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Abstract

Embedded (aka smart or IoT) devices are increasingly pop-
ular and becoming ubiquitous. Unsurprisingly, they are also
attractive attack targets for exploits and malware. Low-end
embedded devices, designed with strict cost, size, and en-
ergy limitations, are especially challenging to secure, given
their lack of resources to implement sophisticated security
services, available on higher-end computing devices. To this
end, several tiny Roots-of-Trust (RoTs) were proposed to en-
able services, such as remote verification of device’s software
state and run-time integrity. Such RoTs operate reactively:
they can prove whether a desired action (e.g., software update
or program execution) was performed on a specific device.
However, they can not guarantee that a desired action will be
performed, since malware controlling the device can trivially
block access to the RoT by ignoring/discarding received com-
mands and other trigger events. This is an important problem
because it allows malware to effectively “brick” or incapaci-
tate a potentially huge number of (possibly mission-critical)
devices.

Though recent work made progress in terms of incorporat-
ing more active behavior atop existing RoTs, much of it relies
on extensive hardware support in the form of Trusted Execu-
tion Environments (TEEs), which are generally too costly for
low-end devices. In this paper, we set out to systematically de-
sign a minimal active RoT for low-end MCU-s. We begin with
three questions: (1) What functionality is required to guar-
antee actions in the presence of malware? (2) How to imple-
ment this efficiently? and (3) What are the security benefits of
such an active RoT architecture? We then design, implement,
formally verify, and evaluate GAROTA : Generalized Active
Root-Of-Trust Architecture. We believe that GAROTA is the
first clean-slate design of an active RoT for low-end MCU-s.
We show how GAROTA guarantees that even a fully software-
compromised low-end MCU performs a desired action. We
demonstrate its practicality by implementing GAROTA in the
context of three types of applications where actions are trig-
gered by: sensing hardware, network events and timers. We
also formally specify and verify GAROTA functionality and
properties.

1 Introduction
The importance of embedded systems is hard to overestimate
and their use in critical settings is projected to rise sharply [1].
Such systems are increasingly inter-dependent and used in
many settings, including household, office, factory, automo-
tive, health and safety, as well as national defense and space
exploration. Embedded devices are usually deployed in large
quantities and for specific purposes. Due to cost, size and
energy constraints, they typically cannot host complex secu-
rity mechanisms. Thus, they are an easy and natural target for
attackers that want to quickly and efficiently cause harm on an
organizational, regional, national or even global, level. Funda-
mental trade-offs between security and other priorities, such
as cost or performance are a recurring theme in the domain of
embedded devices. Resolving these trade-offs, is challenging
and very important.

Numerous architectures focused on securing low-end
micro-controller units (MCU-s) by designing small and af-
fordable trust anchors [3]. However, most such techniques
operate passively. They can prove, to a trusted party, that cer-
tain property (or action) is satisfied (or was performed) by a re-
mote and potentially compromised low-end MCU. Examples
of such services include remote attestation [6,10,15,23,34,42],
proofs of remote software execution [17], control-flow & data-
flow attestation [4, 19, 20, 43, 51, 55], as well as proofs of
remote software update, memory erasure, and system-wide
reset [5, 9, 16]. These architectures are typically designed to
provide proofs that are unforgeable, despite potential compro-
mise of the MCU.

Aforementioned approaches are passive in nature. While
they can detect integrity violations of remote devices, they can-
not guarantee that a given security or safety-critical task will
be performed. For example, consider a network comprised of
a large number (of several types of) simple IoT devices, e.g.,
an industrial control system. Upon detecting a large-scale
compromise, a trusted remote controller wants to fix the situ-
ation by requiring all compromised devices to reset or erase
themselves in order to expunge malware. Even if each device
has an uncompromised, yet passive, RoT, malware (which
is in full control of the device’s software state) can easily
intercept, ignore, or discard any requests for the RoT, thus
preventing its functionality from being triggered. Therefore,
the only way to repair these compromised devices requires di-



rect physical access (i.e, reprogramming by a human) to each
device. Beyond the DoS damage caused by the multitude of
essentially “bricked” devices, physical reprogramming itself
is slow and disruptive, i.e., a logistical nightmare.

Motivated by the above, some recent research [30, 53]
yielded trust anchors with a more active behavior. Specifi-
cally, Xu et al. [53] propose the concept of Authenticated
Watch-Dog Timers (WDT), which enforce periodic execution
of a secure component (an RoT task), unless explicit autho-
rization (which can itself include a set of tasks) is received
from a trusted controller. In [30] this concept is realized with
the reliance on ARM TrustZone, as opposed to a dedicated
co-processor as in the original approach from [53]. Targeting
lower-end devices, [38] considered the problem of guarantee-
ing periodic execution of a task. It refers to this important goal
as “trusted scheduling”, in the context of real-time operating
systems. All these techniques [30, 38, 53] are time-based –
they periodically and actively trigger RoT invocation, despite
potential compromise of the host device. We discuss them in
more detail in Section 5.4.

In this paper, we take the natural next step and design a
more general active RoT, called GAROTA: Generalized Active
Root-Of-Trust Architecture. Our goal is an architecture capa-
ble of triggering guaranteed execution of trusted and safety-
critical tasks based on arbitrary events captured by hardware
peripherals (including timers, GPIO ports, and network in-
terfaces) of an MCU the software state of which may be
currently compromised. In principle, any hardware event that
causes an interrupt on the unmodified MCU can trigger guar-
anteed execution of trusted software in GAROTA (assuming
proper configuration). In that vein, our work can be viewed
as a generalization of concepts proposed in [30, 38, 53], en-
abling arbitrary events (interrupt signals, as opposed to the
timer-based approach from prior work) to trigger guaranteed
execution of trusted functionalities. In comparison, prior work
has the advantage of relying on pre-existent hardware, thus not
requiring any hardware changes. On the other hand, our clean-
slate approach, based on a minimal hardware design, enables
new applications and is applicable to lower-end resource-
constrained MCU-s.

At a high level, GAROTA is based on two key concepts:
“Guaranteed Triggering” and “Re-Triggering on Failure”.
The term trigger is used to refer to an event that causes
GAROTA RoT to take over the execution in the MCU. The
“guaranteed triggering” property ensures that a particular
event of interest always triggers execution of GAROTA RoT.
Whereas,“re-triggering on failure” assures that, if RoT execu-
tion is illegally interrupted for any reason (e.g., attempts to
violate execution’s integrity, power faults, or resets), the MCU
resets and the RoT is guaranteed to be the first to execute after
subsequent re-initialization. Figure 1 illustrates this workflow.

We use GAROTA to address three realistic and compelling
use-cases for the active RoT:

• GPIO-TCB: A safety-critical sensor/actuator hybrid,

Figure 1: GAROTA Software Execution Flow

which is guaranteed to sound an alarm if the sensed
quantity (e.g., temperature, CO2 level, etc) exceeds a cer-
tain threshold. This use-case exemplifies hardware-based
triggering.

• TimerTCB: A real-time system where a predefined
safety-critical task is guaranteed to execute periodically.
This use-case exemplifies timer-based triggering, which
is also attainable by [30, 38, 53].

• NetTCB: a trusted component that is always guaran-
teed to process commands received over the network,
thus preventing malware in the MCU from intercepting
and/or discarding commands destined for the RoT. This
use-case exemplifies network-based triggering.

In all three cases, the guarantees hold even in case of full
compromise of the MCU software state, as long as the RoT
task itself is trusted.

In addition to designing and instantiating GAROTA with
three use-cases, we formally specify GAROTA goals and re-
quirements using Linear Temporal Logic (LTL). These formal
specifications offer precise definitions for the security offered
by GAROTA and its corresponding assumptions expected from
the underlying MCU, i.e., its machine model. This can serve
as an unambiguous reference for future implementations and
for other derived services. Finally, we use formal verification
to prove that the implementation of GAROTA hardware mod-
ules adheres to a set of sub-properties (also specified in LTL)
that – when composed with the MCU machine model – are
sufficient to achieve GAROTA end-to-end goals. In doing so,
we follow a similar verification approach that has been suc-
cessfully applied in the context of passive RoT-s [15, 17, 18].

We implement and evaluate GAROTA and make its verified
implementation (atop the popular low-end MCU TI MSP430)
along with respective computer proofs/formal verification
publicly available in [2].

