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Abstract

Explainable phishing detection approaches are usually
based on references, i.e., they compare a suspicious web-
page against a reference list of commonly targeted legitimate
brands’ webpages. If a webpage is detected as similar to any
referenced website but their domains are not aligned, a phish-
ing alert is raised with an explanation comprising its targeted
brand. In comparison to other techniques, such explainable
reference-based solutions are more robust to ever-changing
phishing webpages. However, the webpage similarity is still
measured by representations conveying only partial intentions
(e.g., screenshot and logo), which (i) incurs considerable false
positives and (ii) gives an adversary opportunities to compro-
mise user confidence in the approaches.

In this work, we propose, PhishIntention, to extract precise
phishing intention of a webpage by visually (i) extracting its
brand intention and credential-taking intention, and (ii) inter-
acting with the webpage to confirm the credential-taking in-
tention. We design PhishIntention as a heterogeneous system
of deep learning vision models, overcoming various technical
challenges. The models “look at” and “interact with” the web-
page for its intention, which are robust to potential HTML
obfuscation. We compare PhishIntention with four state-of-
the-art reference-based approaches on the largest phishing
identification dataset consisting of 50K phishing and benign
webpages. For similar level of recall, PhishIntention achieves
significantly higher precision than the baselines. Moreover,
we conduct a continuous field study on the Internet for two
months to discover emerging phishing webpages. PhishIn-
tention detects 1,942 new phishing webpages (1,368 not re-
ported by VirusTotal). Comparing to the best baseline, Phish-
Intention generates 86.5% less false alerts (139 vs. 1,033
false positives) while detecting similar number of real phish-
ing webpages. Our models and code are available at https:
//github.com/lindsey98/PhishIntention.qgit.
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1 Introduction

Phishing attack, one of the most common cyber attacks, causes
huge financial losses every year [15]. The attacks and their de-
fenses span across webpages [10,11,20,41,71], emails [29,30,
38,59], and mobile applications [47,48]. Existing phishing de-
tection techniques can be categorized into blacklist-based [8,
51,52], classification-based [17,37, 39,40, 46,60, 62,69], and
referenced-based solutions [10,11,23,41,49,57,64].

Blacklist-based solutions such as Google Safe Brows-
ing [2, 8] and OpenPhish [6] use dynamic blacklists to track
reported phishing URLSs. In contrast, classification-based so-
lutions [24,40,46,62,69], trained from a collected phishing
dataset, perform binary predictions on phishing using the
features extracted from a given webpage and its URL. De-
spite showing promising results in experiments, empirical
study shows that they have limited performance on the ever-
changing webpages in the wild [41]. The challenge is that the
blacklists and collected phishing webpages used for training
become obsolete very quickly [52]. Even worse, phishing kits
keep evolving [21,27,53,54] and their creation is typically
automated [21], resulting in a never-ending cat-and-mouse
game between phishing attacks and defenses that are based
on blacklists/classification.

Reference-based phishing detection solutions are devel-
oped based on the intuition that, the key goal of a phish-
ing attack is to deceive users with pages visually similar
to legitimate websites. Thus, various reference-based solu-
tions [10, 11, 16,23,41] are designed for detecting the invari-
ants of phishing attacks, since a phishing webpage should be
semantically similar to its targeted benign webpage. These
approaches keep a list of references (e.g., screenshots, logos,
etc.) representing well-known target websites (e.g., that of
PayPal). Given a webpage W), (i) if the representation of
W, is similar to that of a target webpage W, (ii) but the
domain of W), is different from the legitimate domain of W},
‘W, is reported as suspicious and its target brand provided as
an explanation. For instance, if a webpage has a screenshot
similar to that of the PayPal webpage, but its domain does
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(a) PayPal login webpage.

(b) AT&T login webpage.

(c) A webpage disguising as PayPal.

Figure 1: Challenging examples for VisualPhishNet [10]: It matches Figure 1a and Figure 1b with high confidence despite they
being different brands. In contrast, it cannot match Figure 1a and Figure 1c although they carry the same brand intention.

not align with PayPal’s domain (e.g., paypalverifysms.com
instead of paypal.com), a phishing alert is raised. Existing
approaches use screenshots [10, 23] and logos [11, 16,41]
as the reference representations of target websites. However,
they convey only partial intention of a phishing webpage,
leading to false or missing alerts.

Screenshots as a reference do not perfectly capture brand
intention, i.e., the intention indicating the company owning
the webpage, since they contain many irrelevant details (e.g.,
pixel colors, embedded advertisements, etc.). Figure | shows a
webpage wrongly reported by VisualPhishNet [10], which em-
ploys a deep learning model to compare the similarity of two
screenshots. When VisualPhishNet finds a webpage’s screen-
shot similar to that of a referenced webpage, it concludes that
they convey the same webpage semantics. However, Figure la
(reference page) and Figure 1b look similar, but convey dif-
ferent brand intentions. In contrast, Figure 1a and Figure lc
appear dissimilar, but convey the same brand intention (i.e.,
PayPal). Such visual challenges leads to both false positives
and false negatives in VisualPhishNet (see Section 6).

Logos as a reference miss to capture credential-taking inten-
tion, i.e., the intention requiring a user to provide credentials.
Figure 2 shows a false positive reported by Phishpedia [41], a
deep-learning based approach which detects identity logo on
a screenshot and compares it with logos in the reference list.
In Figure 2, Phishpedia reports a benign webpage as phishing
because it assumes that logos capture the full semantics of the
webpage. As shown in Section 8, many webpage semantics
can hardly be captured by logos alone. Benign webpages may
refer to the big social media companies (e.g, Facebook) for
login and registration via single sign-on method, article shar-
ing, or advertisement promotion. We term such webpages as
misleading legitimacies, which share plausibly similar brand
intention to some target company. They pose a challenge for
logo-based approaches. More importantly, an adversary can
collect and disseminate misleading legitimacies to compro-
mise user confidence in such solutions. Once users abandon
the solution because of the false alerts, attackers can launch a
new round of phishing campaigns.

Phishing pages are generally set up with credential-taking
intention in various forms. Table | shows the general distri-
bution and taxonomy of the 29,496 phishing webpages used
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Figure 2: A false positive reported by Phishpedia; it reports
the webpage as phishing Instagram, based on the logo on the
top-right.

Table 1: Distribution and taxonomy of phishing webpages
regarding the credential-taking intention. CRP stands for
credential-requiring page.

- # non-CRP phishing
# CRP phishing Linked to | Non-textual | False Total
CRP credential | positive
25403 3,310 704 79
(86.1%) (11.2%) (2.4%) (0.3%) 29,496

in [41]. Overall, 86.1% of the webpages require credentials
directly. For the remaining phishing webpages (i.e., 13.9%),
11.2% of the pages contain a link to a login/signup webpage,
and 2.4% of the pages require sophisticated interactions such
as scanning a QR code, solving a CAPTCHA, etc.

In this work, we propose PhishIntention, to precisely ex-
tract both brand and credential-taking intentions. Given a
webpage, we design PhishIntention to infer (i) what brand
information it represents, (ii) whether and how it requests user
credential, and (iii) whether clicking certain button/menu on
the screenshot can lure the users to provide their credentials.
PhishIntention carries out both static and dynamic analyses
to capture webpage intentions. Given a webpage, the static
analysis extracts the brand and credential-taking intentions
from the appearance of a webpage. Both intentions will be
highlighted on the screenshot of a detected webpage (see
Figure 10). The dynamic analysis further interacts with the
webpage to verify whether it lures users to input credentials
via its linked pages. Compared to state-of-the-art login form



detection techniques based on HTML analysis [22], PhishIn-
tention uses computer vision technique to detect and interact
with the webpage, which is more robust against HTML ob-
fuscation (see experimental results in Section 8).

