TLB;DR: Enhancing TLB-based Attacks

with TLB Desynchronized Reverse
Engineering

Teaser

Introduce a novel way to reverse engineer Translation Lookaside
Buffers (TLBs)

Previously undocumented TLB properties on Intel® CPUs
Including a novel replacement policy!

Improve previously proposed TLB-based attacks

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 2

Virtual Memory & the TLB

CPUs support virtual memory

Translation to physical memory on page granularity (e.g. 4KB)
Page tables denote virtual memory to physical memory mappings

MMU performs page walk

Involves up to 4 memory accesses to page tables

Translation Lookaside Buffer (TLB) caches recent translations (PTEs)
If TLB hit, we avoid expensive page walk
If TLB miss, we still have to do page walk

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering

Intel® TLBs: Topology

Dataload — __— Instruction fetch
L1 dTLB iTLB
dTLB miss i iTLB miss
L2 sTLB
J STLB miss
Page walk

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 4

TLB Sets

TLBs are organized in sets dTLB iTLB

Each set has W ways

Translation entries can occupy any
of the W ways

Each virtual address deterministically
maps to one set using a hash function

sTLB

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 5

Previous work by Gras et al.

TLB is potentially shared between mutually distrusting parties!
TLBs are typically even shared across hyperthreads

If TLB state depends on secret, then this secret can be leaked
The TLB state can be sampled by timing accesses

TLBleed: leaks cryptographic key using dTLB L1 | dTLB iTLB

However, many TLB properties remained unknown

L2 sTLB

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 6

TLB Desynchronization

When page tables are changed, TLB requires invalidation
TLBs are non-coherent with in-memory page tables

Failing to invalidate could lead to serious bugs
Read or execute from the wrong physical address!

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 7

TLB Desynchronization: Leverage Desynced TLBs

020 0x0
021000
TLB
022000 |- X1
)
=
<
A 02400000 Z.
3 :
[0x401000 E
02800000 g
S)
02801000 Page Tables . X2 »
02802000

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 8

TLB Desynchronization: Leverage Desynced TLBs

020 0x0
021000
K TLB
022000 |- X1
)
=
<
A 02400000 Z.
3 :
[0x401000 E
02800000 g
S)
02801000 Page Tables . X2 »
02802000

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 9

TLB Desynchronization: Leverage Desynced TLBs

P1

020 0x0
021000
R TLB |
022000 |- ' X1
A 02400000
0x401000
02800000
02801000 Page Tables /. X2
02802000

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering

AIOWBIA [eIIsAYJ

10

TLB Desynchronization: Leverage Desynced TLBs

P1

0x0 0x0
021000 i /
4 TLB e
022000 |- ' X1
.. e
o
A 02400000 %
0x401000 ’é
02800000 . g
o
02801000 Page Tables /. X2 3
02802000 .

123

:

321

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering

11

TLB Desynchronization: Leverage Desynced TLBs

123
020 020
021000 —_— /
A TLB e
029000 |- ' X1
“““‘ w
o" r
<
A 02400000 =
_ g
2% 0x401000 2
02800000 g
o
02801000 Page Tables g
02802000

321

é
/

as long as 123, we have a TLB hit
*((char *)A); <

as soon as 321, we have a TLB miss

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 12

TLB Desynchronization: Leverage Desynced TLBs

P1

123
0x0 0x0
021000 - /
4 tB e
022000 ' X1
&
=
<
A 02400000 &
0x401000 ’é
02800000 :
e}
02801000 Page Tables /. X2 3
02802000
321

as long as 123, we have a TLB hit
*((char *)A); <

as soon as 321, we have a TLB miss

TLB Desynchronization allows reliable TLB hit detection!