2 Scope
This work focuses on low-end embedded MCU-s and aims
for a design with minimal hardware requirements. A minimal
design simplifies reasoning about GAROTA and formally veri-
fying its security properties. In terms of practicality and appli-
cability, we believe that an architecture that is cost-effective
enough for the lowest-end MCU-s can also be adapted (and
potentially enriched) for implementations on higher-end de-
vices with higher hardware budgets, while the other direction



Figure 2: GAROTA in the MCU architecture

is usually more challenging. Thus, our design is applicable to
the smallest and weakest devices based on low-power single-
core platform with only a few KBytes of program and data
memory (such as the aforementioned Atmel AVR ATmega
and TI MSP430), with 8- and 16-bit CPUs, typically run-
ning at 1-16 MHz clock frequencies, with ≈ 64 KBytes of
addressable memory. SRAM is used as data memory ranging
in size between 4 and 16 KBytes, while the rest of address
space is available for program memory. Such devices usually
run software atop “bare metal”, execute instructions in place
(physically from program memory), and have no memory
management unit (MMU) to support virtual memory.

Our initial choice of implementing GAROTA atop the well-
known TI MSP430 low-energy MCU is motivated by avail-
ability of an open-source version of the MSP430 hardware
from OpenCores [28]. Nevertheless, GAROTA design and ma-
chine model are generic and should be applicable to other
low-end MCU-s of the same class.

3 GAROTA Overview
The goal of GAROTA is to guarantee eventual execution of a
pre-defined functionality F implemented as a trusted software
executable. We refer to this executable as GAROTA trusted
computing base (TCB). GAROTA is agnostic to the particular
functionality implemented by F , which allows guaranteed
execution of arbitrary tasks, to be determined based on the
application domain; see Section 5 for examples.

A trigger refers to a particular event that can be configured
to cause the TCB to execute. Examples of possible triggers
include hardware events from:

• External (usually analog) inputs, e.g., detection of a button
press, motion, sound or certain temperature/CO2 threshold.

• Expiring timers, i.e., a periodic trigger.
• Arrival of a packet from the network, e.g., carrying a request

to collect sensed data, perform sensing/actuation, or initiate a
security task, such as erasing or resetting the device.

If configured correctly, these events cause interrupts, which
are used by GAROTA to guarantee execution of F . Since

trigger and TCB implementation are configurable, we assume
that these initial configurations are done securely, at or be-
fore initial deployment. trigger configuration will include the
types of interrupts and respective settings e.g., which GPIO
port, what type of event, its time granularity, etc. At runtime,
GAROTA protects the initial configuration from illegal modifi-
cations, i.e., ensures correct trigger behavior. This protection
includes preserving interrupt configuration registers, interrupt
handlers, and interrupt vectors. This way GAROTA guarantees
that trigger always results in an invocation of the TCB.

However, guaranteed invocation of the TCB upon occur-
rence of a trigger is not sufficient to claim that F is prop-
erly performed, since the TCB code (and execution thereof)
could itself be tampered with. To this end, GAROTA provides
runtime protections that prevent any unprivileged/untrusted
program from modifying the TCB code, i.e., the program
memory region reserved for storing that code. (Recall that in-
structions execute in place, from program memory). GAROTA
also monitors the execution of the TCB code to ensure:

1. Atomicity: Execution is atomic (i.e., uninterrupted),
from the TCB’s first instruction (legal entry), to its last
instruction (legal exit);

2. Non-malleability: During execution, DMEM cannot be
modified, other than by the TCB code itself, e.g., no
modifications by other software or DMA controllers.

These two properties ensure that any potential malware resid-
ing on the MCU (i.e., compromised software outside TCB
or compromised DMA controllers) cannot tamper with TCB
execution.

GAROTA monitors execution and, whenever it detects a vi-
olation of any property (including atomicity, non-malleability,
as well as any TCB code tampering or trigger misconfigura-
tion) triggers an immediate MCU reset to a default trusted
state wherein TCB code is the very first component to execute.
Therefore, any attempt to interfere with the TCB functionality
or execution causes the TCB to recover and re-execute, while
guaranteeing that unprivileged/untrusted applications cannot
interfere.

Both trigger configurations and the TCB implementation
are updatable at run-time, as long as the updates are performed
from within the TCB itself. While this feature is not strictly
required for security, we believe it provides flexibility/updata-
bility, while ensuring that untrusted software cannot mod-
ify GAROTA trusted components and configuration thereof.
Section 4.7 discusses how GAROTA can enforce TCB confi-
dentiality, which is applicable to cases where F implements
cryptographic or privacy-sensitive tasks.

Each sub-property in GAROTA is implemented, and in-
dividually optimized, as a separate GAROTA sub-module.
These sub-modules are then composed and shown secure
(in the context of the MCU machine model) using a combina-
tion of model-checking-based formal verification and an LTL
computer-checked proof. GAROTA modular design enables
verifiability and minimality, resulting in low hardware over-



head and significantly higher understanding and confidence
about the security provided by its design and implementation.

As shown in Figure 2, GAROTA is implemented as a hard-
ware component that monitors a set of CPU signals to detect
violations to required security properties. As such it does not
interfere with the CPU core implementation, e.g., by modi-
fying its behavior or instruction set. In subsequent sections
we describe these properties in more detail and discuss their
implementation and verification. Finally, we use a commod-
ity FPGA to synthesize GAROTA atop the low-end MCU
MSP430 and report on its overhead.

4 GAROTA in Detail
We now get into the details of GAROTA. Section 4.1 provides
some background on LTL and formal verification. Given some
familiarity with these notions, it can be skipped without any
loss of continuity.

4.1 LTL & Verification Approach
Formal Verification refers to the computer-aided process of
proving that a system (e.g., hardware, software, or protocol)
adheres to its well-specified goals. Thus, it assures that the sys-
tem does not exhibit any unintended behavior, especially, in
corner cases (rarely encountered conditions and/or execution
paths) that humans tend to overlook.

To verify GAROTA, we use a combination of Model Check-
ing and Theorem Proving, summarized next. In Model Check-
ing, designs are specified in a formal computation model (e.g.,
as Finite State Machines or FSMs) and verified to adhere to
formal logic specifications. The proof is performed through
automated and exhaustive enumeration of all possible system
states. If the desired specification is found not to hold for spe-
cific states (or transitions among them), a trace of the model
that leads to the erroneous state is provided, and the imple-
mentation can then be fixed accordingly. As a consequence
of exhaustive enumeration, proofs for complex systems that
involve complex properties often do not scale well due to
so-called “state explosion”.

To cope with that problem, our verification approach (also
used in prior work [15, 17]) is to specify each sub-property
in GAROTA using Linear Temporal Logic (LTL) and verify
each respective sub-module for compliance. In this process,
the verification pipeline automatically converts digital hard-
ware, described at Register Transfer Level (RTL) using Ver-
ilog, to Symbolic Model Verifier (SMV) [41] FSMs using
Verilog2SMV [32]. The SMV representation is then fed to
the well-known NuSMV [13] model-checker for verification
against the specified LTL sub-properties. This automatic con-
version ensures that no mistakes are introduced by otherwise
manual translation from verification/proof models to actual
hardware RTL. It thus represents another advantage of this
verification pipeline over manual/paper proofs. Finally, the

Figure 3: GAROTA verification strategy

composition of the LTL sub-properties (verified in the model-
checking phase) is proven to achieve GAROTA end-to-end
goals using an LTL theorem prover [21]. This verification
strategy is depicted in Figure 3.

Regular propositional logic includes propositional connec-
tives, such as: conjunction ∧, disjunction ∨, negation ¬, and
implication→. LTL augments it with temporal quantifiers,
thus enabling sequential reasoning. In this paper, we are inter-
ested in the following temporal quantifiers:

• Xφ – neXt φ: holds if φ is true at the next system state.
• Fφ – Future φ: holds if there exists a future state where

φ is true.
• Gφ – Globally φ: holds if for all future states φ is true.
• φ U ψ – φ Until ψ: holds if there is a future state where

ψ holds and φ holds for all states prior to that.
• φ W ψ – φ Weak until ψ: holds if, assuming a future

state where ψ holds, φ holds for all states prior to that.
If ψ never becomes true, φ must hold forever. Or, more
formally: φWψ≡ (φUψ)∨G(φ)

Note that, since GAROTA TCB is programmable and its code
depends on the exact functionality F for each application do-
main, verification and correctness of any specific TCB code
is not within our goals. We assume that the user is responsible
for assuring correctness of the trusted code to be loaded atop
GAROTA active RoT. This assumption is consistent with other
programmable (though passive) RoTs, including those target-
ing higher-end devices, such as Intel SGX [31], and ARM
TrustZone [8]. In many cases, we expect the TCB code to be
minimal (see examples in Section 5), and thus less likely to
have bugs.

As stated earlier, the verification strategy overviewed in this
section was successfully used in prior work [15, 17] to verify
passive RoTs (see Section 8). Nonetheless, that prior work
did not consider availability properties, needed by an active
RoT. Consequently, it did not require formal specification of
properties that model guaranteed future actions upon specific
trigger-s (see Definition 2). It also did not require cyclic spec-
ifications, such as re-triggering on failure (see Definition 3)
to model the feature that a failed/tampered TCB execution is
guaranteed to re-start.