Technically, PhishIntention first extracts the abstract lay-
out of a webpage screenshot consisting of all its salient Ul
components. Based on the layout, PhishIntention (i) selects
the identity logo to identify its potential brand intention, and
(ii) classifies the layout to recognize whether the webpage
requires user credential, i.e., whether it is a CRP (credential-
requiring page). PhishIntention predicts which UI component
in a non-CRP may link to a CRP. By emulating user clicks on
the webpage, PhishIntention retrieves and conducts further
static and dynamic analysis on the new webpages.

We conduct extensive experiments to evaluate PhishInten-
tion on a dataset of over SOK phishing and benign webpages.
The experimental results show that PhishIntention signifi-
cantly outperforms existing solutions such as VisualPhish-
Net [10], EMD [23], PhishZoo [11], and Phishpedia [41], in
terms of detection capability and false-positive rate, by ac-
curately recognizing brand and credential-taking intention
of a webpage. Moreover, our experiments also demonstrate
that PhishIntention is much more robust against misleading
legitimacies and HTML obfuscation attack. Furthermore, we
carry out a field study on the Internet for two months; PhishIn-
tention discovered 1,942 new phishing webpages (including
1,368 not reported by VirusTotal). Comparing to the best base-
line [41], PhishIntention generates 86.5% less false alerts (139
vs. 1,033 false positives) while detecting ~6% less phishing
webpages (1,942 vs. 2,071 true positives).

In summary, we make the following contributions:

* We propose a referenced-based phishing detection system
that captures both brand intention and credential-taking
intention. To the best of our knowledge, PhishIntention is
the first work which analyzes both intentions in a systematic
way for phishing detection.

* We address various technical challenges in detecting the
intentions by orchestrating multiple deep learning mod-
els. By design, PhishIntention is robust against misleading
legitimacies and HTML obfuscation attack.

* We conduct extensive experiments to evaluate PhishInten-
tion. The experiments evaluate the overall and step-wise
effectiveness, robustness against various adversarial attacks,
and usefulness in practice.

* We implement PhishIntention with a phishing monitoring
system. PhishIntention reports phishing webpages per day
with the highest precision as compared to the state-of-the-
art phishing detection solutions.

2 Threat Model

An attacker deploys an online phising webpage W), disguis-
ing as the credential-requiring webpage (e.g., login or signup
webpage) of a legitimate website W, (e.g., PayPal, Face-
book, etc.). A user browsing W/, may be deceived to provide
his/her credentials of website W, in W),. A solution needs
to detect such phishing attacks while being robust against the
following adversaries:
Misleading Legitimacy. Targeting reference-based solutions,
an attacker can collect and disseminate legitimate webpages to
users, causing the phishing detection system to generate false
alerts. Such webpages can share plausible brand intention
(e.g., having the same logo) with some well-known companies
(e.g., Google and PayPal). By disseminating such misleading
legitimacies to trigger false alerts, attackers can compromise
user confidence in the solution, which lays the foundation
for launching a new phishing campaign. Such misleading
legitimacies are prevalent on the Internet, and our empirical
results show that we can collect 3K misleading legitimacies
within a week from the emerging new websites (see Section
9).
HTML Obfuscation. Targeting the solutions that use vari-
ous HTML analysis techniques for detecting credential-taking
intention, an attacker modifies the HTML code of the phish-
ing webpages, while preserving the same appearance and
dynamics to interact with the users.
Adversarial Attack against Deep Learning Models. Tar-
geting any deep-learning based solutions, an attacker can
generate adversarial samples to misguide the models to make
wrong predictions. If successful, the phishing pages can evade
a deep-learning based phishing detection solution.
PhishIntention mitigates the first adversary by significantly
lowering the false-positive rate on misleading legitimacies;
addresses the second by analyzing webpage screenshots, with
the least dependence on HTML analysis; and addresses the
third by adopting a model gradient-masking technique to
nullify the popular gradient-based adversarial attacks.

3 Related Works

Classification-based and blacklist-based approaches.
Blocking webpage visits using blacklists is a popular solu-
tion in the industry (e.g., using Google Safe Browsing [8]
and OpenPhish [6]). The generation of a blacklist relies on
a combination of automatic scanning and manual verifica-
tion [14, 52]. However, generation of phishing websites is
largely automated [21], and causes a time delay between
blacklist updates and zero-day phishing emergence [52].
Many works are designed to craft features from URL,
HTML code, screenshot, etc., to build a classifier for phishing
detection. Rakesh et al. [62] construct a feature set including
HTTP/HTTPS protocol type, URL length, etc., to distinguish
phishing URLSs from legitimate ones. Following their work,



Hung et al. [37] propose a deep learning sequential model
called URLNet to classify URLs into phishing or benign.
Cantina [69], Li et al. [40], and Lee et al. [39] aggregate both
URL-based features and HTML-based features to achieve
superior performance on their datasets. Readers may refer to
a few surveys on classification-based solutions [34,61,63].

Reference-based approaches. Referenced-based solutions
detect phishing attacks by referencing a set of representations
(e.g., logo and screenshot) of well-known brands (Paypal,
Amazon, etc.). Based on the representation forms, the solu-
tions can be categorized into search-engine based, screenshot-
based, and logo-based approaches.

Screenshot-based approaches explore different similarity
measurements between two screenshots. Fu et al. [23] propose
extracting a screenshot signature as reference. They adopt a
dynamic programming algorithm, Earth Mover’s Distance
(EMD), to find the optimal match between two screenshots
based on their color scheme. Following their work, Medvet
et al. [49] and Rosiello et al. [57] compare visible text and
visual similarity between HTML DOM tree and HTML tags in
the screenshots. VisualPhishNet [10] is the latest screenshot-
based reference solution, which trains a Siamese model to
predict the similarity between two given screenshots.

Logo-based approaches address logo location and recogni-
tion problem. Afroz et al. [11] and Wang et al. [64] propose
PhishZoo and VeriLogo, respectively. They employ SIFT algo-
rithm [45] to detect and match the logo on a screenshot. Due
to the limitation of SIFT algorithm, their approaches incur
high false positive rate and large runtime overhead [41]. The
most recent work Phishpedia [41] overcomes the challenge
of recognizing logos by training two deep-learning based
computer vision models, i.e., an object detection model and a
Siamese model. Both PhishIntention and Phishpedia leverage
computer vision models to detect phishing webpages, but they
differ substantially in the following aspects:

Intention extraction. Phishpedia extracts only the brand
intention of a webpage. Although it reports input boxes
on the screenshot, they are not used to detect phishing
pages. In contrast, PhishIntention extracts both brand inten-
tion and credential-taking intention, and further confirms the
credential-taking intention via webpage interaction.
Technical contribution: Technically, Phishpedia uses only
the logo to detect phishing. In contrast, PhishIntention orches-
trates a system of deep learning models (detailed in the next
two sections) to serve multiple purposes:

1) Inferring credential-taking intention by abstracting and pre-
dicting webpage layout;

2) Detecting whether a non-CRP can further lure a user to
visit a CRP via both static and dynamic analyses;

