multi-
plicative depth that depends only on the Hamming weight of
the code, not the bit-length of the elements. In our experi-
ments, we show how these equality operators are up to 10
times faster than existing equality operators. Furthermore,
we propose PIR using the constant-weight equality operator
or constant-weight PIR, which is a PIR protocol using an
approach previously deemed impractical. We show that for
private retrieval of large, streaming data, constant-weight PIR
has a smaller communication complexity and lower runtime
compared to SEALPIR and MulPIR, respectively, which are
two state-of-the-art solutions for PIR. Moreover, we show
how constant-weight PIR can be extended to keyword PIR.
In keyword PIR, the desired element is retrieved by a unique
identifier pertaining to the sought item, e.g., the name of a file.
Previous solutions to keyword PIR require one or multiple
rounds of communication to reduce the problem to normal
PIR. We show that constant-weight PIR is the first practical
single-round solution to single-server keyword PIR.

1 Introduction

Homomorphic encryption permits computation on encrypted
data without the need to decrypt. For example, some homo-
morphic encryption schemes allow addition and multiplica-
tion [13, 20, 35], from which arbitrary functions are derived.
However, operations with homomorphic encryption are not
equally expensive and multiplications are up to 20 times more
expensive compared to additions. Furthermore, the maximum
number of sequential multiplications, i.e., the multiplicative

depth, that can be performed is limited by the parameters
of the encryption scheme. Hence, it is beneficial to derive
functions using a smaller multiplicative depth and fewer mul-
tiplications. Equality operators are an important function
used in many applications [2, 3, 11, 26, 36]. However, the
cost of performing one equality check using homomorphic
encryption is often impractical due to the high multiplicative
depth of the equality circuit. Specifically, the multiplicative
depth of existing equality operators depends on the bit-length
of the elements, which limits scalability.

In this work, we propose equality operators for constant-
weight codewords as a new, efficient way to compare homo-
morphically encrypted data. Constant-weight codewords are
binary strings that share the same Hamming weight. We de-
sign equality operators specifically for these codewords with
a multiplicative depth that depends only on the Hamming
weight of the code, not the bit-length of elements. Our experi-
ments show equality operators for constant-weight codewords
are up to 10× faster than existing equality operators.

Private Information Retrieval (PIR), first introduced by
Chor et al. [16], is an example of an application in which
equality operators play a crucial role. In a PIR protocol, a user
retrieves an element from a database, such that the database
does not learn which element is retrieved. Typically, elements
are retrieved using the physical address of the desired item,
which we call index PIR. In another variant called keyword
PIR [15], the user’s desired element is retrieved using an
identifier pertaining to the sought item, e.g., the name of a file.
State-of-the-art solutions for keyword PIR reduce it to index
PIR using one or multiple extra rounds of communication [15].
Ali et al. [4] propose a probabilistic hashing technique to map
identifiers from a large domain to a small table.

In this work, we propose PIR using constant-weight equal-
ity operators or constant-weight PIR. Our protocol uses an
approach that was assumed to be impractical, which differs
from that of related work, specifically SEALPIR [6] and
MulPIR [4], two efficient PIR protocols. Constant-weight PIR
also scales to databases with large payload data or streaming
data with less communication and computation overhead com-

pared to SEALPIR and MulPIR, respectively. For example,
we show that for 16000 rows, the runtime of MulPIR grows
twice as fast as constant-weight PIR, as a function of the pay-
load size. Consequently, constant-weight PIR has a smaller
runtime than MulPIR when the payload size exceeds 268 KB,
which corresponds to a database size of 4.3 GB. Similarly,
the communication complexity of SEALPIR grows twice as
fast as constant-weight PIR as a function of the payload size.

Moreover, due to the modularity and simplicity, it can
also be extended to keyword PIR with minor modification,
no extra rounds, and minimal overhead. Constant-weight
keyword PIR is the first efficient single-round solution for
single-server keyword PIR.

Single-round single-server keyword PIR is useful for the
application of private file retrieval [29]. Compared to exist-
ing approaches, PIR has asymptotically optimal communi-
cation overhead for privately retrieving large items from a
database [29]. Constant-weight PIR in particular also has a
small computational overhead, compared to other PIR proto-
cols, when the retrieved item is large and also allows updates
in the database with no interaction with the users.

We show through our experiments how the size of the do-
main of keywords only affects one of the three steps per-
formed by the server in constant-weight PIR. Hence, the
domain of keywords can be expanded with marginal cost. We
also show how the constant-weight code used in our proto-
col is a more space-efficient representation of a PIR query,
for a fixed multiplicative depth, compared to existing work.
Specifically, for a multiplicative of d in the PIR protocol over
a database with n possible identifiers, the representation used
in constant-weight PIR has a size of O(2d√n). In contrast,
SEALPIR and MulPIR use a representation for the query of
size O(d d+1

√
n).

Overall, the contributions of this paper are as follows:

• Novel equality operators for constant-weight codewords

• PIR using constant-weight equality operators

• Experimental evaluation of the equality operators

• Evaluation of constant-weight PIR and comparison with
existing index PIR protocols

• Detailed analysis of constant-weight keyword PIR

2 Background and Related Work

2.1 Homomorphic Encryption
Homomorphic Encryption allows computation on encrypted
data, without the need for decryption or access to the secret
key. This maintains the secrecy of the data while computation
is performed. One use case is a client delegating computation
on its data to a remote, untrusted server.

The concept of homomorphic encryption was introduced
by Rivest et al. [30]. In 2009, Gentry proved the existence of

a fully homomorphic cryptosystem based on lattices that can
evaluate arbitrary functions on encrypted data [21].

Multiple lattice-based cryptosystems were proposed follow-
ing the seminal work of Gentry which improved the efficiency
drastically [12, 13, 24, 35]. Many homomorphic cryptosys-
tems are used in a leveled fashion. A leveled homomorphic
cryptosystem allows only a predefined number of sequential
multiplications, determined by the parameters of the cryp-
tosystem. The Fan–Vercauteren cryptosystem is an example
that we explain in the next subsection.

2.1.1 Fan–Vercauteren (FV) Cryptosystem.

The Fan–Vercauteren cryptosystem [20] is a lattice-based
cryptosystem where plaintexts are elements from the poly-
nomial ring Rt = Zt [x]/(xN + 1). The polynomial modulus
degree, N, is a power of two and t is the plaintext modulus.
Messages must be encoded as a polynomial in the field before
they can be encrypted. An FV ciphertext is an array of poly-
nomials, each from Rq = Zq[x]/(xN + 1), where q is called
the coefficient modulus. In the simplest case, the ciphertext is
only two polynomials. Let C denote the ciphertext space. N
and q determine both the security parameter and how many
homomorphic operations can be performed on ciphertexts
before decryption is necessary.

In addition to the standard operations for a cryptosystem,
i.e., key generation, encryption and decryption, FV supports
homomorphic operations over the ring as well. Four of these
operations are listed below. All operations over plaintexts are
in the ring Rt .

• Addition: Given ciphertexts c1(x),c2(x) ∈ C that en-
crypt m1(x),m2(x) ∈ Rt , respectively, output cA(x)
which encrypts m1(x)+m2(x).

• Plain Multiplication: Given m1(x) ∈ Rt and c2(x) ∈ C
that encrypts m2(x) ∈ Rt , output cPM(x) which encrypts
m1(x)m2(x).

• Multiplication: Given ciphertexts c1(x),c2(x) ∈ C that
encrypt m1(x),m2(x) ∈ Rt , respectively, output cM(x)
which encrypts m1(x)m2(x).

• Substitution: Given c(x) ∈ C that encrypts m(x) and an
integer k, output cS(x) which encrypts m(xk).

In the rest of this paper, PM and M denote plaintext multipli-
cation and homomorphic multiplication, respectively.

2.1.2 Microsoft SEAL Library

The SEAL library [31] implements the FV cryptosystem and
supports all the operations mentioned above. Specifically, the
implementation for the substitution operation in this library
was first introduced by Angel et al. [6] based on the plaintext
slot permutation technique discussed by Gentry et al. [23].
One FV plaintext can encode N log2 t bits of data. Also, the
size of the smallest ciphertext that encrypts a plaintext is

2N log2 q bits. An important parameter is the expansion factor
which is the ratio between the size of a ciphertext and the
largest plaintext that can be encrypted and is equal to F =
2logq/ log t. In the rest of this paper, F denotes the expansion
factor of the FV cryptosystem. Table 1 compares the four
described operations in terms of speed and noise grown, as
implemented in SEAL 3.6.

Table 1: Runtime cost of operations in SEAL 3.6, for N ∈
{2048,4096,8192,16384} and the default ciphertext modu-
lus. * Time and noise growth in plain multiplication also
depend on the value of the unencrypted operand.

Operation Time (µs) Noise Growth
N = 2048 N = 4096 N = 8192 N = 16384

Addition 6 19 67 435 Additive
Plain Mult.∗ 12–135 30–529 105–2201 509–9647 Multiplicative

Multiplication - 3823 15744 66908 Multiplicative
Substitution - 768 4137 26047 Additive

2.2 Private Information Retrieval

Private Information Retrieval (PIR) [16] is a protocol where a
user retrieves an element from a database, such that the owner
of the database cannot determine which element was retrieved.
There are two forms of PIR protocols. In the first form, which
we denote index PIR, the user holds the physical address of
the item, e.g., the row in a database table or the index in a
public registry. In the second form, called keyword PIR, the
physical address of the desired item may not be known and
it is only accessible by an identifier pertaining to the sought
item, e.g., the name of a file.

The privacy guarantee of a PIR protocol can be information-
theoretic or computational. Information-theoretic PIR (IT-
PIR) is private even in the presence of a computationally un-
bounded adversary [5, 9, 16, 17]. Computational PIR (CPIR)
relaxes the assumption to an adversary with bounded compu-
tational power. In the single-server setting, which is the focus
of this paper, solutions rely on some intractability assumption,
e.g., the hardness of determining the quadratic residuosity
modulo composite numbers [25, 27] or the security of lattice-
based cryptosystems [1, 4, 6, 18, 19, 22, 37].

In CPIR solutions, each item in the database has to be
processed at least once, otherwise, it can be trivially excluded
from the list of potential queries and compromise privacy.
Sion and Carbunar argued that the time required for any single-
server CPIR protocol would exceed the time required for the
trivial solution of simply downloading the entire database [33].
Later work by Aguilar-Melchor et al. showed this argument
to be incorrect with the use of lattice-based cryptosystems,
which have smaller per-bit computation cost when used in a
batched fashion [1]. They showed that PIR is a faster than
downloading the database over low-bandwidth networks.

