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It is challenging to deploy large-size neural networks on resource-constrained devices

Computational, memory, and storage limitations
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Neural Network Pruning
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Basic Idea: remove redundant parameters from a dense neural network

Goal
Reduce sizes of neural networks and speed up inference
Minimize the loss of prediction performance

Evaluation Metrics
Efficiency (e.g., Sparsity Level, FLOPs, Latency)
Prediction Performance (e.g., Accuracy)
Privacy risk? @




Why Concern About Privacy in Neural Network Pruning?
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Enforce a small number of parameters See the training samples
to achieve similar accuracy more often
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* Increase the memorization of training samples
e Aggravate the privacy risks




Membership Inference Attacks (MIAs)
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Membership Inference Attacks (MIAs)
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Will pruned neural networks become more vulnerable to MIAs?
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Frequency

Investigation on Confidence Gap (CIFAR10, DenseNet121)
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Confidence gap between members and non-members is INCREASED!
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Investigation on Sensitivity Gap (CIFAR10, DenseNet121)
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Sensitivity gap between members and non-members is INCREASED! @




Confldence Gap and Sensitivity Gap per Class
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Major findings:

1) Both confidence and
sensitivity gaps are increased for
most classes after pruning.

2) Increased gaps differ among
different classes.
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SAMIA: Self-Attention Membership Inference Attack

— member  non-member Hypothesis: the increased confidence CFaF_ and sensitivity
" gap among different classes can provide fine-grained
[ 5°ft*max ] evidence” for MIAs.
2x | ':C J
(o AdTENorm ) ) Most MIAs learn a single threshold of prediction
1 confidence to determine the membership status, which
i ] may not be sufficient for neural network pruning.
3x | { Add&Norm )
f MultitHeqd ) We introduce a neural network-based attack using self-
! STe'f'Atﬁe"m; ) attention mechanism: SAMIA.
/
FC
| ; SAMIA leverages self-attention mechanism to find out the
IRUE: specific confidence and sensitivity information that the

confidence  sensitivity one-hotlabel  Jttgck “threshold” should pay more “attention” to.
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Evaluation Setup

4 Neural Network Pruning
Approaches
L1 unstructured pruning (Han 2016)
L1 structured pruning (Li 2017)
L2 structured pruning (L1 2017)
Network slimming (Liu 2017)

5 Pruning Sparsity Levels
0.5,0.6,0.7,0.8, 0.9

8 Membership Inference Attacks

4 Metric-based attacks, 2 Neural
network-based attacks, BlindMI and
SAMIA

7 Popular Datasets

CIFAR10, CIFAR100, CHMNIST, SVHN,
Location, Texas, Purchase

4 Neural Network Architectures

Image datasets: ResNet18, VGG16,
DefenseNet121

Non-image datasets: Fully Connected
Neural Network @




Privacy Risks Under Different Pruning Approaches and Sparsity Levels

(0)]
(0]
——

- —— Original Model

- —#&— |1 Unstructured

62 - —«— L1 Structured

L2 Structured

60  —*— Slimming
[ | N N N

P S T R S S SR S,
0.5 0.6 0.7
Model Sparsity

Most pruning approaches result in increased attack accuracy.

Attack Accuracy (%)
»
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(CIFAR10, ResNet18)

The attack accuracy may be decreased under a high sparsity level, e.g., 0.9
(when the pruned model cannot achieve a comparable prediction accuracy). @
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(f) L1 structured
SAMIA outperforms the existing membership inference attacks on
different pruning approaches and:sparsity levels.
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Relationship Between Gaps and Attack Accuracy
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Strong correlation between the gaps (confidence gap, sensitivity gap) and attack accuracy.




Pair-based Posterior Balancing (PPB) Defense

Basic Idea: align the posterior predictions of different input samples to mitigate the
new prediction behaviors (increased gaps) introduced by neural network pruning
Apply PPB Defense in Fine-tuning process:
Select two data samples in a batch as a pair without replacement
Balance the posteriors by minimizing the distance of the ranked posteriors
Formulate the new loss function using the prediction loss and KL-divergence loss
Fine-tune the pruned model using the new loss function

L(fp(x),y) = Zzzpredm<fp<x,>,y,> +2 ) LRLRUp@)). R (x0)
k(j#k)
prediction loss Y KL-divergence loss

(e.g., cross-entropy loss) R(-) sorts the posteriors in a descending order
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Frequency

Confidence Gap after PPB (CIFAR10, DenseNet121)
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Frequency

Sensitivity Gap after PPB (CIFAR10, DenseNet121)
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Defense Evaluation

Comparison with existing defenses

Early Stopping and L2 Regularization
(Basic), Song 2019

Differential Privacy (DP), Abadi 2016

Adversarial Regularization (ADV),
Nasr 2018
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(CIFAR10, ResNet18, L1 structured pruning, Sparsity 0.6)

PPB outperforms the existing defenses, achieving a better tradeoff between

prediction accuracy and model privacy.
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Conclusion

Neural network pruning aggravates the privacy risks of the original
neural networks due to the increased confidence gap and sensitivity

gdp.

The proposed SAMIA to predict membership status by using finer-
grained prediction metrics.

SAMIA has advantages in identifying the pruned models’ prediction
divergence compared with the existing attacks.

The proposed PPB defense mitigates pruned model’s privacy risks
by narrowing down the divergences of posterior predictions.
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Please refer to the extended version for more details:

arxiv.org/abs/2202.03335

Open-source code: github.com/Machine-Learning-

Security-Lab/mia_prune
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Scan me to get the code!
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