PC Current Program Counter value
Ren Signal that indicates if the MCU is

reading from memory (1-bit)
Wen Signal that indicates if the MCU is

writing to memory (1-bit)
Daddr Address for an MCU memory access (read or

write)
DMAen Signal that indicates if DMA is currently

enabled (1-bit)
DMAaddr Memory address being accessed by DMA, if

any
gie Global Interrupt Enable: signal that

indicates whether or not interrupts are
globally enabled (1-bit).

irq Signal that indicates if an interrupt is
happening

DMEM Region corresponding to the entire
data memory of the MCU: DMEM =
[DMEMmin,DMEMmax].

PMEM Region corresponding to the entire program
memory of the MCU: PMEM = [PMEMmin,PMEMmax].

TCB Memory region reserved for the TCB’s
executable implementing F . TCB =
[TCBmin,TCBmax]. TCB ∈ PMEM.

INIT Memory region containing the MCU’s default
initialization code. INIT = [INITmin, INITmax].
INIT ∈ PMEM.

reset A 1-bit signal that reboots/resets the MCU
when set to logical 1

Table 1: Notation Summary

In the same vein, prior work did not reason or axiomatize
the same types of MCU behavior as GAROTA. In particular,
most of the machine model in this paper (see Definition 1) is
unique to GAROTA, except for LTL 1, that models CPU writes
to memory, also modeled by prior work. Specifically, prior
machine models did not axiomatize hardware behavior when:
(1) a trigger/interrupt configuration is modified (LTL 2 from
Definition 1); an interrupt is disabled by software (LTL 3
from Definition 1); or the effects of unmodifiable trigger
initialization to the MCU runtime behavior (LTLs 4 and 5
from Definition 1).

Aforementioned definitions are unique requirements (in
the machine model of Definition 1) and guarantees (in the
goals of Definitions 2 and 3) of GAROTA that are proven to
hold from composition of GAROTA sub-properties in Defi-
nition 4. Sub-properties are in turn offered by the formally
verified implementation of GAROTA hardware. In the rest
of this section, we detail the reasoning behind these axioms,
property specifications, and their verifiable implementation
and composition.

4.2 Notation, Machine Model, & Assumptions

This section discusses our machine and adversarial models.
We start by overviewing them informally in Sections 4.2.1,
4.2.2 and 4.2.3). Then, Section 4.2.5, formalizes the machine
model using LTL. For quick-reference, Table 1 summarizes
the notation used in the rest of the paper.

4.2.1 CPU Hardware Signals

GAROTA neither modifies nor verifies the underlying CPU
core/instruction set. It is assumed that the underlying CPU
adheres to its specification and GAROTA is implemented as
a standalone hardware module that runs in parallel with the
CPU, and enforcing necessary guarantees in hardware. The
following CPU signals are relevant to GAROTA:
H1 – Program Counter (PC): PC always contains the ad-
dress of the instruction being executed in the current CPU
cycle.
H2 – Memory Address: Whenever memory is read or writ-
ten by the CPU, the data-address signal (Daddr) contains the
address of the corresponding memory location. For a read
access, a data read-enable bit (Ren) must be set, while, for a
write access, a data write-enable bit (Wen) must be set.
H3 – DMA: Whenever a DMA controller attempts to access
the main system memory, a DMA-address signal (DMAaddr)
reflects the address of the memory location being accessed
and a DMA-enable bit (DMAen) must be set. DMA can not
access memory when DMAen is off (logical zero).
H4 – MCU Reset: At the end of a successful reset routine,
all registers (including PC) are set to zero before restarting
normal software execution flow. Resets are handled by the
MCU in hardware. Thus, the reset handling routine can not
be modified. Once execution re-starts, PC is set to point to
the first instruction in the boot section of program memory,
referred to as INIT (see M2 below). When a reset happens,
the corresponding reset signal is set. The same signal is also
set when the MCU initializes for the first time. An MCU reset
also resets its DMA controller, and any prior configuration
thereof. (DMA) behavior is configured by software at runtime.
By default (i.e., after a reset) DMA is inactive.
H5 – Interrupts: Whenever an interrupt occurs, the corre-
sponding irq signal is set. Interrupts may be globally enabled
or disabled in software. The 1-bit signal gie always reflects
whether or not they are currently enabled. The default gie
state (i.e., at boot or after a reset) is disabled (logical zero).

4.2.2 Memory: Layout & Initial Configuration

As far as MCU initial memory layout and its initial software
configuration (set at, or prior to, its deployment), the following
are relevant to GAROTA:
M1 – PMEM: Corresponds to the entire PMEM address
space. Instructions are executed in place. Hence, at runtime,
PC points to the PMEM address storing the instruction being
executed.
M2 – INIT: Section of PMEM containing the MCU boot
segment, i.e., the first software to be executed whenever the
MCU boots or after a reset. We assume INIT code is finite.
M3 – TCB: Section of PMEM reserved for GAROTA trusted
code, i.e., F . TCB is located immediately after INIT ; it is the
first software to execute following successful completion of
INIT .



M4 – IRQ-Table and Handlers: IRQ-Table is located in
PMEM and contains pointers to the addresses of so-called
interrupt handlers (aka interrupt service routines or ISRs).
When an interrupt occurs, the MCU hardware causes a jump to
the corresponding handler routine. The address of this routine
is specified by the IRQ-Table fixed index corresponding to
that particular interrupt. Handler routines are code segments
(functions) also stored in PMEM.
M5 – IRQc f g: Set of registers in DMEM used to configure
specific behavior of individual interrupts at runtime, e.g., dead-
line of a timer-based interrupt, or type of event on a hardware-
based interrupt.

Note that any initial memory configuration could be
changed at run-time (e.g., by malware that infects the device,
as discussed in Section 4.2.4), unless it is explicitly protected
by GAROTA verified hardware modules.

4.2.3 Initial Trigger Configuration

T1 – trigger: GAROTA trigger is configured, at MCU
(pre)deployment-time, by setting the corresponding entry in
IRQ-Table and respective handler to jump to the first instruc-
tion in TCB (TCBmin) and by configuring the registers in
IRQc f g with desired interrupt parameters, reflecting the de-
sired trigger behavior; see Section 5 for examples. Thus, a
trigger event causes the TCB code to execute, as long as the
initial configuration is maintained.

The initial trigger configuration is not much different from
a regular interrupt configuration in a typical embedded system
program. The trigger index in IRQ-Table must correctly point
to GAROTA TCB legal entry point, just as regular interrupts
must correctly point to their respective handler entry points.
For example, to initially configure a timer-based trigger, the
address in IRQ-Table corresponding to the respective hard-
ware timer is set to point to TCBmin and the correspondent
registers in IRQc f g are set to define the timer deadline and
thus the desired interrupt period.

4.2.4 Adversarial Model

We consider an adversary Adv that controls MCU’s en-
tire software state, including code, and data. Adv can read-
/write from/to any memory that is not explicitly protected by
hardware-enforced access control rules. Adv might also have
full control over the Direct Memory Access (DMA) controller
in the MCU. Recall that DMA allows a hardware controller
to directly access main memory (PMEM or DMEM) without
going through the CPU.

Physical Attacks: physical and hardware-focused attacks
are out of the scope of GAROTA. Specifically, we assume
that Adv can not modify hardware, induce hardware faults, or
interfere with GAROTA via physical presence attacks and/or
side-channels. Protection against such attacks is an orthog-
onal issue that we defer to future work. For an overview of

potential countermeasures using physical security and tamper
resistance techniques see [44, 46].

Network DoS Attacks: we also consider out-of-scope net-
work DoS attacks, whereby Adv drops traffic to/from MCU,
or floods MCU with traffic, or simply jams communication.
Note that this assumption is relevant only to network-triggered
events, exemplified by the NetTCB instantiation of GAROTA,
described in Section 5.3.

Note that network DoS attacks could be detected by orthog-
onal techniques, such as network traffic monitoring [37, 54,
56, 57]. Once detected, out-of-band measures can be taken to
mitigate such attacks. GAROTA is particularly concerned with
malware that infects the MCU and ignores commands/trig-
ger events, even when commands arrive and triggers occur.
Hence, network DoS monitoring is a complementary mea-
sure to ensure delivery of packets to the MCU (in GAROTA
NetTCB use-case), while GAROTA can ensure that received
commands are indeed processed.

Correctness of TCB’s Executable: we stress that the pur-
pose of GAROTA is guaranteed execution of F , as specified
by the application developer and loaded onto GAROTA TCB
at deployment time. Similar to existing RoTs (e.g., TEE-s in
higher-end CPUs) GAROTA does not check correctness of,
and absence of implementation bugs in, F ’s implementation.
In many applications, F code is minimal; see examples in
Section 5. Moreover, correctness of F need not be assured
locally. Since embedded applications are originally developed
on more powerful devices (e.g., general-purpose computers),
various vulnerability detection methods, e.g., fuzzing [12],
static analysis [14], or formal verification, can be employed
to avoid or detect implementation bugs in F . All that can be
performed off-line before loading F onto GAROTA TCB and
the entire issue is orthogonal to GAROTA functionality.