2.3 Single-Server computational PIR
Single-server computational PIR solutions aim to perform bet-
ter than the trivial solution of downloading the entire database.
In the trivial solution, the download cost for the user is equal
to the size of the database, with no upload cost for the user.
Downloading the entire database also comes at almost no
computational burden for the server, i.e., the computational
cost is zero. We compare single-server CPIR protocols based
on the upload, download, and computational cost.

CPIR protocols utilizing homomorphic encryption are the
most practical solutions to date [1, 4, 6]. All these solutions
expand on a baseline method that works as follows:

Baseline PIR method. Let DB denote the database with
n rows and DB[i] denote the ith row in this database. Also,
throughout this paper, define [n] = {0,1, ...n− 1}, for any
n ∈ N. When the goal is to retrieve row q, a response rq is
derived as

rq = ∑
i∈[n]

I(i = q) ·DB[i]. (1)

where I(·) denotes an indicator function which is one when
the input evaluates to true and zero otherwise. It is easy to
verify that if q ∈ [n] then rq =DB[q]. Equation (1) is an inner
product between the database and a vector of bits called the
selection vector. For obtaining element q in the database, the
selection vector is one in index q and zero otherwise.

PIR protocols realizing Equation (1) encrypt the bits of the
selection vector with a homomorphic encryption scheme that
supports addition and plaintext multiplication and perform
the operations in Equation (1) over ciphertexts. In XPIR [1]
and SealPIR [6], two recent practical solutions, an additive
homomorphic encryption scheme is used. MulPIR [4] is the
first practical solution using a fully homomorphic encryption
scheme, which is also the case for our work.

The server requires ciphertexts of the bits of the selection
vector, i.e., I(i = q), to realize Equation (1). There are two
general approaches for the server to acquire the encrypted
bits of the selection vector: 1) Communicating the selection
vector 2) Equality Operators.

In the first approach, the user generates the selection vec-
tor locally, encrypts it and transmits it to the server. XPIR,
SealPIR, and MulPIR all take this approach. XPIR uploads
the entire selection vector but provides experiments to show
the practicality of this approach [1]. Despite its practicality,
the upload cost of XPIR is on the order of the number of rows
in the database which limits scalability.

Recursion is a method to reduce the upload cost to sublinear
in the size of the database. It was first used by Kushilevitz
and Ostrovsky [27] and later Stern [34]. This approach is also
used in SealPIR and MulPIR. In the next section, we describe
how recursion is done in SealPIR, which is conceptually
similar to prior work.

2.3.1 SealPIR

SealPIR [6] is a PIR scheme based on the SEAL library
which uses a query compression technique and recursion to
reduce the upload cost. They also use additive homomorphic
encryption in a layered fashion.

In SealPIR, to communicate fewer ciphertexts, the user
encodes multiple bits into one plaintext, which is called the
query compression technique. Specifically, for a selection vec-
tor (si)i∈[n], the user constructs the plaintext p(x) = ∑i∈[n] sixi

and encrypts it. Recall that in SEAL, plaintexts are polynomi-
als of degree at most N, so if the size of the selection vector
exceeds the polynomial degree, dn/Ne ciphertexts are used.
As a consequence of the compression technique, SealPIR per-
forms a novel oblivious expansion on the server to extract a
vector of ciphertexts such that each bit of the selection vector
is in a separate ciphertext. SealPIR uses the substitution oper-
ation to perform the oblivious expansion. Algorithm 1 depicts
this procedure for expanding one ciphertext into a vector of
2c ciphertexts, for c ∈ {0,1, ..., log2 N}.

Algorithm 1 SEALPIR OBLIVIOUS EXPANSION

Input: ct(x) ∈ C , c ∈ {0,1, ..., log2 N}
1: cts← [ct(x)]
2: for a ∈ [c] do
3: for b ∈ [2a] do
4: c0 = cts[b]
5: c1 = x2−a · c0
6: cts[b] = c0 +SubN/2a+1(c0)
7: cts[b+2a] = c1 +SubN/2a+1(c1)

8: inv = (2−c mod t)
9: for i ∈ [2c] do

10: cts[i]← inv · cts[i]

Output: cts ∈ C 2c

To further reduce the upload cost, SealPIR uses a technique
called recursion in which the database is restructured into
a d-dimensional table. The users query is translated into a
coordinate in this d-dimensional table. Then instead of one
selection vector, d selection vectors are sent to the server, one
for each dimension. We refer to d as the recursion level. The
total size of the query is at least dd d

√
ne which is sublinear in

n for any d ≥ 2.
To calculate the response to the query using the selec-

tion vectors, d inner products are performed in sequence. In
SealPIR, an additive homomorphic encryption scheme is used
so the multiplication in the first inner product is performed
as a plaintext multiplication. However, the subsequent multi-
plications are between ciphertext, which is not supported. To
overcome this issue, one ciphertext is treated as a plaintext
in the multiplication. This is referred to as layered encryp-
tion and results in the size of the response multiplying by a
factor of F where F is the expansion factor of the ciphertext.

More generally, the size of the response is multiplied by a
factor of Fd−1 for recursion level equal to d. Overall, SealPIR
performs ∑

d−1
i=0 n

d−i
d F i plaintext multiplications for recursion

level d ≥ 1 and expansion factor of F for the ciphertext.
Ali et al. proposed three additional optimizations to

SealPIR to reduce the upload and download cost [4]. These
three optimizations are: compressing the uploaded ciphertexts
by encrypting using the secret key instead of the public key,
compressing the response ciphertexts using modulus switch-
ing, and a modified oblivious expansion to fit more bits into
the one ciphertext. Throughout this paper, SealPIR denotes
this modified version of the protocol.

2.3.2 MulPIR

MulPIR [4] replaces the layered encryption in SealPIR with
homomorphic multiplications. This reduces the download
cost drastically compared to SealPIR. However, it comes at
the cost of increased computation for the server since homo-
morphic multiplications are more expensive than plain multi-
plications and larger parameters are required to allow more
homomorphic multiplications. Overall, MulPIR performs n
plaintext multiplications and ∑

d−1
i=1 n

d−i
d homomorphic multi-

plications, for a recursion level d ≥ 1.
In SealPIR, due to the expansion in the response, the server

can not perform any post-processing on the output which is
a disadvantage of the protocol. Examples of post-processing
include deriving functions of the user’s query or conjunctive
and disjunctive PIR queries. In contrast to SealPIR, the output
of the MulPIR protocol can be post-processed before being
sent back to the user. Ali et al. [4] describe how to perform
conjunctive and disjunctive queries using MulPIR.

2.4 Equality Operators

Checking the equality of two values is an integral step in many
tasks over encrypted data such as secure search [2, 3], secure
pattern matching [11, 36], private set intersection [14, 26],
and PIR [16].

We define an equality operator as follows.

Definition 1 (Equality Operator). A procedure f is an equal-
ity operator over a domain D if ∀x,y ∈ D,

f (x,y) =
{

1 if x = y
0 o.w. (2)

In this section, we define two equality operators over their
respective domains and derive the multiplicative depth of a
circuit implementing each one. More operators exist which
are summarized in a previous version of this work [28]. When
working with an element x ∈ {0,1}`, we treat it as a string
of bits and refer to the bits of the string by indexing, i.e., x[i]
denotes the ith bit of x.

Arithmetic Folklore Equality Operator. This operator is
used to compare two numbers in binary format. For a domain
D = {0,1}`, define fAF as

fAF(x,y) =
`−1

∏
i=0

(
1− (x[i]− y[i])2) (3)

for x,y∈ {0,1}`. This operator is correct when operating over
any field such as Zp. The multiplicative depth of a circuit
realizing this operator is equal to 1+ dlog2 `e, where ` is the
bit-length of the operands. The arithmetic folklore operator
is oblivious to both input operands. This is critical in some
applications, e.g., comparing two encrypted or secret shared
numbers.

When one operator is public, the arithmetic folklore equal-
ity operator can be modified to perform less operations with
a smaller multiplicative depth. The modified operator is as
follows.

Plain Folklore Equality Operator. For a domain D =
{0,1}`, define fPF as

fPF(x,y) = ∏
y[i]=0

(1− x[i]) ∏
y[i]=1

x[i] (4)

for x,y ∈ {0,1}`. This operator depends on the public
operand, which is y in this case. The multiplicative depth
of a circuit realizing this operator is equal to dlog2 `e, where
` is the bit-length of the operands.

2.4.1 PIR using Equality Operators

As mentioned in Section 2.3, equality operators are another
approach to PIR. In this approach, the user’s query is encoded
into some domain, encrypted and sent to the server. The server
computes each bit of the selection vector, i.e., I(i = q), using
an equality operator between the user’s encrypted query and
each identifier in the database. Then the server, using the
encrypted bits of the selection vector, derives the encryption
of rq using Equation (1), which is then sent back to the user
for decryption.

PIR with this approach using the folklore equality opera-
tor has the smallest upload cost amongst all non-trivial ap-
proaches. In this approach, only the optimal logarithmic bi-
nary encoding of the query is encrypted and uploaded. How-
ever, the computation cost is prohibitively high due to the
multiplicative depth of the folklore equality circuit which de-
pends on the number of rows in the database. In general, PIR
using equality operators is assumed to be impractical due to
the high multiplicative depth of equality circuits as parameters
scale [4, 6]. This work challenges this assumption.

2.5 Keyword PIR
In keyword PIR, a user retrieves an element from a database
using a keyword or identifier pertaining to the sought item.

Another way to phrase this is that in index PIR, all addresses
correspond to an element in the database, whereas in keyword
PIR, some keywords may not correspond to any element.
Note that keyword PIR implies that the user does not know
which keywords are present in the database. Otherwise, the
user can simply refer to its desired keyword by its position in
the list of sorted keywords.

Previous work has suggested solutions for keyword PIR
which all basically reduce keyword PIR to index PIR. Chor
et al. suggested two solutions where the user interactively
queries the server to privately obtain the physical address of
the desired item, given the identifier [15]. With the physical
address, the user then conducts index PIR to retrieve the
sought item. A common solution also proposed by Ali et al.
involves a probabilistic hashing technique to map keywords
into a small table such that index PIR is feasible [4].

PIR using equality operators is another approach to key-
word PIR, where the user’s query is compared to all the key-
words present in the database. However, since the cost of com-
paring keywords is prohibitively high for large keywords, this
approach is assumed to be impractical. This work proposes a
PIR protocol for index PIR which can be easily extended to
keyword PIR with minimal change. Moreover, the practical
computational cost of the constant-weight equality operator
results in a practical keyword PIR protocol.

3 Constructions for Constant-weight Codes

In this section, we describe our constructions. First, we
propose equality operators for constant-weight codewords.
Then we describe efficient mappings from other domains to
constant-weight codewords to facilitate the use of our pro-
posed operator in other contexts. Finally, we explain PIR
using constant-weight codewords in detail.