3) Improving the logo detection technique with small number
of samples (we achieve a better performance with ~8K train-
ing screenshots, in comparison to Phishpedia trained with
~29K screenshots) and the logo recognition technique with

Algorithm 1: detect_phishing

Input :url,S,code, R, t4ep,1s
Output :binary phishing result, target brand

1 if 4., < 0 then
L return {False, Null }

// step 1: abstract webpage layout detection
3 awl = detect_layout(sS)
// step 2: brand recognition
4 brand = match_logo(R,awl.logo,t)
s if brand is null or url.domain € brand.domains then
6 L return {False, Null}

7 else

N

// step 3: classify CRP
8 is_CRP =CRP_classify(S,awl)

9 if is_CRP is true and url.domain ¢ brand.domains
then
10 L return {True, brand}
11 else
// step 4: look for CRP (dynamic analysis
12 links = detect_potential_CRP(S,code)
13 for link € links do
14 urly, Sy, code; = parse link
// recursively continue the process

15 {is_phishing, brand,, }=

detect_phishing(url;, S, codey,tge, — 1)
16 if is_phishing and

urly.domain ¢ brand;qr.domains then
17 L return {True, brand,,, }

18 return {False, Null}

OCR-aided model architecture (see Q3 in Section 8 for de-
tails).

4 PhishIntention: Design and Development

Figure 3 presents an overview of PhishIntention. Given a URL
(along with its screenshot and HTML code), PhishIntention
first extracts the Abstract Webpage Layout (AWL) for detect-
ing both brand intention and credential-taking intention. For a
webpage without credential-taking intention, PhishIntention
interacts with the webpage to search for a link that in turn
directs to a credential-requiring page (CRP).

Algorithm 1 (detect_phishing) lists down the steps. It
takes as input a url (with its screenshot .§ and HTML code
code), a list of protected brands K, a CRP search depth t4,,,
for dynamic analysis, and a logo matching threshold ;. It
generates an output whether the url is a phishing webpage
and the phishing target brand (if so). For each brand in X, we
maintain its logos and legitimate domains.

Step 1 (Section 4.1): Abstract Webpage Layout Detection.
We extract a new form of webpage representation, i.e., Ab-
stract Webpage Layout (AWL), describing the regions and po-



A
v —
 —

 —

Brand Intention

Brand Reference List

I

CRP transition potential

A

1
| Button | | Button || Button |

Block

»

AWL
Extraction

Block

Block

g

J

ILogoI | Button || Button | | Button |

| Input |
I

)

Block

» e

Link

Block Credential

I Taking Region
(Highlighted)

Webpage Screenshot

AWL Extraction

Detected Non-CRP Layout

Detected CRP Layout Phishing Alert

Figure 3: PhishIntention extracts screenshot layout to detect both its brand and credential-taking intentions. For a non-CRP,
PhishIntention further infers the UI elements that could transition to a CRP. A phishing alert is generated when a webpage
(1) intends to take credential, (2) conveys brand intention of a company r, while (3) its domain does not align with that of r.

sitions of salient UI components in the screenshot (as showed
in Figure 6, and line 3 in Algorithm 1). The AWL helps in
detecting logos and classifying whether a page requires cre-
dentials.
Step 2 (Section 4.2): Brand Recognition. We compare a
logo in AWL (i.e., awl.logo, line 4 in Algorithm 1) and the
logos of brands in . If there is no match with similarity
greater than z;, we report the webpage as benign. Otherwise,
we further proceed to the next steps.
Step 3 (Section 4.3): CRP Classification. Subsequently, we
build a CRP classifier that takes the screenshot and the AWL
as input, and classifies whether the webpage requires user
credentials. This step corresponds to line 8 in Algorithm [. If
the webpage is a CRP, but the domain of its URL does not
align with any of the domains of the matched brand, we report
it as a phishing page (lines 9-10).
Step 4 (Section 4.4): CRP-Transition Location. If the
above mentioned conditions are not satisfied, we investigate
whether any link/button on the webpage linked to a CRP,
which can potentially lure users to provide their credentials.
This step corresponds to lines 14-15 in Algorithm 1. We em-
ulate user clicks on the reported links/buttons, and retrieve
new redirected URLs along with their screenshots and HTML
codes (line 14). Given a new URL (url;), we further detect its
phishing intention recursively (line 15). The recursive process
continues until the predefined CRP search depth #4,, is ex-
hausted (line 1-2 in Algorithm 1). We report the given URL as
benign if all those links/buttons redirect to benign webpages.
In order to accomplish the above steps, we need to address
the following technical challenges.
Challenge 1: Layout Definition and Extraction. Detecting
the AWL of a webpage is a non-trivial task. First, visually
salient components are hard to be fully formalized. High-
lighting too fine-grained UI elements (e.g., detailed icon and

#%BANKOF SCOTLAND JIFOJSM O JIFOJSX

(a) Bank of Scotland (b) A Russian Company
Figure 4: Example where Siamese model in Phishpedia mis-
matches two text-logos (from https://lyudyamolyudyah.ru/)

text) to compose layout introduces irrelevant noises. In con-
trast, highlighting too coarse-grained Ul elements (e.g., huge
blocks) may miss salient intention-revealing information such
as credential-taking UI components. Second, extracting a lay-
out is technically challenging. Heuristics for visually salient
HTML elements are hard to define. The HTML elements
relevant to a page skeleton (e.g., div tag) may be visible or
invisible given different Javascript and CSS frameworks.
Challenge 2: Text-Logo Recognition. L.ogo recognition is
basically a logo similarity measurement problem. It is a chal-
lenging task because (i) the logos under the same brand can
be very diverse and (ii) the logos (especially text logo) under
different brands can be visually similar. Lin et al. propose
a Siamese training solution in Phishpedia [41] to address
the first issue. However, the technique still suffers from the
false positives caused by the similar text-logos under different
brands. Figure 4 shows an example where the Siamese model
proposed in Phishpedia mismatches the logo of Bank of Scot-
land with a Russian brand. They share similar appearances
and color, but convey totally different brand intentions.
Challenge 3: Identifying and Confirming Credential-
Taking Intention. An input box on a webpage does not nec-
essarily take credentials, e.g., it could be a search box. More
importantly, a phishing webpage portal may render no input
for user credential, i.e., it may not be a CRP (see Figure 5).
Instead, it presents a button to lure the user to input credential
after clicking the button. For the latter issue (i.e., CRP-link on
the webpage), the HTML code implementation can be quite
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Figure 5: A phishing webpage linking to a CRP. The CRP
button on Figure 5a links to the webpage in Figure 5b.
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Facebook helps you connect and share
with the people in your life.

Figure 6: AWL of the Facebook login page

diverse; besides, attackers can evade using HTML obfusca-
tion. These limit the effectiveness of HTML heuristics.

