
TLB;DR: Enhancing TLB-based Attacks
with TLB Desynchronized Reverse

Engineering
Andrei Tatar Daniël Trujillo

Cristiano Giuffrida Herbert Bos

2

Background: Virtual Memory & the TLB

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering

Teaser

o Introduce a novel way to reverse engineer Translation Lookaside
Buffers (TLBs)

o Previously undocumented TLB properties on Intel® CPUs
o Including a novel replacement policy!

o Improve previously proposed TLB-based attacks

3

Background: Virtual Memory & the TLB

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering

Virtual Memory & the TLB

o CPUs support virtual memory

o Translation to physical memory on page granularity (e.g. 4KB)
o Page tables denote virtual memory to physical memory mappings

o MMU performs page walk
o Involves up to 4 memory accesses to page tables

o Translation Lookaside Buffer (TLB) caches recent translations (PTEs)
o If TLB hit, we avoid expensive page walk
o If TLB miss, we still have to do page walk

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 4

Intel® TLBs: Topology

Data load Instruction fetch

iTLB missdTLB miss

sTLB miss

Page walk

o TLBs are organized in sets

o Each set has W ways

o Translation entries can occupy any
of the W ways

o Each virtual address deterministically
maps to one set using a hash function

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 5

Reverse Engineering: Set Sizes & Set MappingTLB Sets

6

Background: Virtual Memory & the TLB

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering

Previous work by Gras et al.

o TLB is potentially shared between mutually distrusting parties!
o TLBs are typically even shared across hyperthreads

o If TLB state depends on secret, then this secret can be leaked
o The TLB state can be sampled by timing accesses

o TLBleed: leaks cryptographic key using dTLB

o However, many TLB properties remained unknown

o When page tables are changed, TLB requires invalidation
o TLBs are non-coherent with in-memory page tables

o Failing to invalidate could lead to serious bugs
o Read or execute from the wrong physical address!

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 7

TLB Desynchronization

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 8

TLB Desynchronization: Leverage Desynced TLBs

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 9

TLB Desynchronization: Leverage Desynced TLBs

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 10

TLB Desynchronization: Leverage Desynced TLBs

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 11

TLB Desynchronization: Leverage Desynced TLBs
123

321

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 12

TLB Desynchronization: Leverage Desynced TLBs
123

321

*((char *)A);
as long as 123, we have a TLB hit

as soon as 321, we have a TLB miss

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 13

TLB Desynchronization: Leverage Desynced TLBs
123

321

*((char *)A);
as long as 123, we have a TLB hit

as soon as 321, we have a TLB miss

TLB Desynchronization allows reliable TLB hit detection!
We can reverse engineer the TLB with this primitive

o Inclusion policies
o Intel TLBs are non-inclusive & non-exclusive

o Insertion policies
o After page walk: inserts in both L1 and L2
o After L2 sTLB hit: inserts in L1
o After L1 eviction: no L2 sTLB insertion (not a victim cache)

o Set Sizes & Set Mapping
o Two types of hash functions (linear and XOR)
o Mostly in line with previous work

o Replacement policies

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 14

Reverse Engineering: Results on Intel®

o Inclusion policies
o Intel TLBs are non-inclusive & non-exclusive

o Insertion policies
o After page walk: inserts in both L1 and L2
o After L2 sTLB hit: inserts in L1
o After L1 eviction: no L2 sTLB insertion (not a victim cache)

o Set Sizes & Set Mapping
o Two types of hash functions (linear and XOR)
o Mostly in line with previous work

o Replacement policies

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 15

Reverse Engineering: Results on Intel®

o TLB sets eventually become full

o Replacement policy decides the victim for eviction
o Its goal is to maximize future TLB hits

o Three replacement policies active on Intel® TLBs
o LRU
o Tree-PLRU
o (MRU+1)%3PLRU4