Constant-weight Code. A constant-weight code, or an m-
of-n code, is a form of error detecting code where all code-
words share the same Hamming weight. A binary constant-
weight code has the additional condition that all codewords
are binary strings. The one-hot (unary) code and the balanced
code are two examples of a binary constant-weight code. In a
balanced code, the number of ones is equal to the number of
zeros in all codewords.

The length of a code is the maximum bit-length of its code-
words and the size of the code is the number of distinct code-
words. For a binary constant-weight code of length m and
Hamming weight of k, the size is

(m
k

)
. For a fixed Hamming

weight k, to have a binary constant-weight code with a size of
at least n, we must choose the length, m, such that

(m
k

)
≥ n. By

one approximation, we have m ∈ O
(

k
√

k!n+ k
)

. We denote
the binary constant-weight code with length m and Hamming
weight k by CW (m,k).

In all the constructions, k and m denote the Hamming
weight and code length, respectively.

3.1 Equality Operators for Constant-weight
Codewords

We propose two variants of the equality operator over
constant-weight codewords in this section. A third construc-
tion over a binary field is given in a previous version of this
work [28].

Plain Constant-weight Equality Operator. For two
constant-weight codewords x,y ∈CW (m,k),

fPCW (x,y) = ∏
y[j]=1

x[j] (5)

is the plain equality operator. This operator is oblivious to the
first operand but depends on the second. A circuit realizing
this operator performs k multiplications with a multiplicative
depth of dlog2 ke.

Arithmetic Constant-weight Equality Operator. For two
constant-weight codewords x,y ∈CW (m,k), Algorithm 2 de-
scribes the arithmetic equality operator over constant-weight
codewords. Algorithm 2 operates over any field in which k!
has a multiplicative inverse.

Algorithm 2 ARITHMETIC CONSTANT-WEIGHT EQUALITY
OPERATOR

Input: x,y ∈CW (m,k)

1: k′ = ∑
i∈[m]

x[i] · y[i]

2: e = 1
k! ∏

i∈[k]
(k′− i)

Output: e ∈ {0,1}

Theorem 1. For x,y ∈CW (m,k), if fACW (x,y) is the output
of Algorithm 2, then fACW (x,y) is an equality operator.

Proof. If x and y are equal, the position of bits equal to one
in their encodings are identical, and consequently, the inner
product, k′, will be equal to k. When they are not equal, the
inner product will be in the set {0,1, ...,k−1}. Also, based
on the definition of e on line 2 of Algorithm 2, it holds that

e =
{

1 k′ = k
0 k′ ∈ {0,1, ...,k−1} (6)

Putting these two together, e will be one, if and only if x
and y are equal and zero otherwise.

A circuit realizing this operator performs m+ k multiplica-
tions with a multiplicative depth of 1+ dlog2 ke.

3.2 Mappings to Constant-weight Codewords

The domain of all the operators described in this section is
a constant-weight code. To benefit from these constructions
in a setting where we want to compare elements from other
domains, we also propose efficient mappings from other do-
mains to constant-weight codewords. The goal is for the map-
ping (and inverse mapping) procedure to be efficient and less
expensive than storing an equivalence table. We describe the
perfect mapping below and detail the inverse perfect mapping
and the lossy mapping in Appendix A.

Perfect Mapping. This mapping is used to map numbers
in the set [n] to CW (m,k) such that it is injective and has an
inverse. To have the injective property, the code size must be
at least n, i.e., |CW (m,k)|=

(m
k

)
≥ n. The mapping procedure

is given in Algorithm 3.

Algorithm 3 PERFECT MAPPING

Input: x ∈ [n], m,k ∈ N such that
(m

k

)
≥ n

1: r = x
2: h = k
3: y = 0m

4: for m′ = m−1, ...,1,0 do
5: if r ≥

(m′
h

)
then

6: y[m′] = 1
7: r = r−

(m′
h

)
8: h = h−1
9: if h = 0 then break

Output: y ∈CW (m,k)

Intuitively, this procedure is assigning the ith valid code-
word from a sorted list of codewords to the number i. Creating
this list and extracting the mapping corresponding to a number
would be prohibitively expensive with an average complex-
ity of θ

((m
k

))
. The complexity of our mapping procedure is

O(m+ k).

3.3 PIR using Constant-weight Codewords

In this section, we describe our protocol for PIR using
constant-weight codewords, which we name constant-weight
PIR. Our protocol follows the approach using equality oper-
ators with the plain constant-weight equality operator at its
core. It is the first practical and scalable PIR protocol using
the equality operator approach.

The PIR protocol is conducted between a server and user.
The server holds a database, DB, with n identifiers. Each
identifier corresponds to some payload data in the database.
We denote the set of identifiers in the database by ID. The
user holds a query q from the domain of identifiers which we
denote by S(ID). We know by definition that ID⊆ S(ID), but

Table 2: Stages of PIR using constant-weight codewords

Stage Performed by Functionality Comp.
Complexity

Setup Server (Offline) Set Parameters, Put DB in plaintext format O(n)
Query Client Construct query, Send to Server O(m)

Process Server
Query Expansion O(m)

Selection Vector Calculation O(n)
Inner product with DB O(ns)

Extract Client Decrypt & decode the server’s response O(s)

the user’s query might not necessarily be in the database. Pre-
vious work, including SealPIR and MulPIR, focuses mainly
on PIR when |S(ID)| = |ID| = n, i.e., index PIR. In con-
trast, our work is applicable for both index and keyword
PIR. We first describe constant-weight PIR for index PIR
and explain how to expand our construction to keyword PIR
in Section 3.3.5.

The protocol consists of four main stages: Setup, Query,
Process, and Extract. The Setup is an offline stage, whereas
the other three stages happen online. An offline stage does
not depend on the user’s query and the server can perform
this stage before the user sends its query to reduce latency.
Table 2 summarizes the stages of our PIR protocol. In the
following sections, we describe each stage in detail.

3.3.1 Setup

In this stage, parameters for the homomorphic encryption
system are chosen such that they meet the security require-
ments. The payload data within each row of the database is
then converted into FV plaintexts. Only the contents of each
database row must be converted to plaintexts, not the set of
identifiers. However, the constant-weight code corresponding
to each identifier can be calculated and stored in this stage
to reduce the runtime in the online stages. This stage can be
done without regard to the user’s query and only depends on
the choice of encryption parameters. After this offline stage,
the server holds a table of plaintexts with n rows and at most
s plaintexts in each row, for some s≥ 1.

3.3.2 Query

In this stage, the user constructs its query in the appropriate
format and sends it to the server. First, parameters for the
user’s query are chosen. The Hamming weight, k, is chosen
and then the code length m, is derived such that

(m
k

)
≥ n. The

user then constructs its query as depicted by Algorithm 4. Let
q ∈ S(ID) denote the user’s query. The user maps its query to
a constant-weight codeword from CW (m,k). Let Eq denote
the mapping of q. Eq is then converted to FV plaintexts
as shown in lines 2–4 of Algorithm 4. The compression
factor, c, indicates how many bits of the user’s query are in
each plaintext. Specifically, for c ∈ {0,1, ..., log2 N}, exactly
2c bits are in each plaintext. A higher compression factor
reduces the upload cost but requires more computation for

decompression, as we will see the next stage. Finally, the
plaintexts are encrypted using the user’s secret key. The client
sends the output of Algorithm 4 along with m, k, and c to the
server for the next stage.

Algorithm 4 QUERY

Input: q ∈ S(ID), m,k ∈ N, c ∈ {0,1, ..., log2 N}
1: Eq← MapToConstantWeightCode(q,m,k)
2: h = d m

2c e
3: for i ∈ [h] do
4: mi(x) = ∑

j∈[2c]
2−c ·Eq[i2c + j] · x j

5: for i ∈ [h] do
6: cti(x) = Enc(sk,mi(x))

Output: (cti(x))i∈[h]

3.3.3 Process Query

This stage consists of three steps which are done by the server:
Query Expansion, Selection Vector Calculation, and Inner
Product.

Query Expansion. In the first step, the server expands the
ciphertexts received from the user such that each bit of the
user’s query is in a separate ciphertext. Algorithm 5 describes
the query expansion procedure, which is a modified version
of Algorithm 1. We replace the use of two substitutions and
one plaintext multiplication in the inner loop of Algorithm 1
with one substitution and two plaintext multiplications. Since
substitution is slower compared to plain multiplication, as
indicated in Table 1, there is an overall speedup. This mod-
ification in the expansion algorithm was first adopted in the
implementation of MulPIR from the OpenMined community.1

In Appendix B, we prove the correctness of this procedure
by showing it is equivalent to Algorithm 1, which has been
proven to be correct by Angel et al. [6]. The for loop on line
6 of Algorithm 5 can be executed in parallel.

The output of this step is a vector of m ciphertexts, where
each ciphertext contains one of the bits of Eq, i.e., the encoded
query.

Selection Vector Calculation. In this step, the server cre-
ates the selection vector using the expanded query from the
output of the previous step. For this, the server iterates over
ID, the set of identifiers in the database, maps each identifier
to a constant-weight codeword and performs the equality oper-
ator between the mapped identifier and the user’s query. The
constant-weight codeword corresponding to each identifier is
calculated in the Setup stage to reduce online runtime. We
use the plain constant-weight equality operator since one of

1https://github.com/OpenMined/PIR

https://github.com/OpenMined/PIR

Algorithm 5 QUERY EXPANSION

Input: (ct j(x)) ∈ Cd
m
2c e, m ∈ N, c ∈ {0,1, ..., log2 N}

1: h =
⌈ m

2c

⌉
2: ctxts← []
3: for j ∈ [h] do
4: cts← [ct j]
5: for a ∈ [c] do
6: for b ∈ [2a] do
7: c0← cts[b]
8: c0← SubN/2a+1(c0)

9: c1← x−2a · c0
10: cts[b+2a]← x−2a · cts[b]
11: cts[b]← cts[b]+ c0
12: cts[b+2a]← cts[b+2a]− c1

13: ctxts← ctxts||cts

Output: ctxts ∈Cm

the operators is unencrypted. Algorithm 6 depicts this step
with the output from the query expansion as input.

Algorithm 6 SELECTION VECTOR CALCULATION

Input: ctxts ∈ C m

1: sel← []
2: for i ∈ [n] do
3: E← MapToConstantWeightCode(ID[i],m,k)
4: sel[i] = ∏

E[j]=1
ctxts[j]

Output: sel ∈ C n

This is the most computationally expensive step of the pro-
tocol, however, it can be done in parallel across the identifiers
in the database. The output of this stage is an encrypted se-
lection vector of size n, with each bit in a separate ciphertext.