4.2.5 Machine Model (Formally)

Based on the high-level properties discussed earlier in this
section, we now formalize the subset (relevant to GAROTA)
of the MCU machine model using LTL. Figure 4 presents our
machine model as a set of LTL statements.

LTL statement (1) models the fact that modifications to a
given memory address (X) can be done either via the CPU
or DMA. Modifications by the CPU imply setting Wen = 1
and Daddr = X . If X is a memory region, rather than a sin-
gle address, we denoted that a modification happened within
the particular region by saying that Daddr ∈ X , instead. Con-
versely, DMA modifications to region X require DMAen = 1
and DMAaddr ∈ X . This models the MCU behaviors stated
informally in H2 and H3.

In accordance with M4 and M5, a successful modification
to a pre-configured trigger implies changing interrupt tables,
interrupt handlers, or interrupt configuration registers (ICR-s).
Since, per M4, the first two are located in PMEM, modify-
ing them means writing to PMEM. The ICR is located in a



Definition 1. Machine Model:
Memory Modifications:

G :{modMem(X)→ (Wen ∧Daddr ∈ X)∨ (DMAen ∧DMAaddr ∈ X)} (1)

Successful Trigger Modification:

G :{mod(triggerc f g)→ [(modMem(PMEM)∨modMem(IRQc f g))∧¬reset]} (2)

Successful Interrupt Disablement:

G:{disable(irq)→ [¬reset ∧gie∧¬X(gie)∧¬X(reset)]} (3)

Trigger/TCB Initialization (4 & 5):

G:{¬mod(triggerc f g)∨PC ∈ TCB}∧G:{¬disable(irq)∨X(PC) ∈ TCB}→ G:{trigger→ F(PC = TCBmin)} (4)

G:{¬modMem(PMEM)∨PC ∈ TCB}→ G:{reset→ F(PC = TCBmin)} (5)

Figure 4: MCU machine model (subset) in LTL.

DMEM location denoted IRQc f g. Therefore, the LTL state-
ment (2) models a successful misconfiguration of trigger as
requiring a memory modification either within PMEM or
within IRQc f g, without causing an immediate system-wide
reset (¬reset). This is because an immediate reset prevents
the modification attempt from taking effect (see H4).

LTL (3) models that attempts to disable interrupts are re-
flected by gie CPU signal (per H5). In order to successfully
disable interrupts, Adv must be able to switch interrupts from
enabled (gie = 1) to disabled (¬X(gie) – disabled in the fol-
lowing cycle), without causing an MCU reset.

Recall that (from H1) PC reflects the address of the instruc-
tion currently executing. PC ∈ TCB implies that GAROTA
TCB is currently executing. LTL (4) models T1. As long
as the initial proper configuration of trigger is never modi-
fiable by untrusted software (G:{¬mod(triggerc f g)∨PC ∈
TCB}) and that untrusted software can never globally disable
interrupts (G:{¬disable(irq) ∨ X(PC) ∈ TCB}), a trigger
would always cause TCB execution (G:{trigger→ F(PC =
TCBmin)}). Recall that we assume that the TCB may update
– though not misconfigure – trigger behavior, since the TCB
is trusted. Similarly, LTL 5 states that, as long as PMEM
is never modified by untrusted software, a reset will always
trigger TCB execution (per H4, M2, and M3).

4.3 GAROTA End-To-End Goals Formally
Using the notation from Section 4.2, we proceed with the for-
mal specification of GAROTA end-goals in LTL. Definition 2
specifies the “guaranteed trigger” property. It states in LTL
that, whenever a trigger occurs, a TCB execution/invocation
(starting at the legal entry point) will follow.

While Definition 2 guarantees that a particular interrupt of
interest (trigger) will cause the TCB execution, it does not
guarantee proper execution of the TCB code as a whole. The
“re-trigger on failure” property (per Definition 3) stipulates
that, whenever TCB starts execution (i.e., PC ∈ TCB), it must

execute without interrupts or DMA interference 1, i.e., ¬irq∧
¬dmaen∧PC ∈ TCB. This condition must hold until:

1. PC = TCBmax: the legal exit of TCB is reached, i.e.,
execution concluded successfully.

OR

2. F(PC = TCBmin): another TCB execution (from scratch)
has been triggered to occur.

In other words, this specification reflects a cyclic requirement:
either the security properties of the TCB proper execution are
not violated, or TCB execution will re-start later.

Note that we use the quantifier Weak Until (W) instead
regular Until (U), because, for some embedded applications,
the TCB code may execute indefinitely; see Section 5.1 for
an example.

4.4 GAROTA Sub-Properties
Based on our machine model and GAROTA end goals, we now
postulate a set of necessary sub-properties to be implemented
by GAROTA. Next, Section 4.5 shows that this minimal set of
sub-properties suffices to achieve GAROTA end-to-end goals
with a computer-checked proof. LTL specifications of the
sub-properties are presented in Figure 6.

GAROTA enforces that only trusted updates to PMEM are
allowed at runtime. GAROTA hardware issues a system-wide
MCU reset upon detecting any attempt to modify PMEM
at runtime, unless this modification comes from the execu-
tion of the TCB code itself. This property is formalized in
LTL (6). It prevents any untrusted application software from
misconfiguring IRQ-Table and interrupt handlers, as well as
from modifying the INIT segment and the TCB code itself,
because these sections are located within PMEM. As a side
benefit, it also prevents attacks that attempt to physically wear

1Since DMA could tamper with intermediate state/results in DMEM.



Definition 2. Guaranteed Trigger:

G:{trigger→ F(PC = TCBmin)}

Definition 3. Re-Trigger on Failure:

G:{PC ∈ TCB→ [ (¬irq∧¬dmaen ∧PC ∈ TCB) W (PC = TCBmax ∨F(PC = TCBmin) ]}

Figure 5: Formal Specification of GAROTA end-to-end goals.

Definition 4. LTL Sub-Properties implemented & enforced by GAROTA.
Trusted PMEM Updates:

G : {[¬(PC ∈ TCB)∧Wen ∧ (Daddr ∈ PMEM)]∨ [DMAen ∧ (DMAaddr ∈ PMEM)]→ reset} (6)

IRQ Configuration Protection:

G : {[¬(PC ∈ TCB)∧Wen ∧ (Daddr ∈ IRQc f g)]∨ [DMAen ∧ (DMAaddr ∈ IRQc f g)]→ reset} (7)

Interrupt Disablement Protection:

G : {¬reset ∧gie∧¬X(gie)→ (X(PC) ∈ TCB)∨X(reset)} (8)

TCB Execution Protection:

G : {¬reset ∧ (PC ∈ TCB)∧¬(X(PC) ∈ TCB)→ PC = TCBmax ∨ X(reset) } (9)

G : {¬reset ∧¬(PC ∈ TCB)∧ (X(PC) ∈ TCB)→ X(PC) = TCBmin ∨ X(reset)} (10)

G : {(PC ∈ TCB)∧ (irq∨dmaen)→ reset} (11)

Figure 6: Formal specification of sub-properties verifiably implemented by GAROTA hardware module.

off Flash (often used to implement PMEM in low-end de-
vices) by excessively and repeatedly overwriting it at run-
time [7]. Similarly, GAROTA prevents untrusted components
from modifying IRQc f g – DMEM registers controlling the
trigger configuration. This is specified by LTL 7.

Remark: local updates, via direct physical connection (e.g.,
J-TAG or USB) to the MCU are still possible and unaffected
by GAROTA, because GAROTA hardware protection is only
active at runtime. If remote updates at runtime are desirable,
they must be supported as part of GAROTA TCB. See Section 7
for a discussion on supporting remote updates.

LTL 8 enforces that interrupts can not be globally disabled
by untrusted applications. Since, each trigger is based on in-
terrupts, disablement of all interrupts would allow untrusted
software to disable the trigger itself, and thus the active be-
havior of GAROTA. This requirement is specified by checking
the relation between current and next values of gie, using the
LTL neXt operator. In order to switch gie from logical 0 (cur-
rent cycle) to 1 (next cycle), TCB must be executing when
gie becomes 0 (X(PC) ∈ TCB)), or the MCU will reset.