4.1 Abstract Webpage Layout (AWL)

Given a webpage screenshot .S, we define its Abstract Web-
page Layout, L(S), as a set of boxes, representing visually
salient rectangular regions on S. Each box b € L() is de-
scribed by a vector (x,y,w, h,t), where x,y represent its hori-
zontal and vertical coordinates in S, while w, h represent its
width and height, and ¢ is its UI type. In this work, we sup-
port five UI element types — identity logo, input box, button,
text label, and block. Block indicates a salient region on the
webpage screenshot which is none of logo, input box, button,
and text label. The identity logo conveys the brand intention,
whereas the spatial arrangement of those Ul elements may
further convey credential-taking intention. Figure 6 illustrates
the AWL of a Facebook webpage. Each orange rectangle,
with its type annotated, represents a visually salient region.
We design a data-driven approach to address the problem of
ambiguous definitions of layouts. Specifically, we constructed
a layout dataset of ~9K webpage screenshots, annotated with
regions and types of salient UI elements (Section 5.1). Subse-
quently, we train an object detection model to predict salient
UI elements (and their types) on the screenshots. Techni-
cally, we regard each annotated component as an object on a
screenshot (similar to a pedestrian or a car in a street view).
We choose the Faster R-CNN model [56], which takes as
input a screenshot, and generates as output a set of regions
on the screenshot in the form of (x,y, w, i, t), where, x,y,w, h
represent the coordinate in horizontal position, vertical posi-
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Figure 7: OCR-aided Siamese Model

tion, width, and height, respectively. And t is a one-hot vector
where each dimension represents a specific classification type
(e.g, logo, button, etc.). The deep learning model is trained to
minimize the errors in type classification and region predic-
tion on the training dataset.

4.2 OCR-aided Brand Recognition

An identity logo, if exists, is one of the components in the
AWL. As mentioned in Section 4, a challenge in recognizing
logo is that, it can be an icon-like image, a sequence of charac-
ters, or even both. To compare two logo images, Phishpedia’s
Siamese model [41] is not expressive enough to capture the
fine-grained text shape (see Figure 4). In contrast, universally
applying OCR (Optical Character Recognition) [32] cannot
work on icon-like logos, and further incurs a high runtime
overhead. Comparing to other deep learning solutions [56]
which costs only a few milliseconds, an end-to-end deep OCR
model [58] takes a prohibitive 0.5s on average for predicting
the text of a single image.

We propose OCR-aided Siamese matching model to strike
a balance in learning between appearance-based features and
text-shape based features, which is also significantly more
time-efficient than full OCR model. Our OCR-aided Siamese
model is designed as depicted in Figure 7. The model has two
branches: one branch is the ResNetV2-50 feature extractor
from a pre-trained logo classification model which outputs
appearance-based embedding X,ppeqr, the other branch goes
through the encoder from a pre-trained OCR model which
outputs text-shaped based embedding X,p.. Here, the pre-
trained OCR encoder captures text features over appearance-
based features to recognize digits and characters. We take the
ASTER encoder architecture [58] as our model.

The embeddings from the two branches are concatenated as
a unified representation, i.e., X411 = [Xappear: Xshape). Finally,
the overall embedding x,; is fed into a fully connected net-
work, which is further transformed to the final logo embedding
X[og0- We jointly train all sub-modules through a logo classifi-
cation task. During deployment, we compare two logos using
the cosine similarity of their logo embeddings.
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Figure 8: Pixel-matrix representation of block layer in the
AWL input channel, assuming that the shape is 10x 10.
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Figure 9: The hybrid input for CRP classifier

4.3 CRP Classification

Defining HTML-based heuristics [22] (e.g., looking for spe-
cific HTML forms) can serve as a classifier for CRP. However,
it is easy to be bypassed by HTML obfuscation attack. We
design a vision-based CRP classifier which takes a screen-
shot and its AWL as a combined input, and is independent of
HTML code implementation. The rationale is that the spatial
arrangement of Ul components (such as input boxes) may
convey credential-taking intention (see Figure 6). Comparing
to traditional image input which consists of 3-channel RGB
image, we additionally construct M input channels (M is equal
to the number of UI types) to encode the AWL. Let an RGB
image I have shape of N x N. Given a Ul component b of type
t (e.g., block), the region containing the element is specified
by < x,y,w,h >. We assign the entries in pixel-matrix (N X N)
corresponding to the pixels overlapping with the region as
ones and others as zeros. Figure 8 shows an example where
we embed the type of block in a screenshot, which derives a
channel of shape N x N and pixel entries assigned as Os or 1s.
Given M UI component types, we have M such channels. We
stack those channels with the original RGB channels as the
model input, as shown in Figure 9. Each additional channel
corresponds to the layout of a type of UI component (e.g., but-
ton, logo, blocks, etc). The channels are fed into a model with
ResNetV2-50 architecture [28] to classify whether a webpage
requires user credentials.

To provide an explanation of the credential-taking intention,
we highlight the credential-taking region on the screenshot,
as shown in Figure 10. We also overlay a heatmap on the
screenshot based on the model attribution technique, Score-
CAM [66], which reasons out the contribution of each region

Logo I:I:I:I;I
- uttonButtéuttéutton Bution
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Figure 10: A screenshot annotated by Phishlntention: the
highlighted region explains credential-taking intention

in the input to the output prediction. Technically, it measures
the output sensitivity to perturbation on the model input. For
more technical details, readers can refer to [66].

4.4 CRP-Transition Location

The landing phishing webpage may not always be a CRP.
Sometimes, attackers provide a link or show a button to lure
the victims to visit another CRP (see Table 1). We call such a
link or button as a CRP transition.

To detect the CRP transitions on a webpage, we apply
a hybrid solution, i.e., HTML heuristics as a pre-checking
filter and a deep learning solution (independent of HTML) to
predict the location of CRP transitions on the screenshot. Our
heuristic reports the hyperlinks under either condition:

1) The English text is exactly “Login” and “Sign Up” (case-
insensitive).
2) The non-English text translates to login and sign-up.

We search for the clickable DOM element with text that
matches any of the keyword heuristics. If the pre-checking
filter fails to locate any suspicious element, we resort to visual
object detector.

We train an object detector (Faster R-CNN [56]) to predict
the regions of CRP-transition based on screenshot, thereby
being independent of HTML implementation. We construct a
dataset consisting of screenshots annotated with CRP-buttons,
i.e., UI elements linkable to CRP webpages (Section 5.1).
Given that the number of the screenshots linkable to its CRP
webpage is limited, we adopt a transfer-learning routine by
pre-training an object detector on generated pseudo samples.
Specifically, we search for icon/images of CRP-buttons such
as buttons used for login and sign-up. Next, through the col-
lected dataset, we identify the “hotspot regions” on the screen-
shots where CRP-buttons frequently appear. Then, we overlay
the CRP-button images on webpage screenshots in the hotspot
regions to produce a much larger pre-training dataset. After
the pre-training, we fine-tune the object detection model based
on original screenshots labelled with CRP-buttons.



The object detector allows us to assign a confidence score
to each detected object. Hence, given a threshold for the max-
imum number of user clicks, K, our model recommends the
top-K most likely UI components linkable to a CRP. We then
emulate user clicks on those predicted components to visit
and verify potential CRPs.

4.5 Defending Against Adversarial Attacks

To tackle adversarial attacks, we equip all the deep learn-
ing models with the gradient-masking technique proposed
in [41]. Specifically, we change the ReLU activation function
f=max(0,x) to f = max(0,0.- [2]) to mask the gradients
(where a is the discretization parameter).

5 Performance Evaluation

We conduct evaluations regarding the following research ques-
tions:

* [RQ1] Phishing Detection Performance (Section 6):
How accurate and efficient is PhishIntention in detecting
phishing webpages; and how does it perform in comparison
to the baselines?

* [RQ2] Credential-taking Intention Confirmation Per-
formance (Section 7): How accurately can PhishIntention
locate CRP from a non-CRP webpage?

* [RQ3] Model-wise Performance (Section 8): How accu-
rate is each deep learning model of PhishIntention?