Inner Product. In the last step of this stage, an inner prod-
uct is performed between the selection vector derived from
the previous step and the database. Each row of the database
contains at most s plaintexts from the setup phase, hence s
inner products are performed and s ciphertexts are sent to the
user as the response. Each inner product operation includes n
plaintext multiplication which can be done in parallel. The
s inner products can also be done in parallel when s is large
to enhance performance. The output of the inner products is
sent to the user for the next stage.

3.3.4 Extract

In the last stage, the user decrypts the ciphertext(s) received
from the server. The results are extracted from the decrypted
messages by the client.

3.3.5 Constant-weight Keyword PIR

Recall that ID is the list of identifiers in the database, and
S(ID) refers to the domain of identifiers, i.e., the set of all pos-
sible identifiers. By definition, ID⊆ S(ID). In the previous
sections, we have discussed PIR in the case where ID= S(ID).
Related work has also mainly focused on PIR under this as-
sumption [4, 6]. A sparse database, however, specifies the
case where ID where is much smaller than S(ID). In this
case, not all identifiers in the domain are associated with an
element in the database.

The architecture described in this section is applicable
when the database is sparse, with computation on the order
of |ID|, not |S(ID)|. For this, the following changes must be
made to the protocol.

• In the query stage, the code length, m, and Hamming
weight, k, are chosen such that

(m
k

)
≥ |S(ID)|.

• In the selection vector calculation step, encrypted bits of
the selection vector are generated only for identifiers in
the database, i.e., the for loop on line 4 of Algorithm 6
is performed only over the identifiers in the database.
Hence, this step is unchanged.

• Similarly in the inner product step, we only perform
plain multiplications and sum for identifiers in the
database.

PIR solutions based on selection vectors have a compu-
tational complexity that depends on the domain size, which
makes them unsuitable for keyword PIR. We examine this
further Section 6.

4 Evaluation of Equality Operators

We evaluate equality operators in two categories:

• Plain equality operators, where one operand is public,
i.e., the circuit depends on one of the operands. We con-
sider two candidates in this category: the plain folklore
and the plain constant-weight equality operator.

• Arithmetic equality operators, where the circuit is oblivi-
ous to both operands and operates over an arbitrary field.
We consider the arithmetic folklore and the arithmetic
constant-weight equality operators in this category.

Table 3 summarizes these operators, along with the prop-
erties of circuits that implement each of them. We include
properties that significantly influence the runtime such as the
number of homomorphic and plain multiplications and the
multiplicative depth. Note that different circuits operate over
different domains, which are stated in Table 3, but for a fair
comparison, we select parameters such that the size of all
the domains is at least n. To meet this criteria, the required
condition for each of the operators is listed in the table.

Table 3: Properties of circuits implementing equality opera-
tors mentioned in this work.

Operator Domain # of Operations Multiplicative
Depth Conditions

Plain Fl. {0,1}` ` ·M dlog2 `e `≥ log2 n
Plain Cw CW (m,k) k ·M dlog2 ke

(m
k

)
≥ n

Arithmetic Fl. {0,1}` 2` ·M 1+ dlog2 `e `≥ log2 n
Arithmetic Cw CW (m,k) PM+(m+ k) ·M dlog2 ke

(m
k

)
≥ n

In the experiments, we vary the domain size, n, to observe
the effect on the performance of the circuit implementing
each operator. Our implementation of all the equality circuits
is open-source and available on Github2. We implement the
circuits using C++ and the SEAL library (version 3.6). For the
SEAL library, we use three different encryption parameters
specified by N, the polynomial modulus degree, where N ∈
{4096,8192,16384}. The default ciphertext modulus is used
to achieve 128-bit security. We also run all experiments both
in single-thread and in parallel across multiple cores. The
goal is to observe the speedup in each circuit when run in
parallel.

All circuits are run in a SIMD fashion using the batch en-
coding functionality of SEAL. Using this feature, N elements
can be compared at the same time. In plain operators, since
the circuit depends on the plain operands, N elements are
compared to the same operand in the clear. This is not the
case for the arithmetic operand, in which N pairs of numbers
are compared simultaneously. The runtime can be divided by
N to achieve the amortized cost of one equality check.

We run all experiments on an Intel Xeon E5-4640 @
2.40GHz server running Ubuntu 16.04. Parallelization is
performed using 32 physical cores.

4.1 Plain Operators
Table 4 summarizes the results of our experiments for plain
equality operators. Each column reports the runtimes for
a specific domain size. We report the results for the plain
constant-weight operator in four categories based on the rela-
tionship between log2 n and k.

The constant-weight plain operator consistently outper-
forms the folklore operator in terms of running time. The
advantage is greater when smaller homomorphic encryption
parameters (namely N) can be used. This is possible due to a
smaller multiplicative depth compared to the folklore circuit
in cases where k < log2 n. However, the advantage exists even
when using the same homomorphic encryption parameters.
This can be attributed to fewer multiplications in the circuit
(k compared to `) when a small Hamming weight is used.

Faster runtimes for the plain constant-weight circuit come
at the cost of higher memory usage during the protocol. The
memory usage depends on the code length, also specified

2https://github.com/RasoulAM/constant-weight-pir

Table 4: Runtimes for plain equality operators in seconds.
Dashes indicate cases where the ciphertext was undecryptable
due to homomorphic noise. k and m denote the Hamming
weight and constant-weight code length, respectively. Bold
numbers indicate the best runtimes for each n.

n 28 216 232 264 2128 2256 2512

Plain
Folklore

` 8 16 32 64 128 256 512
Mult Depth 3 4 5 6 7 8 9
N = 8192 0.27 0.54 - - - - -

N = 16384 1.1 2.4 5.0 10 21 42 84

Plain
Constant-

weight
k = log2 n

k 8 16 32 64 128 256 512
Mult Depth 3 4 5 6 7 8 9

m 12 22 43 85 168 334 665
N = 8192 0.27 0.57 - - - - -

N = 16384 1.1 2.6 4.9 10 20 40 81

Plain
Constant-

weight
k = 1

2 log2 n

k 4 8 16 32 64 128 256
Mult Depth 2 3 4 5 6 7 8

m 11 19 36 68 132 261 517
N = 8192 0.11 0.27 0.55 - - - -

N = 16384 0.49 1.1 2.4 5.0 10 21 41

Plain
Constant-

weight
k = 1

4 log2 n

k 2 4 8 16 32 64 128
Mult Depth 1 2 3 4 5 6 7

m 24 37 64 117 221 427 838
N = 4096 0.01 - - - - - -
N = 8192 0.04 0.12 0.25 0.49 - - -

N = 16384 0.17 0.48 1.1 2.4 5.0 10 21

Plain
Constant-

weight
k = 1

8 log2 n

k 1 2 4 8 16 32 64
Mult Depth 0 1 2 3 4 5 6

m 256 363 569 968 1749 3290 6349
N = 4096 0.0001 0.008 - - - - -
N = 8192 0.0004 0.038 0.10 0.25 0.54 - -

N = 16384 0.002 0.17 0.5 1.1 2.4 5.0 10

in the table. Depending on the application, the code length
determines the communication complexity if operands are
communicated over the network.

Parallelization offers roughly up to 10× speedup for both
circuits and there is no noticeable difference in the advantage
that parallel implementation offers for both circuits. Table 12
in Appendix C shows the runtimes of plain operators when
parallelized.

4.2 Arithmetic Operators

Table 5 summarizes the results of our experiments for arith-
metic equality operators. Similar to before, each column
reports the runtimes for a specific domain size. We report
the results for the arithmetic constant-weight operator in four
categories based on the relationship between log2 n and k.

Unlike the plain operators, the constant-weight arithmetic
operator is not always faster than the equivalent folklore arith-
metic equality circuit, or the advantage is marginal. This is
due to the large number of homomorphic multiplications that
are required in a constant-weight arithmetic circuit (m+ k
compared to `). Specifically, when the constant-weight code
length, m, is large due to a small Hamming weight, k, the
number of multiplications can be very high compared to the
folklore. However, in some cases, the smaller Hamming

https://github.com/RasoulAM/constant-weight-pir

Table 5: Runtimes for arithmetic equality operators in seconds.
Dashes indicate cases where the ciphertext was undecryptable
due to homomorphic noise. k and m denote the Hamming
weight and constant-weight code length, respectively. Bold
numbers indicate the best runtimes for each n.

n 28 216 232 264 2128 2256 2512

Arithmetic
Folklore

` 8 16 32 64 128 256 512
Mult Depth 4 5 6 7 8 9 10
N = 8192 0.49 - - - - - -

N = 16384 2.2 4.6 9.2 19 37 74 149

Arithmetic
Constant-

weight
k = log2 n

k 8 16 32 64 128 256 512
Mult Depth 4 5 6 7 8 9 10

m 12 22 43 85 168 334 665
N = 8192 0.692 - - - - - -

N = 16384 3.0 6.0 12 23 47 93 186

Arithmetic
Constant-

weight
k = 1

2 log2 n

k 4 8 16 32 64 128 256
Mult Depth 3 4 5 6 7 8 9

m 11 19 36 68 132 261 517
N = 8192 0.53 - - - - - -

N = 16384 2.2 4.3 8.2 16 31 63 123

Arithmetic
Constant-

weight
k = 1

4 log2 n

k 2 4 8 16 32 64 128
Mult Depth 2 3 4 5 6 7 8

m 24 37 64 117 221 427 838
N = 8192 0.85 1.3 - - - - -

N = 16384 4.3 6.4 11 21 40 78 154

Arithmetic
Constant-

weight
k = 1

8 log2 n

k 1 2 4 8 16 32 64
Mult Depth 1 2 3 4 5 6 7

m 256 363 569 968 1749 3290 6349
N = 4096 2.0 - - - - - -
N = 8192 8.4 12 19 - - - -

N = 16384 41 58 91 156 282 533 1064

weight results in a lower multiplicative depth, which in turn
allows the use of smaller homomorphic encryption parame-
ters. For example for n = 216, the constant-weight operator
with k = 4 using N = 8192 is about 4 times faster than the
folklore using N = 16384. The amortized cost is also about 2
times faster.

Similar to the plain equality operators, high memory usage
is also an issue with the arithmetic constant-weight equality
operator and it requires much more memory than the equiva-
lent folklore operator.

The effect of the parallelization is however substantially
different between folklore and constant-weight operators. Fig-
ure 1 shows the speedup for each of the five categories in
Table 5. The folklore circuit runs at most 2 times faster with
parallelization, whereas the constant-weight circuit has more
than a 10× speedup in some cases. The speedup is larger
as the domain size grows. The speedup is mainly due to the
m homomorphic multiplications that can be done in parallel.
With parallelization, the arithmetic constant-weight operator
outperforms the arithmetic folklore operators for all domain
sizes. Table 12 in Appendix C shows the runtimes of arith-
metic operators when run in parallel.