We can reverse engineer the TLB with this primitive

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 13

Reverse Engineering: Results on Intel®

Inclusion policies
Intel TLBs are non-inclusive & non-exclusive

Insertion policies

After page walk: inserts in both L1 and L2
After L2 sTLB hit: inserts in L1
After L1 eviction: no L2 sTLB insertion (not a victim cache)

Set Sizes & Set Mapping
Two types of hash functions (linear and XOR)
Mostly in line with previous work

Replacement policies

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 14

Reverse Engineering: Results on Intel®

Inclusion policies
Intel TLBs are non-inclusive & non-exclusive

Insertion policies

After page walk: inserts in both L1 and L2
After L2 sTLB hit: inserts in L1
After L1 eviction: no L2 sTLB insertion (not a victim cache)

Set Sizes & Set Mapping
Two types of hash functions (linear and XOR)
Mostly in line with previous work

Replacement policies

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 15

Reverse Engineering: Replacement Policies

TLB sets eventually become full

Replacement policy decides the victim for eviction
Its goal is to maximize future TLB hits

Three replacement policies active on Intel® TLBs
LRU
Tree-PLRU
(MRU+1),,5PLRU,

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 16

Reverse Engineering: LRU & Tree-PLRU

Least-Recently-Used (LRU)

Past is often a good approximation of the future
Found active on Ivy Bridge’s iTLB

Tree Pseudo LRU (Tree-PRLU)

Approximation of LRU
Binary tree with W —1 bits

Victim pointed to by arrows @
Found active on all dTLBs

Found active on sTLBs of older Intel® CPUs

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering

17

Reverse Engineering: LRU & Tree-PLRU

Least-Recently-Used (LRU)

Past is often a good approximation of the future
Found active on Ivy Bridge’s iTLB

Tree Pseudo LRU (Tree-PRLU)

Approximation of LRU
Binary tree with W —1 bits

Victim pointed to by arrows @
Found active on all dTLBs

Found active on sTLBs of older Intel® CPUs

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering

18

Reverse Engineering: LRU & Tree-PLRU

Least-Recently-Used (LRU)

Past is often a good approximation of the future
Found active on Ivy Bridge’s iTLB

Tree Pseudo LRU (Tree-PRLU)
Approximation of LRU
Binary tree with W —1 bits
Victim pointed to by arrows
Found active on all dTLBs
Found active on sTLBs of older Intel® CPUs L

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering

19

Reverse Engineering: LRU & Tree-PLRU

Least-Recently-Used (LRU)

Past is often a good approximation of the future
Found active on Ivy Bridge’s iTLB

Tree Pseudo LRU (Tree-PRLU)
Approximation of LRU @
Binary tree with W -1 bits Ny
Victim pointed to by arrows
Found active on all dTLBs

Found active on sTLBs of older Intel® CPUs / /

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering

20

Reverse Engineering: LRU & Tree-PLRU

Least-Recently-Used (LRU)

Past is often a good approximation of the future
Found active on Ivy Bridge’s iTLB

Tree Pseudo LRU (Tree-PRLU)

Approximation of LRU
Binary tree with W —1 bits

Victim pointed to by arrows a
Found active on all dTLBs
Found active on sTLBs of older Intel® CPUs /

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering

21

Reverse Engineering: (MRU+1),,PLRU,

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering

Reverse Engineering: (MRU+1),,PLRU,

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering

Reverse Engineering: (MRU+1),,PLRU,

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering

Reverse Engineering: (MRU+1),,PLRU,

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering

Reverse Engineering: (MRU+1),,PLRU,

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering

Reverse Engineering: (MRU+1),,PLRU,

Example sequence: 1, 12

Reverse Engineering: (MRU+1),,PLRU,

4

Example sequence: 1, 12

Reverse Engineering: (MRU+1),,PLRU,

4

Example sequence: 1, 12

Reverse Engineering: (MRU+1),,PLRU,

4

Example sequence: 1, 12

Reverse Engineering: (MRU+1),,PLRU,

Y

Example sequence: 1, 12

Reverse Engineering: (MRU+1),,PLRU,

e

Example sequence: 1, 12

Reverse Engineering: (MRU+1),,PLRU,

e

Example sequence: 1, 12

Improving TLB-based Attacks

TLB-based attacks often need to evict one particular entry

TLBleed: to sample TLB, we need to evict translation of victim process to
allow next sample