* [RQ4] Robustness Against Adversaries (Section 9):
Whether PhishIntention is robust against various adver-
saries:

1) When attackers collect and disseminate misleading le-
gitimacies, can PhishIntention well recognize them and
preserve user confidence?

2) When attackers build phishing webpages with HTML
obfuscation, can PhishIntention still detect and confirm
credential-taking intention?

3) Whether attackers can successfully generate adversar-
ial samples to compromise the deep learning models of
PhishIntention?

* [RQ5] Field Study (Section 10): What is PhishIntention’s
performance in detecting phishing webpages in the wild?

We design one experiment for answering each of the above
research questions. We refer to Appendix A.1 for details on
hardware configurations for training of models. In the fol-
lowing sections, we first introduce the datasets used to train
our deep learning models, then we describe each experiment
with its settings, baselines, and experimental results. Given

the complexity of experiment design (five sophisticated ex-
periments sharing six datasets), we visually describe the con-
nection among research questions, experiment designs, and
their prepared datasets in Appendix A.2.

5.1 Training/Testing Dataset

The datasets for detecting AWL, recognizing logos, classify-
ing CRPs, and locating CRP transitions are as follows.
For AWL Prediction and CRP Classification. We collected
9,010 webpage screenshots; the training:testing ratio as 9:1.
We annotate each screenshot with two types of labels:

* Layout Label: Each screenshot is labelled with boxes de-
scribing various salient UI components (logo, button, text
label, input, and block), to learn AWL. Overall, those 9,010
screenshots contain 9,540 logos, 64,386 buttons, 14,850
inputs, 7,383 labels, and 33,677 blocks.

¢ CRP Label: Each screenshot is labelled to indicate whether
it requires user credential or not.

For OCR-aided Siamese. We use Logo2K+ dataset [67] to
pre-train our OCR-aided Siamese model, containing 167,140
logo samples across 2,341 brands. In addition, we use the
Synth90k [33] and SynthText [26] datasets to pre-train the
OCR branch. We select 1,000 screenshots with logos from
the phishing webpage dataset, 1,000 from legitimate websites,
and crop their logos as testing dataset.

For CRP-Transition Location. We overlay 63 CRP-button
images on to 10,000 screenshots; this is done only for pre-
training. After pre-training, we use 4,843 non-CRP screen-
shots collected from real-world non-CRP phishing webpages
and the homepages of well-known websites (see Appendix
A.2) to train deep CRP locator. 3,310 non-CRP phishing and
1,003 non-CRP legitimate are used for testing.

5.2 Reference List & Click Emulation

We prepare a target list that includes 3,061 logos from 277
well-known brands (also used in [10,41]). The brands cover a
wide range of sectors including banking, online shopping, so-
cial media, etc. We emulate user clicks via Helium library [9]
to interact with online webpages. Helium is a tool built upon
Selenium which has high-level API design. We use its eager
mode to reduce webpage loading time.

6 RQ1: Phishing Detection Experiment

6.1 Settings

To evaluate PhishIntention’s performance in detecting brand
intention and credential-taking intention, we use 25,403 CRP
phishing webpages (see Table 1) from the phishing webpage
dataset. We randomly sample an equal number of webpages



Table 2: Baseline description (see Section 3 for details)

. Reference .
Solution Representation Description
3 .
EMD [% ] Screenshot  |Uses EMD algorithm to com-
(TDSC’06) .o
pute the similarity between
two screenshots’ colour dis-
tributions.
VisualPhish 1 . .
isualPhishNet [10] Screenshot  |Trains a deep Siamese model

(CCS*20) S
to report the similarity score

of two screenshots.

PhishZoo [11]

(ICSC’11) Logo Uses SIFT algorithm to re-

port whether a screenshot
contains a given logo.

Phishpedia [41]

(USENIX Sec’21) Logo Employs an object detection

model to extract logos from
screenshots and a Siamese
model to compare the simi-
larity between two logos.

from the benign webpage dataset. We evaluate the preci-
sion/recall of phishing detection.

Note, PhishIntention searches for a CRP from a non-CRP.
Thus, it is not possible to evaluate the overall pipeline on
traditional dataset, as many collected phishing webpages are
dead. We discuss PhishIntention’s performance of dynamic
analysis in Section 7.

6.2 Baselines

Table 2 lists four reference-based existing techniques consid-
ered in this study. We select two screenshot-based solutions
and two logo-based solutions. EMD and PhishZoo are well-
known early reference-based approaches. VisualPhishNet and
Phishpedia are the latest state-of-the-art screenshot-based and
logo-based approaches, respectively.

Reference selection. We construct a target list of 277 brands
for analysing all the five approaches. We equip the screenshot-
based approaches EMD and VisualPhishNet with 9,334 refer-
enced screenshots, and the logo-based approaches PhishZoo
and Phishpedia with 3,061 referenced logos (see Section 5.2).
Implementation. We use the implementation of EMD and
PhishZoo published in [3]. We implement Phishpedia based
on [41]. For VisualPhishNet, we use the implementation made
publicly available [5].

6.3 Results

Figure 11 plots the ROCs in for the five solutions. The loga-
rithm scale helps to observe their performances (in terms of
recall or true positive rate) at the practical requirement of low
false positive rates (FPR), e.g., at FPR of 1073, In comparison
to the best performing baseline solution Phishpedia, PhishIn-
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Figure 11: ROCs of EMD, PhishZoo, VisualPhishNet, Phish-

pedia, and PhishIntention
VISA NSK
(b) Logo from NSK

(a) Matched logo (Visa)

Figure 12: Phishpedia’s Siamese model wrongly matching
NSK logo (from nsk.cyrek.xyz) to Visa logo

tention achieves a higher accuracy on overall benign/phish-
ing webpage dataset. At a low FPR of 1073, PhishIntention
achieves a recall of 0.9, which is more than twice the recall of
Phishpedia. To put it differently, at the recall of 0.9, Phishln-
tention incurs a FPR that is two orders of magnitudes less than
that of Phishpedia (~ 1073 versus ~ 10~!). The remaining
solutions have negligible recall values at an FPR of 1073,

It shows that PhishIntention improves the reference-based
phishing detection capability beyond the existing solutions.
Lastly, the mean/median runtime overhead of PhishIntention
is relatively low — PhishIntention incurs 0.58s/0.69s, whereas
Phishpedia incurs 0.39s/0.41s, EMD 1.23s/1.20s, PhishZoo
65.45s/21.93s, and VisualPhishNet 0.26s/0.23s.

6.4 Qualitative Analysis

We now qualitatively compare PhishIntention with Phishpedia
and VisualPhishNet to further understand how our approach
outperforms the baselines. More examples can be found in [7].
Advantages of PhishIntention over Phishpedia. We ob-
serve that PhishIntention outperforms Phishpedia for three
reasons: (1) accurate credential-taking intention extraction
(for higher precision), (2) more accurate OCR-aided logo
matching (for higher precision), and (3) more accurate logo
detection (for higher recall). As for the first reason, we have
shown in Figure 2 that only detecting brand intention is insuf-
ficient, we discuss the other two reasons here.

The extra OCR branch helps PhishIntention to reduce false



positives on text-based logos made by Phishpedia. Figure 12
shows a false positive reported by Phishpedia which matches
the logo of NSK with that of Visa. In contrast, PhishIntention
distinguishes text-based features well.