16 64 128 256 512
0

2

4

6

8

10

12

14

Domain Bit-length

Sp
ee

du
p

Folklore
Constant-weight (k = log2 n)

Constant-weight (k = 1
2 log2 n)

Constant-weight (k = 1
4 log2 n)

Constant-weight (k = 1
8 log2 n)

Figure 1: Speedup using parallelization when evaluating arith-
metic equality operators

5 Evaluation of PIR for Large Payloads

In this section, we evaluate PIR protocols based on runtime
and communication cost. Specifically, we compare PIR using
the folklore equality operator (which we call folklore PIR),
Constant-weight PIR, SealPIR [4], and MulPIR [4].

Folklore PIR refers to a PIR protocol using the same ar-
chitecture as constant-weight PIR, but replacing the equality
operator with the plain folklore operator. Indices are encoded
using the logarithmic binary encoding in this protocol.

SealPIR and MulPIR are based on the approach where
the selection vector is communicated to the server, whereas
folklore PIR and constant-weight PIR make use of equality
operators. We aim to compare the two general methods (se-
lection vectors vs. equality circuits) while also evaluating
constant-weight PIR against folklore PIR.

Unary Approach. Note that SealPIR and MulPIR with
d = 1 are equivalent to constant-weight PIR when k = 1.
Hence, we refer to this configuration as the unary approach.
We report the runtimes of this approach in Appendix D as a
baseline. To give a summary, the unary approach has a smaller
runtime compared to the other approaches described in this
paper and has a reasonable upload cost for small, packed
databases. However, the upload cost is on the order of the size
of the domain which is impractical for large domains. Hence,
we exclude it from the comparison in this section. Specifi-
cally, we compare approaches that have a multiplicative depth
of at least one. This includes SealPIR and MulPIR with d ≥ 2,
and constant-weight PIR with k≥ 2. This setup is particularly
useful for large domains, which we explain in Section 3.3.5.

Implementation Details. Constant-weight PIR is imple-
mented as described in Section 3.3. We also implement folk-
lore PIR using the same architecture and consisting of the
same stages described in Section 3.3. However, we use a
logarithmic binary encoding for indices and the equality op-
erator is replaced with a plain folklore equality operator per
definition in Equation (4).

Our implementation of constant-weight PIR and folklore

PIR is open-source and available on Github3. We imple-
ment all protocols using C++ and SEAL (version 3.7)4

as the homomorphic encryption library. For SealPIR and
MulPIR, we use the implementation by the OpenMined com-
munity5. We select homomorphic encryption parameters
such that it satisfies 128-bit security. Specifically, we use
N ∈ {4096,8192,16384} and the default coefficient modu-
lus in SEAL for 128-bit security. Each protocol is run with
the smallest parameter set which produces decryptable re-
sults. Specifically, SealPIR uses N = 4096, whereas MulPIR,
folklore PIR, and constant-weight PIR require N ≥ 8192.

We run all experiments on an Intel Xeon E5-4640 @
2.40GHz server running Ubuntu 16.04.

Experimental Setup. Index PIR implies that all database
rows are full (in contrast to keyword PIR where some key-
words do not correspond to any payload data in the database).
We are interested in the case where the payload is large. Previ-
ous work on PIR, specifically information theoretic PIR, has
examined PIR when the payload grows arbitrarily large [7, 8].
There also exist applications of single-server PIR such that
the payload can be arbitrarily large [29].

Note that the size of the payload data is a multiple of the
plaintext size and plaintext sizes depend on the homomor-
phic encryption parameters used in each approach. Hence,
we run experiments for a payload data of one plaintext and
extrapolate the results for larger payload data sizes.

Results. Table 6 lists the properties of the four aforemen-
tioned protocols.

Table 6: Parameters for PIR protocols when |S(ID)|= |ID|=
n and the payload data is s plaintexts.

Method Mult Depth Query
Bit-length

of Operations
(Excluding Expansion)

Download
Cost (in cts)

SealPIR d−1 dd d
√

n e (∑d−1
i=0 n

d−i
d F i ·PM) · s Fd−1s

MulPIR d−1 dd d
√

n e (n ·PM+∑
d−1
i=1 n

d−i
d ·M) · s s

Fl. PIR dlog2dlog2 nee dlog2 ne ndlog2 ne ·M+ns ·PM s

Cw PIR dlogke O
(

k
√

k!n+ k
)

nk ·M+ns ·PM s

First, we compare protocols using equality operators. Ta-
ble 7 compares folklore PIR and constant-weight PIR. This
table shows folklore PIR is much slower than constant-weight
PIR. At n = 512, the parameters of the homomorphic cryp-
tosystem must be increased from N = 8192 to N = 16384
to produce valid, decryptable results. Larger parameters in-
crease the runtime drastically. Consequently, constant-weight
PIR is the first practical PIR protocol using equality operators.
Table 7 includes runtimes for constant-weight PIR when run
in parallel to demonstrate practicality.

3https://github.com/RasoulAM/constant-weight-pir
4https://github.com/microsoft/SEAL
5https://github.com/OpenMined/PIR

Table 7: Runtime of PIR protocols using equality operators for
a response size of one plaintext. Runtimes are in seconds and
an average of 10 runs. *This parameter set did not produce a
decryptable result.

Time (s)
of

Rows
DB Size

(MB)
Code

Length Expansion Sel. Vec.
Calculation

Inner
Product Total Server

Folklore, N = 8192 (Query = 216 KB, Response = 106 KB)

256 8 5 0.06 58 0.9 60
512∗ 9 10 0.1 130 1.7 130

Folklore, N = 16384 (Query = 913 KB, Response = 224 KB)

512 21 9 0.8 650 7.4 660
1024 42 10 0.8 1500 14 1500
2048 84 11 0.8 3300 29 3300
4096 170 12 0.8 7200 56 7200
8192 340 13 0.8 16000 120 16000

16384 670 14 0.8 35000 250 35000

Constant-weight k = 2,N = 8192, (Query = 216 KB, Response = 106 KB)

Single-thread

256 5.2 24 0.3 8.3 0.9 9.7
512 10 33 0.5 17 1.7 19

1024 21 46 0.5 33 3.5 38
2048 42 65 1 67 6.9 75
4096 84 92 1 130 13 150
8192 170 129 2 270 27 300

16384 340 182 2 540 55 600
32768 670 257 5 1100 110 1200
65536 1300 363 5 2300 230 2500

Parallelized

256 5.2 24 0.1 0.5 0.3 1.1
512 10 33 0.1 0.7 0.5 1.6

1024 21 46 0.2 1.4 1.2 2.9
2048 42 65 0.2 2.9 2.4 5.6
4096 84 92 0.3 5.7 4.6 11
8192 170 129 0.3 11 9.2 21

16384 340 182 0.4 22 18 41
32768 670 257 0.6 44 34 79
65536 1300 363 0.7 87 70 160
131072 2700 513 1.2 170 140 320
262144 5400 725 1.4 340 290 640

Another observation from Table 6 is that the download cost
of SealPIR is larger compared to the other protocols. Table 8
shows the upload, download, and total communication cost
for a payload data of one plaintext. For larger payloads, the
high download cost of SealPIR is multiplied by the number
of plaintexts in the payload data. Hence, constant-weight
PIR and MulPIR have a lower communication cost for large
payload data and streaming data.

Table 8: Upload, download, and total communication cost for
payload data equal to one plaintext.

Upload Cost Download Cost Total Comm.

SealPIR 61.4 KB 307 KB 368.4 KB
MulPIR 122 KB 119 KB 241 KB

Constant-weight PIR 216 KB 106 KB 322 KB

Next, we analyze the effect of larger payload data on the
runtime of the protocols. We focus our attention to comparing
MulPIR and constant-weight PIR as they have similar com-
munication complexity. Runtimes for SealPIR are given in

https://github.com/RasoulAM/constant-weight-pir
https://github.com/microsoft/SEAL
https://github.com/OpenMined/PIR

Appendix D. MulPIR (and SealPIR) must repeat the server
computation (except the expansion step) for each plaintext
in the payload. This applies to other approaches using se-
lection vectors as well. In constant-weight PIR, only the
inner product step must be repeated for each plaintext in the
payload.

To show this effect, we perform PIR over a database with
n = 16384 rows with various, large, payload sizes. Figure 2
shows the runtime of the constant-weight PIR (with k = 2) as
a function the payload size. The implementation of MulPIR
by OpenMined does not support large payloads, so we provide
a lower bound of the runtime of MulPIR (with d = 2) based
on the server time for a payload of one plaintext.

As seen in Figure 2, the runtime of constant-weight PIR is
higher than MulPIR for a small payload but grows at a slower
rate. Eventually, constant-weight PIR outperforms MulPIR
when the payload size exceeds 268 KB. This corresponds to
a database size of about 4.3 GB.

0 50 100 150 200 250 300 350 400 450 500 550

0

500

1,000

1,500

2,000

Payload Data (KB)

R
un

tim
e

(i
n

se
co

nd
s)

MulPIR, d = 2 (lower bound estimate)
Constant-weight, k = 2

Constant-weight, k = 2 (parallelized)

Figure 2: Runtime of constant-weight PIR and an estimation
of the runtime of MulPIR for large payloads.

To summarize, constant-weight PIR outperforms folklore
PIR in all cases. It also has a smaller communication com-
plexity and lower runtime compared to SealPIR and MulPIR,
respectively, when the payload size increases.

6 Analysis of Constant-weight Keyword PIR

In this section, we show how constant-weight PIR performs
over a sparse database. We first motivate our approach to
keyword PIR by discussing the private file retrieval as an
application. We also argue about the modifications required
for MulPIR and SealPIR to allow for keyword PIR without
reducing the problem to index PIR.

Keyword PIR for Private File Retrieval. Private file re-
trieval is a setup, similar to that of PIR, where the items that
are retrieved are large, e.g. files or documents. Private re-
trieval of large items has been discussed in the literature [16]
which differs from the case where only a single bit is retrieved.
Solutions based on ORAM come at a high communication
cost [29, 32]. Specifically, the response size is O(` logn)
in the worst case for retrieving an item of size ` amongst n
elements.

PIR is a suitable solution for this problem given that it
can achieve asymptotically optimal communication complex-
ity [29]. Keyword PIR provides the additional feature of
retrieving documents by identifiers instead of an index in a
directory.