To assure that TCB code is invoked and executed prop-
erly, GAROTA hardware implements LTL-s (9), (10), and (11).
LTL 9 enforces that the only way for TCB’s execution to ter-
minate, without causing a reset, is through its last instruction
(its only legal exit): PC = TCBmax. This is specified by check-
ing the relation between current and next PC values using LTL

neXt operator. If the current PC value is within TCB, and next
PC value is outside TCB, then either current PC value must
be the address of TCBmax, or reset is set to 1 in the next cy-
cle. Similarly, LTL 10 enforces that the only way for PC to
enter TCB is through the very first instruction: TCBmin. This
prevents TCB execution from starting at some point in the
middle of TCB, thus making sure that TCB always executes
in its entirety. Finally, LTL 11 enforces that reset is always
set if interrupts or DMA modifications happen during TCB’s
execution. Even though LTLs 9 and 10 already enforce that
PC can not change to anywhere outside TCB, interrupts could
be programmed to return to an arbitrary instruction within the
TCB. Or, DMA could change DMEM values currently in use
by TCB. Both of these events can alter TCB behavior and are
treated as violations.

Next, Section 4.5 presents a computer-checked proof of
sufficiency of this set of sub-properties to imply GAROTA
end-to-end goals. Then, Section 4.6 presents FSM-s from our
Verilog implementation, that are formally verified to correctly
implement each requirement.

4.5 GAROTA Composition Proof

GAROTA end-to-end sufficiency is stated in Theorems 1 and 2.
The complete computer-checked proofs (using Spot2.0 [21])
of Theorems 1 and 2 are publicly available at [2]. Below we



Theorem 1. Definition 1∧LTLs 6,7,8→ Definition 2.

Theorem 2. Definition 1∧LTLs 6,9,10,11→ Definition 3.

present the intuition behind them.

Proof of Theorem 1 (Intuition). From machine model
LTL (4), as long as the (1) initial trigger configuration is
never modified from outside the TCB; and (2) interrupts
are never disabled from outside the TCB; it follows that a
trigger will cause a proper invocation of the TCB code. Also,
successful modifications to the trigger’s configuration imply
writing to PMEM or IRQc f g without causing a reset (per
LTL (2)). Since GAROTA verified implementation guarantees
that memory modifications (specified in LTL (1)) to PMEM
(LTL (6)) or IRQc f g (LTL (7)) always cause a reset, illegal
modifications to triggerc f g are never successful. Finally,
LTL (8) assures that any illegal interrupt disablement always
causes a reset, and is thus never successful). Therefore,
GAROTA satisfies all necessary conditions to guarantee the
goal in Definition 2.

Proof of Theorem 2 (Intuition). The fact that a reset always
causes a later call to the TCB follows from the machine
model’s LTL (5) and GAROTA guarantee in LTL (6). LTLs (9)
and (9) ensure that the TCB executable is properly invoked
and executes atomically, until its legal exit. Otherwise a reset
flag is set, which (from the above argument) implies a new
call to TCB. Finally, LTL 11 assures that any interrupt or
DMA activity during TCB execution will cause a reset, thus
triggering a future TCB call and satisfying Definition 3.

See [2] for the formal computer-checked proofs.

4.6 Sub-Module Implementation+Verification
Following the sufficiency proof in Section 4.5 for sub-
properties in Definition 4, we proceed with the implemen-
tation and formal verification of GAROTA hardware using the
NuSMV model-checker (see Section 4.1 for details).

GAROTA modules are implemented as Mealy FSMs (where
outputs change with the current state and current inputs) in
Verilog. Each FSM has one output: a local reset. GAROTA
output reset is given by the disjunction (logic or) of local
reset-s of all sub-modules. Thus, a violation detected by any
sub-module causes GAROTA to trigger an immediate MCU
reset. For the sake of easy presentation we do not explicitly
represent the value of reset in the figures. Instead, we define
the following implicit representation:

1. reset output is 1 whenever an FSM transitions to the
RESET state (represented in red color);

2. reset output remains 1 until a transition leaving the
RESET state is triggered;

RUN RESET

otherwise otherwise

¬(PC ∈ TCB) ∧
(Wen ∧Daddr ∈ PMEM∨DMAen ∧DMAaddr ∈ PMEM)

PC = 0

Figure 7: Verified FSM for LTL 6.

RESET

OFF ON

PC = 0

otherwise

¬ gie

gie∧PC ∈ TCB

otherwise

gie

¬gie∧PC ∈ TCB

otherwise

Figure 8: Verified FSM for LTL 8.

3. reset output is 0 in all other states (represented in blue
color).

Note that all FSM-s remain in the RESET state until PC = 0,
which signals that the MCU reset routine finished.

Figure 7 illustrates GAROTA sub-module responsible for
assuring that PMEM modifications are only allowed from
within the TCB. This minimal 2-state machine works by
monitoring PC, Wen, Daddr, DMAen, and DMAaddr to detect
illegal modification attempts by switching from RUN to
RESET state, upon detection of any such action. It is ver-
ified to adhere to LTL (6). A similar FSM is used to verifiably
enforce LTL (7), with the only distinction of checking for
writes within IRQc f g region instead, i.e., Daddr ∈ IRQc f g and
DMAaddr ∈ IRQc f g. Given the similarity, we omit the illustra-
tion of this FSM.

Figure 8 presents an FSM implementing LTL 8. It monitors
the “global interrupt enable” (gie) signal to detect attempts to
illegally disable interrupts. It consists of three states: (1) ON,
representing execution periods where gie = 1; (2) OFF , for
cases where gie = 0, and (3) RESET . To switch between ON
and OFF states, this FSM requires PC ∈ TCB, thus prevent-
ing misconfiguration by untrusted software.

Finally, the FSM in Figure 9 verifiably implements LTL-
s 9, 10, and 11. This FSM has 5 states, one of which is RESET .
Two basic states correspond to whenever: the TCB is execut-
ing (state “∈ TCB”), and not executing (state “/∈ TCB”). From
/∈ TCB the only reachable path to ∈ TCB is through state
TCBentry, which requires PC = TCBmin – TCB only legal en-
try point. Similarly, from ∈ TCB the only reachable path to
/∈ TCB is through state TCBexit , which requires PC = TCBmax



RESET

/∈ TCB

TCBentry

∈ TCB

TCBexit

PC = 0

otherwise

PC < TCBmin ∨ PC > TCBmax

PC = TCBmin∧¬ irq∧¬ DMAen
otherwise

PC = TCBmin
∧¬ irq∧¬ DMAen

(PC > TCBmin ∧ PC < TCBmax)
∧¬ irq∧¬ DMAen

otherwise

(PC > TCBmin ∧ PC < TCBmax)
∧¬ irq∧¬ DMAen

PC = TCBmax∧¬ irq∧¬ DMAen
otherwise

PC = TCBmax
∧¬ irq∧¬ DMAen

(PC < TCBmin ∨ PC > TCBmax)
∧¬ irq∧¬ DMAen

otherwise

Figure 9: Verified FSM for LTLs 9–11.

– TCB only legal exit. Also, in all states where PC ∈ TCB (in-
cluding entry and exit transitions) this FSM requires DMA
and interrupts to remain inactive. Any violation of these re-
quirements, in any of the four regular states, causes the FSM
transition to RESET , thus enforcing TCB execution protec-
tion.

4.7 TCB Confidentiality
Confidentiality of TCB data and code with respect to untrusted
applications is of particular interest when F implements cryp-
tographic functions or privacy-sensitive tasks.

This goal can be achieved by including and epilogue phase
in the TCB executable, with the goal of performing a DMEM
cleanup, erasing all traces of the TCB execution from the
stack and heap. While the TCB execution may be interrupted
before the execution of the epilogue phase, such an interrupt
will cause an MCU reset. The Re-Trigger on Failure property
assures that TCB code will execute (as a whole) after any reset
and will thus erase remaining execution traces from DMEM
before subsequent execution of untrusted applications. In a
similar vein, if confidentiality of the executable is desirable,
it can be implemented following LTL (12), which formalizes
read attempts based on Ren signal:

G : {
[¬(PC ∈ TCB)∧Ren∧ (Daddr ∈ TCB)∨
DMAen∧ (DMAaddr ∈ TCB)]→ reset

}

(12)

An FSM implementing this property is shown in Figure 10.
Note that, despite visual similarity with the FSM in Figure 7,
the confidentiality FSM checks for reads (instead of writes)
to the TCB (instead of entire PMEM).

This property prevents external reads to TCB code by mon-
itoring Ren, Daddr, and DMA. When combined with the afore-
mentioned erasure epilogue, it also enables secure storage

RUN RESET

otherwise otherwise

¬(PC ∈ TCB) ∧
(Ren ∧Daddr ∈ TCB∨DMAen ∧DMAaddr ∈ TCB)

PC = 0

Figure 10: Verified FSM for LTL 12.

of cryptographic secrets within the TCB binary, as in other
architectures, e.g., [5, 6, 22]. This part of GAROTA design is
optional, since some embedded applications do not require
confidentiality, as discussed in Sections 5.1 and 5.2.