(b) Matched logo (Square)

(a) Original screenshot

(c) Phishpedia Results (d) PhishIntention Results

Figure 13: A phishing webpage with color of logo similar to
that of background (https://squareup.com/login)

Furthermore, we observe that PhishIntention is more
sensitive than Phishpedia in recognizing brand logos be-
cause PhishIntention is trained on more diverse Ul compo-
nents (i.e., logo, button, input, label, and block). Figure 13
shows a phishing example whose target brand is Square
(https://squareup.com/login). Figure 13a shows the screenshot
of the phishing webpage and Figure 13b shows the matched
logo by PhishIntention. Figure 13c and Figure 13d depict
the results from Phishpedia and PhishIntention, respectively.
We observe that PhishIntention recognizes complete salient
UI components such as logo, input, button, and block, while
Phishpedia reports neither logo nor input, despite the fact
that the object detection model of Phishpedia is trained using
a ~29K labelled screenshot dataset; PhishIntention, on the
other hand, is trained on only ~8K training dataset.
Advantages of PhishIntention over VisualPhishNet.
PhishIntention outperforms VisualPhishNet because the
similarity between screenshots can be confusing when
(1) the test webpage conveys the same brand intention yet
having a different appearance from template, or (2) the
webpage conveys a different brand intention but have a
similar appearance as template (as shown in Figure 1). We
provide more of such examples in [7].

7 RQ2: CRP Location Experiment

7.1 Settings

We evaluate PhishIntention’s CRP locating technique with
two datasets (see Section 5.1): (1) the 3,310 non-CRP phish-
ing webpages containing a CRP button, and (2) 1,003 le-
gitimate non-CRPs, each of which has a ground-truth URL

redirected to a CRP page. For the example of the latter, un-
der the domain of paypal.com, we pick a non-CRP such
as https://www.paypal.com/home, and attach it with a
ground-truth URL of CRP (e.g., https://www.paypal.com/
signin). We use completeness as the performance measure-
ment. Specifically, let the number of webpages reported with
true CRP button (or true CRP URL) be M and the total number
of webpages in the experiment be N; completeness is defined
as % For the legitimate webpages, we evaluate how complete
PhishIntention is in discovering the ground-truth CRP URLs.
Note that, the non-CRP phishing webpages are inaccessible.
Thus, we evaluate how complete can PhishIntention report
the ground-truth CRP-transition on the screenshot.

We run CRP locator on the above two datasets in three
modes, i.e., (1) only with HTML heuristics, (2) only with
deep learning model (i.e., Faster R-CNN model), and (3) with
both HTML heuristics and deep learning model.

7.2 Results

Table 3 gives the result. The HTML heuristics and the deep
learning model complement with each other. The combined
approach of HTML heuristics and deep learning model has
the best performance to locate CRPs on the non-CRPs. For
the non-CRP phishing dataset, deep learning model alone
achieves an acceptable completeness of 83.1%. Note that, non-
CRP phishing webpages are dead so we cannot confirm their
CRP links. Therefore, we can only apply the deep learning
solution on their screenshot.

Table 3: Performance of dynamic analysis to locate a CRP
from a non-CRP

Approach Dataset Completeness
Legitimate 83.2%
HTML only non-CRP Phishing /
Deep learning onl Legitimate 72.9%
P gony non-CRP Phishing 83.1%
. Legitimate 93.3%
HTML~+Decp learning non-CRP Phishing /

We also investigate the samples where PhishIntention does
not work well. We observe that the webpages with uncom-
mon login-keyword or login-icon can mislead the CRP locator.
Figure 14 presents a screenshot of a legitimate website. Phish-
Intention predicts two boxes as its CRP buttons (boxes in
orange). However, one button is to change language and the
other is to search inside the website. The real CRP button
is with the name of “IdCorreios”, which uses an uncommon
icon to represent the login semantics. Moreover, its HTML
code does not conform to our predefined credential-requiring
keywords in HTML heuristics. A remedy is to fine-tune our
model based on the informative samples. We will investigate
this in our future work.
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Figure 14: PhishIntention fails to locate CRP transition

8 RQ3: Evaluating Model-wise Contributions

We evaluate the following questions in this section:

* Q1: What is the prediction accuracy of each individual
model, i.e., AWL detection model, CRP transition location
model, CRP classifier, and the OCR-aided Siamese model?

* Q2: How is the performance of PhishIntention in detecting
logo comparing to that of Phishpedia?

* Q3: How effective is PhishIntention’s OCR-aided Siamese
model in comparison to Phishpedia’s Siamese model?

* Q4: How effective is PhishIntention’s hybrid input based
CRP classifier in comparison to individual input classifier?

¢ Q5: How effective is PhishIntention’s CRP classifier in
comparison to naive input-box information?

Settings. For the above models, we use the datasets men-
tioned in Section 5.1. We use mAP (mean Average Precision),
a measurement widely used in computer vision community,
to evaluate object detection models i.e. layout detection and
CRP button/link detection. For CRP classifier, we evaluate its
classification accuracy.

Q1) Individual Model Accuracy. Table 4 shows the accu-
racy of all models. Overall, each individual model achieves
good results. The AWL detector achieves mAP of 56.7 aver-
aged over all Ul categories and mAP of 59.5 on logo category.
CRP-Transition Locator achieves a high mAP of 44.6.

Q2) Logo detection performance. We compare the logo de-
tection capabilities of PhishIntention and Phishpedia in the
first two rows of Table 4 (second column). PhishIntention
achieves significantly higher performance (by about 13 mAP
points); this is because the model in PhishIntention is trained
with more diverse types of Ul elements (than in Phishpedia).
Q3) Effectiveness of OCR-aided Siamese Model. We com-
pare OCR-aided Siamese model and the Siamese model used
in Phishpedia in the last two rows of Table 4; the OCR-aided
Siamese model matches ~5.5% more logos.

Table 4: The testing performance of each deep learning model.
The mAP measurement is under the IoU thresholds 0.5:0.95.

Model Overall Logo Prediction Matching

mAP mAP Acc Acc
Layout Detection 56.7 59.5 / /
Logo/Input Detection
(in Phishpedia) 4.7 466 / /
CRP-Transition Locator  44.6 / / /
CRP Classifier / / 0.950 /
OCR-Aided Siamese / / / 0.891
Traditional Siamese
(in Phishpedia) / / / 0.835

Table 5: Comparing CRP classifier with different inputs

CRP Classifier Type Train Accuracy Test Accuracy
Layout-only classifier 94.8% 90.0%
Screenshot-only classifier 100.0% 89.0%
Combined classifier 99.3% 95.0%
Input box heuristics / 60.8%

Q4) Effectiveness of Hybrid Input. We train CRP classi-
fiers with layout-only as input and screenshot-only as input,
and compare them with the CRP classifier with hybrid in-
puts. Table 5 shows the results. Typically, training only on
screenshot leads to over-fitting because of learning detailed
pixel-level features. In contrast, training on more general fea-
tures, i.e. layout, allows the model to generalize better but
raises challenges in model fitting. Combining both allows us
to strike a balance and achieve the best performance.

Q5) Effectiveness of CRP Classifier. We evaluate whether
using input-boxes on screenshots is sufficient to predict
credential-taking intention. Here, we use Phishpedia as a
baseline; it can report both logo and input boxes, and we use
the input box prediction as an indicator to predict CRP. The
last row in Table 5 gives the result. Such a simple heuristic
can only achieve classification accuracy of 60.8%, performing
much lower than the above three CRP classifiers.