Constant-weight keyword PIR is a practical keyword PIR
protocol that can be used for private file retrieval. More-
over, constant-weight PIR is performed without the use of a
hash-table to store the identifiers or multiple rounds of com-
munication, which is in contrast to the existing approaches
for keyword PIR [4, 15]. This is useful in the presence of
many users with unreliable connections and low bandwidth.
Particularly in solutions that store the identifiers using a hash-
table, updates to the database may require a change in the
parameters of the hash function to avoid collisions. An addi-
tional round of communication is required for each query to
communicate new hash function parameters to the user.

Table 9 shows example runtimes of constant-weight PIR
used to retrieve files from a database with large items. In
the next subsection, we provide a finer analysis of the cost of
constant-weight keyword PIR. The experiments in Table 9
were performed on an Intel(R) Xeon(R) CPU E7-8860 v4
@ 2.20GHz running Ubuntu 20.04. The experiments are
parallelized over 144 cores to achieve the best possible perfor-
mance. The results are only to demonstrate practicality and
can easily be enhanced using hardware accelerators (GPUs)
or accelerators for the homomorphic encryption libraries such
as HEXL [10].

Table 9: Server runtimes for Constant-weight PIR of large
payloads.

Keyword
Bitlength

Number of
Items (n)

Database
Size (GB)

Item
Size (MB)

Server
Time (s)

16

1000

1.3 1.3 51.9
2.6 2.6 107
5.2 5.2 200

10.0 10.0 369

10000

13.0 1.3 508
26.0 2.6 878
52.0 5.2 1670
100.0 10.0 3250

32

1000

1.3 1.3 59
2.6 2.6 111
5.2 5.2 212

10.0 10.0 354

10000

13.0 1.3 506
26.0 2.6 869
52.0 5.2 1700
100.0 10.0 3180

48

1000

1.3 1.3 71.3
2.6 2.6 129
5.2 5.2 208

10.0 10.0 380

10000

13.0 1.3 541
26.0 2.6 922
52.0 5.2 1720
100.0 10.0 3300

Analysis of PIR for Sparse Domains. Table 10 shows
the properties of the PIR protocols, adjusted for when the
database is sparse. n and |S| denote the number of rows in the
database and the size of the domain from which the query is
selected, respectively.

Table 10: Properties of SealPIR, MulPIR, and constant-
weight PIR when used for keyword PIR.

Method Mult
Depth

Query
Bit-length

of Operations
(Excluding Expansion)

Download
Cost (in cts)

SealPIR d−1 d
⌈

d
√
|S|
⌉

n ·PM+∑
d−1
i=1 |S|

d−i
d F i ·PM Fd−1

MulPIR d−1 d
⌈

d
√
|S|
⌉

n ·PM+∑
d−1
i=1 |S|

d−i
d ·M 1

CwPIR dlogke O
(

k
√

k!|S|+ k
)

nk ·M+n ·PM 1

We argue that constant-weight PIR is minimally affected
by sparsity in the database and it is a suitable solution for
keyword PIR. Table 10 supports this argument, as the number
of operations (excluding expansion) for constant-weight PIR
does not depend on the size of the domain. We exclude
folklore PIR from this section entirely since it follows the
same approach as constant-weight PIR and is strictly slower.

Table 10 also shows the query bit-length of each method.
The query bit-length determines the communication cost in
the protocol and also affects the computation cost, specifi-
cally the expansion step. This query bit-length is affected
by the domain size and is equal to the length of the constant-
weight code that is used in constant-weight PIR. SealPIR and
MulPIR use the same type of encoding for PIR queries which
essentially calculates the position of the desired row of the
database when restructured into a d-dimensional table. We
denote this as a dimension-wise encoding in this section.

Table 11: Bit-length of the query in different protocols

Domain
Bit-length
(log2 |S|)

Constant-weight code size Dimension-wise
depth=0 depth=1 depth=2 depth=0 depth=1 depth=2

k=1 k=2 k=3 k=4 d=1 d=2 d=3

4 16 7 6 7 16 8 9
6 64 12 9 8 64 16 12
8 256 24 13 11 256 32 21
10 1024 46 20 15 1024 64 33
12 4096 92 31 20 4096 128 48
14 16384 182 48 27 16384 256 78
16 65536 363 75 37 65536 512 123
18 262144 725 118 52 262144 1024 192
20 - 1449 186 73 - 2048 306
22 - 2897 295 102 - 4096 486
24 - 5794 467 144 - 8192 768
26 - 11586 740 202 - 16384 1221
28 - 23171 1174 285 - 32768 1938
30 - 46342 1862 403 - 65536 3072
32 - 92683 2955 569 - 131072 4878
34 - 185365 4690 803 - 262144 7743
36 - 370729 7444 1135 - 524288 12288
38 - 741456 11816 1605 - 1048576 19506
40 - - 18756 2268 - - 30966
42 - - 29773 3207 - - 49152
44 - - 47261 4535 - - 78024
46 - - 75021 6413 - - 123858
48 - - 119088 9068 - - 196608

Table 11 shows the number of bits required to represent

a query using a constant-weight codeword and a dimension-
wise encoding as a function the domain bit-length, log2 |S|.
The constant-weight code length is shown for four different
values of k, the Hamming weight. In the last three columns,
we derive the bit-length of the dimension-wise encoding. The
depth refers to the multiplicative depth in a PIR protocol using
the set of parameters in that column.

There are multiple observations from this table. Firstly,
larger k or d (and higher multiplicative depth in turn) drasti-
cally reduces the bit-length of the query. Given this observa-
tion, a fair comparison between the constant-weight code and
dimension-wise encoding is comparing those with the same
multiplicative depth since the multiplicative depth directly
impacts the performance. For the same multiplicative depth,
the constant-weight code is smaller than the dimension-wise
encoding. Figure 3 visualizes this for even larger domain
sizes and higher multiplicative depths. Note that the scale
on the vertical axis is logarithmic and the gap between the
size of the codes increases as the domain size increases and a
larger multiplicative depth is used.

0 1 2 3 4 5
101

103

105

107

109

Mult. Depth

E
nc

od
in

g
Si

ze
Domain Size=232

Dimension-wise
Constant-weight

1 2 3 4 5

102

103

104

105

106

107

108

Mult. Depth

E
nc

od
in

g
Si

ze

Domain Size=248

Dimension-wise
Constant-weight

2 3 4 5 6

102

103

104

105

106

107

Mult. Depth

E
nc

od
in

g
Si

ze

Domain Size=264

Dimension-wise
Constant-weight

3 4 5 6 7

102

104

106

108

1010

Mult. Depth

E
nc

od
in

g
Si

ze
Domain Size=2128

Dimension-wise
Constant-weight

Figure 3: Encoding size as a function of multiplicative depth

The size of the query can also affect the server runtime in
the protocol. Figure 4 shows the runtime of keyword PIR over
a database of with n = 16384 rows and payload size of one
plaintext (roughly 20.1 KB) which corresponds to a database
of about 330 MB. We vary the domain size to examine the
effect on the overall runtime, which is influenced by the query
bit-length.

The runtime of the protocol consists of the expansion step,
and the iteration step (which is the selection vector calculation
and inner product combined). We report numbers for k ∈
{2,3,4} since we know that k = 1 produces an encoding size
that is prohibitively large. Each plot in Figure 4 is for one

15 20 25 30 35 40 45
0

50

100

Domain Bit-length (log2 |S|)

R
un

tim
e

(s
)

k = 2
k = 3
k = 4

Figure 4: Total server time of constant-weight keyword PIR
as a function of the domain size for three different Hamming
weights. The shaded areas indicate the amount of time re-
quired for the expansion step.

value of k. The shaded area beneath each plot indicates the
amount of time required for the expansion step.

Initially, for log2 |S| ≤ 27, k = 2 has the smallest server
time. However, when log2 |S| approaches 28, the expansion
time constitutes a significant portion of the server time and a
switch to k = 3 results in a smaller total server time. Similarly,
when log2 |S| reaches 41, a switch to k = 4 produces the best
results. Notice how the runtime excluding the expansion
step does not change significantly for all values of k and the
time required for the expansion step eventually becomes the
dominant factor when the domain size increases.

7 Conclusion

In this work, we proposed equality operators for constant-
weight codewords. We showed how these operators are up
to 10 times faster than folklore equality operators. Further-
more, we proposed constant-weight PIR, a PIR protocol using
equality operators which is an approach that was previously
assumed to be impractical. We showed how the communi-
cation and computation cost of constant-weight PIR grows
at a slower rate compared to SealPIR and MulPIR, respec-
tively. Furthermore, we showed how constant-weight PIR
is extended to keyword PIR to be the first practical, single-
round, single-server keyword PIR protocol. We provided a
detailed analysis of effect of a large domain on the runtime
of constant-weight keyword PIR and discussed how it can be
used for applications such as private file retrieval.

Acknowledgements

We would like to thank Ian Goldberg for his useful comments
on an earlier version of this work. We also thank our reviewers
for their comments and particularly our shepherd, Tancrède

Lepoint, who provided helpful insights and suggestions to
clarify our contributions. This work benefited from the use of
the CrySP RIPPLE Facility at the University of Waterloo.

References

[1] Carlos Aguilar-Melchor, Joris Barrier, Laurent Fousse,
and Marc-Olivier Killijian. XPIR: Private Informa-
tion Retrieval for Everyone. Proceedings on Privacy
Enhancing Technologies, 2016(2):155–174, 2016.

[2] Adi Akavia, Dan Feldman, and Hayim Shaul. Secure
Data Retrieval on the Cloud: Homomorphic Encryp-
tion meets Coresets. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, 2019(2):80–
106, 2019.

[3] Adi Akavia, Craig Gentry, Shai Halevi, and Max Lei-
bovich. Setup-Free Secure Search on Encrypted Data:
Faster and Post-Processing Free. Proceedings on Pri-
vacy Enhancing Technologies, 2019(3):87–107, 2019.

[4] Asra Ali, Tancrède Lepoint, Sarvar Patel, Mariana
Raykova, Phillipp Schoppmann, Karn Seth, and Kevin
Yeo. Communication–Computation Trade-offs in PIR.
In 30th USENIX Security Symposium (USENIX Security
21), pages 1811–1828. USENIX Association, August
2021.

[5] Andris Ambainis. Upper Bound on the Communication
Complexity of Private Information Retrieval. In Pier-
paolo Degano, Roberto Gorrieri, and Alberto Marchetti-
Spaccamela, editors, Automata, Languages and Pro-
gramming, pages 401–407, Berlin, Heidelberg, 1997.
Springer Berlin Heidelberg.

[6] S. Angel, H. Chen, K. Laine, and S. Setty. PIR with
Compressed Queries and Amortized Query Processing.
In 2018 IEEE Symposium on Security and Privacy (SP),
pages 962–979, May 2018.

[7] Karim Banawan and Sennur Ulukus. Multi-Message
Private Information Retrieval. In 2017 IEEE Interna-
tional Symposium on Information Theory (ISIT), pages
1898–1902, 2017.

