Membership Inference Attacks and Defenses in Neural Network Pruning

Xiaoyong (Brian) Yuan and Lan Zhang

Michigan Technological University

Increasing Neural Network Size vs. Resource-Constrained Devices

It is challenging to deploy large-size neural networks on resource-constrained devices

Computational, memory, and storage limitations

Neural Network Pruning

- Basic Idea: remove redundant parameters from a dense neural network
- Goal
 - Reduce sizes of neural networks and speed up inference
 - Minimize the loss of prediction performance
- Evaluation Metrics
 - Efficiency (e.g., Sparsity Level, FLOPs, Latency)
 - Prediction Performance (e.g., Accuracy)
 - Privacy risk?

Why Concern About Privacy in Neural Network Pruning?

Membership Inference Attacks (MIAs)

Was this data sample used in training?

Membership Inference Attacks (MIAs)

Was this data sample used in training?

Will pruned neural networks become more vulnerable to MIAs?

Investigation on Confidence Gap (CIFAR10, DenseNet121)

Confidence gap between members and non-members is INCREASED!

Investigation on Sensitivity Gap (CIFAR10, DenseNet121)

Sensitivity gap between members and non-members is INCREASED!

Pruned Model Confidence

Pruned Model Sensitivity

SAMIA: Self-Attention Membership Inference Attack

- **Hypothesis**: the increased confidence gap and sensitivity gap among different classes can provide fine-grained "evidence" for MIAs.
- Most MIAs learn a single threshold of prediction confidence to determine the membership status, which may not be sufficient for neural network pruning.
- We introduce a neural network-based attack using selfattention mechanism: SAMIA.
- SAMIA leverages self-attention mechanism to find out the specific confidence and sensitivity information that the attack "threshold" should pay more "attention" to.

Evaluation Setup

- **4 Neural Network Pruning Approaches**
 - L1 unstructured pruning (Han 2016)
 - L1 structured pruning (Li 2017)
 - L2 structured pruning (L1 2017)
 - Network slimming (Liu 2017) •
- **5** Pruning Sparsity Levels
 - 0.5, 0.6, 0.7, 0.8, 0.9

- **8 Membership Inference Attacks**
 - 4 Metric-based attacks, 2 Neural network-based attacks, BlindMI and SAMIA

7 Popular Datasets

- CIFAR10, CIFAR100, CHMNIST, SVHN, Location, Texas, Purchase
- 4 Neural Network Architectures
 - Image datasets: ResNet18, VGG16, DefenseNet121
 - Non-image datasets: Fully Connected Neural Network

Privacy Risks Under Different Pruning Approaches and Sparsity Levels

- Most pruning approaches result in increased attack accuracy.
- The attack accuracy may be decreased under a high sparsity level, e.g., 0.9 (when the pruned model cannot achieve a comparable prediction accuracy).

Comparison Between SAMIA and the Existing MIAs

different pruning approaches and sparsity levels.

Relationship Between Gaps and Attack Accuracy

Strong correlation between the gaps (confidence gap, sensitivity gap) and attack accuracy.

Pair-based Posterior Balancing (PPB) Defense

- Basic Idea: align the posterior predictions of different input samples to mitigate the new prediction behaviors (increased gaps) introduced by neural network pruning
- Apply PPB Defense in Fine-tuning process:
 - Select two data samples in a batch as a **pair** without replacement
 - Balance the posteriors by minimizing the distance of the ranked posteriors
 - Formulate the new loss function using the prediction loss and KL-divergence loss
 - Fine-tune the pruned model using the new loss function

$$\mathcal{L}(f_p(\mathbf{x}), \mathbf{y}) = \sum_{i} \mathcal{L}_{\text{predict}}(f_p(\mathbf{x}_i), y_i) + \lambda \sum_{j,k(j \neq k)} \mathcal{L}_{\text{KL}}(R(f_p(\mathbf{x}_j)), R(f_p(\mathbf{x}_k)))$$
prediction loss
(e.g., cross-entropy loss)
$$\text{KL-divergence loss}$$

$$R(\cdot) \text{ sorts the posteriors in a descending order}$$

Confidence Gap after PPB (CIFAR10, DenseNet121)

Confidence gap between members and non-members is **REDUCED!**

Sensitivity Gap after PPB (CIFAR10, DenseNet121)

Sensitivity gap between members and non-members is **REDUCED!**

Defense Evaluation

- Comparison with existing defenses
 - Early Stopping and L2 Regularization (Basic), Song 2019
 - Differential Privacy (DP), Abadi 2016
 - Adversarial Regularization (ADV), Nasr 2018

(CIFAR10, ResNet18, L1 structured pruning, Sparsity 0.6)

PPB outperforms the existing defenses, achieving a better tradeoff between prediction accuracy and model privacy.

Conclusion

- Neural network pruning aggravates the privacy risks of the original neural networks due to the increased confidence gap and sensitivity gap.
- The proposed SAMIA to predict membership status by using finergrained prediction metrics.
- SAMIA has advantages in identifying the pruned models' prediction divergence compared with the existing attacks.
- The proposed PPB defense mitigates pruned model's privacy risks by narrowing down the divergences of posterior predictions.

Please refer to the extended version for more details: arxiv.org/abs/2202.03335

Open-source code: github.com/Machine-Learning-Security-Lab/mia_prune

Scan me to get the code!