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 16

Reverse Engineering: Replacement Policies

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 17

Reverse Engineering: LRU & Tree-PLRU

o Least-Recently-Used (LRU)
o Past is often a good approximation of the future
o Found active on Ivy Bridge’s iTLB

o Tree Pseudo LRU (Tree-PRLU)
o Approximation of LRU
o Binary tree with W – 1 bits
o Victim pointed to by arrows
o Found active on all dTLBs
o Found active on sTLBs of older Intel® CPUs

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 18

Reverse Engineering: LRU & Tree-PLRU

o Least-Recently-Used (LRU)
o Past is often a good approximation of the future
o Found active on Ivy Bridge’s iTLB

o Tree Pseudo LRU (Tree-PRLU)
o Approximation of LRU
o Binary tree with W – 1 bits
o Victim pointed to by arrows
o Found active on all dTLBs
o Found active on sTLBs of older Intel® CPUs

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 19

Reverse Engineering: LRU & Tree-PLRU

o Least-Recently-Used (LRU)
o Past is often a good approximation of the future
o Found active on Ivy Bridge’s iTLB

o Tree Pseudo LRU (Tree-PRLU)
o Approximation of LRU
o Binary tree with W – 1 bits
o Victim pointed to by arrows
o Found active on all dTLBs
o Found active on sTLBs of older Intel® CPUs

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 20

Reverse Engineering: LRU & Tree-PLRU

o Least-Recently-Used (LRU)
o Past is often a good approximation of the future
o Found active on Ivy Bridge’s iTLB

o Tree Pseudo LRU (Tree-PRLU)
o Approximation of LRU
o Binary tree with W – 1 bits
o Victim pointed to by arrows
o Found active on all dTLBs
o Found active on sTLBs of older Intel® CPUs

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 21

Reverse Engineering: LRU & Tree-PLRU

o Least-Recently-Used (LRU)
o Past is often a good approximation of the future
o Found active on Ivy Bridge’s iTLB

o Tree Pseudo LRU (Tree-PRLU)
o Approximation of LRU
o Binary tree with W – 1 bits
o Victim pointed to by arrows
o Found active on all dTLBs
o Found active on sTLBs of older Intel® CPUs

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering

Reverse Engineering: (MRU+1)%3PLRU4

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering

Reverse Engineering: (MRU+1)%3PLRU4

Group 0 Group 1 Group 2

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering

Reverse Engineering: (MRU+1)%3PLRU4

Group 0 Group 1 Group 2

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering

Reverse Engineering: (MRU+1)%3PLRU4

Group 0 Group 1 Group 2

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering

Reverse Engineering: (MRU+1)%3PLRU4

Group 0 Group 1 Group 2

Reverse Engineering: (MRU+1)%3PLRU4

Example sequence: 1, 12

Group 0 Group 1 Group 2

Reverse Engineering: (MRU+1)%3PLRU4

Group 0 Group 1 Group 2

Example sequence: 1, 12

Reverse Engineering: (MRU+1)%3PLRU4

Group 0 Group 1 Group 2

Example sequence: 1, 12

Reverse Engineering: (MRU+1)%3PLRU4

Group 0 Group 1 Group 2

Example sequence: 1, 12

Reverse Engineering: (MRU+1)%3PLRU4

Group 0 Group 1 Group 2

Example sequence: 1, 12

Reverse Engineering: (MRU+1)%3PLRU4

Group 0 Group 1 Group 2

Example sequence: 1, 12

Reverse Engineering: (MRU+1)%3PLRU4

Group 0 Group 1 Group 2

Example sequence: 1, 12

o TLB-based attacks often need to evict one particular entry
o TLBleed: to sample TLB, we need to evict translation of victim process to