[8] Karim Banawan and Sennur Ulukus. Private Informa-
tion Retrieval from Coded Databases. In 2017 IEEE
International Conference on Communications (ICC),
pages 1–6, 2017.

[9] A Beimel, Y Ishai, E Kushilevitz, and Jean-François
Raymond. Breaking the O(n1/(2k−1)) Barrier for
Information-theoretic Private Information Retrieval.
The 43rd Annual IEEE Symposium on Foundations of
Computer Science, 2002. Proceedings., pages 261–270,
2002.

[10] Fabian Boemer, Sejun Kim, Gelila Seifu, Fillipe DM de
Souza, and Vinodh Gopal. Intel hexl: Accelerating
homomorphic encryption with intel avx512-ifma52. In
Proceedings of the 9th on Workshop on Encrypted Com-
puting & Applied Homomorphic Cryptography, pages
57–62, 2021.

[11] Charlotte Bonte and Ilia Iliashenko. Homomorphic
String Search with Constant Multiplicative Depth. In
Proceedings of the 2020 ACM SIGSAC Conference on
Cloud Computing Security Workshop, CCSW’20, pages
105–117, New York, NY, USA, 2020. Association for
Computing Machinery.

[12] Joppe W Bos, Kristin Lauter, Jake Loftus, and Michael
Naehrig. Improved Security for a Ring-Based Fully
Homomorphic Encryption Scheme. In Martijn Stam,
editor, Cryptography and Coding, pages 45–64, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg.

[13] Zvika Brakerski, Craig Gentry, and Vinod Vaikun-
tanathan. (Leveled) Fully Homomorphic Encryption
without Bootstrapping. In Proceedings of the 3rd In-
novations in Theoretical Computer Science Conference,
ITCS ’12, pages 309–325, New York, NY, USA, 2012.
Association for Computing Machinery.

[14] Hao Chen, Kim Laine, and Peter Rindal. Fast Private
Set Intersection from Homomorphic Encryption. In
Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’17, page
1243–1255, New York, NY, USA, 2017. Association
for Computing Machinery.

[15] B. Chor, N. Gilboa, and M. Naor. Private Information
Retrieval by Keywords. IACR Cryptol. ePrint Arch.,
1998:3, 1998.

[16] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and
Madhu Sudan. Private Information Retrieval. In Pro-
ceedings of IEEE 36th Annual Foundations of Computer
Science, pages 41–50. IEEE, 1995.

[17] Daniel Demmler, Amir Herzberg, and Thomas Schnei-
der. RAID-PIR: Practical Multi-server PIR. In Proceed-
ings of the ACM Conference on Computer and Commu-
nications Security, volume 2014, 2014.

[18] Changyu Dong and Liqun Chen. A Fast Single Server
Private Information Retrieval Protocol with Low Com-
munication Cost. In Mirosław Kutyłowski and Jaideep
Vaidya, editors, Computer Security - ESORICS 2014,
pages 380–399, Cham, 2014. Springer International
Publishing.

[19] Yarkın Doröz, Berk Sunar, and Ghaith Hammouri.
Bandwidth Efficient PIR from NTRU. In Rainer Böhme,

Michael Brenner, Tyler Moore, and Matthew Smith, ed-
itors, Financial Cryptography and Data Security, pages
195–207, Berlin, Heidelberg, 2014. Springer Berlin
Heidelberg.

[20] Junfeng Fan and Frederik Vercauteren. Somewhat Prac-
tical Fully Homomorphic Encryption. Proceedings of
the 15th international conference on Practice and The-
ory in Public Key Cryptography, 2012:1–16, 2012.

[21] Craig Gentry. Fully Homomorphic Encryption using
Ideal Lattices. In Proceedings of the forty-first annual
ACM symposium on Theory of computing, pages 169–
178, 2009.

[22] Craig Gentry and Shai Halevi. Compressible FHE with
Applications to PIR. 11892:438–464, 2019.

[23] Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully
Homomorphic Encryption with Polylog Overhead". In
David Pointcheval and Thomas Johansson, editors, Ad-
vances in Cryptology – EUROCRYPT 2012, pages 465–
482, Berlin, Heidelberg, 2012. Springer Berlin Heidel-
berg.

[24] Craig Gentry, Amit Sahai, and Brent Waters. Ho-
momorphic Encryption from Learning with Errors:
Conceptually-Simpler, Asymptotically-Faster, Attribute-
Based. In Ran Canetti and Juan A Garay, editors, Ad-
vances in Cryptology – CRYPTO 2013, pages 75–92,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[25] Shafi Goldwasser and Silvio Micali. Probabilistic en-
cryption. Journal of computer and system sciences,
28(2):270–299, 1984.

[26] Bailey Kacsmar, Basit Khurram, Nils Lukas, Alexander
Norton, Masoumeh Shafieinejad, Zhiwei Shang, Yaser
Baseri, Maryam Sepehri, Simon Oya, and Florian Ker-
schbaum. Differentially Private Two-Party Set Opera-
tions. In 2020 IEEE European Symposium on Security
and Privacy (EuroS&P), pages 390–404. IEEE, 2020.

[27] E. Kushilevitz and R. Ostrovsky. Replication is not
Needed: Single Database, Computationally-private In-
formation Retrieval. In Proceedings 38th Annual Sym-
posium on Foundations of Computer Science, pages
364–373, 1997.

[28] Rasoul Akhavan Mahdavi. Equality operators for
constant-weight codewords with applications in (key-
word) pir. Master’s thesis, University of Waterloo, 2021.

[29] Travis Mayberry, Erik-Oliver Blass, and A. Chan. Effi-
cient Private File Retrieval by Combining ORAM and
PIR. In NDSS, 2014.

[30] Ronald L Rivest, Len Adleman, Michael L Dertouzos,
et al. On Data Banks and Privacy Homomorphisms.
Foundations of secure computation, 4(11):169–180,
1978.

[31] Microsoft SEAL (release 3.6). https://github.c
om/Microsoft/SEAL, November 2020. Microsoft
Research, Redmond, WA.

[32] Elaine Shi, T-H. Hubert Chan, Emil Stefanov, and
Mingfei Li. Oblivious ram with o((logn)3) worst-case
cost. In ASIACRYPT, 2011.

[33] Radu Sion and Bogdan Carbunar. On the Computa-
tional Practicality of Private Information Retrieval. In
Proceedings of the Network and Distributed Systems
Security Symposium, pages 2006–06. Internet Society,
2007.

[34] Julien P Stern. A New and Efficient All-Or-Nothing
Disclosure of Secrets Protocol. In Kazuo Ohta and
Dingyi Pei, editors, Advances in Cryptology — ASI-
ACRYPT’98, pages 357–371, Berlin, Heidelberg, 1998.
Springer Berlin Heidelberg.

[35] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod
Vaikuntanathan. Fully Homomorphic Encryption over
the Integers. In Henri Gilbert, editor, Advances in
Cryptology – EUROCRYPT 2010, pages 24–43, Berlin,
Heidelberg, 2010. Springer Berlin Heidelberg.

[36] Masaya Yasuda, Takeshi Shimoyama, Jun Kogure,
Kazuhiro Yokoyama, and Takeshi Koshiba. Secure
Pattern Matching using Somewhat Homomorphic En-
cryption. In Proceedings of the 2013 ACM Workshop
on Cloud Computing Security Workshop, CCSW ’13,
page 65–76, New York, NY, USA, 2013. Association
for Computing Machinery.

[37] Xun Yi, Mohammed Golam Kaosar, Russell Paulet,
and Elisa Bertino. Single-Database Private Informa-
tion Retrieval from Fully Homomorphic Encryption.
IEEE Transactions on Knowledge and Data Engineer-
ing, 25(5):1125–1134, 2013.

A Mappings to Constant-weight Codewords

In this section, we propose additional techniques to map ele-
ments to constant-weight codewords. As a reminder, the goal
is for the mapping (and inverse mapping) procedure to be
efficient and less expensive than storing an equivalence table.

Algorithm 7 INVERSE PERFECT MAPPING

Input: y ∈CW (m,k)

1: x = 0
2: h = 1
3: for m′ ∈ [m] do
4: if y[m′] = 1 then
5: x = x+

(m′
h

)
6: h = h+1

Output: x ∈ N0

Perfect Mapping. The perfect mapping was described in
Section 3. Since the mapping is one-on-one, there also exists
an inverse mapping which is described in Algorithm 7. Sim-
ilar to the mapping, the complexity of the inverse mapping
procedure is O(m+ k).

The perfect mapping also preserves the order between the
mapped elements. This is useful in applications where it is
important to preserve the ordering of elements in the domain,
e.g., comparison operators.

Lossy Mapping. In some cases, we may need to map ele-
ments of some large domain to constant-weight codewords
but the size of the domain is too large to assign a distinct
codeword to each element. Recall that if S is the domain, the
code length, m, needs to be chosen such that

(m
k

)
≥ |S| which

results in a prohibitively large m.
To address this issue, we propose a lossy mapping inspired

by Bloom filters. The procedure for the lossy mapping is
given in Algorithm 8.

Algorithm 8 LOSSY MAPPING

Parameters: Series of uniformly random hash functions
(Hi : S 7→ [m])i∈N
Input: x ∈ S,m,k ∈ N

1: cnt← 0
2: i← 1
3: y← 0m

4: while cnt < k do
5: m′ = Hi(x)
6: if y[m′] = 0 then
7: y[m′] = 1
8: cnt = cnt +1
9: i = i+1

Output: y ∈CW (m,k)

Based on the definition, a probability exists that unequal
elements of the domain are mapped to the same codeword
which is formalized in the following theorem.

https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL

Theorem 2. In Algorithm 8, assume (Hi : S 7→ [m])i∈N is a
series of uniformly random hash functions and Mm,k(x) is the
output of the algorithm for input x, m, and k with (Hi)i∈N as
the parameters. For two randomly chosen elements x,y ∈ S
such that x 6= y,

P [Mm,k(x) = Mm,k(y)] =
1(m
k

) . (7)

Proof. To prove this theorem, it suffices to prove that for any
given codeword in the range of Mm,k(x) such as c,

P [Mm,k(x) = c] =
1(m
k

) .
We prove this by induction over k. For k = 1, it is easy to see
that

P [Mm,1(x) = c] =
1
m

for any c ∈ Range(Mm,1(x)).
Let I(c) denote the positions in the codeword c where the

bit is set to one. For k > 1, the probability that H1(x) ∈ I(c)
is equal to k

m . By induction, the probability that set of the
next k−1 distinct outputs in the series (Hi(x))i≥2 is equal to
I(c)−{H1(x)} is equal to 1

(m−1
k−1)

. Hence

P [Mm,k(x) = c] =
k
m

1(m−1
k−1

) = 1(m
k

) .