4.8 Resets & Availability

One important remaining issue is availability. For example,
malware might interrupt (or tamper with) with INIT execution
after a reset preventing the subsequent execution of TCB.
Also, malware could to interrupt the TCB execution, after each
re-trigger, with the goal of resetting the MCU indefinitely,
and thereby preventing TCB execution from ever completing
its task.

We observe that (under GAROTA assumptions) such ac-
tions are not possible, since they would require either DMA
activity or interrupts to: (1) hijack INIT control-flow; or (2)
abuse GAROTA to successively reset the MCU during TCB
execution after each re-trigger. Given H5 interrupts are dis-
abled by default at boot time. Additionally, H4 states that any
prior DMA configuration is cleared to the default disabled
state after a reset. Hence, INIT and the first execution of TCB
after a reset cannot be interrupted or tampered with by DMA.

Finally, we note that, despite preventing security violations
by (and implementing re-trigger based on) resetting the MCU,
GAROTA does not provide any advantage to malware that aims
to simply disrupt execution of (non-TCB) applications by
causing resets. Any software running on bare metal (including
malware) can always intentionally reset the MCU. Resets are
the default mechanism to recover from regular software faults
on unmodified (off-the-shelf) low-end MCU-s, regardless of
GAROTA.

5 Sample Applications
Many low-end MCU use-cases and applications can benefit
from trigger-based active RoTs. To demonstrate generality
of GAROTA, we prototyped three concrete examples, each
with a different type of trigger. This section overviews these
examples: (1) GPIO-TCB uses external analog events (Sec-
tion 5.1), TimerTCB uses timers (Section 5.2), and NetTCB
uses network events (Section 5.3). Finally, Section 5.4 dis-
cusses how GAROTA can match active RoT services proposed
in [53], [30], and [38].



1 i n t main ( ) {
2 TCB ( ) ;
3 main_loop ( ) ;
4 r e t u r n 0 ;
5 }

Figure 11: Program Entry Point

1 vo id setup ( vo id ) {
2 P1DIR = 0x00 ;
3 P1IE = 0x01 ;
4 P1IES = 0x00 ;
5 P1IFG = 0x00 ;
6 }

Figure 12: Trigger Setup

5.1 GPIO-TCB: Critical Sensing+Actuation
Our first application example, GPIO-TCB, operates in the con-
text of a safety-critical temperature sensor. In this setting, we
want to use GAROTA to assure that the sensor’s most safety-
critical function – sounding an alarm – is never prevented
from executing due to software compromise of the underly-
ing MCU. Once the alarm is on, the TCB implementation
will also send a help message through the MCU UART com-
munication interface2 and keep the alarm on until someone
physically presses a particular button to shut the alarm down.
This example also illustrates the use-case where the TCB
code awaits for an asynchronous input before resuming exe-
cution of untrusted software. We use a standard built-in MCU
interrupt, based on General Purpose Input/Output (GPIO) to
implement trigger. Since this is our first example, we discuss
GPIO-TCB in more detail than the other two.

As shown in Figure 11, MCU execution always starts by
calling the TCB (at line 2). Therefore, after MCU initial-
ization/reset, unprivileged (non-TCB) applications can only
execute after the TCB; assuming, of course, that formal guar-
antees discussed in Section 4 hold. These (unprivileged) ap-
plications are implemented inside main_loop function (at line
3).

The correct trigger configuration in GPIO-TCB can be
achieved in two ways. The first way is to set IRQc f g to the
desired parameters at MCU deployment time, by physically
writing this configuration to IRQc f g. The second option is to
implement this configuration in software as a part of the TCB.
Since the TCB is always the first to run after initialization/re-
set, it will configure IRQc f g correctly, enabling subsequent
trigger-s at runtime.

Figure 12 exemplifies IRQc f g configuration, implemented
as part of the TCB, i.e., called from within the TCB. This
setup function is statically linked to be located inside the
TCB memory region, thus respecting “TCB Execution Protec-
tion” LTL rules (see Definition 4). The setup first configures

2UART is the main communication interface in the MCU. It can in turn
connect to a ZigBee or Bluetooth radio that relays the message wirelessly, as
described in [25].

1 ISR (PORT1 , TCB ) {
2 dint ( ) ;
3 i f (first_run ) {
4 setup ( ) ;
5 }
6
7 P3DIR = 0x01 ; / / s e t P3 as o u t p u t
8 P3OUT = 0x01 ; / / t u r n b u z z e r on
9

10 UART_BAUD = BAUD ; / / s e t UART t o d e f a u l t speed (BAUD macro )
11 UART_CTL = UART_EN ; / / t u r n UART on ;
12
13 w h i l e (UART_STAT & UART_TX_FULL ) ; / / w a i t f o r any p r e v i o u s send t o c o m p l e t e
14 UART_TXD = 'H ' ; / / send 1 s t b y t e
15 w h i l e (UART_STAT & UART_TX_FULL ) ; / / w a i t f o r p r e v i o u s send t o c o m p l e t e
16 UART_TXD = ' E ' ; / / send 2nd b y t e
17 w h i l e (UART_STAT & UART_TX_FULL ) ; / / w a i t f o r p r e v i o u s send t o c o m p l e t e
18 UART_TXD = ' L ' ; / / send 3 rd b y t e
19 w h i l e (UART_STAT & UART_TX_FULL ) ; / / w a i t f o r p r e v i o u s send t o c o m p l e t e
20 UART_TXD = ' P ' ; / / send 4 t h b y t e
21
22 P2DIR = 0x00 ; / / s e t P2 GPIO as i n p u t
23 w h i l e ( 1 ) { / / w a i t f o r b u t t o n p r e s s
24 i f (P2IN == 0x01 ) { / / b u t t o n p r e s s d e t e c t e d
25 b r e a k ;
26 }
27 }
28 P3OUT = 0x00 ; / / t u r n b u z z e r o f f
29 eint ( ) ;
30 r e t u r n ( ) ;
31 }

Figure 13: GPIO-TCB use-case example

the physical port P1 as an input (line 2, “P1 direction” set
to 0x00, whereas 0x01 would set it as an output). At line 3,
P1 is set as “interrupt-enabled” (P1IE = 0x01). A value of
P1IES = 0x00 (line 4) indicates that, if the physical voltage
input of P1 changes from logic 0 to 1 (“low-to-high” transi-
tion), a GPIO interrupt is triggered and the respective handler
is called. Finally, P1IFG is cleared to indicate that the MCU
is free to receive interrupts (as opposed to busy). This initial
trusted configuration of IRQc f g cannot be modified afterwards
by untrusted applications due to GAROTA guarantees (see Sec-
tion 4). Based on this configuration, an analog temperature
sensing circuit, i.e., a voltage divider implemented using a
thermistor3 is connected to port P1. Resistances in this circuit
are set to achieve 5V (logic 1) when temperature exceeds a
fixed threshold, thus triggering a P1 interrupt.

Figure 13 shows the TCB implementation of F . The TCB
function is configured as an interrupt service routine for P1 us-
ing the ISR(PORT 1,TCB) compilation macro. This ensures
that interrupts based on P1 will cause the execution of this
particular function.

Once triggered, TCB disables interrupts (dint), calls
setup (if this is the first TCB call after initialization/reset),
and switches GPIO port P3 to active. Since P3 is connected to
a buzzer4, this turns on the alarm. The alarm remains on until
P3 is set back to 0x00. Once the alarm is on, TCB enables
UART communication interface (lines 10 and 11) by setting
its communication speed to a default value (constant BAUD)
and turning it on. Next, TCB uses UART interface to send a
“HELP” message (lines 13 – 20). Once sent, TCB sets port P2
as input, at line 22. In our sample TCB implementation, P2
is connected to an analog button used to deactivate the alarm.

3Thermistor is a resistance thermometer – its resistance varies with tem-
perature.

4A high-frequency oscillator circuit used for generating a buzzing sound.



1 vo id setup ( vo id ) {
2 CCTL0 = CCIE ;
3 CCR0 = 1000000;
4 TACTL = TASSEL_2 + MC_1 ;
5 }

Figure 14: Timer Trigger Setup

1 ISR (TIMERA0 , TCB ) {
2 . . .
3 }

Figure 15: TimerTCB Routine

Hence, TCB code goes into a while-loop that checks for an
asynchronous button press, where the button is connected
to the GPIO interface P2. Once a button press is detected,
execution exits the while-loop and the alarm is turned off:
P3 = 0x00. Upon completion, TCB re-enables interrupts and
returns control to unprivileged software.

As discussed in Section 4, the executable corresponding
to Figure 13 is also protected by GAROTA. Thus, its behavior
cannot be modified by untrusted/compromised software.