allow next sample

o The naive way: access W addresses to evict the entire set

o Knowledge of replacement policies allows for optimized eviction

o Self-synchronizing repeatable TLB access patterns

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 34

Improving TLB-based Attacks

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 35

Improving TLB-based Attacks: (MRU+1)%3PLRU4

Insert T

Optimized

Group 0 Group 1 Group 2

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 36

Improving TLB-based Attacks: (MRU+1)%3PLRU4

Insert T

Optimized

Group 0 Group 1 Group 2

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 37

Improving TLB-based Attacks: (MRU+1)%3PLRU4

Insert T

Optimized

Group 0 Group 1 Group 2

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 38

Improving TLB-based Attacks: (MRU+1)%3PLRU4

6, 2, 1, 5

Optimized

Group 0 Group 1 Group 2

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 39

Improving TLB-based Attacks: (MRU+1)%3PLRU4

6, 2, 1, 5

Optimized

Group 0 Group 1 Group 2

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 40

Improving TLB-based Attacks: (MRU+1)%3PLRU4

6, 2, 1, 5

Optimized

Group 0 Group 1 Group 2

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 41

Improving TLB-based Attacks: (MRU+1)%3PLRU4

6, 2, 1, 5

Optimized

Group 0 Group 1 Group 2

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 42

Improving TLB-based Attacks: (MRU+1)%3PLRU4

6, 2, 1, 5

Optimized

Group 0 Group 1 Group 2

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 43

Improving TLB-based Attacks: (MRU+1)%3PLRU4

6, 2, 1, 5

Optimized

Group 0 Group 1 Group 2

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 44

Improving TLB-based Attacks: (MRU+1)%3PLRU4

6, 2, 1, 5

Optimized

Group 0 Group 1 Group 2

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 45

Improving TLB-based Attacks: (MRU+1)%3PLRU4

6, 2, 1, 5

Optimized

Group 0 Group 1 Group 2

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 46

Improving TLB-based Attacks: (MRU+1)%3PLRU4

6, 2, 1, 5

Optimized

Group 0 Group 1 Group 2

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 47

Improving TLB-based Attacks: (MRU+1)%3PLRU4

6, 2, 1, 5

Optimized

Group 0 Group 1 Group 2

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 48

Improving TLB-based Attacks: (MRU+1)%3PLRU4

6, 2, 1, 5

Optimized

Group 0 Group 1 Group 2

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 49

Improving TLB-based Attacks: (MRU+1)%3PLRU4

6, 2, 1, 5

Optimized

Group 0 Group 1 Group 2

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 50

Improving TLB-based Attacks: (MRU+1)%3PLRU4

Also developed optimal eviction sets for Tree-PLRU
4 misses vs. 3 hits + 1 miss

o Original TLBleed attack leaks over dTLB

o Optimized eviction sets allow for 20% faster L1 dTLB sampling!

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 51

Improving TLB-based Attacks: Original TLBleed

o We make it practical to leak over L2 sTLB

o Optimized eviction sets result in 2x faster L2 sTLB sampling!
o Close to the sampling rate on L1 dTLB (naive eviction)

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 52

Improving TLB-based Attacks: sTLBleed

o We introduce a variant that leaks from dTLB and sTLB simultaneously

o Optimized eviction sets result in almost 5x faster set-pair sampling!

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 53

Improving TLB-based Attacks: set-pair TLBleed

o Other attacks indirectly using the TLB rely on continuous page walks
o PTHammer: page walk can be used to hammer DRAM
o ASLR on the Line: page walk side-effects break ASLR

o We use optimized eviction sets to cause TLB eviction

o PTHammer: 12% shorter hammer time!

o ASLR on the Line: 20% less time to break ASLR!
TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 54

Improving TLB-based Attacks: Rowhammer & ASLR

o More details on Intel® TLBs

o Undocumented cache that keeps track of address spaces

o iTLB partitions dynamically based on workload

o Inclusivity and set sizes on AMD

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 55

More interesting results in the paper…

o Reverse engineered TLBs
o TLB Desynchronization as a reverse engineering primitive

o Better understanding of TLB behavior
o Novel TLB properties

o Speed up TLB eviction
o Optimized eviction sets

o Improved attacks relying on TLB interaction
o TLBleed, PTHammer, ASLR on the Line

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 56

Summary

Thank you!

Questions?

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 57

Questions?

58

59