9 RQ4: Robustness Against Adversaries

We evaluate the robustness of PhishIntention against adver-
saries of misleading legitimacy, HTML obfuscation, and ad-
versarial attack on deep learning models.

9.1 Settings

i) Misleading Legitimacy. We collect and verify 3,049 mis-
leading legitimate websites (from Apr 9, 2021 to Apr 16,
2021) from the emerging new websites reported by Cert-
Stream [1] based on any of the three conditions: 1) me-
dia/news/blog websites with links to Facebook, Twitter,
Youtube, etc., 2) websites allowing sign-in or registration
via Facebook, Google, etc., and, 3) websites with advertise-



ment of companies such as Amazon, Microsoft, etc. We run
Phishlntention and four baselines (Section 6) to evaluate their
robustness against misleading legitimacies.

ii) HTML Obfuscation Adversary. PhishIntention ana-
lyzes webpages for 1) CRP detection (Section 4.3) and
2) CRP-Transition Location (Section 4.4). Our analysis
consists of light-weight HTML analysis and computer vi-
sion model. In this experiment, we compare PhishIntention
with XDriver [22], the latest HTML-based technique to dis-
cover and detect login/signup form, based on their robustness
against the following HTML obfuscation techniques:

« HTML Form Obfuscation (for CRP classification): We
apply squatting techniques [19,60] on HTML forms, e.g., by
replacing “login” and “sign up” with “l0gin” and “sigh up”.

* URL Obfuscation (for CRP location): We randomly re-
name the URLs linking to the CRPs while preserving the
CRP linkability.

We obfuscate the webpages used in CRP location experi-

ments (Section 7) and CRP classification experiments (Sec-
tion 7), and evaluate the model accuracy after the obfuscation.
The obfuscations are designed to nullify all the state-of-the-
art HTML heuristics (including ours), which are practical
solutions (1) taking the minimal efforts from the attackers
and (2) preserving the website appearance.
iii) Deep Model Adversary. We have two classifier-like mod-
els (CRP classifier and Siamese model) and two object detec-
tors (layout detection model and CRP location model). We
choose five popular adversarial attacks on the classifiers and
DAG [70] attack on the object detectors. The five popular
adversarial attacks are I-FGSM [25,36], I-StepLL [36], C&W
L2 [18], DeepFool [50], and BPDA [13]. While I-FGSM, I-
StepLL, C&W L2, and DeepFool depend on model gradient
to conduct attack, BPDA [13] is a gradient-recovering tech-
nique to recover masked gradients. DAG [70] is an adversarial
attack designed for object detection model, and its attack is
also based on model’s gradients.

We evaluate the robustness of each of PhishIntention’s
models against these attacks.

9.2 Results

i) Misleading Legitimacy Adversary. Figure 15 shows the
performances in terms of phishing detection rate on the phish-
ing/bengin webpage dataset (see Section 6) and the FPR on
the misleading legitimate dataset. Observe that, while the
baselines suffer from high FPRs (45.5% to 60.1%, see Fig-
ure 15), the false-positive rate of PhishIntention is signifi-
cantly much lower, i.e. 5.10%.

ii) HTML Obfuscation Adversary. Table 6 presents accu-
racy of CRP classification and CRP location before and after
HTML obfuscation. The accuracy of Xdriver [22] drops much
more significantly as the technique depends purely on HTML
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Figure 15: Best precision and recall on traditional webpage
dataset, and false positive rate on misleading dataset.

Table 6: Robustness Against HTML Obfuscation

Classification| Location
Accuracy Accuracy
Before After |Before After
PhishIntention | 95.0% 95.0% |93.3% 72.6%
Xdriver 75.4% 59.2%|39.3% 3.4%

Solution

code. In contrast, PhishIntention largely preserves its classifi-
cation and location accuracy even when its HTML heuristics
are bypassed, thanks to the computer vision solution.

iii) Deep Model Adversary. Our experimental results show
that all models of PhishIntention are robust against I-FGSM,
I-StepLL, C&W L2, DeepFool, and DAG. Table 7 and Table 8
shows that the accuracy loss under attacks is much lower after
the defense.

10 RQS5: Phishing Discovery Experiment

10.1 Runtime Configurations

We set the similarity threshold 7, to 0.87 based on F-score
evaluated on experimental dataset (See Table 9), and let the
threshold 74, in Algorithm I be 1; i.e., we visit only one-level
adjacent webpages. We set the timeout to load a new webpage
to 2 seconds, and the threshold for the maximum number of
times to emulate user clicks K to 3. We limit the interaction
depth and time for efficiency and ethical considerations (by
avoiding exhaustive testing on benign webpages).

10.1.1 CertStream URLs

We choose CertStream [1] for feeding the webpage crawling
system. CertStream is a free online service which provides
users with real-time feeds of URLs issued with new certifi-
cates. We then feed those URLs (along with their screenshot
and HTML code) to various phishing solutions and analyze
(1) how many phishing webpages are detected? and (2) How
precise is each solution? The real-world phishing experiment
complements offline experimental dataset as phishing kits



Table 7: Defense effectiveness on adversarial attacks on clas-
sifiers: The accuracy loss with and without the defense (N.D.
for no defense and Def for defense). The original accuracy of
CRP classifier and OCR Siamese model are 0.95 and 0.98.

I-FGSM |I-StepLL | C&W L2 |DeepFool| BPDA
N.D. |Def|N.D. |Def | N.D. |Def | N.D. | Def| N.D. | Def

10.95(10.010.95|10.0{/0.40]/0.0]/0.95(/0.0{10.95|10.07

Model

CRP
Classifier
OCR
Siamese [/0.98|/0.0[/0.98|/0.0[]0.98|/0.0//0.98|/0.0//0.98|10.01
Model

Table 8: Defense effectiveness on adversarial attacks on object
detectors

. . DAG withoutDAG with
Model Original mAP Defense Defense
AWL Detector 56.7 18.6 10.4
CRP-Transition Locator 44.6 113.4 10.6

keep evolving, which allows us to evaluate approaches on the
most recent phishing attacks.

10.1.2 Baselines and Manual Validation

We run the baselines (listed in Table 2) with the configurations
described in Section 10.1. The discovery experiment is carried
out for two months starting from April 2021. We hired two stu-
dents with two years of web security experience to manually
evaluate the reported phishing URLs. Specifically, we built
a Telegram service to push the detected phishing webpages
(screenshots with annotated target brands) to their mobiles;
and the students provided feedback independently on each
sample, reporting phishing, benign, or unsure. The students
see only screenshot annotated with explanation; we also pro-
vided them virtual machine to visit corresponding URL when
interactions were needed. For the inconclusive samples, we
invited another security expert to discuss with them to come to
a final consensus. Furthermore, for each confirmed phishing
webpage, we use VirusTotal [4] service to investigate whether
any one of its 89 engines (e.g., Google Safe Browsing) report
the given webpage as malicious or phishing. If not, we report
it as a phishing attempt not reported by VirusTotal.

10.1.3 System Design

Figure 16 presents the distributed system we design for this
experiment. Our crawler keeps crawling the URLs fed from
CertStream as a “producer”. Moreover, we use multiple VPNs
to access the same URL to mitigate the effect of cloaking
techniques [31,72]. The URL, its HTML code and its screen-
shot are stored in a database node. Each phishing solution is
deployed in a separate node as a “consumer” to predict on
the webpages. The rationale is that the speed of crawler is

Table 9: Threshold #; Selection

Threshold| 0.7 | 0.83 | 0.85 | 0.87 | 0.90 | 0.93

F-score [0.8278]0.99730.99780.99790.9977[0.9971
CertStream Phishintenti —
oo ishintention .
=i

Il VisualPhishNet .
I PhishZoo .
EMD

Figure 16: Distributed system designed for the field study.