The naive way: access W addresses to evict the entire set
Knowledge of replacement policies allows for optimized eviction

Self-synchronizing repeatable TLB access patterns

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 34

Improving TLB-based Attacks: (MRU+1),,,PLRU,

Optimized

Insert T

41811 317

Group O Group 1 Group 2

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 35

Improving TLB-based Attacks: (MRU+1),,,PLRU,

Optimized

Insert T

41811

Group O Group 1 Group 2

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 36

Improving TLB-based Attacks: (MRU+1),,,PLRU,

Optimized

Insert T

418 |1

Group O Group 1 Group 2

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 37

Improving TLB-based Attacks: (MRU+1),,,PLRU,

Optimized

41811

Group O Group 1 Group 2

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 38

Improving TLB-based Attacks: (MRU+1),,,PLRU,

Optimized

41811

Group O Group 1 Group 2

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 39

Improving TLB-based Attacks: (MRU+1),,,PLRU,

Optimized

418 |1

Group O Group 1 Group 2

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 40

Improving TLB-based Attacks: (MRU+1),,,PLRU,

Optimized

41811

Group O Group 1 Group 2

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 41

Improving TLB-based Attacks: (MRU+1),,,PLRU,

Optimized

|
6,2 1,5

41811

Group O Group 1 Group 2

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 42

Improving TLB-based Attacks: (MRU+1),,,PLRU,

Optimized

418 |1

Group O Group 1 Group 2

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 43

Improving TLB-based Attacks: (MRU+1),,,PLRU,

Optimized

418 |1

Group O Group 1 Group 2

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 44

Improving TLB-based Attacks: (MRU+1),,,PLRU,

Optimized

418 |1

Group O Group 1 Group 2

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 45

Improving TLB-based Attacks: (MRU+1),,,PLRU,

Optimized

|
6,2 1,5

418 1|1 3|17

Group O Group 1 Group 2

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 46

Improving TLB-based Attacks: (MRU+1),,,PLRU,

Optimized

41811 3|17

Group O Group 1 Group 2

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 47

Improving TLB-based Attacks: (MRU+1),,,PLRU,

Optimized

41811

Group O Group 1 Group 2

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 48

Improving TLB-based Attacks: (MRU+1),,,PLRU,

Optimized

41811 2151610 3|17

Group O Group 1 Group 2

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 49

Improving TLB-based Attacks: (MRU+1),,,PLRU,

3 HITS + 1 MISS

VS.
12 MISSES

Also developed optimal eviction sets for Tree-PLRU
4 misses vs. 3 hits + 1 miss

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering

Improving TLB-based Attacks: Original TLBleed

Original TLBleed attack leaks over dTLB

Optimized eviction sets allow for 20% faster L1 dTLB sampling!

L1 dTLB iTLB

L2 sTLB

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering

51

Improving TLB-based Attacks: sTLBleed

We make it practical to leak over L2 sTLB

Optimized eviction sets result in 2x faster L2 sTLB sampling!
Close to the sampling rate on L1 dTLB (naive eviction)

L1 dTLB iTLB

L2 sTLB

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering

52

Improving TLB-based Attacks: set-pair TLBleed

We introduce a variant that leaks from dTLB and sTLB simultaneously

Optimized eviction sets result in almost 5x faster set-pair sampling!