Due to the lossy nature of the mapping, an inverse mapping
is not available for the lossy mapping.

B Correctness of Algorithm 5

Theorem 3. The output of Algorithm 5 is identical to that of
Algorithm 1.

Proof. To prove the correctness of the oblivious expansion
in Algorithm 5, we prove it is equivalent to the oblivious
expansion of SealPIR, shown in Algorithm 1. Also, let Sub
denote the substitution operation For this, we prove that line
4–7 of Algorithm 1 is equivalent to line 7–12 of Algorithm 5.

In Algorithm 1, denote cts[b] on line 4 by m(x) for simplic-
ity. By executing lines 4 to 7, of the protocol, we can see that
the new values for cts[b] and cts[b+2a] are

cts[b]← m(x)+SubN/2a+1(m(x))

cts[b+2a]← x−2a ·m(x)+SubN/2a+1(x
−2a ·m(x))

Similarly for Algorithm 5 and denoting cts[b] on line 7 as
m(x), by executing lines 7 to 12, the new values for cts[b] and
cts[b+2a] are

cts[b]← m(x)+SubN/2a+1(m(x))

cts[b+2a]← x−2a ·m(x)− x−2a ·SubN/2a+1(m(x))

So cts[b] gets the same value after both protocols. To
show that cts[b+2a] also gets the same value, it suffices to
show that SubN/2a+1(x−2a ·m(x)) =−x−2a ·SubN/2a+1(m(x))
which can be proven as follows:

SubN/2a+1(x
−2a ·m(x)) = (xN/2a+1)

−2a

·m(xN/2a+1)

= x−N−2a ·m(xN/2a+1)

= −x−2a ·m(xN/2a+1)

= − x−2a ·SubN/2a+1(m(x))

C Runtimes for Parallelized Operators

Runtimes for parallelized plain operators are given in Table 12.
The runtimes in this table all have at most a 2 times speedup
compared to the non-parallel version of the corresponding
operator. The speedup for the folklore operator does not
differ substantially from the speedup of the constant-weight
operators.

Runtimes for parallel arithmetic operators are also given in
Table 12. Unlike the parallel operators, there is a substantial
difference in the speedup that the folklore and constant-weight
operators gain from parallelization. The folklore operator
gains at most a 2 times speedup whereas the folklore operators
gains up to a 10 fold speedup.

D Detailed Runtimes of the Unary Approach,
SealPIR and MulPIR

The unary approach occurs when k = 1 in constant-weight
PIR, or when d = 1 in SealPIR and MulPIR. In this ap-
proach, the selection vector in its entirety is communicated
over the network. In the unary approach, no expensive ho-
momorphic operations such as homomorphic multiplications
are performed. There is also no layered encryption as done
in SealPIR. Hence, the server time is smaller than other pro-
tocols shown in this work. However, since the size of the
selection vector is on the order of the number of rows in the
database, the upload cost rises quickly as the number of rows
grows. The upload cost becomes impractical very early, hence
it is not a suitable solution for databases with a large number
of rows.

We also provide numbers for SealPIR and MulPIR for
payload of one plaintext in Table 13.

Table 12: Runtimes for plain and arithmetic equality operators
in milliseconds when run in parallel. Dashes indicate cases
where the ciphertext was undecryptable due to homomorphic
noise. k and m denote the Hamming weight and constant-
weight code length, respectively.

Plain Operators
n 28 216 232 264 2128 2256 2512

Plain
Folklore

` 8 16 32 64 128 256 512
Mult Depth 3 4 5 6 7 8 9
N = 8192 0.20 0.25 - - - - -

N = 16384 0.74 0.96 1.3 1.9 2.7 4.3 7.6

Plain
Constant-

weight
k = log2 n

k 8 16 32 64 128 256 512
Mult Depth 3 4 5 6 7 8 9

m 12 22 43 85 168 334 665
N = 8192 0.18 0.28 - - - - -

N = 16384 0.58 1.0 1.2 1.9 2.6 4.1 6.9

Plain
Constant-

weight
k = 1

2 log2 n

k 4 8 16 32 64 128 256
Mult Depth 2 3 4 5 6 7 8

m 11 19 36 68 132 261 517
N = 8192 0.15 0.18 0.24 - - - -

N = 16384 0.37 0.75 0.87 1.4 2.1 2.8 4.1

Plain
Constant-

weight
k = 1

4 log2 n

k 2 4 8 16 32 64 128
Mult Depth 1 2 3 4 5 6 7

m 24 37 64 117 221 427 838
N = 4096 0.027 - - - - - -
N = 8192 0.058 0.11 0.22 0.25 - - -

N = 16384 0.18 0.5 0.76 1.03 1.3 1.8 2.6

Plain
Constant-

weight
k = 1

8 log2 n

k 1 2 4 8 16 32 64
Mult Depth 0 1 2 3 4 5 6

m 256 363 569 968 1749 3290 6349
N = 4096 0.0001 0.028 - - - - -
N = 8192 0.0005 0.067 0.14 0.22 0.27 - -

N = 16384 0.002 0.2 0.53 0.73 1.1 1.4 1.8

Arithmetic Operators
n 28 216 232 264 2128 2256 2512

Plain
Folklore

` 8 16 32 64 128 256 512
Mult Depth 3 4 5 6 7 8 9
N = 8192 0.43 - - - - - -

N = 16384 1.7 3.1 5.6 10 20 38 74

Arithmetic
Constant-

weight
k = log2 n

k 8 16 32 64 128 256 512
Mult Depth 4 5 6 7 8 9 10

m 12 22 43 85 168 334 665
N = 8192 0.29 - - - - - -

N = 16384 1.0 1.4 2.0 2.7 4.4 8.2 14

Arithmetic
Constant-

weight
k = 1

2 log2 n

k 4 8 16 32 64 128 256
Mult Depth 3 4 5 6 7 8 9

m 11 19 36 68 132 261 517
N = 8192 0.22 0.36 - - - - -

N = 16384 0.84 1.1 1.6 2.6 4 6.5 9.5

Arithmetic
Constant-

weight
k = 1

4 log2 n

k 2 4 8 16 32 64 128
Mult Depth 2 3 4 5 6 7 8

m 24 37 64 117 221 427 838
N = 8192 0.29 0.42 - - - - -

N = 16384 0.70 1.0 1.5 2.8 4.2 7.1 12

Arithmetic
Constant-

weight
k = 1

8 log2 n

k 1 2 4 8 16 32 64
Mult Depth 1 2 3 4 5 6 7

m 256 363 569 968 1749 3290 6349
N = 4096 0.44 - - - - - -
N = 8192 0.81 1.1 1.6 - - - -

N = 16384 3.0 4.5 7.0 12 20 37 73

Table 13: Runtime of PIR protocols for a response size of one
plaintext. Runtimes are in seconds and an average of 10 runs.
*This parameter set did not produce a decryptable result

Time (s)
of

Rows
DB Size

(MB)
Code

Length Expansion Sel. Vec.
Calculation

Inner
Product Total Server

Folklore, N = 8192 (Query = 216 KB, Response = 106 KB)

256 8 5 0.06 58 0.9 60
512∗ 9 10 0.1 130 1.7 130

Folklore, N = 16384 (Query = 913 KB, Response = 224 KB)

512 21 9 0.8 650 7.4 660
1024 42 10 0.8 1500 14 1500
2048 84 11 0.8 3300 29 3300
4096 170 12 0.8 7200 56 7200
8192 340 13 0.8 16000 120 16000

16384 670 14 0.8 35000 250 35000

Unary, N = 4096 (Response = 46 KB)

256 2.6 256 0.5 0.009 0.2 0.8
512 5.2 512 1 0.02 0.4 1.4
1024 10 1024 1.9 0.05 0.8 2.8
2048 21 2048 3.8 0.2 1.7 5.7
4096 42 4096 7.7 0.5 3.3 11
8192 84 8192 15 1.9 6.4 24

16384 170 16384 30 6.7 13 49
32768 340 32768 59 23 25 110
65536 670 65536 120 87 52 260

131072 1300 131072 240 340 110 680

Constant-weight k = 2,N = 8192, (Query = 216 KB, Response = 106 KB)

256 5.2 24 0.3 8.3 0.9 9.7
512 10 33 0.5 17 1.7 19
1024 21 46 0.5 33 3.5 38
2048 42 65 1 67 6.9 75
4096 84 92 1 130 13 150
8192 170 129 2 270 27 300

16384 340 182 2 540 55 600
32768 670 257 5 1100 110 1200
65536 1300 363 5 2300 230 2500

SealPIR d = 2,N = 4096 (Query = 61.4 KB, Response = 307 KB)

512 4.98 46 - - - 0.34
1024 9.96 64 - - - 0.46
2048 19.9 92 - - - 0.80
4096 39.8 128 - - - 1.2
8192 79.6 182 - - - 2.2

16384 159 256 - - - 3.7
32768 318 364 - - - 7.0
65536 637 512 - - - 12

131072 1275 726 - - - 24
262144 2550 1024 - - - 50
524288 5100 1450 - - - 100
1048576 10200 2048 - - - 200
2097152 20401 2898 - - - 430

MulPIR d = 2,N = 8192 (Query = 122 KB, Response = 119 KB)

256 4.98 32 - - - 2.3
512 9.96 46 - - - 4.1
1024 19.9 64 - - - 6.8
2048 39.8 92 - - - 12
4096 79.6 128 - - - 22
8192 159 182 - - - 44

16384 318 256 - - - 83
32768 637 364 - - - 160
65536 1275 512 - - - 320

131072 2550 726 - - - 630
262144 5100 1024 - - - 1200
524288 10200 1450 - - - 2500

	Introduction
	Background and Related Work
	Homomorphic Encryption
	Fan–Vercauteren (FV) Cryptosystem.
	Microsoft SEAL Library

	Private Information Retrieval
	Single-Server computational PIR
	SealPIR
	MulPIR

	Equality Operators
	PIR using Equality Operators

	Keyword PIR

	Constructions for Constant-weight Codes
	Equality Operators for Constant-weight Codewords
	Mappings to Constant-weight Codewords
	PIR using Constant-weight Codewords
	Setup
	Query
	Process Query
	Extract
	Constant-weight Keyword PIR

	Evaluation of Equality Operators
	Plain Operators
	Arithmetic Operators

	Evaluation of PIR for Large Payloads
	Analysis of Constant-weight Keyword PIR
	Conclusion
	Mappings to Constant-weight Codewords
	Correctness of alg:oblivious-expand
	Runtimes for Parallelized Operators
	Detailed Runtimes of the Unary Approach, SealPIR and MulPIR