5.2 TimerTCB: Secure Periodic Scheduling
Our second example, TimerTCB, is in the domain of real-
time task scheduling. Without GAROTA (even in the pres-
ence of a passive RoT), a compromised MCU controlled by
malware could ignore performing its periodic security- or
safety-critical tasks. (Recall that targeted MCU-s typically
run bare-metal software, with no OS support for preempt-
ing tasks). We show how GAROTA can easily ensure that a
prescribed task, implemented within the TCB periodically
executes.

TimerTCB only requires modifying IRQc f g to configure
the timer that will cause the interruption, as illustrated in Fig-
ure 14. The setup function is modified to enable the MCU’s
built-in TIMER-A0 to cause interrupts, at line 2. Interrupts
are set to occur whenever the timer’s counter reaches a de-
sired value (1 million in this example, at line 3). The timer is
set to increment the counter with edges of a particular MCU
clock (clock MC1, at line 4). As in the first example, the corre-
sponding interrupt service routine implements the TCB (Fig-
ure 15). To define the TCB function as the interrupt handler
for TIMER-A0 the compilation macro ISR(T IMERA0,TCB)
is used. In turn, the TCB can implement F as an arbitrary
safety-critical periodic task.

5.3 NetTCB: Network Event-based trigger

The last example, NetTCB, uses network event-based trigger
to ensure that the TCB quickly filters all received network
packets to identify those that carry TCB-destined commands
and take action. Incoming packets that do not contain such

1 vo id setup ( vo id ) {
2 UART_BAUD = BAUD ;
3 UART_CTL = UART_EN | UART_IEN_RX ;
4 }

Figure 16: UART Trigger Setup

1 ISR (UART_RX , TCB ) {
2 dint ( ) ;
3 i f (first_run ) {
4 setup ( ) ;
5 }
6 rxdata = UART_RXD ;
7 i f (rxdata == ' r ' ) {
8 reset ( ) ;
9 }

10 eint ( ) ;
11 r e t u r n ( ) ;
12 }

Figure 17: NetTCB Handler Routine and TCB Implementa-
tion

commands are ignored by the TCB and passed on to appli-
cations through the regular interface (i.e., reading from the
UART buffer). In this example, we implement guaranteed
receipt of external reset commands from some trusted remote
entity. This functionality might be desirable after an MCU
malfunction (e.g., due to a deadlock) is detected.

Here, trigger is configured to trap network events. IRQc f g
is set such that each incoming UART message causes an inter-
rupt, as shown in Figure 16. The TCB implementation, shown
in Figure 17, filters messages based their initial character ′r′

which is predefined as a command to reset the MCU. The use
of the compilation macro ISR(UART _RX ,TCB) causes this
TCB implementation to run whenever a message is received
via UART. Note that, in practice, such critical commands
should be authenticated by the TCB. Although this authen-
tication should be implemented within the TCB, we omit
it from this discussion for the sake of simplicity, and refer
to [24] for a discussion of authentication of external requests
in this setting.

5.4 Comparison with [30, 38, 53]

As mentioned earlier in the paper, some recent work [30, 53]
proposed security services that fall into the domain of active
RoT-s. However, these results focus on higher-end embedded
devices and require substantial hardware support: Authenti-
cated Watchdog Timer (AWDT) implemented as a separate
(stand-alone) microprocessor [53], or ARM TrustZone [30].
Each requirement is, by itself, far more expensive than the
cost of a typical low-end MCU targeted in this paper (see
Section 2).

In terms of functionality, both [53] and [30] are based
on timers. They use AWDT to force a device reset. As in
GAROTA, the TCB is the first to execute; this property is re-
ferred to as “gated boot” in [53]. However, unlike GAROTA,
[30, 53] do not consider active RoT behavior stemming from



other types of interrupts, e.g., as in GAROTA examples in
Sections 5.1 and 5.3). We believe that this is partly because
these designs were originally intended as an active means
to enforce memory integrity, rather than a general approach
to guaranteed execution of trusted tasks based on arbitrary
trigger-s. Whereas, GAROTA is general enough to realize
an active means to enforce memory integrity. This can be
achieved by incorporating an integrity-ensuring function (e.g,
a suitable cryptographic keyed hash) into GAROTA TCB and
using it to check PMEM state upon a timer-based trigger.

As far as active RoT-s for lower-end MCU-s, prior work
in [38] focused on enabling trusted scheduling of security-
critical tasks. The architecture proposed in [38] can also en-
force periodic execution of a safety-critical task that can not be
interrupted, i.e., executes atomically. As such, it can be viewed
as a special case of timer-based triggers in GAROTA. However,
we note that (in addition to formal modeling and verification
– see below) GAROTA general design differs from [38] by
enabling various types of triggers, i.e., any interrupt, not just
expiring timers.

Finally, we emphasize that prior results involved neither
formally specified designs nor formally verified open-source
implementations. As discussed in Section 1, we believe these
features are important for eventual adoption of this type of an
architecture.

6 Implementation & Evaluation
We prototyped GAROTA (adhering to its architecture in Fig-
ure 2) using an open-source implementation of the popular
MSP430 MCU – openMPS430 [28] from OpenCores. In ad-
dition to GAROTA module, we reserve, by default, 2 KBytes
of PMEM for TCB functions. This size choice is configurable
at manufacturing time and MCU-s manufactured for differ-
ent purposes can choose different sizes. In our prototype, 2
KBytes is a a reasonable choice, corresponding to 5−25% of
the typical amount of PMEM in low-end MCU-s. The proto-
type supports one trigger of each type: timer-based, external
hardware, and network. This support is achieved by imple-
menting the IRQc f g protection, as described in Section 4. The
MCU already includes multiple timers and GPIO ports that
can be selected to act as trigger-s. By default, one of each is
used by our prototype. This enables the full set of types of
applications discussed in Section 5.

As a proof-of-concept, we use Xilinx Vivado to synthesize
our design and deploy it using the Basys3 Artix-7 FPGA
board. Prototyping using FPGAs is common in both research
and industry. Once a hardware design is synthesizable in
an FPGA, the same design can be used to manufacture an
Application-Specific Integrated Circuit (ASIC) at larger scale.

Hardware & Memory Overhead
Table 2 reports GAROTA hardware overhead as compared
to unmodified OpenMSP430 [28]. Similar to the related
work [4,15,17,19,20,42,55], we consider hardware overhead

in terms of additional Look-Up Tables (LUT-s) and regis-
ters. The increase in the number of LUT-s can be used as
an estimate of the additional chip cost and size required for
combinatorial logic, while the number of registers offers an
estimate on the state overhead required by the sequential logic
in GAROTA FSMs.

GAROTA hardware overhead is small with respect to the
unmodified MCU core – it requires 2.3% and 4.8% addi-
tional LUT-s and registers, respectively. In absolute numbers,
GAROTA adds 33 registers and 42 LUT-s to the underlying
MCU.

Runtime & Memory Overhead
We observed no discernible overhead for software execution
time on the GAROTA-enabled MCU. This is expected, since
GAROTA introduces no new instructions or modifications to
the MSP430 ISA and to the application executables. GAROTA
hardware runs in parallel with the original MSP430 CPU.
Aside from the reserved PMEM space for storing the TCB
code, GAROTA also does not incur any memory overhead.
This behavior does not depend on the number of functions or
triggers used inside the TCB.

Verification Cost
We verify GAROTA on an Ubuntu 18.04 machine running at
3.40GHz. Results are shown in Table 2. GAROTA implemen-
tation verification requires checking 7 LTL statements. The
overall verification pipeline (Section 4.1) is fast enough to
run on a commodity desktop in quasi-real-time.

Comparison with Prior RoTs
To the best of our knowledge, GAROTA is the first active RoT
targeting this lowest-end class of devices. Nonetheless, to pro-
vide a overhead point of reference and a comparison, we con-
trast GAROTA’s overhead with that of state-of-the-art passive
RoTs in the same class. Note that the results from [30,53] can
not be compared to GAROTA quantitatively. As noted in Sec-
tion 5.4, [53] relies on a standalone additional MCU and [30]
on ARM TrustZone. Both of these are (by themselves) more
expensive and sophisticated than the entire MSP430 MCU
(and similar low-end MCU-s in the same class). Our quan-
titative comparison focuses on VRASED [15], APEX [17],
and SANCUS [42]: passive RoTs implemented on the same
MCU type and thus directly comparable cost-wise. Table 3
provides a qualitative comparison among these designs. Fig-
ure 18 depicts relative overhead (in %) of GAROTA, VRASED,
APEX, and SANCUS with respect to total hardware cost of
the unmodified MSP430 MCU core.