L1 dTLB iTLB

L2 sTLB

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering

53

Improving TLB-based Attacks: Rowhammer & ASLR

PThammer: Cross-User-Kernel-Boundary Rowhammer through Implicit Accesses ASLR on the Line' Prac tical Cache A t tacks on the MMU

Zhi Zhang* ¥, Yuegiang Cheng*%, Dongxi Liu?, Surya Nepal?, Zhi Wang¥, and Yuval Yarom?!
* Both authors contributed equally to this work

T University of New South Wales, Australia o pavi® . . . sets = C
tData61, CSIRO, Australia Email: {zhi.zhang,dongxi.liu,surya.nepal } @data6 1 .csiro.au Ben Gras Kaveh Razavi Erik Bosman Herbert Bos Cristiano Giuffrida

$Baidu Security Email: chengyuegiang @baidu.com Vrije Universiteit Amsterdam
YFlorida State University, America Email: zwang@cs.fsu.edu {beng, kaveh, ejbosman, herbertb, giuffrida}@cs.vu.nl

I University of Adelaide Email: yval@cs.adelaide.edu.au Eaqual sbution ioint first auth
- “qual contnbution jom rst authors

Other attacks indirectly using the TLB rely on continuous page walks
PTHammer: page walk can be used to hammer DRAM
ASLR on the Line: page walk side-effects break ASLR

We use optimized eviction sets to cause TLB eviction

PTHammer: 12% shorter hammer time!

ASLR on the Line: 20% less time to break ASLR!

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 54

More interesting results in the paper...

More details on Intel® TLBs

Undocumented cache that keeps track of address spaces

iTLB partitions dynamically based on workload

Inclusivity and set sizes on AMD

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 55

Reverse engineered TLBs
TLB Desynchronization as a reverse engineering primitive

Better understanding of TLB behavior
Novel TLB properties

Speed up TLB eviction
Optimized eviction sets

Improved attacks relying on TLB interaction
TLBleed, PTHammer, ASLR on the Line

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 56

Thank youl!

Questions?

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering 57

TLB Property Westmere-EP Ivy Bridge Haswell Skylake-SP Kaby Lake Coffee Lake(-S)
E5645 13-3220 17-4790 Silver 4110 17-7700K 17-8750H, 19-9900K

Inclusive X X X X X X

Exclusive X X X X X X

L2 is victim cache X X X X X X

L2 hit inserts into L1 v v v v e v

L1 hit inserts into L2 X X X X X X

L1dTLB

Number of sets 16 16 16 16 16 16

Number of ways 4 4 4 4 4 4

Hash function linear linear linear linear linear linear

Replacement policy tree-PLRUy4 tree-PLRU,4 tree-PLRUy4 tree-PLRU4 tree-PLRUy4 tree-PLRU4

Max PCIDs N/A N/A N/A N/A N/A N/A

L1iTLB

Number of sets 32 16/ 32! 8/16! 8/16! 8/16! 8/16!

Number of ways 4 4 8 8 8 8

Hash function linear linear linear linear linear linear

Replacement policy tree-PLRUy4 LRU4 tree-PLRUg? tree-PLRUg?2 tree-PLRUg? tree-PLRUg?2

Max PCIDs 1/43 1/43 1/43 1/43 1/43 1/43

L2 sTLB

Number of sets 128 128 128 128 128 128

Number of ways 4 4+ 8 12 12 12

Hash function linear linear linear XOR XOR XOR

Replacement policy tree-PLRUy4 tree-PLRU,4 tree-PLRUg = (MRU+1)¢3PLRUs (MRU+1)q,3PLRU4 (MRU+1)¢3PLRU4

Max PCIDs 4 4 4 4 4 4

! Depending on the activity of the co-resident hyperthread; see §4.2.
2 Model closest to our observations, but very high error rate; see §4.4.2.

3 Depending on whether the NOFLUSH bit is set when switching PCIDs; see §4.5.

58

Zen+ Zen 3
TLB Property Ryzen72700X Ryzen 5 5600X
Inclusive X X
L1dTLB
Number of sets 1 1
Number of ways 641 64!
L1iTLB
Number of sets 1 1
Number of ways 641 641
L2 dTLB
Number of sets 256/1927 256
Number of ways 8 8
Set selection bits 12-18, 21 12-18, 21
L2iTLB
Number of sets 128 128
Number of ways 4? 4
Set selection bits 12-17, 21 12-17, 21

I Reported by cpuid, but consistent with our results.
2 Results inconclusive; see §A.2.

59