Reported
Results

Telegram
Service

Suspicious
Webpages

much faster than some phishing solutions. Once a phishing
solution reports a phishing webpage, it will push the notifica-
tion through Telegram to the mobiles of our evaluators. Their
labels on the webpages will be sent back to the server.

10.2 Results

Figure 17 presents the results of our phishing discovery exper-
iment. Evidently, PhishIntention and Phishpedia outperform
the rest in reporting real phishing webpages; whereas, the
number of false positives of other solutions are way too high
for them to be of practical use. Specifically, Phishpedia reports
3,104 phishing webpages, of which 2,071 are true positives,
and 1,514 are not reported by VirusTotal. In contrast, Phish-
Intention reports 2,081 as phishing, with 1,942 of them being
true positives and 1,368 not reported by VirusTotal. It indi-
cates that many emerging phishing webpages are missed by
all the industrial anti-phishing solutions in VirusTotal (e.g.,
Google Safe Browsing and Kapaskey), confirming the results
in recent studies [52,55].

PhishIntention has a much higher precision than Phishpe-
dia (6.7% vs. 33.3% FPR). In other words, PhishIntention
generates 86.5% less false alerts than Phishpedia. Among
the 1,942 reported real phishing webpages by PhishIntention,
138 of them (i.e., 7.1%) are contributed by dynamic analy-
sis. Figure 18 shows the number of targeted brands of all the
discovered phishing webpages detected by PhishIntention.
These phishing webpages are distributed among 136 brands.
The distribution has a long-tail shape, wherein the top 10
brands cover 70.1% phishing webpages and top 20 brands
cover 80.4% phishing webpages.

Moreover, our investigation shows that Phishpedia and
PhishIntention have some overlapping as well as different
results; this is depicted in Figure 19. We observe that, to
achieve much higher precision, the trade-off that PhishInten-
tion makes is considerably low — it misses only 6.22% of
phishing webpages detected by Phishpedia.

The reasons for PhishIntention’s false positives and false
negatives are covered in our discussion in Section 6.4 and our
website [7]. However, we observe that PhishIntention has ad-
ditional false negatives in the field study. Unlike Phishpedia,
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Figure 17: Phishing discovery results.Top-1K webpages are
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Figure 18: Distribution of brands of discovered phishing web-
pages. Top five brands are Microsoft (751), Facebook (146),
HSBC Bank (110), Amazon (89), and Instagram (58).

PhishIntention will not report dead phishing webpages, as it
needs to interact with non-CRPs to confirm the credential-
taking intention. However, the system design (Figure 16) may
sometimes prevent PhishIntention from interacting with a
phishing webpage in time before it expires. As per Figure 16,
to ensure all the approaches work on the same webpages as
much as possible, our crawling system (as producer) stores
downloaded webpages in a database, and different phishing
solutions (as consumers) analyze the stored webpages. This
causes some webpages to wait in the queue for hours (poten-
tially making a few of them obsolete) before being processed
by the phishing solutions. Note that, this design only affects
PhishIntention as other solutions work on the offline webpage
screenshots. PhishIntention may realize less false negatives if
allowed to interact with webpages in real-time.

11 Discussions

Diversified Intention. The intention of a webpage to require
credential can be more diversified than those considered in
this work. For example, some phishing webpages can use a
new form of UI, (e.g., QR code), to retrieve credentials. Thus,
a more enriched intention detector is required in the future.

Diversified Interaction Model. Our approach requires con-

¢

(a) True Positives (b) False Positives

Figure 19: Overlaps and differences in phishing webpages
reported by Phishpedia (red) and PhishIntention (blue).

firming the credential-requiring intention of a webpage
through webpage interaction. However, some phishing web-
pages require different interaction methods to proceed to the
next page, e.g., a CAPTCHA can block the interaction of
PhishIntention. A remedy is to build a more sophisticated
webpage interaction model.

Practical Deployment. The effort to train PhishIntention can
be referred in Appendix A.l. To maintain the model per-
formance (e.g., to learn new logos/layouts), we can employ
online learning techniques [12] on the models at a fixed fre-
quency (e.g., every three months) with the collected false
positives and false negatives.

Extension to Other Web-security Problems. We envision
PhishIntention’s framework to be useful in other applications:

* Drive-by-download detection, to recognize malicious inten-
tion of the downloading-buttons.

* Malicious link detection, to recognize the redirection links
to other illegal webpages.

By interacting with those webpages, an agent can help us
confirm their intentions by actually playing as a victim in the
sandbox, improving the confidence and the explainability.

12 Conclusions

We proposed PhishIntention to identify and explain phishing
webpages through static and dynamic analysis. The heteroge-
neous solution extracts brand and credential-taking intentions
of phishing webpages. Our experiments on a large dataset and
field study demonstrated the effectiveness of PhishIntention
over existing solutions. In the future, we will apply PhishIn-
tention into an online phishing monitoring system to collect
active phishing kits, and study their runtime behaviors with
various program analysis techniques [42—44, 65].
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Figure 20: Experiment structure: relations among research questions, models, and datasets

A Appendix
A.1 Hardware Configuration

AWL detection model and CRP-Transition location model are
trained with a Faster R-CNN object detector using Detectron2
framework [68]. The OCR-aided Siamese model and CRP
classifier are trained using ResNetV2-50 architecture [28,
35]. All deep learning models are trained on an Ubuntul6.04
server with Xeon Silver 4108 (1.8GHz), 128G DDR4 RAM,
and NVIDIA Tesla V100 GPU, which takes us 10 hours,
1 hour, 11 hours, and 1 hour to train AWL detector, CRP
classifier, CRP-transition locator, OCR-aided Siamese model.

A.2 Dataset Description

As shown in Figure 20, data sources are summarized as below:
Experiment dataset: 25K benign + 25K CRP phishing web-
page dataset: See Table 1, from Phishpedia dataset [41].
CRP-Transition locator (hybrid) evaluation set:

(1) 3,310 non-CRP phishing webpage dataset; (2) 1,003 wild

benign non-CRP webpage dataset: homepages are collected
online from 1K well-known brands.

CRP-Transition locator (Deep Learning part):

(1) 1,210 test set: 445 non-CRP phishing + 765 non-CRP
benign, sampled from Phishpedia dataset; (2) 4,843 training
set: 1774 non-CRP phishing + 3069 non-CRP benign, sam-
pled from Phishpedia dataset; (3) 10K pre-training set: 10K
websites with CRP buttons overlaid

CRP classifier and AWL detector:

(1) 901 test set: 901 webpages labelled with layout and CRP
class, sampled from Phishpedia dataset; (2) 8,109 training set:
webpages labelled with layout and CRP class, sampled from
Phishpedia dataset.

OCR-aided Siamese model:

(1) 2,000 test set: 2,000 logos cropped from 1K benign + 1K
phishing; cropped from Phishpedia dataset; (2) 3,061 training
set: logo target list is from Phishpedia logo target list of 277
brands; also used as reference logo matching list in real de-
ployment; (3) 167,140 pre-training set: Logo2k+ dataset [67].
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