In comparison with passive RoTs, GAROTA offers lower
hardware overhead. In part, this is because, to implement
its triggers, GAROTA leverages interrupt hardware support
already present in the underlying MCU. SANCUS incurs
substantially higher cost since it implements task isolation
and a cryptographic hash engine (for the purpose of verify-
ing software integrity) in hardware. VRASED has slightly
higher cost than GAROTA. It includes some properties that



Hardware Reserved Verification
Reg LUT PMEM/Flash (bytes) # LTL Invariants Verified Verilog LoC Time (s) Mem (MB)

OpenMSP430 [28] 692 1813 0 - - - -
OpenMSP430 + GAROTA 725 1855 2048 (default) 7 484 3.1 13.5

Table 2: GAROTA Hardware overhead & verification costs.

Architecture Behavior Service HW Support Verification?
VRASED [15] Passive Attestation RTL Design Yes

SANCUS [42] Passive
Attestation &
Isolation RTL Design No

APEX [17] Passive
Attestation &
Proof of Execution RTL Design Yes

Cider [53] Active Timer-based trigger Additional MCU No
Lazarus [30] Active Timer-based trigger ARM TrustZone No
Trust. Sched. [38] Active Timer-based trigger RTL Design No
GAROTA (this paper) Active IRQ-based trigger RTL Design Yes

Table 3: Qualitative Comparison
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Figure 18: Comparison with passive RoTs: Hardware over-
head

are similar to those of GAROTA, e.g., access control to par-
ticular memory segments and atomicity of its attestation im-
plementation. Also, VRASED requires hardware support for
an exclusive stack in DMEM. APEX hardware component
is a super-set of VRASED, providing an additional proof-of-
execution function in hardware. It thus requires strictly more
hardware support, resulting in slightly higher cost. GAROTA
also reserves approximately 3.1% (2 KBytes) of the MCU-s
16-bit address space for storing the TCB code. This value
is freely configurable and is chosen as a sensible default to
support envisioned RoT tasks, including sample applications
in Section 5. GAROTA-enabled MCU-s manufactured for
different use-cases could increase or decrease this amount
accordingly.

7 Restrictions, Limitations & Future Direc-
tions

We now discuss some limitations and requirements imposed
by GAROTA to the underlying MCU, as well as some direc-
tions for future work.

Remote/Runtime Software Updates. As discussed in Sec-
tion 4.2.4, GAROTA does not affect the developer’s ability
to reprogram the device physically, e.g., via USB/J-TAG in-
terface. However, if runtime software updates (e.g, sent by a
remote controller) are desirable, they must be implemented
within the TCB. This is because GAROTA prevents untrusted
code from modifying program memory. In this case, the Net-
TCB example (from Section 5.3) should be extended to detect
“update commands” (in addition to “reset commands” in the
current example). Upon receiving an “update command” the
TCB would then actively monitor the UART-RX (receive)
interface for further inputs from the controller and overwrite
program memory as commanded. (Recall that, as discussed in
Section 5.3, authenticating received commands is also crucial
in this case). Untrusted applications would not be allowed to
run for some time until the update is completed, as usually
required by secure software updates.

Unprivileged Interrupt Disablement. By design, any un-
privileged (non-TCB) software is precluded from disabling
interrupts globally and from disabling the GAROTA trigger
locally. However, disabling any other interrupt locally is still
possible. Interrupts are typically disabled by default and must
be actively enabled in software, e.g., as done by the setup
function in Section 5. Any unprivileged software can keep
track of currently enabled unprivileged interrupts and disable
them locally as needed. For example, the maximum number
of interrupts available in openMSP430 is 12. Whereas, real
MSP430 deployments usually support fewer interrupt sources.
Thus, we consider local disablement feasible. Nonetheless,
an alternative to avoiding this burden is to implement Non-
Maskable Interrupts (NMI) – which by default can not be
disabled globally – and use them as GAROTA trigger-s, while
allowing unprivileged applications to disable interrupts glob-
ally. However, this approach requires underlying MCU sup-
port for NMIs for each trigger of interest; hence it is less
general.

Atomicity. As the highest priority task running on the MCU,
the TCB code can not be interrupted. Any asynchronous in-
puts (e.g., a button press) must be actively checked by the
TCB code and cannot cause nested interrupts. As discussed
in Section 4, this is necessary to guarantee correct TCB ex-
ecution, once triggered. We illustrate how an asynchronous
input can be actively checked in the GPIO-TCB example of
Section 5.1. When utilizing GAROTA, developers should be
aware that, during TCB execution, inputs and signals that are



not relevant to the TCB itself may be ignored. Generally, this
is the case for any interrupt, since it is common practice in
embedded system programming to disable other interrupts
while an interrupt is already being serviced. Similar to regular
interrupts, it is a good practice to keep TCB code short, fast,
and as simple as possible.

Self-Contained TCB. In order to comply with GAROTA
atomicity rule, the TCB code must be self-contained and en-
tirely located within the TCB designated region in program
memory. Thus, it is not possible to share common libraries
with untrusted applications, since these shared libraries would
need to be located outside the TCB program memory region.
Therefore, all TCB libraries must be statically linked at com-
pilation time. If the same library is used by both TCB and
unprivileged software, two local copies would be needed.

Other Future Directions. As discussed in Section 2,
GAROTA targets low-end, single-core devices that execute
instructions in place from program memory (without virtual
memory), and use simple memory-mapped I/O interfaces.
This simplifies the specification of goals and requirements,
allowing us to formally reason about GAROTA. From this
initial step, adapting and re-designing GAROTA for higher-
end devices, where these assumptions do no hold remains
an interesting and broad open problem. Also, as discussed
in Section 4.2.4, future work should consider integration of
tamper-resistance and network monitoring techniques to com-
plement GAROTA with security against physical attacks and
adversarial network jamming (in the NetTCB case).

8 Related Work
Aside from closely related work already discussed in Sec-
tion 5.4, several efforts yielded passive RoT designs for
resource-constrained low-end devices, along with formal spec-
ifications, formal verification and provable security.

Low-end RoT-s fall into three general categories: software-
based, hardware-based, or hybrid. Establishment of software-
based RoT-s [26, 29, 33, 36, 48–50] rely on strong assump-
tions about precise timing and constant communication de-
lays, which can be unrealistic in the IoT ecosystem. How-
ever, software-based RoTs are the only viable choice for
legacy devices that have no security-relevant hardware sup-
port. Hardware-based methods [35, 39, 40, 42, 45, 47, 52] rely
on security provided by dedicated hardware components (e.g.,
TPM [52] or ARM TrustZone [8]) or by the CPU ISA. How-
ever, the cost of such hardware is normally prohibitive for
lower-end IoT devices. Hybrid RoTs [10,15,17,23,34] aim to
achieve security equivalent to hardware-based mechanisms,
yet with lower hardware cost. They leverage minimal hard-
ware support while relying on software to reduce the com-
plexity of additional hardware.

In terms of functionality, such embedded RoTs are passive.

Upon receiving a request from an external trusted Verifier,
they can generate unforgeable proofs for the state of the MCU
or that certain actions were performed by the MCU. Security
services implemented by passive RoTs include: (1) memory
integrity verification, i.e., remote attestation [6, 10, 15, 23, 34,
42]; (2) verification of runtime properties, including control-
flow and data-flow attestation [4, 17, 19, 20, 27, 40, 43, 51, 55];
as well as (3) proofs of remote software updates, memory
erasure, and system-wide resets [5, 9, 16]. As discussed in
Section 1 and demonstrated in Section 5, several application
domains and use-cases could greatly benefit from more active
RoT-s. Therefore, the key motivation for GAROTA is to not
only provide proofs that actions have been performed (if
indeed they were), but also to assure that these actions will
necessarily occur.

Formalization and formal verification of RoTs for MCU-s
is a topic that has recently attracted lots of attention due to the
benefits discussed in Sections 1 and 4.1. VRASED [15] imple-
mented the first formally verified hybrid remote attestation
scheme. APEX [17] builds atop VRASED to implement and
formally verify an architecture that enables proofs of remote
execution of attested software. PURE [16] implements prov-
ably secure services for software updates, memory erasure,
and system-wide resets atop VRASED RoT. Another recent
result [11] formalized, and proved security of, a hardware-
assisted mechanism to prevent leakage of secrets through
time-based side-channel that can be abused by malware in
control of the MCU interrupts. Inline with aforementioned
work, GAROTA also formalizes its assumptions along with its
goals and implements the first formally verified active RoT
design.

9 Conclusions
This paper motivated and illustrated the design of GAROTA:
an active RoT targeting low-end MCU-s used as platforms for
embedded/IoT/CPS devices that perform safety-critical sens-
ing and actuation tasks. We believe that GAROTA is the first
clean-slate design of a active RoT and the first one applicable
to lowest-end MCU-s, which cannot host more sophisticated
security components, such as ARM TrustZone, Intel SGX
or TPM-s. We believe that this work is also the first formal
treatment of the matter and the first active RoT to support a
wide range of RoT trigger-s.
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